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In 2005, the Institute for Defense Analyses (IDA)
initiated the development of the Common Risk
Model (CRM) for evaluating and comparing risks

associated with the nation’s critical infrastructure. This
model incorporates commonly used risk metrics that
are designed to be transparent, simple, and mathemat-
ically justifiable. The model also enables comparisons
of calculated risks to assets and systems within and
across critical infrastructure sectors.

A modified version of this model has been under
development by IDA in collaboration with the US
Army Corps of Engineers (USACE) and the US
Department of Homeland Security (DHS). The modi-
fied model, the Common Risk Model for Dams (CRM-
D), takes into account the unique features of dams and
navigation locks, and provides a systematic approach
for evaluating and comparing risks from adaptive
threats across a large portfolio [Seda-Sanabria et al.,
20111].

At the most basic level, risk is estimated for an attack
scenario, defined as: 
• a specific adversary (for example, a highly-capable
transnational terrorist group); 
• a specific target (for example, the main impound-
ment structure of a specific dam); and,
• a specific attack vector (for example, a cargo van
loaded with explosives). 

Risk is defined as the expected value of loss and is a
function of three variables: threat (T), vulnerability
(V), and consequences (C):

R = f (T, V, C)                               ... (1)

Threat is defined as the probability of an attack sce-
nario being attempted by the adversary, given the
attack on one of the targets in the portfolio under
assessment, or P(A); vulnerability, as the probability
of defeating the target’s defences, given that the attack

is attempted, or P(S|A); and, consequences, as the
expected consequences of the attack, given that the tar-
get’s defences are defeated, C. Because of the way in
which CRM-D estimates these three variables, it is
appropriate to calculate risk as their product: 

R = P(A) × P(S|A) × C(*) ... (2)

CRM-D also defines ‘conditional risk’, or RC, as risk
for the attack scenario, given that this scenario is cho-
sen(**): 

RC = P(S|A) × C                              ... (3)
The consequence and risk metrics currently consid-

ered in the CRM-D are loss of life and total economic
impacts. The sum of risks for all the attack scenarios
under consideration is termed ‘portfolio risk’.
Minimizing portfolio risk, subject to available
resources, is often the focus of risk managers.

Fundamental concepts of CRM-D
The CRM-D methodology integrates the outputs of
three separate models: consequences (external to
CRM-D), vulnerability, and threat. Using modelling is
a natural choice for estimating the outcomes of com-
plex physical and economic processes, such as conse-
quences from attack, but is equally important for esti-
mating vulnerability and threat, that is, variables
which require more subjective input from subject mat-
ter experts (SMEs). This is because there are many
possible attack scenarios, and the set is continuously
changing. It is prohibitively costly and time-consum-
ing to elicit expert judgements on vulnerability and
threat for every scenario, and to repeat the elicitation
process every time a new scenario is introduced or old
scenarios are modified. This makes modelling crucial
when developing risk estimates in support of return on
investment (ROI) analyses, because the impacts on
risk of potential risk-mitigation improvements need to
be assessed quickly. 

The vulnerability and threat models are based on data
elicited from SMEs in a way that makes it possible to
apply elicited SME judgement to any set of attack sce-
narios. The elicitations were conducted for estimating
risk from highly capable, transnational adversary
groups. Elicitations in support of estimating risk from
other types of adversary are currently under develop-
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The Common Risk Model for Dams (CRM-D), described here, was developed as a result of collaboration between the US Army Corps of
Engineers and the US Department of Homeland Security.  It is used for security risk assessment of dams, navigation locks, hydro projects,
and similar infrastructure. The method provides a systematic approach for evaluating and comparing security risks across a large portfolio.
Risk is calculated for attack scenarios (specific adversary using a specific attack vector against a specific target) by combining consequence,
vulnerability, and threat estimates in a way that accounts for the relationships among these variables. The CRM-D can effectively quantify
the benefits of implementing a particular risk mitigation strategy and, consequently, enable return-on-investment analyses for multiple

mitigation options across a large portfolio.

*The functional relationships among the variables are accounted for by
estimating P(A) as a function of the other two variables, but there is no
stochastic relationship because P(S|A) and expected consequences are
estimated as point values, and not random variables. This justifies the
use of the product function [Cox, 20082].
**Note that the risk metric in Eq. 2 is also conditional  on the attack
within a portfolio under assessment. The “conditional risk” metric is
further conditioned on the particular attack being chosen. 



ment. Because the adversaries’ capabilities and/or
intent are likely to change with time, elicitations
should be repeated every few years or as deemed
appropriate. 

Vulnerability 
To evaluate the vulnerability of a target to a specific
attack by a specific adversary, a model of layered
defences is adopted. The defensive layers protecting a
given target could potentially include national defences
(for example, national counter-terrorism activities),
local defences (for example, local law enforcement
capabilities to detect and respond to potential attacks),
and target defences (for example, on-site security sys-
tems and protective measures). The methodology for
producing vulnerability estimates accounting for target
defensive layers is described in detail by Seda-Sanabria
et al. [20113]. The methodology for producing vulnera-
bility estimates for national and local defensive layers
is currently under development.  

In CRM-D, an attack is considered ‘successful’ if
every defensive layer is breached successfully, and the
attack reaches the target. Therefore, for the conceptual
attack scenario shown in Fig. 1, P(S|A) can be deter-
mined using the following expression:

P(S|A) = P(B1|A) × P(B2|B1) × P(B3|B2,B1)       ... (4)

where: P(B1|A) is the probability of successfully
breaching the first layer given the specific attacker
under consideration attempts this attack; P(B2|B1) is
the probability of successfully breaching the second
layer given that the attacker has successfully breached
the first layer; and, P(B3|B2,B1) is the probability of
successfully breaching the third layer given that the
attacker has successfully breached the first and the
second layers. 

Each layer is defined by its defensive attributes. For
a national defensive layer, these can be the character-
istics of relevant programmes and activities imple-
mented at the national scale, such as the security
screening conducted at airports; for a local defensive
layer, these can be the level of participation in intelli-
gence information-sharing of local law enforcement
agencies and their prevention/response capabilities;
and for the target defensive layers, these can be the
characteristics of site security measures, such as vehi-
cle barriers, access control systems, security force,
and so on.

Regarding target defensive layers, there is a rela-
tively small number of combinations of defensive
attributes that are typically implemented on dams and
related facilities. These commonly used configura-
tions are called layer-defensive configurations, or
LDCs. Because of the small number of LDCs, it is
feasible to elicit probabilities of success for each ref-
erence attack vector against each LDC for each type
of attacker under consideration. The vulnerability
estimate for a given LDC reflects subject-matter
expert (SME) judgement on how the defensive attrib-
utes of that LDC would perform against a particular
attacker using a particular attack vector, based on the
attacker’s capabilities and intent and the attack vec-
tor’s characteristics. 

Probabilities of success against individual LDCs are
combined into a P(S|A) for a scenario as shown in
Eq. 4. The probability of success against a layer is
conditional on which layers have already been

breached, since some layers can degrade attackers’
capabilities in various ways. Further, P(S|A) incorpo-
rates the possibility that some layers may or may not
be encountered (for example, response forces may or
may not arrive in time to engage the adversary before
the attack succeeds). The process of estimating
P(S|A) in light of these factors is discussed in detail
by Morgeson et al. [20134].

Threat
Modelling threat from goal-oriented, adaptive adver-
saries is fundamentally different from modelling
potential hazards associated with forces of nature.
Adversaries evaluate potential attacks based on criteria
that are important to them and then choose the attack
which suits their objectives best. When the adversary
decision criteria change, their choice may change as
well. Unlike consequence or vulnerability estimates, a
threat estimate for an attack scenario depends not only
on the characteristics of that scenario, but on the char-
acteristics of all attack scenarios that the adversary is
choosing from. 

To account for these concepts, the CRM-D includes
a ‘probabilistic adversary decision model’ (PADM),
which is composed of two sub-models: the ‘adversary
value model’ (AVM) and the ‘attack choice model’
(ACM). The decision model is probabilistic because
no aspect of the adversary’s future decision process
can be known with certainty. 

Adversary value model 
This quantifies expert judgement about how adver-
saries evaluate the relative attractiveness of attack sce-
narios, based on the scenarios’ characteristics that the
adversary is likely to take into account. These fea-
tures, related to the adversary capabilities and intent,
reflect the various expected benefits, costs, and risks
associated with each attack scenario. The adversary
value model also quantifies the underlying uncertain-
ty about the value system, which stems from the dif-
ferences of opinion among experts and the uncertain-
ty of each individual expert about the attacker value
system.

To model the attack scenario evaluation process fol-
lowed by an adversary, it is first necessary to identi-
fy the adversarial goals driving the selection of a par-
ticular attack scenario. For the type of adversary
under consideration (highly capable, transnational
terrorist organization), this was conducted through
literature review and interviews with selected groups
of terrorism experts from various government and
research organizations. It was found that an ideal
attack for these adversaries would cause grave physi-
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defences.



cal and psychological damage while having a relative-
ly low chance of failure [Ackerman et al., 20075;
Davis et al., 20096; Libicki et al., 20077]. 

Based on the assumed goals, the following variables
were identified as the controlling factors influencing
the attack scenario evaluation process from the adver-
sary’s perspective:
• adversary’s perception of the probability of success-
fully defeating the national and local defensive layers;
• adversary’s perception of the probability of success-
fully defeating the target defensive layers, given suc-
cess against the national and local defences;
• adversary’s perception of the expected level of con-
sequences in terms of the loss of life resulting from a
successful attack; and,
• adversary’s perception of the expected level of con-
sequences in terms of the economic impacts resulting
from a successful attack. 

These key variables, the quantification of which is
relatively straightforward, were selected from a larger
set of variables identified as potentially relevant for
attack scenario evaluation purposes. For example,
according to background research, the adversary was
deemed to value spectacular attacks on iconic targets.
However, how spectacular an attack might be is not
easily quantifiable, and iconicity is only considered
when it varies across targets in a portfolio. In addition,
an event deemed as spectacular may exhibit a strong
correlation with loss of life and economic damage, and
therefore it may be captured by the key variables
selected above. 

A comprehensive expert elicitation was conducted
with participation of representatives from multiple
federal agencies, owners and operators, state fusion
centres, and other state agencies responsible for law
enforcement and public safety. The elicitation was
conducted using a self-paced, interactive, online inter-
view process using the Sawtooth software for conjoint
(trade-off) analysis [Orme, 20108]. 

In the main elicitation task, each SME was presented
with 10 or 20 different sets of four hypothetical attack
options. The options were created by systematically
varying the values of the key attack features in a way
that makes a statistical estimation of the adversary’s
value system more efficient. For each set of options,
each expert was asked to provide the probability that
each of the options in the set would be chosen by

adversaries, given that one of them would be chosen.
Eliciting probabilities provides a way of incorporating
each SME’s uncertainty. Fig. 2 shows an example of
one of the sets of hypothetical attack options used in
the elicitation. 

Statistical modelling provides a way of aggregating
the judgements of individual SMEs into a cumulative
judgement, and of quantifying the trade-offs the SMEs
believe the adversaries would make among the differ-
ent attack features. It also quantifies uncertainty about
the value system, which stems from SME uncertainty
and differences of opinion. Estimating the value sys-
tem involves running a regression, where the depend-
ent variable is the expert’s judgement about an attack
alternative, and the independent variables are values of
the features of the corresponding attack option. The
regression is a version of conditional logit (a regres-
sion model appropriate when the data reflects choices
among options) which is modified to analyse proba-
bilistic choice data [Blass et al., 20109; Kirpichevsky
et al., 201210]. 

The adversary value system takes the form of a func-
tional relationship among the key decision variables,
which is chosen to best fit the elicited data. The effect
of each of the variables on the value assigned by the
adversary to attack scenarios (utility) was found to
have a concave pattern: increases at the lower end of
the variable ranges result in greater utility increases.
This indicates decision-making consistent with thresh-
olding: for example, once a certain level of probabili-
ty of success or consequences can be expected, sce-
nario attractiveness does not change much, whereas
change is significant below the threshold. This is con-
sistent with the narrative answers provided by SMEs
during the elicitation. In those answers, SMEs also
stressed that the most important decision criterion for
the adversary was aversion to failure, and that loss of
life was the more important of the two consequence
variables, which was reflected in the estimated value
system(*). 

Attack choice model 
The attack choice model uses the estimated adversary
value system to calculate P(A) for any set of attack
scenarios and to carry out ROI analyses for risk miti-
gation options. To make the P(A) calculation possible,
attack scenarios in the portfolio need to be formulated
in terms that the adversary value model can accommo-
date. This involves using the CRM-D consequence and
vulnerability models to estimate the values for loss of
life, total economic impacts, and the probabilities of
defeating the national/local and target defences for
every scenario in the portfolio. These variables are
used as proxies for the adversary perceptions of these
variables.

The attack choice model then uses the estimated
adversary value function and the uncertainty around it
to simulate the possible utility values for a set of attack
scenarios. The current CRM-D assumption is that the
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**If the adversary believes that risk mitigation might involve deception
or randomization, they might not necessarily choose a scenario that is
perceived to have the highest value. A game theory module is under
development to address this issue.
***Because P(A) is conditional on attack within a portfolio, deterrence
is not modelled,  in response to risk mitigation, the P(A) can only shift
among the scenarios, and the sum of P(A) will always be no less than 1.
Future work on the AVM elicitation will enable estimating the deterrence
effect of investments.

*For example, suppose scenario consequences in terms of loss of life
and economic damage are equal to 10 and $10 million respectively, and
the combined P(S|A) is equal to 0.2. If P(S|A) were to drop to 0.1, it
would require an offsetting increase in consequences equal to either 400
lives or $2.5 billion, for the adversary to retain roughly the same overall
utility for the scenario.

Fig. 2. Example of
a set of
hypothetical attack
alternatives.



adversary selects the attack scenario perceived to have
the highest value, and so P(A) for an attack scenario is
calculated as the fraction of the simulations, in which
the scenario has the highest value in the set(**).  

Because CRM-D models adversaries as adaptive
decision-makers, it is important to note that some risk
mitigation investments may decrease P(A) for some
scenarios, while causing an increase for other scenar-
ios(***). Therefore, it is theoretically possible for an
inv est ment aimed at risk mitigation actually to
increase the portfolio risk if the threat shifts to attack
scenarios which pose more risk. Risk managers should
be mindful of the complex interactions associated with
the target selection process used by adaptive adver-
saries.

Pilot implementation at USACE projects
In 2011, the USACE initiated a pilot implementation
of the CRM-D at selected of dam and navigation lock
projects in the USACE Northwestern Division
(Columbia river, Willamette river tributary, and
Missouri river basins), Mississippi Valley Division
(Mississippi river basin), and Great Lakes and Ohio
River Division (Ohio river basin). Each project had
unique features, functions, and operational conditions
which offered ideal conditions to test the capabilities
of the methodology and its applicability to a large port-
folio.  

Risk was estimated in terms of expected loss of life
and total economic damage for 16 attack scenarios
associated with nine dams and two attack vectors. Fig.
3 shows the product of P(A) and P(S|A) plotted against
economic consequences for attack scenarios (the tar-
gets are indexed by letters, and the attack vectors by
numbers). Thus, risk in terms of economic conse-
quences could be determined by multiplying the two
coordinates together. 

Fig. 3 shows iso-curves that could represent thresh-
olds of risk as determined by a decision-maker, for
example, a portfolio owner. The curves trace those
points for which risk is greater than $50 million (above
the red line), and greater than $20 million (above the
green line). Decision makers could hypothetically use
such information to identify more readily those dams
that they choose to focus on for developing investment
options. The risk values that would define these curves
could be chosen in accordance with decision makers’
priorities.

A portfolio risk manager might wish to assess an
impact of a particular investment on risk. For exam-
ple, the addition of K12-rated vehicle barriers at
seven of the projects where they had not been previ-
ously installed at a total cost of less than $1 million
could reduce portfolio risk given attack by $66 mil-
lion in expected economic damage and 34 lives. To
decide whether this is a worthy investment, a risk
manager would have to assume or elicit from SMEs
a predicted annual frequency of attacks in the portfo-
lio and then use it to compare this and other invest-
ments with the time-discounted values of the result-
ing risk reductions.

Conclusion
The Common Risk Model for Dams (CRM-D) is a con-
sistent, mathematically rigorous, and easy to imple-
ment method for security risk assessment of dams, nav-
igation locks, hydro projects, and similar infrastructure.
This methodology, the result of collaborative efforts

between the US Army Corps of Engineers and the US
Department of Homeland Security, provides a system-
atic approach for evaluating and comparing security
risks across a large portfolio. ◊
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1 4 .   A B S T R A C T  

The Common Risk Model for Dams (CRM-D) is a consistent, mathematically rigorous, and easy to implement method for security risk assessment 
of  dams, navigation locks, hydropower projects, and similar infrastructures. The methodology provides a systematic approach for evaluating and 
comparing security risks across a large portfolio. Risk is calculated for attack scenarios (specific adversary using a specific attack vector against a 
specific target) by combining consequence, vulnerability, and threat estimates in a way that properly accounts for the relationships among these 
variables. The CRM-D can effectively quantify the benefits of  implementing a particular risk mitigation strategy and, consequently, enable return-
on-investment analyses for multiple mitigation alternatives across a large portfolio. 
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