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Problem: Reliability is an essential element in assessing the operational suitability of 
Department of Defense weapon systems. Reliability takes a prominent role in both the design 
and analysis of operational tests. In the current era of reduced budgets and increased reliability 
requirements however, it is challenging to verify reliability requirements in a single test.  

Approach: This paper describes the benefits of using parametric statistical models to combine 
information across multiple testing events. Both frequentist and Bayesian inference techniques 
are employed, and they are compared and contrasted to illustrate different statistical methods for 
combining information. We apply these methods to data collected during the developmental and 
operational test phases for the Stryker family of vehicles.  

Results: We show that when we combining information across two test phases for the Stryker 
family of vehicles, reliability estimates are more accurate and precise than those reported 
previously using traditional methods that use only operational test data in their reliability 
assessments. 
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PROCESS DESCRIPTION 

In today’s data-driven society, we often find ourselves with many sources of data that, when 
looked at collectively, may paint a different picture from what emerges when those data are 
analyzed in isolation. Most statistical analysis methodologies, however, focus on methods for 
one sample of data. The medical field has pioneered meta-analysis, which is typically associated 
with studies in which several clinical trials are combined into a single analysis.   

In the Department of Defense, data are often collected over several phases of tests. A primary 
initiative across the Department of Defense (DoD) testing and evaluation community has been to 



integrate testing through collaborative test planning and execution among all test agencies, 
resulting in data that can be shared by all. However, no one has yet capitalized on the knowledge 
that can be gained when one properly combines information across all of these test venues. 
Anderson-Cook (2009) highlights these potential gains, stating, “If we have multiple datasets 
that are individually insufficient to answer the question of interest, then combining them and 
incorporating engineering or scientific understanding of the process should allow us to extract 
more from that collection of data compared to just looking at the pieces alone.” There are many 
challenges that have limited the use of all test data, including limitations on data sharing, stark 
differences in how tests are conducted between test phases, and differences in the types of data 
collected by test phase. Reliability, however, has been a high priority in the testing of military 
systems for several years now. This emphasis has resulted in increased attention to capturing 
reliability data consistently across all stages of testing. 

Reliability is the probability that a system will perform its intended function under appropriate 
operating conditions for a specified period of time. It is an essential component in the assessment 
of the operational suitability of many major defense systems; our armed forces need weapon 
systems that are available for combat when needed, reliable enough to accomplish their missions, 
operable by service personnel, and have a reasonable logistics burden. The current analyses 
employed by the Director Operational Test and Evaluation (DOT&E) and many of the services’ 
operational test agencies use only operational test data in assessing operational reliability. 
Operational test (OT) data are collected under a limited set of test conditions—specifically, 
under conditions that replicate, as much as possible, actual “in the field” use. Using only OT data 
ensures that the results will be representative of the reliability under “in the field” conditions, 
but, in doing so we are discarding valuable information from previous testing on system 
reliability.  

The National Academies Press (NAP) has published a series of studies conducted by the 
National Research Council through the Committee on National Statistics on defense acquisition, 
testing, and evaluation of defense systems. These reports are in direct response to requests made 
by the DoD and include the following titles: Statistics, Testing, and Defense Acquisition (1999); 
Improved Operational Testing and Evaluation: Phase I Report (2003); Improved Operational 
Testing and Evaluation: Phase II Report (2004); Testing of Defense Systems in an Evolutionary 
Acquisition Environment (2006); and Industrial Methods for Effective Development and Testing 
of Defense Systems (2012). These reports have repeatedly encouraged the use of all relevant 
information in both the design and evaluation of operational tests. They stress that state-of-the-
art statistical methods for combining information should be used when appropriate to make 
testing and the associated evaluations as cost-efficient as possible (NAP 1998). Additionally, 
they note that the use of all relevant information can improve test design and estimation (NAP 
2004). In combining information, not only are the estimates likely to be more accurate, but their 
uncertainty will also be estimated more precisely.  



A 2004 NAP report focuses specifically on combining test information for the Stryker family of 
vehicles (FOV). However, their recommendations are general and broadly relevant. The panel 
highlights that, “experience with the Stryker/SBCT test and evaluation shows that operational 
testing alone often does not include enough data to permit definitive conclusions. It is therefore 
necessary to also use data from developmental testing, training, and field experience of the given 
system and of related systems.” This case study provides the data and detailed methodologies 
necessary to implement part of the 2004 NAP recommendations. 

The purpose of this case study is to demonstrate a proof of concept. We explore both frequentist 
and Bayesian inference techniques to combine information through the use of formal statistical 
models for the Stryker FOV from two test phases: the Developmental Test (DT) phase and the 
Operational Test (OT) phase. The remainder of this case study is organized as follows. First, we 
provide an overview of the defense acquisition process, highlighting testing that occurs within 
each phase. Then we provide an introduction to the Stryker family of vehicles. In the data 
collection section, we describe the DT and OT data that was used in the analysis, along with 
more specific details regarding the differences between DT and OT for this specific testing of the 
Stryker FOV. In the Analysis and Interpretation section, we start by illustrating the current 
reliability analysis that is widely employed by DoD and uses only OT data in its assessment of a 
Stryker vehicle’s reliability. This is followed by a discussion of both the frequentist and 
Bayesian inference techniques that were used to combine DT and OT information through the 
use of a parametric model. The results of these analyses are then compared and interpreted. We 
show that one can improve upon current DoD reliability analyses by incorporating information 
from both DT and OT testing. 

The Defense Acquisition System 

The primary objective of the DoD acquisition process is to obtain quality weapon systems that 
meet an operational need, in a cost-effective and timely manner. From initial concept to 
deployment, the procurement of a major weapon system follows a series of event-based decision 
points and milestone reviews. This process is formally referred to as the Defense Acquisition 
System and is the management process by which DoD develops and buys weapons and other 
systems. At each milestone, a set of specific criteria must be met for entry into a new program 
phase to be authorized. There are three milestones: 

• Milestone A: entry into Technology Development 
• Milestone B: entry into Engineering and Manufacturing Development  
• Milestone C: entry into Production and Deployment 

Testing and evaluation plays an extremely important part throughout this acquisition process. 
The two broad types of testing used are developmental testing and operational testing. In a 
developmental test (DT), the primary purpose is to verify that the system meets its specifications. 
Developmental testing and evaluation is done throughout the system’s life cycle, from program 



initiation through system sustainment and includes component testing, modeling and simulation, 
and engineering systems testing of a more complete system. This testing can occur as contractor 
testing, government testing, or a mixture of both, and it is usually carried out in a more 
controlled environment. This testing can last years and the design of the system itself may 
change multiple times during this period. Developmental testing and evaluation is used to 
support the low rate initial production decision at Milestone C. 

Operational testing follows the low rate initial production of the system. In an operational test, 
production representative systems are tested by end user (DoD civilian) or real user (soldier) test 
teams in an operationally realistic environment. The primary purpose of the OT is to validate the 
system; to determine whether the system is operationally effective and suitable for its intended 
use before full rate production is approved and contracts are awarded. The duration of these tests 
is typically much shorter than in the DT phase because of the limited purpose of the testing and 
considerable cost of conducting operational tests. In order to be operationally suitable, a system 
must be available for combat when needed, reliable enough to accomplish its intended mission in 
its anticipated environment, operate satisfactorily with service personnel and with other systems, 
and not impose an undue logistics burden in peacetime or wartime. Three of the primary 
components used to asses a system’s suitability are reliability, availability, and maintainability. 
The operational effectiveness of a system refers to its capability to perform its mission in the 
operational environment in the face of an expected threat.  

The Stryker Family of Vehicles 

The Stryker is a family of wheeled armored combat vehicles built for the U.S. Army. The family 
of vehicles includes ten separate system configurations, with two main versions of the vehicle 
under which these ten systems can be organized: the Infantry Carrier Vehicle (ICV) and the 
Mobile Gun System (MGS). This case study focuses on the ICV, which provides protected 
transport and supporting fire for its two-man crew and squad of nine infantry soldiers.  
 



 
 

Figure 1. The Infantry Carrier Vehicle (ICV) serves as the base vehicle for eight additional system 
configurations. SOURCE: www.sbct.army.mil. 
 
The ICV serves as the base vehicle for the eight remaining system configurations. These vehicles 
share a common chassis and are then outfitted with additional components that are specific to the 
mission and purpose of each vehicle. The additional eight configurations are the Antitank Guided 
Missile Vehicle (ATGMV), Commander’s Vehicle (CV), Engineer Squad Vehicle (ESV), Fire 
Support Vehicle (FSV), Medical Evacuation Vehicle (MEV), Mortar Carrier Vehicle (MCV), 
Reconnaissance Vehicle (RV) and the Nuclear, Biological and Chemical Reconnaissance 
Vehicle (NBC RV). The NBC RV was excluded from this case study because it was on a 
different acquisition timeline, and therefore does not have data from the same tests as the other 
variants. Each of the ICV variants is outfitted with specialized equipment to accomplish the 
particular mission of the vehicle. For example, the Engineer Squad Vehicle (ESV) provides the 
ability to clear obstacles, including both surface and subsurface mines, generate smoke, and mark 
lanes for safe passage. To accomplish its mission, this vehicle is outfitted with a surface mine 
plow, a lightweight mine roller, a counter-mine magnetic signature duplicator system, and a 
trailer with a lane marking system and either a mine-clearing line charge or a multiple delivery 
mine system. 

 
The reliability requirement for the Stryker is based on the mean number of miles between 
failures. In general, a failure can be defined as an event in which an item or part of an item does 
not perform as intended. The Army Failure Definition Scoring Criteria (FDSC) describes four 
essential functions that the Stryker must be capable of performing. It must be able to move, 
shoot, communicate, and survive. Each of these four essential functions has a specific definition 
of what it means to satisfy the requirement. The FDSC categorizes the severity of failures into 
three levels: System Aborts, Essential Function Failures, and Non-Essential Function Failures. 
These failure types are further defined by the FDSC as follows: 
  



• System Abort (SA) – A failure that results in the loss or degradation of an essential 
function that renders the system unable to enter service or causes immediate removal 
from service. 
 

• Essential Function Failure (EFF) – A failure that results in loss or degradation of an 
essential function. By definition all SAs are also EFFs. 
 

• Non-Essential Function Failure (NEFF) – An event that does not result in the degradation 
of an essential function or can be deferred to the next maintenance period.  

 
A system abort occurs when the system is degraded by the loss of one or more systems such that 
it cannot complete the assigned mission. An EFF occurs when an essential function is lost, but it 
is not required to complete the specific mission at hand. The Army reliability requirement for the 
Stryker is that the vehicle have a mean of 1,000 miles between SAs. 
 
In this case study we focus on SA failures, as this allows for a direct comparison between current 
DoD analysis and an analysis that combines information across multiple phases. Future analyses 
might also use data on EFFs and NEFFs, which would undoubtedly provide more information 
about system reliability.  
 

DATA COLLECTION 

The data used in this case study come from the Stryker FOV developmental and operational 
testing in 2003. There are several differences between DT and OT that should result in practical 
differences in their reliability estimates. The road conditions, vehicle drivers, and individual 
mission durations varied between DT and OT. Additionally, the DT testing spanned a much 
longer time period than OT. Most importantly, the operators in OT were field-representative 
operators, and the test was limited to two weeks. Because of these differences, we expect 
differences in the reliability estimates from DT and OT. Robinson and Dietrich (1989) and 
Erkanli et al. (1998) suggest that systems reliability will increase from phase to phase under the 
assumption that engineering modifications being made to the system on the discovery of a failure 
will improve the system. This is not often the case in operational testing; in a typical vehicle 
program, degradations in reliability between 20 and 50 percent have been observed due to the 
operational nature of the test. 

Table 1 provides a summary of the Stryker FOV reliability data by test phase and vehicle variant. 
Included in this table are the total number of miles driven, the number of SAs, and the number of 
right censored observations. Of the 263 observations recorded, 199 of these were SA failures 
(131 SAs in DT and 68 SAs in OT) and the remaining 64 observations were right censored (12 in 
DT and 52 in OT). 



Table 1. Stryker 2003 Data Summary by Vehicle Variant and Test Phase 

Vehicle 
Variant 

Developmental Test   Operational Test 
Total 
Miles 

System 
Aborts 

Right 
Censored  Total 

Miles 
System 
Aborts 

Right 
Censored 

ATGMV 30086 17 1  10334 12 9 
CV 24160 11 2  8494 1 6 
ESV 25095 35 2  3771 13 3 
FSV 24385 11 2  2306 1 2 
ICV 61623 39 3  29982 35 23 

MCV 3702 7 1  4521 4 4 
MEV -- -- --  1967 0 2 
RV 23742 11 1  5374 2 3 

Total 192793 131 12  66749 68 52 
 

Type I (time-based) right censoring occurs when the testing of the vehicle was terminated before 
a SA was observed. As can be seen in Table 1 and Figure 2, there was a higher rate of censoring 
in OT because of the limited test time and larger numbers of test assets. This higher rate of 
censoring also affects the spread of the data; there is more variability in the DT failure distances 
than there is in the OT failure distances. 
 

 

Figure 2. A scatter plot of the data grouped by test phase and vehicle type. 

A limitation in that data is that there are nine instances in which the vehicle’s SA failure mileage 
was recorded as a zero. These nine responses were spread over the different vehicle variants and 
the two test phases, are are the result of finding another SA failure during the repair of a primary 
SA failure. To account for these special cases in the data, two separate entries are recorded: the 
first entry records the exact mileage for the initial SA that stopped the vehicle, while the second 
entry records the discovered SA and uses the response value of zero in the mileage column. This 



data limitation and its correction will be discussed in more detail in the Analysis and 
Interpretation section. 
 
Note in Table 1 and Figure 2 there are no observations recorded for the MEV in DT and there are 
just two right censored observations recorded for the MEV in OT. With no SAs, we are limited 
in the results that we can provide for this vehicle under the frequentist paradigm. Using Bayesian 
inference techniques, however, we can take advantage of the available information for the other 
vehicles and their relationship to each other to better understand the MEV reliability. 
 

ANALYSIS AND INTERPRETATION 

The Current DoD Analysis 

A standard reliability analysis employed by the DoD test community considers each test phase 
(and each vehicle type in this case) independently and uses the exponential distribution to model 
the miles (or time) between SAs (Director, Defense Test and Evaluation, 1982). In an analysis 
using the exponential distribution, the reliability of the Stryker is expressed in terms of the mean 
miles between an SA (MMBSA), and can be estimated as 
 

 MMBSA� =
Total Miles Driven
# of System Aborts

  

 
An exact two-sided confidence interval for the MMBSA can be calculated directly by 
 

 � MMBSA, MMBSA � = ( 2T
χα
2,2𝑟+2
2 , 2T

χ
1− α2,2𝑟
2 ),  

 
where T is the total number of miles driven and 𝑟 is the number of SAs. If there are no SAs 
recorded (0 failures), then a one-sided confidence bound for MMBSA can be calculated. A 
conservative 100(1-𝛼)% one-sided lower confidence bound for MMBSA is 
 

 MMBSA = 2T
Χα,2r+2
2 .  

 
Table 2 illustrates the results of this analysis using OT data only. It is very similar to the analysis 
that DOT&E provided to Congress, except that we employ 95 percent two-sided confidence 
intervals, DOT&E used one-sided 80 percent lower confidence bounds. We will use these results 
as reference when comparing the new methods that consider incorporating information across the 
DT and OT test phases. 

Table 2.  Stryker Reliability by Vehicle Variant  in Operational Testing 
Vehicle Total  System  MMBSA MMBSA MMBSA  



Variant Miles  Aborts 95% LCL 95% UCL 
ATGMV 10334 12 861 493 1667 

CV 8494 1 8494 1525 335495 
ESV 3771 13 290 170 545 
FSV 2306 1 2306 414 91082 
ICV 29982 35 857 616 1230 
MC 4521 4 1130 441 4148 

MEV 1967 0 -- 657 -- 
RV 5374 2 2687 743 22187 

Total 66749 68 982 774 1264 
 
Notice that for four of the eight vehicles under consideration (CV, FSV, MEV, and RV), there 
are no more than two SAs in OT. We expect the benefits of combining information will be the 
greatest in these cases where only limited OT data are available. The CV additionally stands out 
as potentially having an optimistically high MMBSA, considering that it was based on six 
censored observations and no individual vehicle traveled more than 2,000 miles in OT. 
Additionally, if we use the simple exponential estimate of the MMBSA in DT, we find that the 
MMBSA was less than 2,200 miles. It is highly unlikely that we would see such a large 
improvement in the reliability between late DT and OT because no major changes were made to 
the system configuration.  

Statistical Models for Combining DT and OT Data 

Instead of considering the DT and OT phases and the vehicle variants independently of each 
other, we aim to improve on this current reliability analysis by using parametric statistical 
models to formally combine the data and make inference. We begin with the assumption that the 
observations, vehicle failure miles, 𝑡, follow a known distribution, 𝑓(𝑡|𝜽).  

In Figure 3, we compare the distribution of the data across all vehicle variants and test phases to 
both the exponential distribution and the Weibull distribution - two common distributions for 
modeling lifetime data. The Weibull distribution appears to be a better fit to the data, as the data 
points are closer to a straight line in the probability plot. This comes as no surprise, because the 
Weibull is a two-parameter distribution and therefore offers more flexibility than the exponential 
distribution. In the analyses to follow, we use the Weibull distribution to model the vehicle 
failure miles. However, if we set the Weibull shape parameter, 𝛽 = 1, all of the analyses reduce 
to the exponential case and are therefore comparable to the current analysis results presented in 
Table 2. 



     

Figure 3: Exponential (left) and Weibull (right) probability plots. 

 

A Frequentist Model for Combining DT and OT Data   

A Weibull regression model was used to formally combine the information from the DT and OT 
phases and the information from the individual vehicle variants. To combine DT and OT data for 
the Stryker FOV, we treated test phase as an explanatory variable to be included in the model. 
All of the vehicle variants were also included as explanatory variables in the model so that 
individual reliability estimates for each of the vehicles within each test phase could be estimated. 
The MEV data were removed from this analysis because there were just two right censored 
observations. 
 
Since the Weibull distribution has two parameters, it is possible for both the shape parameter 𝛽 
and the scale parameter 𝜂 to depend on the explanatory variables (test phase and vehicle variant). 
It often assumed that the shape parameter 𝛽 is constant and does not depend on the explanatory 
variables. From an engineering perspective, this assumption is valid as long as the failure 
mechanism is not expected to change with the different levels of the explanatory variables. For 
completeness, however, we considered two Weibull regression models: 
 

Model 1: Both 𝜂 and 𝛽 are functions of test phase and vehicle variant. 
 
𝜇𝑖  = log(𝜂𝑖) = 𝛾𝜂0 + 𝛾𝜂1Phase𝑖  + 𝛾𝜂2 ATGMV𝑖 + 𝛾𝜂3 CV𝑖 + 𝛾𝜂4ESVi + 𝛾𝜂5FSVi + 𝛾𝜂6ICVi + 𝛾𝜂7MCVi 
 
𝛽𝑖 = 𝛾𝛽0 + 𝛾𝛽1Phase𝑖  + 𝛾𝛽2 ATGMV𝑖 + 𝛾𝛽3 CV𝑖 + 𝛾𝛽4ESVi + 𝛾𝛽5FSVi + 𝛾𝛽6ICVi + 𝛾𝛽7MCVi 
 

Model 2: Only 𝜂 is a function of test phase and vehicle variant; 𝛽 remains constant. 
 

𝜇𝑖  = log(𝜂𝑖) = 𝛾0 + 𝛾1Phase𝑖  + 𝛾2 ATGMV𝑖 + 𝛾3 CV𝑖 + 𝛾4ESVi + 𝛾5FSVi + 𝛾6ICVi + 𝛾7MCVi (1)  



 
We found neither test phase nor vehicle variant to have a significant effect on the shape 
parameter 𝛽.  Thus a common value for 𝛽  is appropriate, and the expression for the scale 
parameter 𝜂 given in Equation 1 was used. The indicator variables in this expression were coded 
as 

  
 Phase𝑖 = 

 

�1   𝑖𝑓 𝑡𝑖 𝑖𝑠 𝑎 𝐷𝑇 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛
0                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  
 

ATGMV𝑖 = 
 
�1   𝑖𝑓 𝑡𝑖  𝑖𝑠 𝑎𝑛 𝐴𝑇𝐺𝑀𝑉 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛

0                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

 

The Reconnaissance Vehicle serves as the vehicle reference group. Maximum likelihood 
estimation is used to estimate the Equation 1 regression coefficients and the constant shape 
parameter 𝛽. The total likelihood to be maximized is (from Meeker and Escobar 1998) 
 
 𝐿�𝛾0, 𝛾1, …  𝛾7,𝛽�𝒕�   = 𝐶∏ [𝑓(𝑡𝑖)]𝛿𝑖  [1 − 𝐹(𝑡𝑖)]1−𝛿𝑖  𝑛

𝑖=1  

= 𝐶∏ �𝛽
𝜂𝑖
�𝑡𝑖
𝜂𝑖
�
𝛽−1

exp �−�𝑡𝑖
𝜂𝑖
�
𝛽
��
𝛿𝑖

 �exp �−�𝑡𝑖
𝜂𝑖
�
𝛽
��
1−𝛿𝑖

𝑛
𝑖=1 , 

 
where 𝜂𝑖  is replaced by the expression given in Equation 1, 𝐶 is a constant dependent on the 
sampling scheme but not dependent on the unknown parameters and for simplicity can be set to 
𝐶 = 1, 𝑓(𝑡𝑖) is the Weibull pdf, 𝐹(𝑡𝑖) is Weibull cdf, and the indicator 𝛿𝑖 is defined by 
 

𝛿𝑖 =    �
1  𝑖𝑓 𝑡𝑖 𝑖𝑠 𝑎𝑛 𝑒𝑥𝑎𝑐𝑡 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛                   
0  𝑖𝑓 𝑡𝑖  𝑖𝑠 𝑎 𝑟𝑖𝑔ℎ𝑡 𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛  . 

For this regression model, while the regression coefficients 𝛾0, 𝛾1, … 𝛾6, and 𝛾7 are important, the 
quantities we are most interested in interpreting are the mean miles between a system abort 
(MMBSA) for each of the Stryker vehicle variants. For the Weibull distribution, the maximum 
likelihood estimate for MMBSA is  

𝑀𝑀𝐵𝑆𝐴� = �̂� �Γ �1 +
1
�̂�
��.  

 
The MMBSA estimates for each vehicle variant in both the DT and OT phases can be calculated 
by replacing �̂�  with its estimated expression given in Equation 1. Because these MMBSA 
estimates are functions of both 𝛽 and the regression coefficients 𝛾0, 𝛾1, … 𝛾6,𝛾7, the multivariate 
delta method can be used to calculate their standard errors, making inference on the MMBSA for 
each of the vehicle variants possible. Using these standard errors, a 100(1- 𝛼)% Wald confidence 
interval for each vehicle’s MMBSA reliability estimates is  
 



�𝑔�𝜽��,𝑔�𝜽��� = 𝑔�𝜽�� ± 𝑧1−𝛼2
�𝑣𝑎𝑟 �𝑔�𝜽��� 

 
Where, 𝜽�  is the vector of the parameter estimates, 𝑔(𝜽�)  represents a scalar function of the 

parameters, and 𝑣𝑎𝑟 �𝑔�𝜽��� is the 𝑚𝑡ℎ diagonal element of the variance-covariance matrix of 

𝑔(𝜽). For example, to estimate the OT MMBSA for the Stryker ICV, the scalar function 𝑔�𝜽�� 
would be 
 

𝑔�𝜽�� = 𝑔�𝛾�0,𝛾�6, … , 𝛾�7, �̂�� = exp(𝛾�0 + 𝛾�6)Γ(1 + 1
𝛽�

). 

 
 

A Bayesian Model for Combining DT and OT Data   

One of the main attractions of using a Bayesian approach is that it provides a formal procedure 
for combining multiple sources and types of information. Even when multiple types of 
information are being used (e.g. component-level data, system-level data, and subject-matter 
expertise), system reliability estimates can still be obtained through a single analysis. Much of 
the Bayesian reliability literature focuses on combining information for complex systems where 
it is not always possible to conduct many full system tests due to cost, practicality, and 
permissibility. Anderson-Cook et al. (2007) show this to be especially true in the assessment of 
the reliability of the stockpile of nuclear weapons. Hamada et al. (2004), Graves et al. (2010), 
and Wilson et al. (2011) all consider methods that allow for the combination of component-level 
data or data from other variants of the system that can be incorporated into the system-level 
analysis. Bayesian hierarchical modeling provides a rigorous way to combine information from 
multiple sources and different types of information. Johnson et al. (2003) and Reese et al. (2011) 
show how one can use Bayesian hierarchical models to integrate component, subsystem and 
system data, along with prior expert opinion, to assess the reliability of a complex system. 
Anderson-Cook (2009) looks at both the opportunities and issues in data combination while 
Wilson et al. (2006) addresses some of the advances in data combination; both provide helpful 
examples. 

We employ a Bayesian hierarchical model framework to formally combine DT and OT data for 
the Stryker FOV. The following model specification was used to model the failure miles, 𝑡 

              𝑡𝐷𝑇 ~ 𝑊𝑒𝑖𝑏𝑢𝑙𝑙�𝑛𝑗,β� 𝑡𝑂𝑇 ~ 𝑊𝑒𝑖𝑏𝑢𝑙𝑙�𝛿𝑛𝑗,β�            𝑗 =1,2,…,8 (2)  

A multiplicative model structure was chosen specifically because it is analogous to the Weibull 
regression model defined in Equation 1. It is comparable because of the parameterization that is 
used in the Weibull regression model expression for the scale parameter, 𝜇 = log(𝜂), where the 
difference between the OT and DT phases for a vehicle variant is 



𝜇𝑂𝑇,𝑣𝑎𝑟𝑖𝑎𝑛𝑡 − 𝜇𝐷𝑇,𝑣𝑎𝑟𝑖𝑎𝑛𝑡 = log �𝜂𝑂𝑇,𝑣𝑎𝑟𝑖𝑎𝑛𝑡
𝜂𝐷𝑇,𝑣𝑎𝑟𝑖𝑎𝑛𝑡

�.   

Expressing this difference then, in terms of the scale parameter 𝜂, gives 

𝜂𝑂𝑇,𝑣𝑎𝑟𝑖𝑎𝑛𝑡
𝜂𝐷𝑇,𝑣𝑎𝑟𝑖𝑎𝑛𝑡

= exp(𝜇𝑂𝑇,𝑣𝑎𝑟𝑖𝑎𝑛𝑡 − 𝜇𝐷𝑇,𝑣𝑎𝑟𝑖𝑎𝑛𝑡) = exp (−𝛾1). 

In the Bayesian multiplicative model, the shift in the scale parameter 𝜂 from the DT to OT phase 
is represented by 𝛿. Like the Weibull regression model, the model given in Equation 2 assumes a 
common shape parameter 𝛽. By indexing, 𝜂, we are also allowing for the reliability estimates to 
be different for the eight vehicles but still related since we are assuming the 𝜂𝑗 ′𝑠 come from a 
common distribution. An immediate advantage to using this type of model is that a reliability 
estimate for the MEV can now be obtained. This estimate is driven by the information that we 
have for the seven other vehicles. 

We used a hierarchical prior for the parameter 𝜂𝑗  specified by the gamma distribution and 
expressed as  

 𝜋�𝜂𝑖�𝛼𝜂 , 𝑏𝜂� =
𝑏𝜂
𝑎𝜂  

Γ�𝑎𝜂�
𝜂𝑗
𝑎𝜂−1𝑒−(𝑏𝜂𝜂𝑗).  

Completing this hierarchical specification for 𝜂𝑗 , we assumed that the hyperparameters 𝛼𝜂 , 𝑏𝜂 
have independent prior gamma distributions. A diffuse prior distribution reflects little prior 
knowledge and allows the results to be driven by the data. Specifically, we used the priors: 

 𝜋�𝛼𝜂�~𝑔𝑎𝑚𝑚𝑎(.001, .001)  
   
 𝜋�𝑏𝜂�~𝑔𝑎𝑚𝑚𝑎(.001, .001)  

The prior variance for these parameters is 1,000. There is little additional information to inform 
this choice. Assuming that 𝜂𝑗  and 𝛽  are independent, we used a diffuse gamma prior for 𝛽 , 
expressed as 

 
 
 

𝜋�𝛽�𝛼𝛽 = .001 , 𝑏𝛽 = .001� =
𝑏𝛽
𝑎𝛽  

Γ�𝑎𝛽�
𝛽𝑎𝛽−1𝑒−(𝑏𝛽𝛽)   

A diffuse gamma prior was also used for the multiplicative shift parameter 𝛿. This choice in 
prior allows for the possibility that the vehicle MMBSA estimates could improve when testing 
moves from the DT phase to OT phase, 

 𝜋(𝛿) = 𝑔𝑎𝑚𝑚𝑎(.001, .001).  



O’Hagan (2004), Bedford et al. (2006) and Wilson et al. (2007) discuss how to elicit information 
from subject-matter experts. 

Inferences for this multiplicative model are made by using the joint posterior distribution, which 
is proportional to the product of likelihood and priors, and is  

𝑓�𝜂1, … , 𝜂8,𝛽,𝑎𝜂 , 𝑏𝜂 , 𝛿�𝒕�  
 
∝ �∏ [𝑓(𝑡𝑖)]𝛿𝑖  [1 − 𝐹(𝑡𝑖)]1−𝛿𝑖𝑛

𝑖=1 ��∏ 𝜋�𝜂𝑗�8
𝑗=1 ∗ 𝜋(𝛽) ∗ 𝜋�𝑎𝜂� ∗ 𝜋�𝑏𝜂� ∗ 𝜋(𝛿)�, 

 

where f(𝑡𝑖) is the Weibull pdf, 𝐹(𝑡𝑖) is the Weibull cdf, and the indicator 𝛿𝑖 is defined by 
 

𝛿𝑖 =    �
1  𝑖𝑓 𝑡𝑖 𝑖𝑠 𝑎𝑛 𝑒𝑥𝑎𝑐𝑡 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛                   
0  𝑖𝑓 𝑡𝑖  𝑖𝑠 𝑎 𝑟𝑖𝑔ℎ𝑡 𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛  . 

To obtain draws from this joint posterior distribution of the model parameters, we implemented a 
Metropolis-in-Gibbs algorithm using the programming language R. Gaussian proposal densities 
were used for the parameters 𝛽, 𝜂𝑖 , 𝛿  and for the hyper-parameters in the hierarchical 
specification of 𝜂𝑗. Initial runs were used to determine appropriate standard deviations for the 
Gaussian proposal densities. The Raftery-Lewis diagnostic (Raftery and Lewis 1996) was used 
to help in determining the number of iterations needed to adequately estimate the 2.5% and 
97.5% quantiles. To determine adequate mixing and a sufficient burn-in time, we considered 
trace plots and auto-correlation. In the end, we based our results on 1,000,000 draws from the 
posterior distribution. This was done to ensure that we were properly exploring the space 
because there was significant auto-correlation between the hyper-parameters 𝑎𝜂 and 𝑏𝜂.  

Imputing Missing Data 

As was mentioned earlier, nine of the SA failure miles were recorded as a zero. These responses 
become an issue in the analysis of the reliability data when using parametric models. Many of 
the commonly used parametric distributions in reliability analysis, such as the Weibull 
distribution, require that the random variable be positive (𝑡 > 0). Additionally, we know that the 
failure occurred in the range between the last failure and the current failure under investigation. 
Therefore, we treated these responses as missing values and imputed plausible values for 
𝑡𝑚𝑖𝑠𝑠𝑖𝑛𝑔 to complete the dataset. In this case study, when imputing new data points to replace the 
zeros, we must also correct the initial SA stopping mileage so as not to incorrectly duplicate 
these miles in the total likelihood. Figure 4 illustrates this concept and the appropriate mileage 
correction for the response value to be used in the total likelihood. 



 

Figure 4. Correcting for missing data 

 

A Frequentist Solution for Missing Data 

Before fitting the Weibull regression model in Equation 1, we used the method of multiple 
imputation to generate three complete datasets. Multiple imputation is a three-step process: 

1. Impute: propose plausible values (m sets) for missing observations  
2. Analyze: analyze each of the m complete datasets 
3. Pool: integrate the m analysis results into a final result 

Little and Rubin (1987) suggest that 3-5 imputed datasets will usually be sufficient. The three 
datasets that we used were completed by replacing the 𝑡𝑚𝑖𝑠𝑠𝑖𝑛𝑔 response values with the 20th, 
40th, and 50th percentile values of the observed SA stopping mileage respectively. For example, if 
the observed SA stopping mileage was 1,028 miles, the 20th, 40th, and 50th percentile values used 
to replace the recorded zero observations in the three datasets are 205.6, 411.2, and 514 miles; 
the adjusted values are 822.4, 616.8, and 514 miles. Once the m complete datasets are created 
and analyzed individually, we can calculate the combined coefficient estimates and a covariance 
matrix for these estimates by averaging the values across the imputations. Details can be found in 
the Appendix. 

It is often recommended that a more rigorous approach be used to impute the data, such as 
simulating data from an appropriate probability distribution. However, since we know the range 
of values that were possible (i.e. the value must be less than or equal to the next miles between 
system abort) a simpler methodology suffices. This methodology eliminates challenges with 
generating values outside of the range of appropriate values. Additionally, we should note that 
for this data, the parameter estimates were robust to the imputed values.   



A Bayesian Solution for Missing Data 

These missing response values can also be accounted for in the Bayesian analysis.  This was 
done by making use of the following relationship, 

 𝑡𝑚𝑖𝑠𝑠𝑖𝑛𝑔|𝛽, 𝜂 𝑝ℎ𝑎𝑠𝑒,𝑣𝑎𝑟𝑖𝑎𝑛𝑡 ~ 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝛽, 𝜂 𝑝ℎ𝑎𝑠𝑒,𝑣𝑎𝑟𝑖𝑎𝑛𝑡)  
 

where the Weibull distribution is truncated at the original SA mileage.  𝛽 and 𝜂𝑝ℎ𝑎𝑠𝑒,𝑣𝑎𝑟𝑖𝑎𝑛𝑡 are 
the current draws for these parameters in k𝑡ℎ  iteration of the Metropolis algorithm. More 
specifically, the value of  𝜂𝑝ℎ𝑎𝑠𝑒,𝑣𝑎𝑟𝑖𝑎𝑛𝑡  is the current value of  𝜂 for the missing observation’s 
associated test phase and vehicle variant. New values are sampled from the updated distribution 
in each iteration of the Metropolis algorithm and, as illustrated in Figure 4 its counterpart, the 
original SA mileage, is adjusted accordingly.   

Because it is possible to sample a new value from this 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝛽, 𝜂 𝑝ℎ𝑎𝑠𝑒,𝑣𝑎𝑟𝑖𝑎𝑛𝑡) distribution 
that is larger than the original SA mileage, an adjustment was made so that only appropriate 
values would be sampled in each iteration of the Metropolis algorithm. For this adjustment, a 
grid of the possible values (i.e., ≤  original SA mileage) was simulated from the 
𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝛽, 𝜂 𝑝ℎ𝑎𝑠𝑒,𝑣𝑎𝑟𝑖𝑎𝑛𝑡) distribution; see Figure 5. From this truncated distribution, a value 
for 𝑡𝑚𝑖𝑠𝑠𝑖𝑛𝑔  was sampled using the 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝛽, 𝜂 𝑝ℎ𝑎𝑠𝑒,𝑣𝑎𝑟𝑖𝑎𝑛𝑡)  distribution probabilities as 
weights. 

 

Figure 5. Left: A histogram of simulated data following a Weibull(𝜷 = 𝟏.𝟓,𝜼 = 𝟏𝟎𝟎𝟎) distribution. 
Right: A histogram of all possible values ≤ SA 800 miles. From this truncated distribution, a value is 
selected using the Weibull(𝜷 = 𝟏.𝟓,𝜼 = 𝟏𝟎𝟎𝟎) probabilities as weights.  

Results and Comparison of Methods 

In this section we discuss and compare the results of both the frequentist Weibull regression 
analysis and Bayesian analysis. The parameter estimates for the Weibull regression model 
described in Equation 1 are shown in Table 3. These estimates were obtained using the three 



imputed data sets. The reliability estimates for both DT and OT MMBSA are included in Table 
4, along with Wald 95% confidence intervals. 

Table 3. Parameter estimates for the Weibull regression 
analysis using the three imputed data sets. 

Model Term  Estimate Standard Error 

Intercept: 𝜸𝟎  7.479 0.391 
DT Phase: 𝜸𝟏  0.267 0.207 
OT Phase  -- -- 
ATGMV: 𝜸𝟐  -0.452 0.434 
CV: 𝜸𝟑  0.327 0.520 
ESV: 𝜸𝟒  -1.460 0.407 
FSV: 𝜸𝟓  -0.047 0.520 
ICV: 𝜸𝟔  -0.585 0.393 
MCV: 𝜸𝟕  -0.976 0.536 
RV  -- -- 
SEV Scale 𝝈  1.298 0.076 
Weibull Shape 𝜷  0.771 0.045 

 
 
 
 
 
 

Table 4. MMBSA estimates and Wald 95% confidence intervals based on 
Weibull regression analysis. 

Vehicle 
Variant 

Developmental Test  Operational Test 
MMBSA  
Estimate 

95% Confidence 
Interval  

MMBSA  
Estimate 

95% Confidence 
Interval 

ATGMV 1714.69 (863.83, 2565.56) 
 

1312.90 (584.01, 2041.79) 
CV 3736.82 (920.35, 6553.29) 

 
2861.18 (556.38, 5165.98) 

ESV 625.77 (391.01, 860.54) 
 

479.14 (240.93, 717.35) 
FSV 2570.85 (669.98, 4471.71) 

 
1968.43 (342.04, 3594.81) 

ICV 1501.16 (982.08, 2020.23) 
 

1149.39 (703.73, 1595.06) 
MCV 1015.35 (200.18, 1830.53) 

 
777.43 (159.43, 1395.43) 

RV 2694.56 (765.65, 4623.47) 
 

2063.15 (473.47, 3652.83) 
 

The parameter estimates for the Bayesian model given in Equation 2 are shown in Table 5. In 
this table, we see that the estimate for the shift parameter 𝛿 = 0.83, but that the 95% credible 
interval covers the range (0.53, 1.26), indicating that it is possible for OT reliability estimates to 
be better than DT reliability estimates. For this reason, the histogram seen in Figure 6 is included 
to show that the probability of 𝛿 ≤ 1 (i.e. DT estimates are higher than OT estimates) is 83%. 



The results of this Bayesian analysis can be easily expressed in terms of MMBSA and are 
included in Table 6. Notice that this table now includes an estimate for the MEV. 

 

 

 

Table 6 MMBSA estimates and 95% credible intervals from Bayesian analysis. 

Vehicle 
Variant 

Developmental Test  Operational Test 
MMBSA  
Estimate 

95% Credible 
 Interval  

MMBSA  
Estimate 

95% Credible 
Interval 

ATGMV 1872.00 (1136.91, 3008.76)  1541.45 

 

(870.14, 2649.30) 
CV 3230.95 (1677.35, 6135.88)  2663.58 (1290.69, 5345.95) 
ESV 732.82 (475.45, 1126.41)  607.50 (343.96, 1043.18) 
FSV 2551.70 (1330.47, 4769.15)  2114.31 (993.59, 4247.07) 
ICV 1587.88 (1107.22, 2254.91)  1302.07 (863.50, 1959.57) 
MCV 1434.13 (620.96, 2856.35)  1175.10 (503.99, 2412.21) 
RV 2580.49 (1360.34, 4792.85)  2130.08 (1037.61, 4184.73) 
MEV 3084.37 (929.24, 8735.19)  2529.22 (751.14, 7245.12) 

 

Figure 7 compares the frequentist Weibull regression analysis to the Bayesian analysis. Since we 
specified the model form of the Weibull scale parameter in the same manner, we see comparable 
results between the two analyses. One benefit of the Bayesian analysis is that we can obtain a 
point estimate for the reliability of the MEV, which is not possible in a frequentist analysis. 

Table 5. Parameter estimates from Bayesian 
analysis. 

 
 
Figure 6.  A histogram of the estimates for 𝛿, the 
multiplicative shift parameter. Note that the  
Pr(𝛿 ≤ 1) = .828. 

Model 
Term Estimate 95% Credible Interval 

𝜼𝑨𝑻𝑮𝑴𝑽  1542 (933.5, 2456.4) 

𝜼𝑪𝑽  2662 (1374.3, 5013) 

𝜼𝑬𝑺𝑽  604 (388.3, 919.5) 

𝜼𝑭𝑺𝑽  2103 (1091.1, 3904.5) 

𝜼𝑰𝑪𝑽  1309 (904.6, 1844.4) 

𝜼𝑴𝑪𝑽  1181 (511, 2330.6) 

𝜼𝑹𝑽  2127 (1113.5, 3925.7) 

𝜼𝑴𝑬𝑽  2543 (763.7, 7188.6) 

   
𝜷  0.74 (0.65, 0.83) 

 𝜹  0.83 (0.53, 1.26) 

 



Additionally, the Bayesian credible intervals are easier to calculate then the frequentist 
confidence intervals on the MMBSA. However, the frequentist analysis is available in many 
standard statistical packages. 

 

Figure 7 A comparison of the OT MMBSA vehicle variant estimates for the frequentist analysis and 
Bayesian analysis using the Weibull distribution. 
 

Although the Weibull distribution provides a better fit to the data than the exponential 
distribution, it may still be reasonable to use the exponential distribution, especially for inference 
on the means. Figure 8 compares the results of the current DoD analysis, which includes only 
data from the OT, to the frequentist and Bayesian analysis methods described in this paper using 
the exponential distribution (𝛽 = 1). Notice that using a statistical model to account for changes 
in test phase and vehicle variant has a large practical impact on the reliability results. Consider, 
for example, the CV variant, in operational testing these vehicles traveled a total of 8,494 miles 
with one failure and six censored observations. Recall that no individual CV traveled more than 
approximately 2,000 miles during the operational test. Furthermore, the reliability estimate of the 
CV in developmental testing was 2,197 mean miles between failures, under the current 
exponential approach. Clearly, the estimate of the CV reliability using a statistical model for the 
exponential mean provides a more realistic estimate of the reliability. 

The model-based analyses also improve the precision of the interval estimates (confidence 
intervals, credible intervals) of system reliability for the vehicles with a small number of failures 
(CV, FSV, MEV and RV) by leveraging the failure information from the other variants and 
developmental testing. Again, notice that the Bayesian and frequentist model-based approaches 
give similar results.  

0

2000

4000

6000

8000

10000
Frequentist Analysis
Bayesian Analysis

Operational Test  MMBSA Estimates 
(95% Confidence and Credible Intervals) 

 M
ile

s B
ef

or
e 

 S
ys

te
m

 A
bo

rt
 

ATGMV         CV           ESV              FSV             ICV            MCV              RV             MEV 



 

Figure 8. A comparison of the Operational Test MMBSA Vehicle Variant Estimates for the Current 
Analysis, Frequentist Analysis and Bayesian Analysis using the exponential distribution. 

SOFTWARE RECOMMENDATIONS 

The frequentist failure time regression analysis when using a complete dataset can be 
implemented in the current version of the JMP and Minitab. Additionally, one might consider 
using include the SAS software and the programming language R, both of which have built-in 
functions that can be used to fit failure time regression models under various distributional 
assumptions and censoring schemes. In the SAS software this can be done by using the PROC 
LIFEREG statement; in the programming language R it can be done through the command 
survreg() found in the library survival. Regardless of the software decision, one will still need to 
manually calculate the point and standard error estimates for MMBSA. 

The Metropolis-in-Gibbs algorithm used in the Bayesian analysis was implemented using the 
programming language R. Other software programs that one might consider using to carry out 
the Bayesian analysis include the popular OpenBUGS and SAS (PROC MCMC) software. Less 
coding is required when using OpenBUGS and the PROC MCMC command in the SAS 
software, but the user must still be able to properly specify the correct likelihood function for the 
model with the appropriately coded censoring scheme (if applicable) and choose priors for the 
model parameters. Ultimately, we decided to use R for this case study. This choice was due both 
to the control one has when writing their own code and the need to impute values for the missing 
data and adjust these sampled values and their counterparts accordingly within the algorithm. 
The details of the algorithm we used can be found in the appendix and code can be made 
available upon request. 
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CONCLUSIONS AND FUTURE WORK 

This case study on the Stryker FOV presents a paradigm shift in how the DoD test and 
evaluation community could analyzes reliability data. The case study illustrates the advantages 
of using data from multiple phases of testing and leveraging data from systems with common 
infrastructure. The results are (1) better estimates of system reliability (specifically for the CV 
variant) and (2) more precise inferences (especially in the cases where only a small number of 
failures occurred in OT). However, there are caveats to these benefits. First, the analyses 
presented in this paper require a strong statistical understanding of many statistical techniques, 
including reliability analysis, likelihoods, and missing data imputation. While some of the 
complications (i.e. imputation) could be removed by better data collection methods, the 
remainder of the analysis is considerably more complex than the currently employed methods. 
Furthermore, when combining information, there is no omnibus solution, as is currently 
employed in the exponential analysis for each test phase and variant. Rather, models need to be 
carefully considered and evaluated to ensure that they accurately reflect the data and the 
underlying physical processes. 

This case study provides a proof of concept for using both Weibull regression and Bayesian 
analysis methods in reliability analysis when data come from different testing phases. We elected 
to use diffuse priors in this analysis to illustrate the comparability of frequentist and Bayesian 
approaches when similar model choices are made. Further improvements in reliability estimates 
might be achieved by leveraging information from essential function failures (EFFs) and non-
essential function failures (NEFFs), and using appropriately selected informative priors. Finally, 
the Stryker FOV represents only one type of system that the DoD must test and evaluate. Case 
studies showing the value of combining information on other types of systems are needed to 
advance the effort across the broader DoD test and evaluation community. 
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APPENDIX 

More on Multiple Imputation 

After imputing m complete datasets and analyzing each dataset individually, we can calculate 
combined coefficient estimates and a covariance matrix for these coefficient estimates. Suppose 
that 𝑄�𝑖 and 𝑊�𝑖 are the point and covariance matrix estimates for a p-dimensional parameter 𝑄 for 
the 𝑖 th imputed dataset, 𝑖 = 1,2, . .𝑚. Then the combined coefficient estimates for 𝑄 from the 
multiple imputation is (SAS software documentation for PROC MIANALYZE):  

  𝑄� =
1
𝑚
�𝑄�𝑖

𝑚

𝑖=1

 

 
 

The covariance matrix that is associated with 𝑄�  is calculated as follows:  

  𝑇0 = 𝑾��� + �1 +
1
𝑚
�𝑩  

 



Where 𝑾��� is the within-imputation covariance matrix, the average of the m complete-data 
estimates: 

  𝑾��� =
1
𝑚
�𝑾�𝒊

𝑚

𝑖=1

  

And 𝑩 is the between-imputation covariance matrix: 

             𝑩 =
1

𝑚 − 1
��𝑄�𝑖 − 𝑄���𝑄�𝑖 − 𝑄��′
𝑚

𝑖=1

  

 

The MCMC Algorithm 

  
Posterior **   

𝑓�𝜂1, … , 𝜂8,𝛽,𝑎𝜂 , 𝑏𝜂 , 𝛿�𝒕�  

∝ ∏[𝑓(𝑡𝑖)]𝛿𝑖  [1 − 𝐹(𝑡𝑖)]1−𝛿𝑖 ∗�𝜋�𝜂𝑗�
8

𝑗=1

∗ 𝜋(𝛽) ∗ 𝜋�𝑎𝜂� ∗ 𝜋�𝑏𝜂� ∗ 𝜋(𝛿) 

  
Algorithm  

Step 0: Initialize starting values:  𝜂1
(0),𝜂2

(0), . . , 𝜂8
(0),𝛽(0),𝑎𝜂

(0),𝑏𝜂
(0),𝛿(0)  

 Initialize starting values for 𝑡𝑚𝑖𝑠𝑠𝑖𝑛𝑔 and adjust the related failure times:  
 𝑡𝑚𝑖𝑠𝑠𝑖𝑛𝑔|𝛽(0),𝜂  𝑝ℎ𝑎𝑠𝑒,𝑣𝑎𝑟𝑖𝑎𝑛𝑡 

(0)  ~ 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝛽(0),𝜂 𝑝ℎ𝑎𝑠𝑒,𝑣𝑎𝑟𝑖𝑎𝑛𝑡
(0) ) 

  
  

Step 1: Propose a new value 𝜂1∗  from a symmetric proposal distribution.  

 Calculate the Acceptance Probability:  
 

 𝑅 =  
𝑓 �𝜂1∗, … , 𝜂8

(𝑘),𝛽(𝑘),𝑎𝜂
(𝑘),𝑏𝜂

(𝑘),𝛿(𝑘)�𝒕�

𝑓 �𝜂1
(𝑘), … , 𝜂8

(𝑘),𝛽(𝑘),𝑎𝜂
(𝑘),𝑏𝜂

(𝑘), 𝛿(𝑘)�𝒕� 
 

  
Accept or Reject 𝜂1∗: 

 
• If  𝑅 ≥  1, accept the draw 𝜂1∗. Set 𝜂1

(𝑘+1) =  𝜂1∗ 
• If R < 1, accept the draw 𝜂1∗. Set 𝜂1

(𝑘+1) =  𝜂1∗ with probability R. 
• We do not accept the draw with probability 1-r. Then 𝜂1

(𝑘+1) =  𝜂1
(𝑘) 

  

 Now using the value of 𝜂1
(𝑘+1) in 𝑅, repeat step 1 for each of the remaining parameters 

𝜂2, … , 𝜂8,𝛽,𝑎𝜂 , 𝑏𝜂 ,𝛿.  
  
  

Step 2: Impute new values for 𝑡𝑚𝑖𝑠𝑠𝑖𝑛𝑔 and adjust the related failure times accordingly: 
 𝑡𝑚𝑖𝑠𝑠𝑖𝑛𝑔|𝛽(𝑘),𝜂 𝑝ℎ𝑎𝑠𝑒,𝑣𝑎𝑟𝑖𝑎𝑛𝑡 

(𝑘)  ~ 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝛽(𝑘),𝜂 𝑝ℎ𝑎𝑠𝑒,𝑣𝑎𝑟𝑖𝑎𝑛𝑡
(𝑘) ) 



  
Step 3: Repeat Steps 1 and 2 a total of N times 

  
**It is often more convenient to use the Log-Posterior. The ratio, 𝑅, becomes the difference between two 
Log-Posteriors using the proposed value and the current parameter value respectively. 
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