Executive Summary

Health care lags behind other industries in adopting information technology by as much as 10–15 years. Correcting this situation and adopting a robust health information technology (HIT) infrastructure should result in lower health care costs and improved patient care. This will require changes in the way health care is provided today, including a broad acceptance of standards, transformation of the medical communities’ culture, and revision of legislation and policy. The investment to accomplish these changes is huge, but the results would be an enormous success for the health care community.

A recent collaborative IDA/MITRE study of a joint DoD/VA hospital project in North Chicago clearly exposed some of the many difficulties involved in instantiating a modern effective HIT across organizations, even those with relatively overlapping patient communities. From that experience it is clear that a major obstacle to developing a robust HIT system lies at the intersection of technology, culture and policy. The current study was initiated to better understand the current state of HIT, the medical communities’ attitudes regarding this matter, and what legislative/policy actions the administration, which has shown a strong interest, had taken towards moving forward their ideas in fixing the problem.

Early on in the study it became apparent that there were in place several well-funded programs and regulations that were finally making notable progress in instantiating an electronic health records (EHR) based health care system. The American Recovery and Reinvestment Act of 2009 (ARRA), which includes the Health Information Technology for Economic and Clinical Health Act (the HITECH Act), legislatively mandated the Office of the National Coordinator for HIT (ONC), within the Department of Health and Human Services (HHS), and established the Medicare and Medicaid EHR Incentive Programs that encourages meaningful use of certified EHRs and other HIT to improve quality of care. The Patient Protection and Affordable Care Act of 2010 builds on the HITECH Act and recognizes health IT as a critical enabler to broad transformations in health care. This legislation now supports progress in moving forward the HIT agenda, supporting adoption by physicians and hospitals of products that meet the evolving standards being developed, education across the whole medical community, and a wide range of research and development and pilot programs to test out new ideas.

The ONC is also responsible for the development of the Nationwide Health Information Network (NHIN). The NHIN is a collection of standards, protocols, legal agreements, specifications, and services that enables the secure exchange of health information over the internet. A number of challenging issues must be resolved as development of the NHIN proceeds. These include the question of a unique patient identity, which is complicated by privacy considerations. Other issues are related to the security of the patient records, control of access to all or parts of the record, and indeed who actually controls the record.
Another major issue is the gathering of patient data for entry into the EHR. Patients interact with the medical profession in many different ways, including, for example, emergency services, hospitals, pharmacies, their primary physician, multiple specialists, radiological and chemical laboratories, etc. All should be entering their interactions into the patients EHR. This should also place no additional burden on the professional for the data entry action. Many of the various tests and procedures commonly used are already available in digital form. But there is no culture in bringing these together in a single digital file. With the new supported processes in place now, there are efforts to normalize the data outputs of the medical tools in use, so that they all “speak the same language.” A “plug-and-play” program is under development replicating the PC and mobile phone capabilities for the instruments used by the medical profession. The most difficult problem is entering the interactive discussion between the physician and his patient into the EHR. Now there are tools becoming available with a quite high level of accuracy capable of voice recognition thereby making it possible for dictation to directly be entered into the EHR.

These recent accomplishments represent only a start, and success in this matter will depend upon the continuation and funding of these recent initiatives. Recent reports suggest that the current federal spending on HIT will grow from $4.5B in 2011 to $6.5B by 2016\(^1\). This investment should enable substantial progress to be made, but it is important that sustainment of the effort will be required for another decade in order to reach a truly successful milestone. With such an effort there can be a reasonable expectation of a successful improvement of our health care system, resulting in reduced costs and better health care in the US.

ES-2
Health Information Technology Initiative: Outline

• Introduction
 • Federal Supported Activities
 • Nationwide Health Information Network (NHIN)
 • Automated Data Entry
 • Summary & Conclusions
Study Objectives

To achieve a better understanding of the several standards issues and the difficult cultural and policy barriers and to discuss approaches for their solutions with the innovative application of existing and emerging technologies and policy options to advance the development of an Electronic Health Record (EHR) that spans the needs of all medical specialties and that all medical care systems can utilize.
Background

- Health care lags behind other industries in adopting information technology by as much as 10–15 years [1]
 - Only 20% of doctors and 10% of hospitals even use basic electronic health records (EHRs) [2]
 - Use for fully functional EHRs is worse—as low as 4% for doctors and 1.5% for hospitals [3, 4]
 - The administration has identified the development of a robust health information technology (IT) infrastructure as one of the key approaches for improving the quality and reducing the costs of health care
- Multiple entities are in various stages of developing the components of health information technology systems including
 - Electronic Medical Records, Electronic Health Records and Personal Health Records
 - Network components, such as the Nationwide Health Information Network (NHIN)
- Many of these efforts have little coordination resulting in multiple, not necessarily compatible, solutions for attaining a functional system to improve health care delivery and support the progress of personalized medicine

A number of recent government initiatives should improve the picture.

From Reference [1]: The 2010 data are preliminary estimates, based on a mail survey. Estimates through 2009 include additional physicians surveyed as part of the core in-person National Ambulatory Medical Care Survey (NAMCS). Earlier 2009 estimates were revised to include those physicians. Estimates of basic or fully functional systems prior to 2006 could not be computed because necessary items were not collected in the survey. Fully functional systems are a subset of basic systems. Some of the increase in fully functional systems between 2009 and 2010 may be related to a change in survey instruments and definitions of fully functional systems between 2009 and 2010 (see source article for more details). Includes non-federal, office-based physicians. Excludes radiologists, anesthesiologists, and pathologists. Source: CDC/NCHS, *National Ambulatory Medical Care Survey.*
Current State of Affairs

- Two large, enterprise-wide, relatively advanced health care providers, each with many patients receiving care are:
 - Department of Veterans Affairs (VA), through the Veterans Health Administration (VHA) [1]
 - Department of Defense (DoD), through the Military Health System (MHS) [2]
 - Both providers have independently developed an EHR system for their patient care, requiring much effort to bring all relevant medical information together for a patient visit
- There are also sophisticated health IT providers (e.g., Kaiser Permanente, major academic medical centers, and certain regional medical networks) who implement integrated health care delivery systems
 - These work well within each separate system, but not generally across systems
 - One of the most important needs is to define the specifications for an EHR that spans the needs of all the medical specialties that all medical care systems, including those in the civilian sector, can utilize
- There are efforts underway in attacking these problems at some level and the technology to do this is within reach, but choices must be made with great care
 - The problems that are impeding progress here may be characterized as the need for
 - Standards for content, vocabulary, transport, and privacy/security
 - Incentives (or remove the barriers) related to costs, culture, and policy

[1] The VA’s EHR system is implemented using the Veteran’s Information Systems and Technology Architecture (VistA).

[2] The DoD’s EHR system is implemented using the DoD’s AHLTA/Composite Health Care System (CHCS).
Major DoD and VA Data Sharing Initiatives [1, 2, 3]

- Federal Health Information Exchange (FHIE):
 - One-way transfer of text data from the DoD to the VA at separation from service (transfers occur monthly)
- Bidirectional Health Information Exchange (BHIE):
 - Bidirectional real-time viewing of text data for shared patients
- Clinical Data Repository/Health Data Repository ("CHDR," CDR for DoD and HDR for VA)
 - Bidirectional real-time exchange of computable outpatient pharmacy and allergy data for shared patients (provides alerts on drug-drug interactions and drug allergies)
- Virtual Lifetime Electronic Record (VLER)
 - Pilot programs leveraging the Nationwide Health Information Network (NHIN) for health data sharing among the DoD, the VA, and civilian health care organizations (e.g., Kaiser Permanente)
- CAPT James A. Lovell Federal Health Care Center (JAL FHCC) [4]
 - Joint federal health care center: DoD and VA clinicians caring for DoD and VA patients
 - Single patient registration, single sign-on with patient context management, and orders portability (laboratory, pharmacy, radiology, and consults)
 - Legacy systems, legacy work flows, and reluctance to relinquish ownership limited success
 - DoD and VA have had only limited success in their data sharing initiatives

Major DoD and VA Data Sharing Initiatives (continued)

- A February 2011 GAO report [1] concluded that DoD and VA lack mechanisms for identifying and implementing efficient and effective IT solutions to jointly address their common health care system needs
 - Consequently they are having difficulty developing a patient digital medical record available to both DoD and VA health care providers
- The report recommends that DoD and VA
 - Address their common health care business needs by improving their joint
 - Strategic planning
 - Enterprise architecture
 - IT investment management
 - Strengthen their joint IT system planning efforts for VLER and the JAL FHCC
- In March 2011, Secretary Gates and Secretary Shinseki announced an agreement to create a joint common platform for their departments’ medical records
 - Involvement at the highest levels of both the DoD and VA is likely to move such a difficult enterprise forward

Forces Impacting Adoption of Health IT

- Costs (see following slides for graphs)
 - Per capita cost for health care in the US far exceeds that of other advanced nations
 - Life expectancy is lower than in most other developed countries
- Improved patient care, resulting from:
 - Coalescence of medical records from all medical providers
 - Improved diagnostic and pharmaceutical decisions with knowledge based tools
 - Reduced medical errors
 - Increased patient participation in their personal health care
- Availability of a large number of anonymous health records to facilitate medical research
- Adoption requires changes to:
 - Standards for content, vocabulary, transport, privacy/security
 - Culture
 - Legislation and policy
- Initial investment is huge, but
 - Industry is investing and the medical profession is interested
 - Government can play an important role in coordination and funding
 - The pay-off of success is enormous

Note the positions of the outliers USA and Norway.
The level of total health expenditure per capita is shown in U.S. dollars, adjusted for purchasing power parity (PPP).

Note the positions of the USA, Norway (NOR) and Japan (JPN).
Why EHR? [1]

- Better Decisions and More Coordinated Care with EHRs
 - With more complete patient information, providers improve their ability to make well-informed treatment decisions quickly and safely
- Moving Beyond the Paper Record
 - By making it easier to use and share information, EHRs can help health care providers do a better job of managing patient care
 - When fully functional and exchangeable, the benefits of EHRs offer far more than a paper record can. EHRs can:
 - Improve quality and convenience of patient care
 - Increase patient participation in their care
 - Improve accuracy of diagnoses and health outcomes
 - Improve care coordination
 - Increase practice efficiencies and cost savings
 - Facilitate enterprise level research program

Health Information Technology Initiative: Outline

- Introduction
- **Federal Supported Activities**
 - Nationwide Health Information Network (NHIN)
 - Automated Data Entry
- Summary & Conclusions
The Government Takes Charge

- To control the rapidly increasing costs of health care, the Obama Administration initiated a multifaceted set of initiatives utilizing health IT including:
 - New legislation
 - New regulations
- Substantial funding was provided to support these initiatives
- Initially there was much doubt concerning the likely success of the effort [1]
 - To the surprise of many, health IT has been quite successful, as will be seen later in this briefing

These efforts are beginning to have the necessary effects to accelerate the adoption of health IT.

Recent Relevant Legislation

 - The Recovery Act includes the Health Information Technology for Economic and Clinical Health Act (the HITECH Act) (see below) which establishes the Medicare and Medicaid EHR Incentive Programs that encourage meaningful use of certified EHRs and other health information technology (IT) to improve quality of care.

- Health Information Technology for Economic and Clinical Health Act of 2009 (The HITECH Act)
 - The HITECH Act, passed as part of the Recovery Act, allocated billions of dollars for the health care system to adopt and meaningfully use health IT to improve health. A number of provisions in the HITECH Act strengthen the privacy and security protections for health information established under the Health Insurance Portability and Accountability Act of 1996 (HIPAA).

- Patient Protection and Affordable Care Act of 2010 (the Affordable Care Act) [2]
 - The Patient Protection and Affordable Care Act of 2010, later amended by the Health Care and Education Reconciliation Act of 2010 (collectively, the Affordable Care Act), builds on the HITECH Act and recognizes health IT as a critical enabler to broad transformations in health care.

HITECH Programs [1, 2]

- Beacon Community Program
 - A grant program for communities to build and strengthen their health IT infrastructure and exchange capabilities
- State Health Information Exchange Cooperative Agreement Program
 - A grant program to support States in establishing health information exchange (HIE) capability among health care providers and hospitals in their jurisdictions
- Health Information Technology Extension Program
 - A grant program to establish health IT Regional Extension Centers to offer technical assistance, guidance and information on best practices to support and accelerate health care providers’ efforts to become meaningful users of EHRs
- Strategic Health IT Advanced Research Projects (SHARP) Program
 - A grant program to fund research focused on achieving breakthrough advances to address problems that have impeded EHR adoption; four $15M projects funded
 - Privacy and Security of Health IT
 - Patient-Centered Cognitive Support (for adaptive clinical decisions)
 - EHR as a Network Platform Architecture (enabling third party apps to securely access data)
 - Secondary Use of EHR Data (to support development of new best practices)

[1] The material on this slide is extracted, with some modifications, from the descriptions of HITECH Program provided at <http://healthit.hhs.gov/portal/server.pt/community/healthit_hhs_gov__hitech_programs/1487>.

HITECH Programs (continued)[1]

- Community College Consortia to Educate Health Information Technology Professionals Program
 - A grant program that seeks to rapidly create non-degree health IT education and training programs that can be completed in six months or less
- Curriculum Development Centers Program
 - A grant program to provide $10 million in grants to institutions of higher education to support health IT curriculum development
- Program of Assistance for University-Based Training
 - A grant program to rapidly increase the availability of individuals qualified to serve in specific health IT professional roles requiring university-level training
- Competency Examination for Individuals Completing Non-Degree Training Program
 - A grant program to provide $6 million in grants to an institution of higher education to support the development and initial administration of a set of health IT competency examinations

[1] The material on this slide is extracted, with some modifications, from the descriptions of HITECH Program provided at <http://healthit.hhs.gov/portal/server.pt/community/healthit_hhs_gov__hitech_programs/1487>.
Office of the National Coordinator for Health IT (ONC)[1]

- ONC legislatively mandated in the HITECH Act (2009)
 - Organizationally located in the Department of HHS
 - Created by Executive Order in 2004
- ONC is the principal Federal entity charged with coordination of nationwide efforts to implement and use the most advanced health IT and electronic health information exchange (HIE)
- ONC’s missions include
 - Promoting development of a nationwide health IT infrastructure that allows for electronic use and exchange of information [2]
 - Providing leadership in the development, recognition, and implementation of standards and the certification of health IT products
 - Health IT policy coordination
 - Strategic planning for health IT adoption and HIE
 - Establishing governance for the Nationwide Health Information Network (NHIN)
- ONC also supports several initiatives to facilitate nationwide adoption of health IT, thereby reaching diverse stakeholder groups imperative for success of the HITECH Act

[1] The material on this slide is extracted, with some modifications, from the description of the ONC provided at <http://healthit.hhs.gov/portal/server.pt/community/healthit_hhs_gov__onc/1200>.

[2] As stated in the source cited above, these include:
- Ensures secure and protected patient health information
- Improves health care quality
- Reduces health care costs
- Informs medical decisions at the time/place of care
- Includes meaningful public input in infrastructure development
- Improves coordination of care and information among hospitals, labs, physicians, etc.
- Improves public health activities and facilitates early identification/rapid response to public health emergencies
- Facilitates health and clinical research
- Promotes early detection, prevention, and management of chronic diseases
- Promotes a more effective marketplace
- Improves efforts to reduce health disparities

The criteria for meaningful use will be staged in three steps over the course of the next five years.
• Stage 1 (2011 and 2012) sets the baseline for electronic data capture and information sharing.
• Stage 2 (expected to be implemented in 2013) and Stage 3 (expected to be implemented in 2015) will continue to expand on this baseline and be developed through future rule making.
New Health IT Funding [1, 2, 3, 4]

- Health IT Funding under Recovery & HITECH Acts
 - $2 billion in direct funding for health IT efforts channeled through HHS and ONC
 - $300 million reserved for support of regional health information exchange efforts
 - $20 million reserved for NIST to work on health IT enterprise integration
 - $17.2 billion in incentives through the Medicare and Medicaid reimbursement systems to assist providers in adopting EHRs

- Other health IT related Stimulus spending
 - $85 million for health IT, including telehealth services, within the Indian Health Service
 - $1.5 billion for construction, renovation, and equipment for health centers through the Health Resources and Services Administration
 - $500 million for SSA to improve processing of disability/retirement claims ($40M for health IT)
 - $1.1 billion for comparative effectiveness research within the Agency for Healthcare Research and Quality (AHRQ), National Institutes of Health (NIH), and HHS
 - $50 million for information technology within the Veterans Benefits Administration
 - $2.5 billion for the U.S. Department of Agriculture’s Distance Learning, Telemedicine, and Broadband Program
 - $4.7 billion for the National Telecommunications and Information Administration’s Broadband Technology Opportunities Program

ONC Initiatives [1]

- Cyber Security
 - ONC and HHS provide best practices for safeguarding protected health information in EHRs
- Innovations
 - Initiatives within ONC and HHS designed to spur and support health technology innovation
- Nationwide Health Information Network (NHIN) [2]
 - A collection of standards, protocols, legal agreements, specifications, and services to enable secure health information exchange (HIE)
- Federal Health Architecture
 - An e-government line of business initiatives to increase efficiency and effectiveness in all government operations
- Rural Health IT
 - HHS and Agriculture agreement to leverage existing programs to help expand health IT infrastructure in rural America
- State-Level Health Initiatives
 - Initiatives designed to ensure that states and regional efforts to achieve HIE are aligned with the national agenda
- Adoption
 - An initiative supporting two national health IT adoption surveys: one of physician offices and one of hospitals
- Clinical Decision Support
 - Provides clinicians, staff, patients or other individuals with filtered knowledge and person-specific information, to enhance health and health care

[1] The material on this slide is extracted, with some modifications, from the descriptions of ONC initiatives provided at <http://healthit.hhs.gov/portal/server.pt/community/healthit_hhs_gov__onc_initiatives/s/1497>.

[2] Nationwide Health Information Network is also sometimes shown as NwHIN.
The text below, which describes the goals shown in the figure, is taken from the “Overview: Federal Health IT Strategic Plan 2011-2015,” available at <http://healthit.hhs.gov/portal/server.pt/community/federal_health_it_strategic_plan_-_overview/1211>.

Federal Health IT Strategic Plan Overview: Recent legislation has established an agenda and committed significant resources for health IT. The updated Federal Health IT Strategic Plan 2011 – 2015 is ONC’s plan, developed in collaboration with other federal partners, for realizing Congress and the Administration’s health IT agenda.

Goal I, “Achieve Adoption and Information Exchange through Meaningful Use of Health IT,” discusses the centerpiece of the government’s health IT strategy over the next five years. “Meaningful use” is aimed at widespread adoption and information exchange in its first two stages, and will then build to improved health outcomes in the third stage.

Goal II, “Improve Care, Improve Population Health, and Reduce Health Care Costs through the Use of Health IT,” discusses the specific ways health IT is contributing to the goals of health care reform: improved care, improved population health, and reduced per capita costs of health care. Widespread adoption of EHRs, information exchange, quality improvement initiatives, and health care reform pilots are required to implement The Affordable Care Act.

Goal III, “Inspire Confidence and Trust in Health IT,” focuses on government efforts to update its approach to privacy and security issues related to health IT and to build greater confidence and trust in EHRs and health information exchange among providers and the public.

Goal IV, “Empower Individuals with Health IT to Improve their Health and the Health Care System,” discusses how the government is designing health IT policies and programs to meet individual needs and expectations, providing individuals with access to their information, helping to facilitate a strong consumer health IT market, and better integrating individuals and clinicians’ communications through health IT.

Goal V, “Achieve Rapid Learning and Technological Advancement,” focuses on demonstrating ways health IT and meaningful use can enable innovation and appropriate use of health information to improve knowledge about health care across populations. In the long run, the government is pursuing a vision of a “learning health system,” in which a vast array of health care data can be appropriately aggregated, analyzed, and leveraged using real-time algorithms and functions.
Health IT Federal Advisory Committees [1]

- The Recovery Act established two major Health IT Federal Advisory Committees
 - Health IT Policy Committee
 - Makes recommendations to the ONC on policies for the development and adoption of a nationwide health information infrastructure
 - Health IT Standards Committee
 - Makes recommendations to the ONC on standards, implementation specifications, and certification criteria for the electronic exchange and use of health information
- Both Federal Advisory Committees have established several workgroups that meet periodically and make recommendations to their parent committees to pass to the ONC
- Membership in the committees represents a broad range of stakeholders from government, academia, and the private sector
- As an example of the work of the Health IT committees, the Health IT Policy Committee approved recommendations on an EHR security policy framework at its December 7, 2011, meeting

Flow of Health IT Recommendations to HHS Secretary

Source: ONC Federal Health Information Technology Strategic Plan 2011-2015 [1]

Recent Relevant Regulations

- **Medicare and Medicaid Programs: Electronic Health Record Incentive Programs Final Rule [1]**
 - This rule implements the Recovery Act provisions that provide incentive payments to eligible professionals and eligible hospitals that adopt and use certified EHR technology in a meaningful way. The programs seek to help improve care, efficiency, and population health. This rule also specifies the initial criteria that eligible providers must meet to qualify for the Medicare and Medicaid EHR incentive payments, and it includes other incentive programs participation requirements.

- **Health Information Technology: Initial Set of Standards, Implementation Specifications, and Certification Criteria for Electronic Health Record Technology Final Rule [2]**
 - Under this rule, the HHS Secretary has adopted the initial set of standards, implementation specifications, and certification criteria that are required for the certification of EHR technology. The rule has been aligned to support the achievement of meaningful use stage 1 by eligible professionals and hospitals under the Medicare and Medicaid EHR Incentive Programs.

- **Permanent Certification Program for Health Information Technology Final Rule [3]**
 - This final rule establishes a permanent certification program for the purpose of certifying health IT. This final rule is issued pursuant to the authority granted to the National Coordinator for Health Information Technology (ONC) by the HITECH Act. The ONC will use the permanent certification program to authorize qualified organizations to certify certain types of EHR technology, such as Complete EHRs and/or EHR Modules. The permanent certification program could also be expanded to include the certification of other types of health IT.

As of November 2011, over 157,000 eligible professionals and hospitals have registered for the Medicare and Medicaid Electronic Health Record (EHR) Incentive Programs; <http://www.cms.gov/EHRIncentivePrograms/Downloads/Monthly_Payment_Registration_Report_Updated.pdf>.

In order to attest, successfully demonstrate meaningful use, and receive an incentive payment under the Medicare EHR Incentive Program, eligible hospitals must indicate that they agree with several attestation statements.

Eligible hospitals must agree that the information submitted:

• is accurate to the knowledge and belief of the hospital or the person submitting on behalf of the hospital.
• is accurate and complete for numerators, denominators, exclusions, and measures applicable to the hospital.
• includes information on all patients to whom the measure applies.
• for clinical quality measures (CQMs), was generated as output from an identified certified EHR technology.

CMS “Meaningful Use” Stage 1 (2011-2012) Objectives [1]

- **Core Set of 15 Objectives**
 1. Record patient demographics
 2. Record vital signs and chart changes
 3. Maintain up-to-date problem list of current and active diagnoses
 4. Maintain active medication list
 5. Maintain active medication allergy list
 6. Record smoking status for patients 13 years of age or older
 7. For individual professionals, provide patients with clinical summaries for each office visit; for hospitals, provide an electronic copy of hospital discharge instructions on request
 8. On request, provide patients with an electronic copy of their health information
 9. Generate and transmit permissible prescriptions electronically (does not apply to hospitals)
 10. Computer provider order entry for medication orders
 11. Implement drug–drug and drug–allergy interaction checks
 12. Implement capability to electronically exchange key clinical information among providers and patient-authorized entities
 13. Implement one clinical decision support rule and ability to track compliance with the rule
 14. Implement systems to protect privacy and security of patient data in the EHR
 15. Report clinical quality measures to CMS or states

- **Plus Menu Set of 10 Objectives (5 of which must be met) [2]**

[1] References:

The Centers for Medicare and Medicaid Services (CMS) Meaningful Use Final Rule specifies minimal thresholds for the objectives. For example, the threshold for Objective 9 is that over 40% of prescriptions are transmitted electronically using certified EHR technology.

[2] Menu Set of Objectives (5 of 10 must be met at specified threshold level to qualify for incentive payments):

- Implement drug formulary checks
- Incorporate clinical laboratory test results into EHRs as structured data
- Generate lists of patients by specific conditions to use for quality improvement, reduction of disparities, research, or outreach
- Use EHR technology to identify patient-specific education resources and provide those to the patient as appropriate
- Perform medication reconciliation between care settings
- Provide summary of care record for patients referred or transitioned to another provider or setting
- Submit electronic immunization data to immunization registries or immunization information systems
- Submit electronic syndromic surveillance data to public health agencies
- Record advance directives for patients 65 years of age or older (*applies to hospitals*)
- Submit electronic data on reportable laboratory results to public health agencies (*applies to hospitals*)
- Send reminders to patients (per patient preference) for preventive and follow-up care (*applies to eligible professionals*)
- Provide patients with timely electronic access to their health information (*applies to eligible professionals*)
ONC Initial Set of Standards for EHRs
(as specified in Final Rule of 28 July 2010 [1, 2])

- Content exchange standards
 - Content of patient summary record, electronic prescription, electronic submission of lab results to public health agencies, electronic submission to public health agencies, electronic submission to immunization registries, and quality reporting
- Vocabulary standards
 - Code sets/terminology/nomenclature for clinical problems, procedures, lab test results, medications, immunizations, and race and ethnicity
- Privacy and security standards
 - Encryption algorithms, hash algorithms, in-transit encryption and integrity protection, and logging of accesses (including creates, writes, reads, deletes) to health information, logging of disclosures

[2] ONC considered specifying transport standards, but backed off due in part to controversy over SOAP vs. REST protocols.
Content Exchange Standards [1]

- Patient summary record
 - Health Level Seven (HL7) Clinical Document Architecture (CDA) Release 2, Continuity of Care Document (CCD)
 - Or ASTM Continuity of Care Record (CCR)
- Electronic prescribing
 - National Council for the Prescription Drug Programs (NCPDP) SCRIPT, Version 8.1
 - Or NCPDP SCRIPT, Version 10.6.
- Electronic submission of lab results to public health agencies
 - HL7 2.5.1
- Electronic submission to public health agencies for surveillance or reporting
 - HL7 2.3.1
 - Or HL7 2.5.1
- Electronic submission to immunization registries
 - HL7 2.3.1
 - Or HL7 2.5.1
- Quality reporting
 - CMS Physician Quality Reporting Initiative 2009 Registry XML Specification

Vocabulary Standards [1]

- Problems
 - International Health Terminology Standards Development Organization Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) July 2009 version
- Procedures
 - ICD9-CM
 - Health Care Financing Administration Common Procedure Coding System, as maintained and distributed by HHS, and Current Procedural Terminology, Fourth Edition, as maintained and distributed by the American Medical Association
- Laboratory test results
 - Logical Observation Identifiers Names and Codes (LOINC) version 2.27
- Medications
 - Any source vocabulary that is included in RxNorm
- Immunizations
 - HL7 Standard Code Set CVX - Vaccines Administered, July 30, 2009, version
- Race and Ethnicity

Privacy and Security Standards [1]

- Encryption and decryption of electronic health information
 - General: Any encryption algorithm identified by the National Institute of Standards and Technology (NIST) as an approved security function in Annex A of the Federal Information Processing Standards (FIPS) Publication 140-2
 - Exchange: Any encrypted and integrity protected link
- Record actions related to electronic health information
 - The date, time, patient identification, and user identification must be recorded when electronic health information is created, modified, accessed, or deleted; and an indication of which action(s) occurred and by whom must also be recorded
- Verification that electronic health information has not been altered in transit
 - A hashing algorithm with a security strength equal to or greater than secure hash algorithm SHA-1 as specified by the National Institute of Standards and Technology (NIST) in FIPS Publication 180-3 (October 2008) must be used to verify that electronic health information has not been altered
- Record treatment, payment, and health care operations disclosures
 - The date, time, patient identification, user identification, and a description of the disclosure must be recorded for disclosures for treatment, payment, and health care operations

Health Information Technology Initiative: Outline

- Introduction
- Federal Supported Activities
- **Nationwide Health Information Network (NHIN)**
- Automated Data Entry
- Summary & Conclusions
Nationwide Health Information Network [1]

- The Nationwide Health Information Network (NHIN) is a collection of standards, protocols, legal agreements, specifications, and services that enables the secure exchange of health information over the internet [2]
 - ONC guides the technical and policy development of the NHIN
 - The NHIN Exchange, a confederation of trusted entities, bound by mission and governance to securely exchange health information leads in exchanging data based on early NHIN specifications
 - The Direct Project develops standards and services required to enable secure, directed health information exchange at a more local and less complex level among trusted providers in support of stage 1 Meaningful Use incentive requirements
 - CONNECT is a free, open source software solution that supports health information exchange – both locally and at the national level, using NHIN to make sure that health information exchanges are compatible with other exchanges being set up throughout the country

[2] Notably, the NHIN is not a collection of physical components such as links, routers, and data servers. The understanding of what is the NHIN has been evolving since its earliest definitions. It initially was a “network,” then a “network of networks.” Now it’s well understand that NHIN is a collection of standards and agreements that enable the various nodes to share health data.
Figure is modified and annotated from: NHIN Exchange Architecture Overview, Draft v.0.9, HHS (21 April 2010); <http://healthit.hhs.gov/portal/server.pt/gateway/PTARGS_0_11113_911643_0_0_18/NHIN_Architecture_Overview_Draft_20100421.pdf>.
An RHIO or HIE always has a Master Patient (MPI) and a clinical document registry (index). It may also have a central data repository holding clinical documents. However, it may alternatively have a distributed data repository. In this case, clinical documents are stored locally at individual hospitals or clinics, and the RHIO/HIE document registry provides links to the documents.

NHIN Exchange is a decentralized architecture—having no MPI, no document registry, and no central data repository—but instead relying on a heavyweight set of patient discovery and document sharing standards, including content, vocabulary, transport, and security/privacy standards.

[2] See the list of NHIN specifications in the backup slides.
NHIN Direct addresses only transport and security/privacy (not content and vocabulary) standards. It supports secure transport (push) of health data to a known and trusted recipient. It can be viewed as a replacement of fax.

NHIN Challenges

• Patient identity [1]
 – Federal law prohibits national patient ID
 – Lack of national patient ID means that probabilistic patient matching must be done, leading to false negatives (not all patient data is found) and false positives (another patient’s data becomes associated with a patient); error rate tends to rise as patient population increases
 – Lack of national patient ID represents a health data sharing risk, in terms of privacy (false positives), quality of care and patient safety (false negatives and false positives), cost (administrative burden, duplicative/unnecessary procedures)
 – Recent studies have argued for a national patient ID [2, 3, 4]
 – Recent President’s Advisory Council on Science and Technology (PCAST) Report on Health IT does not consider lack of national patient ID a risk [5]

[5] Report to the President Realizing the Full Potential of Health Information Technology to Improve Healthcare for Americans: The Path Forward, President’s Advisory Council on Science and Technology (PCAST) (December 2010); <http://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-health-it-report.pdf>.
NHIN Challenges (continued)

- Continued Standards Development
 - Content
 - Vocabulary
 - Transport
 - Security/privacy
- Health Information Exchange (HIE) implementation
 - Master Patient Index (MPI)
 - Should data repository be centralized or distributed?
- Role of Personally Controlled Health Record (PCHR)
 - Should EHR follow patient, or be tied to “primary” health provider or HIE?
Hospital B has a GE EMR system which is already enabled for XDS [Cross-Enterprise Clinical Data Sharing]. The GE system will only need to be configured to communicate with the components supplied by the infrastructure provider: (1) the GE system will audit all protected health information operations to the audit repository supplied by the infrastructure, (2) the GE system will use the PIX/PDQ [Patient Identifier Cross-referencing/Patient Demographics Query] Server provided by the infrastructure to get patient ids, (3) the GE system will submit and retrieve documents from the Document Repository supplied by the infrastructure, (4) the GE system will query the Document Registry supplied by the infrastructure.

Hospital A uses applications which are not enabled for XDS transactions. Two mechanisms are used at this hospital to communicate with the infrastructure:

- HCN [Healthcare Collaborative Network] will be used to receive HL7 messages and generate CDA R2 documents. The HCN Document Source Adapter will submit those documents to the infrastructure provided repository (5).
- A proprietary EMR application will be enabled for XDS transactions by writing a custom adapter. The adapter will interact with the application and the IHII provided client side components to submit (6), query(7) and retrieve(8) documents. As part of those transactions the adapter will use the PIX/PDQ Consumer to resolve the patient id (9). As part of document submission the Document Source will make use of Transformation to extract metadata from the document and Terminology Client to convert terminology to the XDS Affinity Domain defined terminology (10).

Hospital A also audits all protected health information operations to the audit repository, these connections are not shown on the diagram.
Hospital B has GE systems which are enabled for XDS and provide document creation, storage and retrieval. The system is a document repository. The GE system will only need to be configured to communicate with the components supplied by the infrastructure provider: (1) the GE system will audit all protected health information operations to the audit repository supplied by the infrastructure, (2) the GE system will use the PIX/PDQ Server provided by the infrastructure to get patient ids, (3) the GE repository system will register documents stored in its local repository with the Document Registry supplied by the infrastructure, (4) the GE system will query the Document Registry supplied by the infrastructure, (5) the GE system will retrieve documents from wherever the Document Registry element indicates they are located, for example, Hospital A’s repository.

Hospital A is a simplified version of the previous example. It generates documents using HCN and the HCN Document Source Adapter. The documents are saved in the local repository (6) and registered with the infrastructure provided registry (7). A user interface is enabled for XDS to query and retrieve documents. It uses the PIX/PDQ Consumer to identify patients by querying the PIX/PDQ Server (8). The Document Consumer queries the infrastructure provided Document Registry (9) and retrieves documents from the two local repositories (10).

As in the previous example, Hospital A also audits all protected health information operations to the audit repository, these connections are not shown on the diagram.
Health Information Technology Initiative: Outline

• Introduction
• Federal Supported Activities
• Nationwide Health Information Network (NHIN)
• **Automated Data Entry**
• Summary & Conclusions
The Data Entry Problem

- The medical profession has been one of the slowest groups in taking advantage of modern IT to facilitate their activities
 - Many physicians still operate as independent entrepreneurs, without the culture and wherewithal to instantiate an IT infrastructure
 - Hospital groups tend to do better within their own group
 - These have the personnel and financial capability to instantiate a modern IT infrastructure
 - But the applications tend to be focused on management and financial functions
 - Consequently most patient/physician interactions are recorded by hand
- Outside of a single physician group office or a hospital group, there is no way to construct a complete patient file
- Also, the multiplicity of actions required in a single group office tends not to be integrated for a single patient; consequently [1]
 - The Medical Coding Data is entered by hand
 - Suggested post-visit behavior is transmitted verbally and (probably not) documented
 - Prescriptions are written by hand
 - Billing is conducted by hand on yet a separate IT system
- When the visit claims appears in the insurance company, all data once again is entered into yet a different database
- All this results in unnecessary wasted time and effort and is error prone

[1] Consider another example of the “balkanization” of medical information for a single patient entering an emergency room (ER) in a hospital, with the following encounters, each associated with an independent IT system, mostly incompatible with all the others:
 - Emergency department information system (EDIS)
 - Pre-hospital care (ambulance) documentation system
 - Hospital ADT (admission/discharge/transfer) system
 - Computerized clinical laboratory system
 - Electronic data management (medical records) imaging system
 - Hospital pharmacy system
 - Vital-signs monitoring system
 - Hospital radiology ordering system
 - Picture archiving storage (PACS) systems

Progress on Data Entry

- The several funded incentives programs in the Recovery & HITECH Acts are driving adoption of EHR with support for health IT education and research and development
 - These include incentives for development of tools for automatic EHR data entry
 - Incentives for the development of voice recognition tools are explicitly listed
- Some medical specialties, e.g., diagnostic radiology, are already well positioned to enter their data into an EHR, since
 - Most of their diagnostic tools, e.g., classic X-rays, CTs and MRIs, produce digitized data
 - Direct patient interaction is minimal
 - Their “clients” are other clinicians
 - Health IT tools are already available enabling a totally digital data environment
- Progress is ongoing to digitize and format data from monitors and other diagnostic tools used in most other medical specialties, facilitating the entry of that data into EHRs
Notional Medical Workflow for Diagnostic Radiology

- Leaving aside processes involved in decisions to order a particular high-tech diagnostic imaging engagement for a patient, including whether the patient:
 - Meets best clinical care guidelines
 - Meets reimbursement guidelines
- The workflow process is well organized to generate a totally digital EHR dataset
 - Technician performs necessary tasks for imaging tool to gather (digital data) image(s)
 - Radiologist examines image(s) and at that time develops (speaks) diagnostic report
 - Simultaneously, speech recognition tools generate a text version of the report
 - The spoken report record is digitized and is maintained as the official report
 - (If appropriate, a medical transcriptionist checks and corrects the text version against the spoken version; unresolved issues are brought to the radiologist’s attention)
 - This could be done in close to real time
 - Both the digitized official report and the converted text report, along with the digital image data are sent to the originating clinician
- The three components of the radiology record are entered into the patient’s EHR
 - This may happen only after verification that the text and official records match

This process could be a model for numerous other medical specialties
Instantiating Radiology Workflow

• Medical imaging tools amenable to the radiology workflow
 ▪ X-ray based, including
 o Projection radiography (the normal “X-ray”)
 o Fluoroscopy
 o Computed tomography (CT)
 ▪ Nuclear medicine, including
 o Scintigraphy; 2D gamma-ray images
 o SPECT; 3D tomographic gamma-ray images
 o Positron emission tomography (PET)
 ▪ Magnetic resonance imaging (MRI); no radiation involved
 ▪ Ultrasound
 o Simple modes
 o Doppler mode
 o 3D created from multiple 2D scans
• Non-imaging medical diagnostic tools, producing maps or graphs
 ▪ Electrocardiograph (EKG)
 ▪ Electroencephalograph (EEG)
 ▪ Magnetoencephalograph (MEG)
Speech Recognition Tools in all Medical Specialties

- With the maturation of speech recognition tools, it should become possible to document all (currently handwritten) patient records using this technology [1, 2]
- Following the early support for the radiologists, the same approach can be used by most clinicians in direct contact with their patients
- As proposed with the radiologists, the digitized spoken record is the official record
 - An associated automatically generated text document is also generated
 - The text document may be checked by a medical transcriptionist if appropriate
- Speech recognition should decrease the clinician’s documentation time burden
- Some clinicians may not be willing to make the required transformation
 - With time, the number of such individuals will decrease
- With basic clinician/patient interaction documented electronically, an important part of the patient’s medical record will be available as part of the EHR
 - There is still the issue of standards for the format of this record to be resolved
- A major transition problem is the non-availability of legacy, handwritten medical records
 - For a long time, these will have to be handled as in the past

Natural Extensions to Speech Recognition

- Use of speech recognition opens the opportunity to make diagnostic and pharmaceutical knowledge-based tools available to the clinician, while he or she is still in contact with the patient
 - The same platform that makes available the speech recognition software can also serve as a portal to the appropriate tools and databases to assist the clinician in diagnosis and prescription decisions
- Currently pharmacists play an important role in identifying adverse drug-drug interactions (DDI)
 - Bringing that capability to the physician during direct interaction with the patient and a complete patient EHR should substantially decrease the occurrence of bad DDIs
- Recently, WellPoint, in association with IBM, announced a program to develop a Watson-based knowledge facility to help improve patient care through the delivery of up-to-date, evidence-based health care [1]
 - Watson uses an analytic technique that analyzes natural language, identifies relevant sources from a very large data repository, generates relevant hypotheses, scores the evidence, and merges and ranks the hypotheses which it presents to the clinician
 - With time, Watson technology could be quite successful in achieving better diagnoses
- More generally, with the portal at their finger tips, large numbers of medical providers will be able to access clinical decision support and other applications as software as a service (SaaS) tools in the “Cloud”

Monitors and Other Medical Tools

• Before the digital revolution, most medical monitoring instruments were analog
 ▪ Results were typically displayed on a cathode ray tube (CRT)
 ▪ The digital revolution made possible the digital signal processing (DSP) chip capable of digitizing and further analyzing the signal, resulting in more powerful digital versions of these tools
 ▪ Some of these digital tools, e.g., the EKG, are now able to make diagnostic analyses of the physiological signals and to assign the appropriate diagnostic code
 ○ Some are even capable of transmitting the digitized data to a network for entry into an EHR, using the HL7 standard

• The various monitors for hospital, office, or home use can be classified as [1]
 — Handheld — Portable
 — Monitor/Defibrillator — Tabletop
 — Networkable/non-networkable — Wired/Wireless data transmission
 — Mains powered or mains + battery

• At the present time, most of these, although digital, are standalone and not yet designed to interface with a network and transmit the data into an EHR
 ▪ But this is in transition and a number of pilot projects and even some products now exist with the necessary capability

Medical Device Interoperability

- In 2008, the American Health Information Community (AHIC) identified gaps in achieving a successful EHR, indicating the need for “common device connectivity” [1]
 - The SHARP program has identified the Massachusetts General Hospital, which is developing a Prototype Healthcare Intranet to fill this gap, as an NIH Affiliate
- The Prototype Healthcare Intranet is developing technology, software, standards, and tools to provide higher quality patient data by enabling medical device manufacturers to create products that will interoperate with other manufacturers’ devices, EHRs, and Health IT systems
- Massachusetts General Hospital has established a not-for-profit consortium of medical, academic, and supplier organizations—the Medical Device Plug-and-Play (MDPnP) Interoperability Program—to develop the Prototype Healthcare Intranet [2]
 - The program was awarded a 5-year $10M grant in October 2010 by NIH
 - DoD, NSF, and NIST support the program
 - Medical device interoperability will facilitate the use of in-home mobile and wireless devices to monitor patients in their normal environments gathering vital clinical data in real time [3]

[3] Dr. Alan D. Snell, Chief Medical Information Officer, St. Vincent’s Health, quoted in Computer, Vol. 43, No. 7 (July 2010).
Health Information Technology Initiative:
Outline

- Introduction
- Federal Supported Activities
- Nationwide Health Information Network (NHIN)
- Automated Data Entry
- **Summary & Conclusions**
Summary of Health IT Status

- Cost of health care in the U.S. has been rising very rapidly
 - Efforts to bring these costs under control have made little headway over the last 20+ years
- Reasons for failure are due to the multifaceted attributes of the matter
 - Health care practices are very diverse
 - Large investments are required to make the necessary transformations
 - Many independent stakeholders
 - Existing IT systems and tools are not interoperable; not even transformable
 - No one clearly in charge
- Consequently much effort, but little progress until recently
- Recent changes make it possible, with strong leadership, to make progress
 - Recent legislation, accompanied by robust funding, established an organizational structure matched to the difficulty of the job
 - Strong executive leadership with aggressive ideas is in place
 - IT capability is rapidly improving
 - Stakeholder understanding that the proposed changes will both reduce costs and improve the delivered health care is growing
Summary of Health IT Status (continued)

- Incentives designed to attract or rein in the several classes of stakeholders are in place and appear to be working
 - For the independent physician community, there are modest monetary incentives to begin participation in the nascent stages of a standard EHR construct
 - Similar incentives are in place to gain the involvement of the hospitals
 - IT providers must be certified if their products are to be used by the medical community
 - The medical research community, both professional and commercial sectors, has opportunities to gain funding for innovative new approaches to facilitating transformation

- Working groups have been established to:
 - Develop strategic plans, organize a governance structure, and develop appropriate policies
 - Recommend initiatives for certification of products and adoption of the developing capabilities
 - Develop standards for vocabulary, content exchange, privacy and security, and information transmission

- The ONC, who is responsible for many of these matters, continues to develop innovative approaches to encourage the whole community to embrace this transformation

Progress in achieving a useable EHR and a transformed health IT infrastructure for future efficiencies and improved health care is encouraging.
Issues of Concern

- Recent progress in achieving an EHR-based health care system is good
 - Current momentum must be maintained
- Most important is continued funding to support all the activities required for the transformation [1]
 - Substantive achievement of the goal will take at least another decade of actions
- Continued efforts that will be required include:
 - Evolving and instantiating the various required standards
 - Support of the required cultural changes in the medical community
 - Support of innovative approaches in concepts and in the development of hardware and software products to support the transformation
 - Changes in legislation and policies to support the transformation
- More difficult issues to be addressed and solved include:
 - Patient identity
 - Privacy and security
 - Transformation from legacy systems and processes to new approaches capable of supporting an EHR-based health care environment

Backup
HITECH Act: Overview and Estimated Timeline;
[1] HITECH Act: Overview and Estimated Timeline;
CMS Medicare and Medicaid EHR Incentive Programs

Milestone Timeline

[Image of milestone timeline]

NHIN Specifications [1]

- **Specifications Currently in Effect**
 - Access Consent Policies Production Specification
 - Administrative Distribution Production Specification
 - Authorization Framework Production Specification
 - Document Submission Production Specification
 - Health Information Event Messaging Production Specification
 - Messaging Platform Production Specification
 - Patient Discovery Production Specification
 - Query for Documents Production Specification
 - Retrieve Documents Production Specification
 - Web Services Registry Production Specification

- **Revised Specifications (Production Effective Date TBD)**
 - Messaging Platform v3.0 approved by NHIN Technical Committee (NTC) on 6/27/2011
 - Patient Discovery v2.0 approved by NTC on 6/27/2011
 - Query for Documents v3.0 approved by NTC on 6/27/2011
 - Retrieve Documents v3.0 approved by NTC on 6/27/2011
 - Authorization Framework v3.0 approved by NTC on 7/25/2011
 - Web Services Registry v3.0 approved by NTC on 7/25/2011
 - ESMX XDR Production Specification
 - Administrative Distribution Production Specification
 - Document Submission Production Specification

Current State of (Medical) Speech Recognition

• History
 • ~ 1952; First speech recognition tool
 • 1964; IBM shoebox demonstrated at New York World’s Fair
 • 1982; First computer based commercial product by Covox
 • 1982; Dragon Systems founded [1]
 o 1990; First Dragon Systems useful product
 o 1997; “Dragon Naturally Speaking” product
 o 1998 – 2007; Increasingly capable versions of Naturally Speaking products deployed, including those with extensions to support legal and medical vocabularies
 o 2000 – 2005; Dragon Systems acquired and name changed, emerges as Nuance Communications, Inc.
 o 2008 – 2011; Versions 10 and 11 of Naturally Speaking deployed; finally accuracy now reaches 99%

• Speech recognition products are now available at a useful accuracy level

[1] Although there is competition Dragon Naturally Speaking has the largest market share; it is arguably the most effective product on the market.
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADT</td>
<td>Admission/Discharge/Transfer</td>
</tr>
<tr>
<td>AHIC</td>
<td>American Health Information Community</td>
</tr>
<tr>
<td>AHLTA</td>
<td>DoD’s EHR (Department of Defense’s Electronic Health Record)</td>
</tr>
<tr>
<td>AHRQ</td>
<td>Agency for Healthcare Research and Quality</td>
</tr>
<tr>
<td>ARRA</td>
<td>American Recovery and Reinvestment Act</td>
</tr>
<tr>
<td>ASTM</td>
<td>[an international standards organization]</td>
</tr>
<tr>
<td>BHIE</td>
<td>Bidirectional Health Information Exchange</td>
</tr>
<tr>
<td>CCD</td>
<td>Continuity of Care Document</td>
</tr>
<tr>
<td>CCR</td>
<td>Continuity of Care Record</td>
</tr>
<tr>
<td>CDA</td>
<td>Clinical Data Architecture</td>
</tr>
<tr>
<td>CDC</td>
<td>Centers for Disease Control and Prevention</td>
</tr>
<tr>
<td>CDR</td>
<td>Clinical Data Repository</td>
</tr>
<tr>
<td>CHCS</td>
<td>Composite Health Care System</td>
</tr>
<tr>
<td>CHDR</td>
<td>Clinical Data Repository/Health Data Repository</td>
</tr>
<tr>
<td>CMS</td>
<td>Centers for Medicare and Medicaid Services</td>
</tr>
<tr>
<td>CPT</td>
<td>Current Procedural Terminology (codes)</td>
</tr>
<tr>
<td>CRP</td>
<td>Central Research Project</td>
</tr>
<tr>
<td>CRT</td>
<td>Cathode Ray Tube</td>
</tr>
<tr>
<td>CT</td>
<td>Computed Tomography</td>
</tr>
<tr>
<td>CVX</td>
<td>Vaccines Administered (HL7 Standard Code Set)</td>
</tr>
<tr>
<td>DDI</td>
<td>Drug-Drug Interaction</td>
</tr>
<tr>
<td>DoD</td>
<td>Department of Defense</td>
</tr>
<tr>
<td>DSP</td>
<td>Digital Signal Processing</td>
</tr>
<tr>
<td>DURSA</td>
<td>Data Use and Reciprocal Support Agreement</td>
</tr>
<tr>
<td>EDIS</td>
<td>Emergency Department Information System</td>
</tr>
<tr>
<td>EEG</td>
<td>Electroencephalograph</td>
</tr>
<tr>
<td>EHR</td>
<td>Electronic Health Record</td>
</tr>
<tr>
<td>EKG</td>
<td>Electrocardiograph</td>
</tr>
<tr>
<td>EMR</td>
<td>Electronic Medical Record</td>
</tr>
<tr>
<td>ER</td>
<td>Emergency Room</td>
</tr>
<tr>
<td>ESMD</td>
<td>Electronic Submission of Medical Documentation</td>
</tr>
<tr>
<td>FAC</td>
<td>Federal Advisory Committee Act</td>
</tr>
<tr>
<td>FHIE</td>
<td>Federal Health Information Exchange</td>
</tr>
<tr>
<td>FIPS</td>
<td>Federal Information Processing Standard</td>
</tr>
<tr>
<td>GAO</td>
<td>Government Accountability Office</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
</tr>
<tr>
<td>GE</td>
<td>General Electric</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>GPO</td>
<td>Government Printing Office</td>
</tr>
<tr>
<td>HCPCS</td>
<td>Healthcare Common Procedure Coding System</td>
</tr>
<tr>
<td>HCN</td>
<td>Healthcare Collaborative Network</td>
</tr>
<tr>
<td>HDR</td>
<td>Health Data Repository</td>
</tr>
<tr>
<td>HHS</td>
<td>Department of Health and Human Services</td>
</tr>
<tr>
<td>HIE</td>
<td>Health Information Exchange</td>
</tr>
<tr>
<td>HIPAA</td>
<td>Health Insurance Portability and Accountability Act</td>
</tr>
<tr>
<td>HIT</td>
<td>Health IT</td>
</tr>
<tr>
<td>HITECH</td>
<td>Health Information Technology for Economic and Clinical Health Act</td>
</tr>
<tr>
<td>HL7</td>
<td>Health Level 7</td>
</tr>
<tr>
<td>IDA</td>
<td>Institute for Defense Analyses</td>
</tr>
<tr>
<td>IT</td>
<td>Information Technology</td>
</tr>
<tr>
<td>ITSD</td>
<td>Information Technology and Systems Division</td>
</tr>
<tr>
<td>JAL</td>
<td>James A. Lovell Federal Health Care Center</td>
</tr>
<tr>
<td>FHCC</td>
<td>Logical Observation Identifiers Names and Codes</td>
</tr>
<tr>
<td>LOINC</td>
<td>Logical Observation Identifiers Names and Codes</td>
</tr>
<tr>
<td>MDPnP</td>
<td>Medical Device Plug-and-Play</td>
</tr>
<tr>
<td>MEG</td>
<td>Magnetoencephalograph</td>
</tr>
<tr>
<td>MHS</td>
<td>Military Health System</td>
</tr>
<tr>
<td>MPI</td>
<td>Master Patient Index</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic resonance imaging</td>
</tr>
<tr>
<td>NAMCS</td>
<td>National Ambulatory Medical Care Survey</td>
</tr>
<tr>
<td>NCHS</td>
<td>National Center for Health Statistics</td>
</tr>
<tr>
<td>NCPDP</td>
<td>National Council for the Prescription Drug Program</td>
</tr>
<tr>
<td>NEJM</td>
<td>New England Journal of Medicine</td>
</tr>
<tr>
<td>NHIN</td>
<td>Nationwide Health Information Network</td>
</tr>
<tr>
<td>NIH</td>
<td>National Institutes of Health</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards and Technology</td>
</tr>
<tr>
<td>NSF</td>
<td>National Science Foundation</td>
</tr>
<tr>
<td>NTC</td>
<td>NHIN Technical Committee</td>
</tr>
</tbody>
</table>
Acronyms (continued)

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>OECD</td>
<td>Organisation for Economic Co-operation and Development</td>
</tr>
<tr>
<td>ONC</td>
<td>Office of the National Coordinator for Health IT</td>
</tr>
<tr>
<td>PACS</td>
<td>Picture Archiving and Communication system</td>
</tr>
<tr>
<td>PCAST</td>
<td>President's Advisory Council on Science and Technology</td>
</tr>
<tr>
<td>PCHR</td>
<td>Personally Controlled Health Record</td>
</tr>
<tr>
<td>PET</td>
<td>Positron emission tomography</td>
</tr>
<tr>
<td>PIX/PDQ</td>
<td>Patient Identifier Cross-referencing/Patient Demographics Query</td>
</tr>
<tr>
<td>PQRI</td>
<td>Physician Quality Reporting Initiative</td>
</tr>
<tr>
<td>REST</td>
<td>Representational State Transfer</td>
</tr>
<tr>
<td>RHIO</td>
<td>Regional Health Information Organization</td>
</tr>
<tr>
<td>SaaS</td>
<td>Software as a Service</td>
</tr>
<tr>
<td>SHA</td>
<td>Secure Hash Algorithm</td>
</tr>
<tr>
<td>SHARP</td>
<td>Strategic Health IT Advanced Research Project</td>
</tr>
<tr>
<td>SNApT</td>
<td>Substitutable Medical Apps Reusable Technologies</td>
</tr>
<tr>
<td>SNOMED</td>
<td>Systematized Nomenclature of Medicine Clinical Terms</td>
</tr>
<tr>
<td>SOAP</td>
<td>Simple Object Access Protocol</td>
</tr>
<tr>
<td>TBD</td>
<td>To be determined</td>
</tr>
<tr>
<td>USD PPP</td>
<td>U.S. Dollars adjusted for Purchasing Power Parity</td>
</tr>
<tr>
<td>VA</td>
<td>Department of Veterans Affairs</td>
</tr>
<tr>
<td>VHA</td>
<td>Veterans Health Administration</td>
</tr>
<tr>
<td>VistA</td>
<td>Veterans Health Information System and Technology Architecture</td>
</tr>
<tr>
<td>VLER</td>
<td>Virtual Lifetime Electronic Record</td>
</tr>
<tr>
<td>XDR</td>
<td>Cross-Enterprise Document Reliable Interchange</td>
</tr>
<tr>
<td>XDS</td>
<td>Cross-Enterprise Clinical Data Sharing</td>
</tr>
</tbody>
</table>
Health care lags behind other industries in adopting information technology by as much as 10–15 years. The administration has identified the development of a robust health information technology (HIT) infrastructure as one of the key approaches for improving the quality and reducing the costs of healthcare. The current study was initiated to better understand what was the current state of HIT, the medical communities’ attitudes regarding this matter, and what actions the administration had taken towards moving forward their ideas in fixing the problem. Early on in the study it became apparent that there were in place a good number of well funded programs that were finally making notable progress in instantiating an electronic health records (EHR) based health care system. This is only a start and success in this matter will depend upon the continuation and funding of these recent initiatives. This report summarizes these matters and concludes that with sustainment of the effort for at least another decade there is good expectation of a successful improvement, along with reduced costs, of patient care in the country.