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Executive Summary 

Background 

The requirement for the Department of Defense (DoD) to create and maintain a 

Militarily Critical Technologies List (MCTL) was established by Public Law 99-64 on July 

12, 1985. The purpose of the MCTL was to identify technologies that are critical to national 

security and thus require extra protections that include bans on exports and the application 

of anti-tamper technology.[1] The MCTL is now outdated for the majority of its intended 

uses. The most recent Government Accountability Office (GAO) report (GAO 13-157)[2] 

on the use of the MCTL notes that the value of MCTL information has significantly 

deteriorated, due primarily to lack of funding to carry out the necessary update activities. 

Sections on emerging technologies are no longer being periodically revised to reflect the 

current state of the art, while other sections haven’t been updated since 1999. 

Given the above situation, many DoD organizations now rely on alternative 

information sources, and the envisioned main users of the MCTL — technology export 

decision makers in the Departments of State and Commerce — have turned to ad hoc 

networks of subject matter experts for detailed information on military criticality when 

their internal subject matter experts are unable to provide this information. Other agencies 

are developing their own versions of a MCTL, potentially creating conflicting views of 

what is militarily critical, while funding efforts to produce results already obtained 

elsewhere within DoD.[3] 

Because the requirement to review and update the MCTL at least annually[4] is still 

in force, in 2013 the sponsor asked the Institute for Defense Analyses (IDA) to assess 

possible courses of action to answer an inquiry into the status of the MCTL activities by 

the Office of the Inspector General (OIG). Among the various courses of actions (COA) 

explored, IDA recommended that AT&L: “re-invent, in the near term, the MCTL as a 

shared and integrated set of existing information sources — thereby creating a common, 

dynamic, classified, proprietary, DoD Technologies Knowledge Base (DTKB) reflecting 

                                                 

1
 http://en.wikisource.org/wiki/Page:United_States_Statutes_at_Large_Volume_99_Part_1.djvu/151 

2 
http://www.gao.gov/products/GAO-13-157 

3 
http://yro.slashdot.org/story/13/01/25/2357219/gao-finds-us-militarys-critical-technologies-list-outdated-

useless  
4 

See Footnote 1 above. 

http://yro.slashdot.org/story/13/01/25/2357219/gao-finds-us-militarys-critical-technologies-list-outdated-useless
http://yro.slashdot.org/story/13/01/25/2357219/gao-finds-us-militarys-critical-technologies-list-outdated-useless
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technology velocity, trajectory and disruptive changes to support stakeholders, 

communities of interest, and other SMEs [subject matter experts].” [5] 

In 2014 the sponsor provided initial funding to explore possible implementations of 

the DTKB concept. This report describes the results obtained pertaining to the use of 

natural language processing (NLP) technologies to maintain and update a future DTKB. 

Components of the DTKB Concept 

In coordination with the sponsor the IDA team determined that any DTKB 

implementation was predicated on the ability to carry out rapid, accurate, and effective 

subject matter characterization of large collections of existing data. Given the previous 

experience gained by the IDA team in that area with the IDA Text Analytics (ITA) 

capability, the IDA team proposed to adopt the ITA as part of the DTKB solution 

architecture. As the upper part of Figure 1 shows, the proposed DTKB concept envisions 

the use of the ITA capability to bin the contents of appropriate big data sources into highly 

homogeneous clusters, i.e., subsets of documents that pertain only to a specific technology, 

such as phased-array radars, or field-programmable gate array (FPGA) electronics.  

 
Figure 1. Components of the DTKB Concept 

 

Once the technology-specific clusters have been generated, the next component of the 

DTKB concept (shown in the lower part of Figure 1) envisions the use of NLP technologies 

to do the actual extraction of relevant quantitative information. Due to the potentially large 

number of items that need to be examined for any given technology, as well as the cost 

                                                 

5
 IDA Final Briefing for Project 3669, (informal deliverable) 
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reduction gained therewith, the proposed DTKB concept focused on alternatives that can 

support a high degree of automation.  

Specifically, the DTKB concept mapped the question of what constitutes the state of 

the art of a given technology to a taxonomic breakdown of the relevant technology area, 

all the way down to its specific key parameters, in a manner analogous to how technology 

criticality is characterized in the datasheets of the MCTL. These taxonomies are very useful 

because they can be fed to NLP tools such as the General Architecture for Text Engineering 

(GATE), an open source suite written in Java, to automatically carry out the needed 

technology reference identification (TRI), i.e., the extraction of the key parameter values 

belonging to a given technology from the documents under examination. Once these 

extracts have been generated they can be placed in adequate repositories, such as Resource 

Description Framework (RDF) triple stores, to support the appropriate end-user interfaces. 

Structure of the Report 

Chapter 1 provides an introduction to the DTKB concept and discusses the rationale 

for the approach taken. Chapter 2 discusses additional NLP techniques that may facilitate 

the exploitation of large document collections in conjunction with a TRI approach similar 

to the one discussed in this document. Chapter 3 presents high-level considerations for the 

solution architecture chosen to carry out a proof-of-principle assessment of the TRI 

approach at the core of the proposed the DTKB concept. Chapters 4 and 5 present detailed 

discussions of the ontologies used to power the GATE-based prototype. Chapter 6 

discusses the conclusions reached and recommendations made based on the analytical 

results obtained during the study. 

Summary of Conclusions and Recommendations 

Based on the analytical results obtained the IDA team reached the following 

conclusions:  

 A fully operational technical solution for the proposed DTKB concept can be 

achieved if adequate funding and sponsor support are provided. The proof-of-

principle testing conducted in this study indicates that the specific technologies 

required to power the proposed DTKB solution architecture have the necessary 

degree of maturity and are applicable. 

 However, none of the available data sources tested [6] has a consistent degree of 

quantitative data content for all the technology areas covered that is sufficient to 

                                                 

6
 The sources tested during the study were: the Defense Technical Information Center (DTIC) (40,000 

documents); RDT&E Budget Item Justification Exhibits from 2014 (192 documents); and the Unified 

Research and Engineering Database (URED) (39,000 database records) 
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support the highly automated NLP-based extraction procedure envisioned in the 

proposed DTKB concept. 

 In addition, the various data sources tested do not use a common vocabulary, 

thereby making automated cross-comparisons less efficient and increasing the 

need for human-in-the-loop intervention. 

In light of the previous conclusions, the IDA team recommends the following:  

 Developing and adopting a data governance and data quality framework to 

support the DTKB activity, as well as any other future activity intended to 

leverage big data concepts and techniques; 

 Making a high priority goal the use of quantitative metrics in all documents and 

reports produced for the Federal Government that track technical objectives, 

accomplishments, trends, etc.; 

 Developing and socializing reference technology taxonomies across all research 

activities to ensure the use of common vocabularies to facilitate cross-comparison 

of results; 

 Using consistently and coherently program element references (PE numbers) to 

enable traceability among all data sources, e.g., RDT&E Budget Item Justification 

Exhibits and URED entries. 
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1. The DTKB Concept 

A. The Militarily Critical Technologies List (MCTL) 

In 1985, Congress created the requirement for the creation and maintenance of a list 

of militarily critical technologies.[7] In 2011, funding for the process to update the MCTL 

began to decrease rapidly, and in 2012, the previous cycle of MCTL reviews and updates 

by subject matter experts (SME) was effectively terminated.  

B. The DoD Technologies Knowledge Base (DTKB) 

Since the legal basis for the MCTL remains in force, the Office of the Inspector 

General (OIG) inquired into the approach planned by the Department of Defense (DoD) to 

satisfy the congressional mandate. In 2013, the Institute for Defense Analyses (IDA) 

assessed the various courses of action and briefed the results to the sponsor. Those results 

were incorporated into the official response to the OIG. 

1. Courses of Action 

The IDA assessment identified two main alternative courses of action, the second of 

which had a short-term and a long-term component. The specifics of the proposed courses 

of action (COA) are described below. 

a. Seek Official Relief from the Congressional Mandate 

The first COA identified in the IDA report was that DoD ask Congress to eliminate 

the MCTL requirement because the original purpose of the MCTL has been overcome by 

events. 

The evidence for this is the ability of the export management communities to continue 

to operate without the MCTL, although perhaps in a less inefficient manner, and the fact 

that the agencies engaged in export licensing have alternative information sources to satisfy 

the technical requirements that MCTL was supposed to address. 

The benefits of reviving the current MCTL solely for the sake of supporting licensing 

activities do not appear to warrant the required investment. 

                                                 

7 
 http://en.wikisource.org/wiki/Page:United_States_Statutes_at_Large_Volume_99_Part_1.djvu/151 
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b. Recreate the MCTL in the Form of a DTKB 

The second COA identified in the IDA report was that if DoD were not prepared to 

seek relief from the Congressional mandate, then it should attempt to satisfy the MCTL 

requirement by (1) standing up in the near term a shared and integrated set of existing 

information sources constituting a common, dynamic, classified, proprietary, DoD 

technologies knowledge base (DTKB) that reflects technology velocity, trajectory, and 

disruptive changes and that is capable of supporting stakeholders, communities of interest, 

and other SMEs; and by (2) leveraging in the long term emerging information technology 

(IT) techniques (e.g., content understanding software) to develop an IBM Watson-like 

capability to better answer questions concerning critical technologies and ultimately 

unburden SMEs from routine issues. 

C. Components of the DTKB Concept 

In 2014, upon review of the proposed COAs, the sponsor provided initial funding for 

IDA to carry out a proof of concept assessment of the near-term approach based on a 

knowledge base to be populated with the contents of existing technical data currently 

collected by DoD. Because of the time constraints, as well as the funding levels provided, 

the IDA team decomposed the DTKB concept into four parallel tracks. The details of each 

track are presented below.  

1. Clustering of Big Document Collections by Subject Matter 

 

 

Figure 1-1. Generation of Highly Homogeneous Document Subsets Binned by Technology 
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Figure 1-1 above shows the first component of the DTKB concept. It leverages the 

existing IDA Text Analytics (ITA) capability, by extending its functionality to achieve 

optimal theme discovery, i.e., the ability to separate a collection of source documents into 

highly homogeneous clusters pertaining to a single technology. This capability would make 

it possible, with minimal human-in-the-loop (HITL) activity, to process large collections 

of existing technical reports and bin them by specific technology areas. 

2. Automated Generation of Technology Taxonomies 

 

 

Figure 1-2. Generation of Technology Taxonomies  

from Technology-Specific Clusters 

 

Figure 1-2 above shows the second component of the DTKB concept, namely, the 

automation of technology-specific taxonomies that can be used to guide natural language 

processing (NLP) tools when searching for values of key parameters in a set of documents. 

Automating this capability would make it possible to keep up with emerging areas of 

technical interest to DoD without the need for lengthy and costly development of the 

needed technical vocabularies. 
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3. Technology Reference Identification (TRI) Using NLP 

 

 

Figure 1-3. Technology Reference Identification Via NLP Technologies 

 

Figure 1-3 above shows the component of the DTKB concept that automates the 

actual value extraction of key parameters associated with a given technology. By cross-

comparing these parameters, it is possible to ascertain the state of the art of a technology, 

and this in turn enables the end user to make the appropriate decision, for example, 

regarding export control issues. 
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Figure 1-4. Implementation of the TRI Module 

 

Figure 1-4 above shows the internal structure of the TRI module, written in Java, 

using the architecture of General Architecture for Text Engineering (GATE). Boxes 

denotes GATE-compatible modules; blue boxes were developed by IDA. IDA-developed 

modules perform unit of measure tagging (UoM Tagger), measurable quantity annotations 

(Measurable Quantity Annotator), and the conversion of the results into a Resource 

Definition Language (RDF) triples file (Params to OWL). 

4. End User Interface with Natural Language Generation (NLG) Support 

 

 

Figure 1-5. End User Interface Using NLG for Decision Making Support 
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The final component of the DTKB concept is shown in Figure 1-5. Given a particular 

data content in the DTKB, a user can pose a question regarding the state of the art of a 

specific technology, e.g., infra-red (IR) sensors. Assuming that the implementation uses an 

RDF triple store to persist the data, this high-level question can be mapped to a set of 

SPARQL statements to be executed against the DTKB. The output can then be given to a 

module that uses NLG to wrap the values found for the key parameters into an easy-to-read 

narrative that represents the state of the art of the technology. 

During this phase of the study, the IDA team generated a notional DTKB data set and 

loaded it into a Sesame RDF triple store. 

 

 

Figure 1-6. Login Dialog for the DTKB Querying Tool 

 

Figure 1-6 above shows the dialog box offered to the user to access the application 

that displays the state of the art of a selected technology. 
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Figure 1-7. Facets supported by the DTKB Browser Tool 

 

Figure 1-7 provides an overview of the various facets supported by the DTKB 

Browser tool. The implementation provides a rich interactive set of hints to facilitate the 

retrieval of information most pertinent to the issue being investigated. 
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Figure 1-8. Automatically Generated Summarization of Findings 

 

Figure 1-8 shows a notional template that summarizes the contents of the knowledge 

base when filtered by a specific organization, e.g., Northrop Grumman. The template sorts 

the entries from oldest to newest and gives a short description of the platform deployed. 
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Figure 1-9. Implementation of the NLG Capability 

 

As noted at the beginning of this section, this component of the DTKB concept 

envisions the use of NLG to facilitate and enrich the answer provided by the DTKB suite 

of tools. Figure 1-9 above shows schematically how the NLG portion works. The left side 

of the figure shows the portion of the graphical user interface (GUI) that allows the user to 

enter the filters. Under the hood these filters are converted into the corresponding SPARQL 

queries and executed against the RDF triple store. The application takes the results and, 

using an appropriate template, produces a user-friendly narrative containing the results 

obtained. 

D. Technology State-of-the-Art Browser 

Figure 1-5 assumes that the prerequisite filtering of the results has been performed 

before the NLG module is invoked. The functionality associated with the above-mentioned 

filtering step is described in this section. To facilitate its design, the IDA team developed 

a GUI that essentially reflects the workflow associated with deciding which values of the 

key parameters that characterize a technology constitute the best that have been reported. 
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Figure 1-10. Technology State of the Art Browser Start Screen 

 

Figure 1-10 above shows the GUI developed for the Technology State of the Art 

browser (TSOTAB) application. As shown there, all the functionality is initially grayed 

out, since it is not connected to a repository. 

 

 

Figure 1-11. Connecting TSOTAB to the DTKB Triple Store 

 

Figure 1-11 shows the state of the TSOTAB application once the user has entered the 

Uniform Resource Identifier (URL) for the RDF triple store and clicked the Connect 

button. The Open RDF Sesame application was chosen for testing the DTKB concept. As 

shown in the figure, Sesame listens on port 8080 when running locally. Once the 
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connection has been established, the user can select the repositories containing the output 

of the TRI module. In the example described in this section, all triples are in a single 

repository named AllDTKBTriples. When the user selects it, the application activates the 

Identify Technologies button. Figure 1-12 shows the state of the TSOTAB application once 

the appropriate RDF store is selected. 

 

 

Figure 1-12. Initiation of the Technologies Analysis Step 

 

Figure 1-13 shows the state of the TSOTAB application after it has canvased the 

contents of the AllDTKBTriples store.  

 

 

Figure 1-13. Retrieval of Technologies with Quantitative Entries 
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The interface will show those technologies that have measurable quantitative entries, 

as defined in the ontologies used by the TRI module. In the example being discussed, the 

AllDTKBTriples store contains only two analyzable technologies: Laser photoemission and 

Pulsed electron beam generation. The user next selects one or more of these technologies 

for analysis. 

 

 

Figure 1-14. Selection and Analysis of Technology State of the Art 

 

Figure 1-14 shows the state of the TSOTAB application once the user has selected an 

analyzable technology, here Laser photoemission.  
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Figure 1-15. Quantitative Values for Technology Key Parameters 

 

The bottom right area of the application displays the widgets used to start analysis 

and view the results. The user starts the process by pressing the Analyze button. 

Figure 1-15 above shows the output of the TSOTAB application once the selected 

technology has been analyzed. The application displays the 232 references to laser 

photoemission in the DTKB. One parameter of laser photoemission is pulse duration. The 

application shows the pulse durations of each reference, ordered from shortest to longest. 

Because the user has not entered a value in the # Displayed Technologies field, the TSOTAB 

interface will list all values. Note that, according to the ontology implemented for the 

prototype, the Laser Photoemission has only one key parameter with measurable values. 

Obviously, the actual number of parameters with quantifiable measures is larger, and in a 

production-level implementation, they would be adequately captured in the ontology. 
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Figure 1-16. Selecting Top Three Entries 

 

Figure 1-16 shows the change in the interface when the # Displayed Technologies field 

in the TSOTAB application has an entry. Specifically, when the user enters the value 3, the 

application displays the three smallest pulse durations reported in the source documents. 

The display shows them appropriately sorted from smallest to largest. In all cases they 

satisfy the ontology’s constraint of being shorter than 1 picosecond. 
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Figure 1-17. TSOTAB Source Text Browsing Capability 

 

The TSOTAB application lets the user search documents to see the references. If the 

user double-clicks a row in the Analysis table, the TSOTAB application pops up a window 

showing the analyses in that row. Figure 1-17 shows this window for the results in Figure 

1-16. The table at the top shows the measures; it displays the same number of rows as in 

the # Displayed Technologies field. The window’s bottom half displays the documents 

containing these measures. In the example shown in this section all measures were in a 

single document, named 4950.txt. That document was a collection of 4,950 sentences 

containing a computer-generated name for the organization performing the research in 16 

different technology areas, one of which was Laser Photoemission, followed by a verb such 

as improved, obtained, advertised, etc., and an object clause containing the value of the 

key parameter associated with said technology. 
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Figure 1-18. Automated Highlighting of Selected Values in Source Documents 

 

Figure 1-18 shows the capability of the TSOTAB application to highlight the value 

selected within the source documents. When the user selects a row in the top table, the 

application scrolls to the place in the document where that measure occurs and highlights 

the reference. This provides contextual information to the user. 
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2. Supporting NLP Techniques  

A. Introduction 

A substantial portion of the information resources necessary to support the DoD 

decision-making process exists in the form of textual descriptions and narratives. Specific 

facts, e.g., schedules of planned modernization efforts, responsible agencies for specified 

activities, detailed technical results pertaining to militarily critical technologies, scope and 

nature of policies, etc., often require an extensive, expensive, and laborious human-in-the-

loop step to convert these data items into actionable information. 

Natural language processing techniques can be used to automate the insertion of 

varying degrees of structure into free text. At a minimum this structuring can provide a 

useful level of semantic understanding that facilitates analytical activities. For example, 

parsing a sentence to decompose it into a subject-verb-object (SVO) triple can be helpful 

when performing entity relation (ER) extraction, since entities are normally the actors 

mentioned in the subject of a sentence. With texts parsed this way, the analysis can 

concentrate on the subset that comprises just the sentence subjects, thereby reducing the 

time and effort required to complete the task and, potentially, increasing the accuracy of 

the results. This type of text structuring also allows the manipulation of textual resources 

with well-established applications, such as relational databases, and non-Structured Query 

Language (NoSQL) data storage and retrieval systems, such as RDF triple stores. The latter 

enables the use of additional semantic resources, such as taxonomies and ontologies, 

which, in combination with automated reasoning capabilities, can substantially increase 

the efficiency of the analysts. 

A description of an approach for automating the generation of SVO triples intended 

to be integrated with Component 3 of the overall DTKB concept is shown in the following 

sections. 

B. Description of the SVO Parser Capability 

The SVO Parser implemented during this phase of the study is capable of parsing and 

rearranging input sentences into a regular structure of subject phrase, verb phrase, and 

object phrase with an additional temporal element, i.e., an adverbial clause that indicates 

when the actor has accomplished a particular technological breakthrough.  

The implemented SVO Parser prototype takes a text file containing the sentences to 

parse and generates an output text file with the parsed sentences. In addition, the 

application also generates an output text file into which SVO Parser writes parsed sentences 
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as RDF triples. The rationale for the last feature is to enable data source traceability across 

the entire TRI process by maintaining all the information resources in an RDF triple store 

(implemented either as a single repository or as a set of federated RDF repositories, 

depending on the specific requirements). The SVO Parser supports various RDF 

serializations (e.g., Turtle, N-Triples, or RDF/XML notation).  

In order to facilitate the parsing of the output sentences, the application can prefix 

each sentence with indices that give the position of the first character of the verb and object 

phrases, using non zero-based counting. The current version only provides the index 

number for the beginning of the object phrase, because the assumption is that this is where 

the quantitative data pertaining to the key parameters for a given technology are. 

The SVO Parser can handle input sentences with a subject, verb, and object elements 

in either active or passive voice. The application leverages the capabilities of the Stanford 

Dependency Parser (version 3.5.0), which ideally identifies the correct root verb and at 

least one correct word in a subject phrase. Once this identification has been done, the SVO 

Parser can apply a set of heuristics to the dependency tree to generate a normalized 

sentence in active voice. 

For example, given the sentence  

Optimal parameters including gas pressure and mixture necessary for < 100 

picosecond MPD switching speeds needed for robust survivability in high power 

electromagnetic fields were successfully determined in 2013 by the researchers at 

Advanced Research Laboratories.  

the SVO Parser will generate as output  

75:The researchers at Advanced Research Laboratories successfully determined 

optimal parameters including gas pressure and mixture necessary for < 100 

picosecond MPD switching speeds needed for robust survivability in high power 

electromagnetic fields in 2013. 

Sentences with two verbs and two objects are correctly parsed and broken into two 

separate single verb/object sentences, as shown in the following example: 

The German company Agedum A.G. successfully demonstrated in 2013 classical 

optical communications over a free space channel with a rate approaching 100 

Terabit/s and separately demonstrated a communication system that achieved a 

photon information efficiency of 12 bits per received photon. 

The output produced is: 

56:The German company Agedum A.G. successfully demonstrated in 2013 

classical optical communications over a free space channel with a rate 

approaching 100 Terabit/s. 

58:The German company Agedum A.G. separately demonstrated a 

communication system that achieved a photon information efficiency of 12 bits per 

received photon in 2013. 
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The heuristics implemented in the SVO Parser can also identify certain trigger words, 

e.g., both, to decompose complex sentences into their individual components, as shown in 

the following example: 

Kenukix in 2013 improved both its field emission pulse-width control using gate 

parasitic capacitance of 18.5 micro-farads, as well as its initial testing for reduced 

field emission pulse-width with proprietary techniques that can operate with gate 

parasitic capacitance of 25.5 micro-farads. 

The produced output is: 

18:Kenukix improved its field emission pulse-width control using gate parasitic 

capacitance of 18.5 micro-farads in 2013. 

18:Kenukix improved its initial testing for reduced field emission pulse-width with 

proprietary techniques that can operate with gate parasitic capacitance of 25.5 

micro-farads in 2013. 

C. Limitations of the SVO Parser 

As noted above, the SVO Parser application leverages the Stanford Dependency 

Parser library, which occasionally will misidentify the parts of speech contained in a 

sentence. For example, given the sentence 

Starting in 2013 Taxogux improved field emission pulse-width control using gate 

parasitic capacitance of 24.9 micro-farads.  

the Stanford Dependency Parser identifies ‘control’ as the root verb. 

Similarly, the Stanford Dependency Parser identifies ‘end’ as the subject in the 

sentence: 

Towards the end of 2013 Nikadox announced reduced field emission pulse-width 

with proprietary techniques that can operate with gate parasitic capacitance of 15.7 

micro-farads. 

The Stanford Dependency Parser library also appears to have limitations when 

confronted with complex sentences such as:  

Fekisox improved in 2012 field emission pulse-width control using gate parasitic 

capacitance of 11.5 micro-farads and discussed their plans to work on reduced 

field emission pulse-width with proprietary techniques that can operate with gate 

parasitic capacitance of 8.5 micro-farads.  

In this case the Stanford Dependency Parser library identifies the verb ‘discussed’ as 

the dependent of verb ‘using’ instead of ‘improved.’ In such cases, a complex sentence is 

not broken up into two sentences by the SVO Parser. 

D. Proposed Next Steps 

An in-depth analysis of the heuristics implemented in the Stanford Dependency Parser 

library is required to improve the performance of the SVO Parser application (currently 
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around 87% correctly parsed sentences), to reduce the number of misidentified instances 

to be manually reviewed. 

The parser works by initializing itself using a data set created by analyzing a large 

number of existing natural language documents. The default data set is drawn from a wide 

range of English documents: technical and nontechnical, fiction and nonfiction. The parser 

might work better if “trained” on technical documents of the sort likely to contain 

descriptions of militarily critical, or just plain relevant, technologies. 
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3. Defining the TRI Solution Architecture 

This chapter describes the nature of a solution to the problem of technology reference 

identification (TRI) – the third component in the decomposition presented in Chapter 1 

above. It focuses on how the available inputs and expected outputs constrain and drive 

solution architectures. It provides justification for the design decisions IDA made for its 

prototype identification and analysis system. That the system is a prototype no doubt 

affected some of the decisions. Someone building a production system in a different 

environment might reach other conclusions. The reader should keep this in mind when 

going through the following technical discussion. 

A. General Characteristics 

Technology references exist in a multitude of documents. We interpret the word 

“document” as broadly as possible. In theory, anything from a single sentence to a 

voluminous book, is, for the purpose of this discussion, a document. A document may be 

textual, pictorial, aural, or a combination of the three. The only requirement is that a 

document must be uniquely identifiable. The necessity for this constraint is the need to be 

able to relate a document to other pieces of data, e.g., to be able to make use of a 

bibliographic reference in a paragraph. A bibliographic reference that cannot be verified 

and traced back to the document where it was made is of questionable value. 

The key aspect of an ideal document is not that it be textual, pictorial, or aural, but 

that it be both structured and exhibit an optimal degree of atomicity.[8] In a structured 

document with high atomicity, the meaning of everything is known. Technology references 

would be already identified and locating them would require little effort – essentially the 

implementation of a method to extract them. Ideal documents, unfortunately, constitute a 

very small portion of the available inputs. (Indeed, producing documents ideally suited for 

TRI is a secondary objective of the solution architecture discussed in this document.) From 
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 In this document we purposely differentiate between structure and atomicity. A document such as this 

could be made highly structured by putting its contents into a relational database consisting of tables 

such as DOCUMENT, CHAPTER, SECTION, PARAGRAPH, SENTENCE, SENTENCE-SUBJECT, SENTENCE-VERB, and SENTENCE-

OBJECT. However, this structuring would not necessarily equate with a high degree of atomicity, since 

there would not be a straightforward way to identify which component, e.g., chapter, section, sentence, 

references a specific subject. In other words, the meaning of the content of each component would not be 

readily available. In contrast, a spreadsheet in which each column corresponds to a well-defined concept, 

such as TELEPHONE NUMBER, STREET ADDRESS NUMBER, STREET ADDRESS NAME, CITY NAME, etc., is not only highly 

structured but also atomic. If one were to find the string Denver in the column labeled CITY NAME it would 

present minimal interpretive difficulties for a user or an application processing such data input. 
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here on, the team assumed that the documents that will be used as input to the prototype 

do not have a high degree of atomicity. Furthermore, we confined ourselves to textual 

(natural language) documents. This limitation is not inherent. Researchers have studied 

how to extract meaning from pictures, and today’s smartphones convert speech to text 

fairly well. Image identification is a separate topic, however, and speech-to-text systems 

simply add an extra step to obtaining text. Therefore the team confined its attention to text. 

Identifying technology references in text requires parsing the source material. 

Automated TRI requires scouring online source material, so that sources that do not exist 

online must be converted to electronic form. Once in electronic form, a document’s 

location and storage format – a single locally accessible file, a cell in a database, a 

collection of nodes in an RDF triple store, a web page accessible through a URL – scarcely 

matter; [9] the salient point is that it is available for analysis. 

Figure 3-1 depicts this view of the system. On the left are the inputs, divided into 

three categories: documents accessible through a network, documents stored locally, and 

documents that, prior to identification and analysis, exist only on paper and must be 

converted to electronic form. The image of the man by the scanner suggests the extra effort 

this step entails compared to documents already online. Of course, once a document is 

scanned, it becomes an online document, as Figure 3-1 shows. That it might be stored non-

locally once scanned is irrelevant. 

                                                 

9 
 It matters insofar as the time it takes to obtain the document affects processing time. 
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Figure 3-1. System Overview 

 

These electronic documents become inputs to the technology reference identification 

and analysis (TRI&A) System. The system has two parts: it identifies technology 

references in documents, and it analyzes these technology references. 

TRI is a knowledge acquisition activity. Its objective is to increase the amount of 

information known about a document corpus, in particular with regard to technology 

references. This information is not useful in and of itself. The results of analyses performed 

on the information, such as how many references total and which year has the most 

publication year has the most, are the end results people want. In light of the many kinds 

of analyses conceivable, it makes sense to store the accumulated knowledge so it may be 

accessed as needs arise. Figure 3-1 shows the documents being processed and stored. In 

the picture, the storage medium is a cloud, implying the existence of a widely available 

data store. In practice the knowledge could be stored locally. 

The nested box in the lower right depicts an analysis activity. The user in the lower 

right has invoked an application that accesses the accumulated knowledge and performs 

some computation that synthesizes the knowledge into a form the user can digest. Figure 

3-1 shows only one such application. It is more likely that a system would have many 

applications, each providing a report of interest to a specific audience. 
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As the amount of accumulated knowledge increases, it becomes worthwhile to 

consider storing knowledge about that knowledge. A system based on Figure 3-1 might 

include an application that feeds its output back into the cloud. 

Finally, observe that Figure 3-1 shows two distinct computers. Their use emphasizes 

the separation between identification and analysis. A production implementation of this 

kind of system is likely to have a highly distributed implementation. 

B. Natural Language Processing 

Section A points out that input sources will be documents containing text with a very 

low degree of atomicity. One can imagine many kinds of text documents that might refer 

to technology. A non-exhaustive list would include: 

 Newspapers, 

 Books (anything from textbooks to a Tom Clancy novel), 

 Magazines, 

 Journal articles, both academic and trade, 

 Email, 

 Research papers (like this document), 

 Websites, 

 Standards documents. 

An important takeaway from these disparate sources is that one should make few 

assumptions about writing style or content. A document may have been heavily edited and 

proofread; equally likely, a single individual may have been its only author and editor. 

This paucity of assumptions implies the need for Natural Language Processing (NLP) 

technology. NLP refers to the capability to transform text into natural-language constructs, 

e.g., letters, words, punctuation, and sentences. NLP can also parse sentences, generating 

parse trees and assigning a part of speech to every word in the sentence. Parse trees and 

the assignments that NLP tools generate are not always right, but the tools try, which is 

often sufficient and certainly better than not trying. 

The IDA team, knowing that NLP would be an important component of its 

identification subsystem, studied several NLP systems. At the time the project began, NLP 

needs were nebulous. The need to recognize strings in text was clear, e.g., to search for 

“laser photoemission.” That “laser photoemissions” and “photoemission of lasers” are 

equivalent forms insofar as technology reference identification is concerned strongly 

suggested that regular expression-based searches would be insufficient. The initial analysis 

of NLP systems concentrated on their ability to treat these kinds of phrases as equivalent. 

The IDA team identified two open-source systems that seemed to provide the 

requisite capability: 
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1. GATE, developed and distributed by the University of Sheffield. GATE is an 

acronym for General Architecture for Text Engineering. Begun in 1995, GATE 

now comprises a suite of tools for NLP. It can be used as a standalone application, 

and can also be embedded into an application. GATE claims to be “the biggest 

open source language processing project, with a development team more than 

double the size of the largest comparable projects”.[10]  

2. Apache Unstructured Information Management (UIMA), distributed by the 

Apache Software Foundation. UIMA is a specification being developed within 

OASIS [11] for tools that work with non-atomic information. Apache UIMA is an 

implementation of that specification.  

The IDA team concluded that GATE was better suited to its needs. Apache UIMA 

provides an overarching framework, one that is especially useful on a large project – it 

provides standards and guidance that developers can tailor. Since the team developing the 

IDA prototype consisted essentially of a single person, it was not positioned to take 

advantage of what Apache UIMA offered. GATE, by contrast, had implementations of 

specific functions that IDA found useful. 

C. Accumulated Knowledge: The Case for Semantic Technologies 

If the results of technology reference identification are to be available for subsequent 

analysis, they must be maintained in persistent storage. The technology used to implement 

this storage strongly influences the overall system architecture. The requirements for 

persistent storage are as follows: 

 It must be able to record technology references. For each reference, it must be 

able to note the document containing the reference, and the location within the 

document where the reference occurs. 

 It must support queries on known technology references. Information entered 

must be retrievable. 

These two requirements, which effectively state that the storage technology must 

accept and provide data, may seem self-evident. They have some subtleties, before the 

elaboration of which, the following additional requirements are noted: 

 It must be able to record the “meaning” of a technology. Denoting a technology 

by a text string is often ambiguous (the canonical example being: “a (military) 

tank has a (fuel) tank” problem) and therefore insufficient, the more so if the 

source document corpus is in multiple languages. If a document’s use of the 

                                                 

10 
 https://gate.ac.uk/overview.html 

11 
 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=uima 
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word “tank” obviously refers to a fuel tank (e.g., “the tank holds up to 10 

gallons”), that fact should be recordable. 

 It must be able to integrate disparate bodies of knowledge. This requirement 

stems from the need to record technology meaning. There are many kinds of 

technologies, with different vocabularies, models, methods, standards, etc. 

1. Requirements Details 

The following sections expand on each of these requirements. 

a. Recording Technology References 

The problem of recording a reference to a technology has two parts. The first is noting 

the document containing the reference in such a form as to permit its unambiguous 

retrieval. The second is describing the place within the document where the reference 

occurs. In their most general forms, both parts present challenges. The first can be 

addressed using the World Wide Web URL concept. A URL uniquely identifies any 

document accessible through a server or stored locally (having a “file” protocol). A 

reference to a locally accessible file becomes invalid if someone tries to access the file 

from another computer. In Figure 3-1, this would imply that all the input files must be 

transferred to a server, or that the cloud exists on and is accessed using a single computer, 

the same one used for technology reference identification and analysis. This was in fact the 

configuration IDA used in developing its prototype, but it should not be considered realistic 

in a production environment. 

The second part of the problem, describing location, is straightforward in text 

documents: one simply records the offset of the reference from the document’s beginning. 

(International character sets complicate the calculations, as the IDA team discovered.) If 

the problem is generalized to non-textual documents, different approaches are needed. For 

an audio recording, one might note the duration into the recording that the reference occurs. 

For an image, a rectangle identifying the relevant part of the image could be used. In this 

age of multimedia documents, combinations could easily be imagined: a portion of the 

audio recording that begins at a specified offset, for example. These are interesting 

possibilities, but IDA only investigated technology reference identification in text 

documents, so location is not explored further. 

Metadata is another area the IDA team also considered but did not investigate. It is 

easy to imagine noting, along with a technology reference, such items as the time the 

reference was identified, who identified the reference (useful in a variant of Figure 3-1 with 

more than one identification system), or its classification level. 
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b. Querying Technology References 

Put simply, information that goes in should be able to get out. The accumulated 

technology reference knowledge now has the optimal degree of atomicity. Queries should 

be able to exploit the semantics that such atomicity provides. A good query will be no more 

complex than the structure it references. 

An ideal query is formulated in a domain-specific language, particularly if issued 

directly by a human. These kinds of languages use terminology and structures familiar to 

subject matter experts, and are easier to learn than more general-purpose languages. 

A query must be able to account for the presence of metadata. If access to certain 

information is to be restricted based on metadata, a query must be able to express that 

restriction. Conversely, since metadata presence is often spotty, a query must not fail in its 

absence. 

c. Recording a Technology’s Meaning 

The system’s inputs being textual, the idea of recording meaning means there exists 

a mapping between text strings and the concepts those strings denote. Creating this kind of 

mapping is at heart of any NLP activity. The ultimate nature of the mapping – its 

complexity, the kinds of uses that can be made of it – derive from the complexity of the 

analysis that goes into creating it. The mapping can be syntactic, e.g., whether “tank” is 

used as a noun or a verb, or semantic, e.g., disambiguating “tank” in some context, or many 

other things. For technology reference identification, a semantic mapping is necessary. It 

is important to identify a concept independent of the many strings that might express it. 

The technology reference identification tool must not care whether one document refers to 

“x-ray generation technology” and another to “technology for generating x-rays.” It must 

detect that both refer to the same technology. 

d. Integrating Disparate Bodies of Knowledge 

The necessity of being able to record a technology’s meaning independent of its 

idiographic depiction has far-reaching implications. Technology vocabularies and models 

tend to be domain-specific and focused on a (relatively) small set of concepts; this makes 

manageable creating, maintaining, and extending them. Thus the concepts of interest to 

technology for a military tank (warfare-related) have little to do with those for a fuel tank 

(hydraulics-related), even though a military tank cannot exist without a fuel tank. It follows 

that identifying technological advances in fuel tanks for military tanks requires considering 

not one but two bodies of knowledge. 

A technology reference identification system that is not targeted to a specific 

technology, or set of technologies, needs a mechanism that can include concepts from 

arbitrary domains and, equally important, can integrate concepts drawn from different 
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domains. “Integration” means, roughly speaking, the ability to express relationships 

between concepts from different domains, e.g., that they are equivalent, overlap in some 

way, or are distinct, or even that nothing is known about their relationship. 

2. Semantic Technologies 

The IDA team considered these requirements, and elected to implement the persistent 

storage using semantic technologies; specifically, to use the Web Ontology Language 

(OWL) and the Resource Description Framework (RDF). These two technologies address 

the requirements as follows: 

 In recording technology references, a document’s location can be expressed as a 

URL. A reference’s location can be expressed as a pair of RDF triples whose 

subjects are this URL and whose objects are the reference’s start and end location 

within the document. URLs are flexible enough to allow access to nontraditional 

documents – there is no requirement that each document be stored in a single file, 

just that a server retrieve them as if they are. As noted, URLs with a protocol 

“file” are not portable, a consideration that must be taken into account for certain 

implementations. Forbidding certain URLs suffices to guarantee accessibility to 

any document. 

 Given that technology reference identification is a knowledge acquisition activity, 

integrating reasoning on asserted knowledge is a logical step. IDA was careful to 

use only forms of RDF that can be expressed in OWL; for example, the two triples 

described in the previous paragraph can be expressed as data property assertions. 

Adhering to OWL allowed the prototype to exploit Description Logics reasoning. 

 In querying technology references, a collection of RDF triples is a graph, and there 

are two approaches to accessing that graph. One is to start with a node and traverse 

its outgoing and incoming edges, following links until a desired goal is reached. 

The other is to use a graph query language. The former approach is useful for 

analyzing a specific portion of the accumulated knowledge, the latter for creating 

summaries based on the entire graph. The former is a programming task, and its 

viability, or at least effort, depends on the API provided by one’s RDF model 

implementation. The latter is based on a query language. 

 SPARQL is the de facto RDF query language. It is well supported by numerous 

engines. It was first published as a standard in 2008; a revision appeared in 2013. 

Although not as powerful as a database query language like SQL, it has clearly 

been influenced by SQL’s capabilities and recognizes the advantages of many 

SQL constructs (for example, the SPARQL revision adds aggregate functions and 

subqueries). 
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 There are no widely accepted OWL query languages. The Protégé editor supports 

the Decision Logic (DL) Query language, which lets a user formulate a query 

using Manchester syntax.[12] DL Query does not appear to be used outside Protégé 

and is not a recognized standard. Perhaps because OWL can be translated to RDF 
[13] (meaning that any OWL ontology can be queried using SPARQL), there has 

not been incentive to standardize DL Query. In any event, SPARQL currently has 

the most support of all RDF query languages. 

 Recording a technology’s meaning, the primary purpose of semantic technologies 

is to enumerate concepts and, to the degree possible, to express their meanings. In 

RDF and OWL, a concept is identified by its URI. OWL, and to a limited extend 

RDF, further provides a vocabulary to define the nature of a concept by stating 

the properties that the concept does and does not possess. 

 Regarding integrating disparate bodies of knowledge, one of the strengths of RDF 

is the ease with which two graphs can be integrated. Integrating relational 

databases has always proven more challenging than theory might suggest. Two 

tables from different databases, each named “Person,” no doubt represent the 

same concept, but the keys never match, and one table stores telephone numbers 

with hyphens whereas the other does not, and other little differences interfere with 

a neat merge. By contrast, in RDF a person (like everything else) is uniquely 

identified by a URI, so there is no ambiguity with keys; and if two merged graphs 

contain multiple telephone numbers for the same individual, a SPARQL query 

that eliminates duplicates is nothing more than good design. 

D. Analysis Technology 

Analysis technology supports the development of useful analyses of the accumulated 

technology reference information. If technology references for a given domain have been 

accumulated, what support is available to help create reports about those references? Some 

generic report categories are desirable, such as the number of references or the different 

documents in which references exist. It is easy to envision useful graphical summary 

reports, such as a bar chart showing years on the x-axis and number of technology 

references on the y-axis. This kind of information can be created using SPARQL queries. 

Slightly more complicated are reports that require computations. SPARQL supports 

limited computation – it has arithmetic operators. It has no logarithm function, so, for 

example, a SPARQL query cannot provide results to depict Moore’s law on a log-based y-

axis. The IDA prototype includes an analysis tool that orders technologies according to 
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those with the best characteristics, e.g., lowest time, highest energy. SPARQL can sort 

numbers, but it cannot determine that 10 picoseconds is less than 1 nanosecond – it has no 

concept of units. The IDA prototype implements this computation. (Of course, one can 

assert that 1 nanosecond equals 1,000 picoseconds, but the application has to be 

programmed to make the assertion, which, in terms of effort, is about equivalent to 

implementing a computation based on ordering.) 

Beyond this, one might explore domain-specific approaches to querying. Hydraulic 

engineers may want answers to specific fuel flow questions, and probably have their own 

terminology for phrasing those questions. It is certainly possible to conceive of implanting 

tools that support such terminology and simplify querying for subject matter experts. The 

IDA team has not explored these avenues. 
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4. Technology Ontology and Extensions 

Technology Reference Identification (TRI) is, self-evidently, dependent on an 

understanding of the concept of technology. More specifically, TRI relies on being able to 

examine documents for words, or at least text strings, related to a technology. In IDA’s 

Technology Reference Identification and Analysis system (TRI&A), the concept of a 

technology and the strings that identify it are encapsulated in an ontology. This chapter 

describes that ontology, as well as how a subject matter expert uses the ontology to 

conceptualize a specific technology. 

A. Candidate Approaches to Recognizing Technologies 

Concepts in the technology ontology express ways in which a document may refer to 

a technology. Put another way, the technology ontology conceptualizes references to 

technologies more than it conceptualizes technologies.  

The IDA team considered three ways in which a document might refer to a 

technology: 

1. By name. A document might contain the string “laser photoemission technology.” 

2. By decomposition into lower-level technologies. If a document contains 

references to several technologies and all of those technologies are known to be 

necessary components of another technology, it can be reasonably inferred that 

the document concerns that last technology, even if it makes no direct reference 

to it. For example, a document that refers to piston technology, lubrication 

technology, camshaft technology, spark plug technology, and valve technology is 

probably discussing internal combustion engine technology. 

3. By domain vocabulary. Assuming that subject matter experts discuss a technology 

using a specialized vocabulary, a document that makes use of words from that 

vocabulary probably refers to the technology. 

Techniques implementing each way have strengths and weaknesses. Recognizing a 

technology by its name is direct and seemingly simple. However: 

 It is difficult to anticipate all the ways in which the words that form a technology’s 

name can be arranged, or to account for synonyms. Consider radio frequency 

wireless transmitter technology. Scanning a document for references to this 

technology must consider the following points: 
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– “Radio frequency” is often abbreviated as “RF.” 

– Domain jargon introduces new word forms: “radio frequency” can be written 

as “radio-frequency” and “radiofrequency.” 

– The phrase can be written as “wireless RF transmitter technology” or 

“wireless transmitter technology in the RF range.” 

– The phrase “wireless transmitter technology in the ultra-high RF range” is a 

reference to a specific kind of RF wireless transmitter technology, and it 

should be recognized as such. 

– A document might contain the sentence: 

Despite what you may think, this document doesn’t concern RF wireless 

transmitter technology. 

which implies that a straightforward text search is inadequate – sentence 

semantics must be considered. 

Decomposition is an interesting possibility for technologies related to complex 

systems. The IDA team did not explore it, mainly due to the lack of knowledge about 

technology composition in the available technology descriptions. The approach would 

likely be based on the existence of a certain percentage of expected technologies, i.e., a 

document need not refer to every component technology of an internal combustion engine 

to be about engines. Conversely, a document that refers to piston technology could be about 

either internal combustion engines or steam engines. 

Looking for domain vocabulary concepts is a somewhat indirect approach. It assumes 

that discussions of technologies will be, for want of a better word, technical. This 

assumption is consistent with an overarching task goal, namely to assess the state of the art 

and practice in militarily critical technologies by examining references to them in 

documents. The IDA team chose to focus on using domain vocabularies. 

B. Technology Characteristics 

Writings about a technology presumably do more than just name it – they describe it. 

A technology typically derives from a science or engineering domain, so its descriptions 

will discuss the technology’s observable, measurable, and quantifiable characteristics. 

Certainly these kinds of characteristics lend themselves to analysis and are most relevant 

insofar as this task is concerned. 

Technologies can be categorized by their characteristics. A technology may be unique 

in possessing a characteristic, e.g., lithium battery technology is the only battery 

technology that requires lithium. Alternately, technologies may have the same general 

characteristics but in quantifiably different ways. Both x-ray generation technology and 

light bulb technology concern themselves with electromagnetic radiation, but the former is 
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concerned with wavelengths less than 10 nanometers, the latter between 400 and 750 

nanometers.[14] These are two approaches that can be used in technology reference 

identification. 

If a technology is to be recognized by its characteristics, a more precise definition of 

“characteristic” is needed. All three of the approaches in Section A can be applied, i.e., a 

characteristic can be described using its name, etc., with analogous advantages and 

drawbacks. With the emphasis on things that are observable, measurable, or quantifiable, 

the domain vocabulary of interest is that which concerns physical entities or properties. A 

characteristic of an RF wireless transmitter is that it emits electromagnetic radiation; this 

requires a power source and an antenna. Another characteristic is that it generates a certain 

amount of power. Power is measurable, in watts or some related unit. Some characteristics 

have quantifiable but not measurable properties. Automotive technology is concerned with 

four-wheeled (occasionally three-wheeled) vehicles; motorcycle technology is concerned 

with two-wheeled (occasionally three- or four-wheeled) vehicles. 

C. The Technology Ontology 

These considerations led the IDA team to develop an OWL-based expression of 

technology description-related concepts. Figure 4-1 shows the top-level class hierarchy. 

Those prefixed “tech:” are declared in the technology ontology. Those prefixed “om:” are 

from the Ontology of units of Measure [15] (hereafter referred to as the OM ontology). 

 

 

Figure 4-1. Technology Ontology: Top-Level Classes 

 

The technology ontology declares two top-level classes, Technology and Characteristic, 

whose purpose derives from the discussion in Section B. The ontology declares object 

property hasCharacteristic, with domain Technology and range Characteristic, to allow the 

assertion of a technology’s characteristic. 
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The ontology can describe a characteristic’s properties, using the object property 

isDescribedBy. This property’s domain is Characteristic. Its range is undefined: what a 

characteristic can describe is unconstrained. In the IDA prototype, characteristics are 

described by quantities (members of class om:Quantity or one of its subclasses). A quantity 

is (from the OM ontology): 

… a representation of a quantifiable (standardized) aspect (such as length, mass, 

and time) of a phenomenon (e.g., a star, food, or a molecule). Quantities are 

classified according to similarity in (implicit) metrological aspect, e.g., the length of 

my speedboat and the length of my racing car are classified as length. 

A quantity may be expressed as a measure; in OWL terms, OM has an object property 

om:value, whose domain is om:Quantity and whose range is om:Measure. A measure has a 

numeric value and a unit (datatype property om:numerical_value and object property 

om:unit_of_measure_or_measurement_scale, respectively; their domains are both 

om:Measure, and their ranges are xsd:string and om:Unit_of_measure). 

Figure 4-2 depicts these classes and properties. Orange ovals are classes. Blue arrows 

are object properties, and green arrows are datatype properties.  

 

 

Figure 4-2. Technology Ontology Top-Level Classes and Properties 

 

Figure 4-2 shows two additional properties, numerical_value and 

expectedUnitOfMeasure. OM’s numerical_value property’s range is xsd:string. This was a 

deliberate design decision: OM contains datatype property assertions on numerical_value 

with objects such as “3 to 5” and “~20.3” (they represent temperature ranges on the Kelvin 

scale). Lexicographic representation of numbers accommodates such needs. However, 

some of the analyses the IDA team implemented depend on being able to sort measures, 

and lexicographic numeric representations don’t sort numerically; the string “1” precedes 

the string “−1”, and “10” precedes “2.” If reasoning is to account for numeric ordering – 

and for IDA’s technology analysis, it does – string representations of numbers won’t work. 

IDA introduced its own numerical_value datatype property, the range of which is xsd:float. 

Restrictions on Technology subclasses use this property rather than om:numerical_value. 
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Property expectedUnitOfMeasure addresses the issue of comparing measures that use 

different units. One centimeter is less than one meter; unfortunately, there is no way to 

convey that fact to a Description Logics reasoner. Property expectedUnitOfMeasure supplies 

a hint that tools can use. If a quantity has a measure whose unit is not the expected unit of 

measure, a tool can assert that the quantity has an equivalent measure whose unit is the 

expected unit. OM provides enough information to let the tool convert units. 

The technology ontology also contains an annotation property, mustInclude, that is 

used to provide context to specifications of required characteristics, quantities, and 

measures. Section D describes how to use it. 

D. Extending the Technology Ontology to Represent Specific 

Technologies 

The Technology ontology, as depicted in Figure 4-2, does not model specific 

technologies but rather defines concepts to do so. It was designed to be extended. It is an 

ontology; a definition of a technology is a knowledge base. This section covers how one 

makes use of the technology ontology to populate a knowledge base. It gives examples 

from the DTKB Technology knowledge base (hereafter DKB) the IDA team created. 

Most technology references, although written in singular form, are in fact collective. 

The phrase “RF wireless transmission technology” refers not to a single technology but to 

the set of technologies by which radiofrequency wireless transmission can be 

accomplished. If Technology is the class of all technologies, then “RF wireless transmission 

technology” is a subclass, not a member, of Technology. In fact, Technology is an ancestor 

of RF wireless transmission technology. The activity of defining technologies usually 

uncovers multiple levels of categories into which technologies fit. Figure 4-3 shows the 

subclass hierarchy into which RF wireless transmitter technology fits. 

 

 

Figure 4-3. A Portion of the Technology Hierarchy 

 

The objective of technology identification is to infer technology class membership 

from characteristics. A class hierarchy alone doesn’t prescribe any characteristics, so the 

next step is to define them. The IDA team based its characteristics on a technology analysis 

conducted internally by one of our subject matter experts. It prescribes the following 

characteristics for RF wireless transmitters: 

1. They are fabricated from gallium arsenide, gallium nitride, or indium phosphide. 
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2. They work by making an electrical circuit impose a signal onto an RF carrier. 

3. They emit radio waves, which have a wavelength from 1 millimeter to 100 

kilometers. [16] 

If each of these characteristics is expressed in OWL, then RF wireless transmitter 

technology can be defined as the set of individuals possessing them; that is, we can write 

subclass restrictions on class RFWirelessTransmitter. Accordingly, the IDA team defined 

subclasses of Characteristic, shown in Figure 4-4: 

 

 

Figure 4-4. Characteristics Related to RF Wireless Transmitter Technology 

 

which allows asserting the following subclass restrictions on RFWirelessTransmitter (using 

Manchester OWL syntax): 

hasCharacteristic some 

 (FabricationMaterial and ( { GalliumArsenide, GalliumNitride, IndiumPhosphide } ) 

hasCharacteristic some ElectricalCircuitImposingSignalOntoRFCarrier 

hasCharacteristic some EmissionWavelength. 

The three chemical elements in the first restriction are OWL individuals. These 

individuals have RDFS labels, which are their textual representations in English. The DKB 

also includes an annotation property chemicalSymbol, used to state the chemical symbol 

representation. DKB asserts that that the chemical symbol for individual GalliumArsenide is 

“GaAs,” for example. 

This characteristic, fabrication material, is observable. Unlike the other two it is not 

measurable. One can detect whether an electrical circuit has imposed a signal onto an RF 

carrier, and one can measure the wavelengths emitted by that carrier. The ontology 

expresses measurability by extending the second and third restrictions. RF wireless 

transmitter technology not only has an electrical circuit imposing a signal onto an RF 

carrier, that carrier may be described by the power generated – probably in watts. RF 

wireless technology not only has an emission wavelength, that wavelength must be 

between 1 millimeter to 100 kilometers. 

                                                 

16 
 http://en.wikipedia.org/wiki/Radio_wave. 
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These more narrowly focused characteristics describe specific quantities. OM 

specifies a large set of quantities for measuring the physical world. Figure 4-5 shows the 

relevant quantities. 

 

 

Figure 4-5. Selected Quantities 

 

As Figure 4-5 shows, a quantity has an associated measure. An individual that is a 

member of class om:Measure denotes a spatiotemporal measure of some phenomenon. An 

individual is inappropriate for describing characteristics because a characteristic states 

something that exists throughout time and space. What is needed is a subclass of 

om:Measure comprising individuals within a certain range. DKB contains such a class for 

describing wavelength measures, shown in Figure 4-6. 

 

 

Figure 4-6. Class Defining Length Measures 

 

The following equivalence restriction on this class: 

(om:unit_of_measure_or_measurement_scale value om:metre) 
and (numerical_value some xsd:float[>= 0.001f, <=1.0e5f]) 

Means that a DL reasoner will infer that any individual whose unit of measurement is 

meters, and whose value is asserted to be between 10-3 and 105, is a member of the class 

LengthBetweenOneMillimeterAndOneHundredKilometers. The restriction must be an 

equivalence restriction; a subclass restriction is too weak to allow the inference. The units 

are normalized to meters. The restriction can be stated using millimeters and kilometers, 

but at the cost of introducing a complicated Boolean expression. 

With these new classes in place, the second restriction (an electrical circuit imposing 

a signal) becomes: 

hasCharacteristic some 
 (ElectricalCircuitImposingSignalOntoRFCarrier 
  and (isDescribedBy some 
   (RFPowerGenerated and (expectedUnitOfMeasure value om:watt)))) 

which can be represented visually (omitting some intermediate classes) as in Figure 4-7. 
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Figure 4-7. RF WirelessTransmitter Must Generate RF Power 

 

The third restriction becomes: 

hasCharacteristic some 
 (EmissionWavelength 
  and (isDescribedBy some 
   (om:Wavelength 
    and (expectedUnitOfMeasure value om:meter) 
    and (om:value some LengthBetweenOneMillimeterAndOneHundredKilometers)))) 

the picture for which is shown in Figure 4-8. 



4-9 

 

Figure 4-8. Emission Wavelength Must be in RF Range 

 

Figure 4-7 and Figure 4-8 differ in that only the latter has a measure for its quantity. 

The IDA team did not find any numerical restrictions on power generation. This has 

implications for technology reference identification, as Section E discusses. 

A wavelength can be anywhere between 1 mm and 100 km – a broad range that covers 

many likely measures of length. To prevent common measures from being misinterpreted 

as technology references, a technology knowledge base may require that a measure be 

considered in context. The knowledge base may specify that the sentence containing the 

measure must include certain keywords for the measure to be a reference to a technology. 

This is done using the mustInclude annotation property. It is asserted as an annotation on a 

technology subclass restriction. In OWL terms, the annotation is an axiom whose source is 

the technology subclass; property is mustInclude; target is the subclass restriction; and which 

asserts one or more instances of mustInclude, the values for which describe the keywords. 

Suppose only sentences containing the word “wavelength” are to be considered as 

candidate references to RF wireless transmitters. The assertion (derived from the third 

restriction) 
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RFWirelessTransmitter rdfs:subClassOf  
 hasCharacteristic some 
  (EmissionWavelength 
   and (isDescribedBy some 
    (om:Wavelength 
     and (expectedUnitOfMeasure value om:meter) 
     and (om:value some 
      LengthBetweenOneMillimeterAndOneHundredKilometers)))) 

 is annotated such that: 

 RFWirelessTransmitter is the annotated source. 

 rdfs:subClassOf is the annotated property. 

 The restriction is the annotated target. 

 The annotation asserts “mustInclude "wavelength"^^xsd:string”. 

The value of the annotation assertion may be any RDF literal, or a Uniform Resource 

Indicator (URI). If it is a URI, that URI’s label (if one exists) is used as the basis for 

required words. 

The rules for specifying technologies in terms of the Technology ontology may be 

summarized as follows: 

 Technologies are specified as descendants of class Technology. Insofar as 

possible, technologies should be organized in a hierarchy. 

 A technology’s semantics are specified using class restrictions on the 

characteristics the technology possesses. 

 These restrictions should be as specific as possible: 

– They should include individual characteristics known to be inherent to the 

technology. 

– They should reference quantities that describe the characteristics. 

– They should include the expected unit of measure for the quantity, if one is 

known. 

– They should include limit valid measures for the quantity, if limitations are 

known. 

Developing a technology knowledge base requires both subject matter expertise 

(regarding the technologies in question) and experience using ontologies. Conceivably the 

latter can be packaged and automated, meaning the effort need only involve subject matter 

experts. The IDA team did not investigate this topic. 
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E. Using a Technology Knowledge Base 

Section D explains how to extend the Technology ontology to define technology 

knowledge bases. This section explains how the IDA team expects a technology knowledge 

base to be used in technology reference identification. 

Inputs to technology reference identification include a technology knowledge base 

and a corpus. Technology reference identification involves scanning documents in the 

corpus, looking for: 

 Words or phrases that appear to be technologies, characteristics, or quantities in 

the technology knowledge base, 

 Text sequences that appear to be measures using units in the technology 

knowledge base. 

Consider the following paragraph from a hypothetical document: 

In 1999, Widgets Incorporated released its first-generation Gallium Arsenide-

based RF wireless transmitter. It emitted signals with a wavelength of 8.2 

millimeters. 

The first sentence contains a phrase, “RF wireless transmitter,” that is the name of a 

technology (more precisely, it is the value of the label of class RFWirelessTransmitter) and a 

chemical name that is one of the recognized values for the fabrication material 

characteristic. The second sentence contains the word “wavelength,” which is the name 

(and label) of a subclass of om:Quantity, and the string “8.2 millimeters,” which is a 

measure. 

All four items suggest that this document refers to RF wireless transmitter technology. 

As Section A mentions, none of the strings taken by itself conclusively proves the 

reference, but each is suggestive enough to suggest that someone interested in RF wireless 

transmitter technology should examine the document. 

Recognizing that the 8.2-millimeter measure is a characteristic of RF wireless 

transmitter technology is a computational problem. The DKB specifies the possible range 

of measures. Someone has to compute that 8.2 millimeters is within that range. A DL 

reasoner can make the inference, but only if the knowledge base is amended with an 

equivalent measure whose units are meters rather than millimeters. The reasoner then will 

infer that the measure is of type LengthBetweenOneMillimeterAndOneHundredKilometers. 

Given that class’s relationship to RFWirelessTransmitter (specified by the restriction), a 

technology reference identification tool can infer that the measure is used when discussing 

RF wireless transmitters. As explained at the end of Section D, this inference is subject to 

the sentence also containing “wavelength” (which it does), ensuring that the sentence “Alan 

is 1.8 meters tall” is not interpreted as a reference to an RF wireless transmitter. 



 



5-1 

5. Range-Annotated Document Ontology 

Technology reference identification yields a collection of descriptions of documents 

that contain references to technologies. This chapter discusses the representation of those 

descriptions. 

A. Ontology Elements 

Descriptions are represented using concepts expressed in the Range-Annotated 

Document (RAD) ontology. The RAD ontology is a small ontology whose purpose is to 

standardize the concepts used to represent descriptions. The Technology Reference 

Identification tool generates output consistent with the ontology. The Best Technologies 

tool assumes that it is accessing a knowledge base containing triples consistent with the 

ontology. 

The RAD ontology introduces two classes, and makes use of two OM classes. The 

two classes it introduces are: 

1. Document. This class denotes the set of document individuals. A document 

individuals is something that can contain annotations. 

2. Annotation. An annotation derives from the natural language processing concept 

of a stretch of a document’s content. An annotation is associated with exactly 

one document. It has a start and an end, integer values that are offsets denoting 

the annotation’s start and end.  

The RAD ontology uses OM classes Measure and Quantity. An annotation denotes a 

quantity; that is, the existence of an annotation denotes that the document contains a 

quantity. A quantity has a measure as its value. Object properties express these 

relationships. 

Figure 5-1 depicts the RAD ontology. It shows the classes and properties described 

in the previous paragraph. It also shows property denotesMeasure, which relates Annotation 

and om:Measure. The property is a chained property.17 It is inferred by the existence of: 

:annotation rad:denotesQuantity :quantity . 
:quantity om:value :measure . 

                                                 

17 
 http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Object_Subproperties 
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Figure 5-1. The Range-Annotated Document Ontology 

 

or formally, in Manchester syntax: 

rad:denotesQuantity o om:value SubPropertyof rad:denotesMeasure. 

Inferring denotesMeasure is convenient for SPARQL queries, which can eliminate the 

intermediate reference to an om:Quantity individual. 

Technology references are expressed using datatype property mayReferToTechnology. 

The property’s domain is the union of Document and Annotation. The ability to associate 

a technology reference with an entire document provides flexibility for cases where the 

exact location of a technology reference is vague. (It is not currently used.) 

Property mayReferToTechnology’s range is xsd:anyURI. The value of an assertion 

involving this property is expected to be the URI of a technology. Recall that a technology 

is specified as a subclass of Technology (see Section 4, Section D). A document is an OWL 

individual. In an OWL property assertion p(individ ual, value), value can never be an OWL 

class. If p is an object property, it must be an individual. If p is a datatype property, it must 

be an RDF literal. Using a datatype property whose range is xsd:anyURI is the best way to 

refer uniquely to a technology. 

Figure 5-1 does not show it, but denotesMeasure and hasAnnotation have inverses. 

These inverses are anticipated to be useful in SPARQL queries. 

These concepts form the minimal information needed to express technology 

references. Tools are permitted to add properties for measures and quantities. 

B. Example Queries 

A knowledge base populated with technology references consistent with the RAD 

ontology can be queried to obtain reports on the references. The following are examples of 

SPARQL queries that may be useful. 
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The following query identifies all documents that may refer to a technology: 

@PREFIX : < http://www.ida.org/nlp/range-annotated-document#> 

SELECT DISTINCT ?document 

WHERE { 

 ?document :hasAnnotation _:annotation . 

 _:annotation :mayReferToTechnology ?technology 

} 

The following query identifies documents and the number of technology references 

each contains: 

@PREFIX : < http://www.ida.org/nlp/range-annotated-document#> 

SELECT ?document (COUNT(?technology) AS ?nTechRefs) 

WHERE { 

 ?document  :hasAnnotation _:annotation . 

 _:annotation :mayReferToTechnology ?technology 

} 

GROUP BY ?document 

The following query provides a complete report on technology references identified, 

assuming a reasoner has been used: 

@PREFIX :  < http://www.ida.org/nlp/range-annotated-document#> 

@PREFIX om:  <http://www.wurvoc.org/vocabularies/om-1.8/ > 

@PREFIX tech: <http://www.ida.org/nlp/technology#numerical_value> 

SELECT ?document ?technology ?start ?end ?unit ?value 

WHERE { 

 ?document  :hasAnnotation _:annotation . 

 _:annotation :mayReferToTechnology ?technology ; 

     :denotesMeasure _:measure ; 

     :start ?start ; 

     :end ?end . 

 OPTIONAL { 

  _:measure om:unit_of_measure_or_measurement_scale ?unit ; 

      tech:numerical_value ?value . 

 } 

} 

This query slavishly adheres to the concepts expressed in the RAD ontology and makes 

information regarding the measure optional. 
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6. Conclusions and Recommendation 

A. Introduction 

As briefly described in Chapter 1, the proposed DTKB concept comprises four 

components. Both Component 1, clustering of big document collections by subject matter, 

and Component 2, automated generation of technology taxonomies, leverage the extensive 

experience gained by the IDA team in the development of the ITA capability. The results 

obtained during the study indicate that these two components of the DTKB concept do not 

represent a technical risk. 

Similarly, Component 4, end user interface with NLG support, leverages well-

established frameworks for data persistence and web solution development, as well as the 

extensive experience the IDA team has using semantic technologies. Specifically, the 

results obtained using Open RDF Sesame as the RDF triple store for the extracted 

summarizations, and of Flask, a Python micro-framework for web applications, to create a 

highly interactive web-based interface, indicate that there are no technical risks in using 

these technologies in a DTKB implementation. 

From a technical point of view, Component 3, technology reference identification 

using NLP, was by far the most challenging of the DTKB components. The IDA team 

adopted GATE as the NLP framework to power the automated extraction of quantitative 

key parameters that characterize the state of the art of a technology due to its robustness 

and large user base, as well as its support for the use of taxonomies and ontologies to 

perform entity relation extractions. Unfortunately, not all GATE modules are well 

documented and a fair amount of trial and error was required to get them to work as desired. 

The results obtained during the study indicate that the approach chosen does not represent 

a high risk. Nevertheless, it would be prudent to explore other approaches to minimize the 

risk involved in a future implementation. 

B. Preliminary Conclusions 

Based on the analytical results obtained, the IDA team reached the following 

conclusions:  

 A fully operational technical solution for the proposed DTKB concept can be 

achieved if adequate funding and sponsor support is provided. The proof-of-

principle testing conducted in the study indicates that the specific technologies 

required to power the proposed DTKB solution architecture have the necessary 

degree of maturity and are applicable. 
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 However, none of the available data sources tested, i.e., DTIC (40,000 

documents), R2 Exhibits from 2014 (192 documents), URED (39,000 database 

records) has a consistent degree of quantitative data content for all the 

technology areas covered sufficient to support the highly automated NLP-based 

extraction procedure envisioned in the proposed DTKB concept. 

 In addition, the various data sources tested do not use a common vocabulary, 

thereby making automated cross-comparisons less efficient and increasing the 

need for human in the loop intervention. 

C. Preliminary Recommendations 

In light of the previous conclusions the IDA team recommends the following:  

 Proceeding to the next phase of the DTKB assessment in order to obtain a 

definitive answer regarding the best way to satisfy the MCTL requirement. 

 Developing and adopting a data governance and data quality framework to 

support the DTKB activity, as well as any other future activity intended to 

leverage big data and content understanding technologies. 

 Adopting a realistic schedule for a DTKB implementation and providing 

adequate funding and support. 

 Mandating across the DoD the use of quantitative metrics when reporting all 

technical objectives, accomplishments, trends, etc. 

 Developing and socializing reference technology taxonomies across all DoD 

research activities to ensure the use of common vocabularies to facilitate cross-

comparison of results. 

 Mandating across the DoD a consistent and coherent use of program element 

references (PE numbers) to enable traceability among all data sources (e.g., 

RDT&E Budget Item Justification Exhibits (a.k.a. R2 Exhibits) and URED 

entries). 

The rationale for the above recommendations is the patently obvious fact that 

machines cannot extract content where there is none. Substantive productivity gains and 

cost reductions are predicated on the existence of a disciplined approach for reporting and 

sharing technical data that ensures maximum quantitative content and common 

vocabularies. 
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Acronyms and Abbreviations 

API application program interface  

COA course of actions  

DKB DTKB Technology knowledge base 

DL Decision Logic 

DoD Department of Defense 

DTIC Defense Technical Information Center 

DTKB DoD Technologies Knowledge Base 

ER entity relation 

FPGA field-programmable gate array  

GAO Government Accountability Office  

GATE General Architecture for Text Engineering 

GUI graphical user interface 

HITL human-in-the-loop 

IDA Institute for Defense Analyses 

IR infra-red 

IT information technology 

ITA IDA Text Analytics 

MCTL  Militarily Critical Technologies List  

NLG natural language generation 

NLP natural language processing 

NoSQL non-Structured Query Language 

OIG Office of the Inspector General 

OM Ontology of units of Measure 

OWL Web Ontology Language 

PE program element 
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R2 RDT&E Budget Item Justification Exhibits 

RAD Range-Annotated Document 

RDF Resource Definition Language 

RF radio frequency 

SME subject matter expert 

SPARQL RDF Query Language 

SQL Structured Query Language 

SVO Subject Verb Object  

TRI technology reference identification 

TRI&A technology reference identification and analysis 

TSOTAB Technology State of the Art browser  

UIMA Unstructured Information Management 

URED Unified Research and Engineering Database 

URI Uniform Resource Indicator 

URL Uniform Resource Locator 
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