
I N S T I T U T E F O R D E F E N S E A N A L Y S E S

A Framework for Evidence-Based Licensure
of Adaptive Autonomous Systems

David M. Tate
Rebecca A. Grier

Christopher A. Martin
Franklin L. Moses
David A. Sparrow

March 2016
Approved for public release;

distribution is unlimited.
IDA Paper P-5325
Log: H 16-000084

INSTITUTE FOR DEFENSE ANALYSES
4850 Mark Center Drive

Alexandria, Virginia 22311-1882

About This Publication
This work was conducted by the Institute for Defense Analyses (IDA)
under contract HQ0034-14-D-0001, Project AK-2-3944, “Pedigree-Based
Training and Licensure of Autonomous Systems,” for the Air Force Research
Laboratory (AFRL). The views, opinions, and findings should not be construed
as representing the official position of either the Department of Defense or the
sponsoring organization.

Copyright Notice
© 2016 Institute for Defense Analyses
4850 Mark Center Drive, Alexandria, Virginia 22311-1882 • (703) 845-2000.

This material may be reproduced by or for the U.S. Government pursuant to the
copyright license under the clause at DFARS 252.227-7013 (a)(16) [Jun 2013].

Acknowledgments
This paper has benefitted greatly from conversations with James R. Edmonson
of Carnegie Mellon’s Software Engineering Institute, Donald D. Davis of Georgia
Tech Research Institute, and David H. Scheidt of John’s Hopkins’ Applied
Physics Laboratory.

I N S T I T U T E F O R D E F E N S E A N A L Y S E S

IDA Paper P-5325

A Framework for Evidence-Based Licensure
of Adaptive Autonomous Systems

David M. Tate
Rebecca A. Grier

Christopher A. Martin
Franklin L. Moses
David A. Sparrow

ii

Executive Summary

IDA was tasked to assess potential benefits and challenges of applying an evidence-
based licensing scheme to autonomous systems, and provide any insights gleaned to DoD.
The autonomy community has identified significant challenges associated with test,
evaluation verification and validation of autonomous systems. These challenges are
exacerbated for adaptive and/or learning systems whose behavior on given inputs can
change over time. The result is that a traditional comprehensive testing approach is
impractical or impossible to implement. This report provides support for evidence-based
licensure as a test, evaluation, verification, and validation (TEVV) framework that can
address these challenges.

IDA found that traditional approaches to developmental and operational testing will
not generally be sufficient to establish the safety and effectiveness of autonomous systems.
A licensure approach does have the potential to support confident fielding of autonomous
systems. To be successful, a licensure approach would require novel or modified activities
throughout the life cycle of the system. These include:

• Explicit statement of safety and effectiveness requirements

• Formal methods during development

• Normative models of intended system behavior

• Modular and scalable virtual development test bed

• Run-time monitoring

• Periodic recertification of learning systems

Existing software and systems engineering techniques, if rigorously applied, provide
a good start. Furthermore, there are ongoing research programs in most of these novel
areas. That said, the approach must be supported by S&T investments aimed at overcoming
distinct challenges of adaptive or learning autonomous systems. Candidate investment
areas include:

• Mapping high level natural language requirements to testable (preferably
machine testable) specifications

• Design of architectures that treat development and verification of capabilities on
an equal footing

• Post-fielding testing of adaptive/learning systems

iii

• Run-time monitoring and multiple-agent systems

• Coactive Design of human-machine teaming approaches

• Communication and Interaction among autonomous systems and between
autonomous systems and humans.

iv

Contents

1. Introduction ...1
A. Background ...1
B. Purpose ..2
C. Companion Volume ..3

2. A Candidate Licensure Approach for Autonomy ..5
A. Evidence-Based Licensure ..6

1. Bounding the Confidence Space ...7
2. Developing the Evidence—Oracle-Based Testing ..7
3. Arguments and Conditional Confidence ...10

B. TEVV Framework ...11
3. Evidence-Based Licensure Life-Cycle Implications ...13

A. Requirements ...13
B. Architecture ...14
C. Design ..15
D. Development ...15
E. Fielding ..17
F. Post-fielding ..17

4. Summary and Conclusions ..19
Appendix A. Abbreviations ...21

1

1. Introduction

A. Background
Adaptive autonomous systems have great potential to complement human

performance in a wide range of missions. They show particular promise in contexts
featuring high safety risk (either environmental or adversarial), very short response times,
long endurance, tedious or repetitive activities, or difficult communications. To realize this
promise, a number of difficulties must be overcome—not only in the science of adaptive
autonomous systems, but also in our practical ability to develop, test, field, and operate
such systems.

The Office of the Assistant Secretary of Defense for Research and Engineering
(OASD/R&E) recently published a white paper identifying the goals, challenges, and
principal areas of current technical shortfall with respect to developing, testing, and
fielding autonomous and adaptive systems.1 Here, we build on OASD’s framework by
extending the discussion of the challenges and proposing a specific schema for test,
evaluation, verification, and validation (TEVV) of such systems. The schema we propose
uses evidence-based certification and licensure to develop and maintain confidence in
system dependability throughout the TEVV life cycle. In particular, we suggest that
normative oracles—that is, top-down models of desired system behavior in various
circumstances—can be used in a variety of ways to support TEVV of autonomous and
adaptive systems for specific types of missions in a defined set of contexts.

In addition to describing a possible framework for TEVV, we suggest ways in which
some existing software-assurance techniques could be adapted to work within it. We also
examine the gaps in current TEVV capabilities, where new methodologies would be
needed to support an effective licensure schema. We pay particular attention to the unique
challenges posed by adaptive systems that learn—those whose behavior on a given set of
inputs may change over time, even after the system has been fielded. We argue that in
practice there may be no “end of test phase” for adaptive autonomous systems, particularly
those that learn.

Currently, several obstacles make it particularly challenging to establish high
confidence that an adaptive autonomous system will perform dependably—that is, that the
system will behave as intended while safely, securely, reliably, and effectively performing

1 Technology Investment Strategy 2015–2028, Autonomy Community of Interest (COI); Test and

Evaluation, Verification and Validation (TEVV) Working Group; May 2015.

2

the assigned missions. The Autonomy COI TEVV Working Group has characterized the
most significant challenges to TEVV as follows:2

• State-Space Explosion

• Unpredictable Environments

• Emergent Behavior

• Human-Machine Communication

These challenges are not unique to autonomy or to learning systems, but they are
exacerbated in both of those domains.

B. Purpose
The purpose of this report is to outline a proposed approach that addresses these and

other challenges and to provide a framework for consistent and traceable autonomous
system verification and validation. In keeping with the broader literature, we classify our
proposed approach as evidence-based licensure. The case for licensure will be built from
individual dependability cases establishing reasons to believe that the system will perform
safely and effectively within given limits.3 Licensure thus refers to a level of confidence in
all aspects of system dependability that justifies fielding. Both licensure and certification
of the individual dependability cases will typically be both mission and context restricted.
What we are seeking, then, is an evidence-based licensure framework for asserting likely
system-level dependability of adaptive autonomous systems. The Pedigree-Based Training
and Licensure concept advocated by the Autonomy COI falls within this same rubric.

Compelling evidence that the autonomous systems envisioned by DoD will
dependably perform their missions and also dependably be safe and secure in operation
will be hard to develop, but not impossible in our view. We have described an approach
below that attempts to minimize the challenges. This will be accomplished in part through
careful identification and specification of the missions and contexts in which the system
can be expected to be dependable. The proposed approach borrows heavily from other
disciplines that recognize (and in some cases have made progress on) similar challenges
relating to the safety and effectiveness of decision-making software and automation. We
acknowledge that we cannot say a priori how to approach all steps of the process, nor how
hard the remaining work will be. We expect that the practical difficulties will vary
considerably depending on the particular autonomy application.

2 Ibid.
3 Dependability cases generalize the widely used concepts of “safety case” and “assurance case” to other

dimensions of desired system behavior. See, e.g., Charles B. Weinstock, John B. Goodenough, and John
J. Hudak, “Dependability Cases,” Software Engineering Institute Technical Note CMU/SEI-2004-TN-
016, May 2004. We discuss dependability cases in more detail in Section 2.

3

The purpose of the body of this paper is to describe the necessary structure of any
evidence-based approach. This includes identifying and pointing to a number of issues
whose detailed treatment is deferred to technical appendixes for addressing those elements
of the approach.4

https://www.ida.org/idamedia/Corporate/Files/Publications/IDA_Documents/STD/2016/P-5325T.pdf

C. Companion Volume
Note that developing the draft for this proposed framework revealed the need for

dedicated treatment of a number of technical areas. These are called out in the main body
for treatment in the companion volume. A thorough treatment of all the identified areas is
beyond the scope of this project. The companion volume is organized with the following
sections:

A. Introduction

This appendix introduces the remaining appendixes in the companion
volume.

B. Formal Methods

This appendix provides a review of formal methods techniques, their
applicability to licensure and autonomy, and extensive references.

C. Requirements and Metrics

This appendix describes a process for defining requirements and associated
metrics that supports evidence-based licensure (EBL) for autonomous
systems.

D. Normative Oracle Generation

This appendix describes the attributes of a Normative Oracle that would
support EBL for autonomous systems.

E. CoActive Design

This appendix describes co-active design, which focuses on the
interdependence of the human and the machine performing a joint activity.
We might consider this an extension of teaming among humans, but that
would imply a high degree of machine sentience.

F. Implications of Learning Autonomous Systems for TEVV

This appendix provides a review of formal methods techniques, their
applicability to licensure and autonomy, and extensive references.

4 D. M. Tate, R. A. Grier, C. A. Martin, F. L. Moses, and D. A. Sparrow, “A Framework for Evidence-

Based Licensure of Adaptive Autonomous Systems: Technical Areas,” IDA Paper P-5325, H16-000680
(Alexandria, VA: Institute for Defense Analyses, March 2016).

https://www.ida.org/idamedia/Corporate/Files/Publications/IDA_Documents/STD/2016/P-5325T.pdf

4

G. Modeling and Simulation Considerations for Licensure of Autonomous
Systems

This appendix addresses modeling and simulation’s role in licensure of
autonomous systems. To do so, key drivers from EBL and Autonomy are
first identified to form a foundation for analysis.

5

2. A Candidate Licensure Approach for
Autonomy

A dependability case articulates and argues for a dependability claim—that is, a
desired behavioral property of the system and the operational contexts in which it must
hold. Following the literature, we use “dependability” as a generic term to refer to safety,
reliability, cybersecurity, operational performance, or any other dimension of user
requirements. As with all requirements, there is a flow-down from high-level dependability
claims to lower level claims supporting the higher level claim. For example, the high-level
claim “The system will not crash into obstacles” might be supported by lower level claims
such as “The system will be able to detect man-made structures during flight.”5 Individual
dependability claims must be established (certified) as part of the process of structuring
arguments for licensure.

The evidence supporting the dependability claim typically includes both process-
based evidence (how the system was developed) and product-based evidence
(demonstrable attributes of the system). Product-based evidence, in turn, may consist of
both formally demonstrable properties of the system and empirical results of testing. A
dependability case uses the logical and statistical relationships among the disparate pieces
of evidence in a manner that supports a confidence assessment for the dependability claim.
In common parlance, a license is permission from some authority to engage in certain kinds
of goal-driven activity in specified environments. For example, a driver’s license entitles
the licensee to operate certain types of vehicles on public roads for certain purposes. The
constraints on the activity are an important part of the license—motorcycles or buses
require separate licenses from two-axle vehicles, and a basic license does not permit
operating a commercial limo service.

Licenses are typically based on established evidence that gives the licensing authority
adequate assurance that the licensee will exercise the relevant permissions in an acceptable
way. In the case of a driver’s license, the relevant evidence may include the age of the
applicant, successful completion of an accredited driver’s education course, successful
completion of a road test, previous license history, and various other factors. A license is

5 In theoretical computer science, it can be shown that any dependability claim may be decomposed into

safety claims (concerning what will not happen) and liveness claims (concerning what must eventually
happen). This greatly reduces the potential complexity of modeling dependability cases in formal
systems.

6

not a claim that dependability has been proven beyond all doubt; it reflects a sufficient
degree of assurance for the purposes at hand.

For autonomous systems, the analogous approach would be for the controlling
authority to license particular systems to conduct a specified set of missions, in a specified
set of environments, under a specified concept of operations. In many cases, the “systems”
will consist of teamed humans and cyber-physical systems. Licensure will depend on
confidence that the licensed teams will perform dependably within the specified
parameters.

A. Evidence-Based Licensure
Over the past few decades there has been a marked shift in software assurance theory

and practice that provides a precedent for TEVV of adaptive autonomous systems.
Software assurance is shifting toward a paradigm using evidence-based certification of
dependability cases. This began in the safety community, where purely process-oriented
assurance methods did not seem adequate for increasingly complex safety-critical
applications in aviation, medicine, and civil engineering. Since then, the concept has been
expanded to address not merely safety, but other operational outcome dimensions such as
security, reliability, operational effectiveness, and consistency. The concept has also been
extended to refer not merely to software, but to the integrated software/hardware/human
system. The term dependability is often used to collectively refer to those outcome
dimensions of concern for a given system development. In 2007, the National Research
Council Committee on Certifiably Dependable Software Systems recommended adopting
evidence-based dependability certification for critical systems.6

In this framework, confidence in system dependability is established through a
collection of dependability cases, each of which addresses one or more outcome
dimensions of interest. Dependability cases are a natural generalization of the “safety case”
and “assurance case” concepts that have long been standard practice for safety and security
certification of software-controlled systems. A dependability case consists of

• An explicit dependability claim.

• Evidence concerning the system’s ability to satisfy the dependability claim.

• An argument relating the evidence to the dependability claim.

The next sections focus on a framework for developing a satisfactory collection of
dependability cases as defined above. The dependability cases should be collected in such
a way as to establish the boundaries of the confidence space. We discuss methods to
develop the evidence and quantify confidence in the argument defining the dependability

6 Daniel Jackson, Martyn Thomas, and Lynette I. Millett, eds., Software for Dependable Systems:

Sufficient Evidence? (Washington, DC: The National Academies Press, 2007).

7

case. Specifically, Oracle-based testing is proposed as a method of evaluating a system’s
behavior against an external standard. Such methods are then integrated with known
software paradigms in a framework for application in development of autonomous systems.

1. Bounding the Confidence Space
An important function of developmental testing is to not only maximize operational

confidence across the entire range of intended operational contexts but also identify which
narrower contexts permit the most confidence. In general, a system will be licensed for an
increasing range of operations over an expanding set of contexts as it is developed and
tested, but it will be possible at times to license a wider range of missions over a restricted
set of contexts. A system that is highly effective in a narrow set of situations is not only
potentially useful in its own right but also can improve our understanding of which
evidence is most relevant to various contexts.

As an example, consider an autonomous unmanned aerial vehicle (UAV) that
develops its own reconnaissance flight paths, given a specified target of interest. During
development, it may turn out that the greatest challenges to system dependability are
associated with weather conditions—high winds degrade both the UAV’s ability to travel
its intended path and its ability to accurately estimate its air and ground speeds. This leads
to collision-avoidance problems in environments with large vertical obstacles such as trees,
buildings, or utility poles. For such a system, a natural progression of licenses might see
the system certified first for self-directed reconnaissance operations in light winds over flat
terrain, then separately for either heavier winds or obstructed terrain (but not both), then
finally for general operations.

Similarly, systems that involve human-machine teaming may support multiple
operating modes for teaming operations. Close control or teleoperation could be at one end
of the spectrum of available modes, with full machine autonomy at the other. Close control
will feature various patterns of human command, overrides, and mission updates while
more autonomous operations will feature various patterns of status reporting, information
requests, suggestions, and volunteered information, with or without machine learning. In
practice, it is unlikely that all of these modes would achieve licensure simultaneously. The
dependability of the system will be easier to establish for some modes than for others.
Ideally, successful licensure and operations in easier modes can contribute to confidence
in the dependability of more complex modes and perhaps eventually to adaptive selection
of modes at run time.

2. Developing the Evidence—Oracle-Based Testing
In the software testing community, the term oracle has a variety of meanings. In some

contexts, an oracle is simply a rule for stating whether or not a system has passed a given
test. In others, it means any available information about the intended behavior of the system

8

that could be used to evaluate performance. The common feature of all these meanings is
that an oracle enables evaluation of a system’s behavior against an external standard for
what that behavior should be. Oracle-based testing (OBT) is thus any test methodology that
explicitly depends on comparing observed (or instrumented) system behavior against an
independent external standard of correct behavior. That comparison can result in a binary
pass/fail evaluation or in a more nuanced scoring of degree of compliance.

At lower levels of hardware and software, OBT is similar to the use of assertions in
software development. Software developers include statements in their code that make
assertions about the current state—for example, that the value of a certain variable is within
stated bounds, that a specific pointer is not NULL, etc. These statements are evaluated at
run time, and if the assertion is not true, execution halts and the development environment
enters a debugging mode. In OBT, the assertions might be about software states, hardware
states (e.g., “voltage on this circuit within specified bounds”), or higher level behaviors
(e.g., “air speed within 3% of target value”). When testing the system, these OBT assertions
will similarly flag behaviors that meet expectations and signal the test community. To
address the challenges of adaptive autonomous systems that were enumerated in the
Section 1, we will need to be able to apply OBT at the complete system (or system-of-
systems) level, including monitoring and assessing the human-machine interactions. We
want to directly compare observed behavior of the system under test (SUT) against a
functional description of desired high-level behavior.7 To do this, we have to know what
kind of behavior we are looking for and recognize when we do (or do not) see it. At the
highest level of specification, this is little more than a statement of testable system
requirements.

We will refer to a mechanism for assessing the desirability of a particular observed
system behavior as a normative oracle. A normative oracle provides a process for scoring
observed behavior against predetermined standards of desirability. That process has three
distinct aspects:

1. A standard or specification of desirable and undesirable system behaviors.

2. A method for comparing observed system behaviors (including internals)
against the standard.

3. A way of characterizing (and perhaps quantifying) the results of that
comparison.

One can think of these loosely as “the answer key,” “the grader,” and “the score,”
respectively.

7 In this context, “observed behavior” may include the outputs of special test instrumentation that will not

be part of the fielded design.

9

The most powerful normative oracles compare observed behavior against desired
ideal behavior in a given circumstance, but this is not always necessary. Sometimes it will
be sufficient to be able to score behavior in hindsight, without knowing in advance what
the ideal response would have been. Normative oracles do not make decisions; they
evaluate outcomes. It may be difficult to choose a good path through rough terrain; it is
much easier for a normative oracle to know that getting stuck is a bad outcome.

Given a sufficiently rich set of normative oracles for the SUT, it is possible to
implement a normative OBT framework for system development. In this framework, the
normative oracles assess system behaviors against user requirements. They take as inputs
measurements of system states and actions, as well as descriptions of the current situation
and mission goals, and produce as output their evaluations of SUT behavior (and perhaps
descriptions of what would be correct or preferred behavior in those situations). Normative
oracles can be defined at high levels of description—for the system as a whole, for a major
subsystem (e.g., for a path-planning module), for various cognitive functions, or for the
human-machine teaming interaction. They can also be defined at very low levels, such as
involving voltages, variable values, or instrument measurements. Essentially, any aspect
of system behavior or performance for which it is possible to tell good from bad can have
a normative oracle. In many cases, these oracles will be automated, but in others, they may
have humans in the loop or be entirely defined by the subjective opinions of human experts.

Unlike system emulators and virtual environments, which are developed from the
bottom up, normative oracles are developed from the top down, starting with high-level
user requirements. For brevity, we will mostly give examples of system-level normative
oracles, but we note that lower level oracles will also be essential for TEVV and can be
used in series or in parallel.

A normative oracle provides a touchstone at every point during the TEVV life cycle
for comparing what is happening against what ought to be happening. This, in turn,
provides a basis for establishing evidence and quantifying confidence. As with human
trainees, an important part of gaining confidence that true learning has occurred is seeing
consistently appropriate responses to unforeseen situations. Conversely, even minor
divergence between system behavior and the normative standard can provide valuable
diagnostic information, even in cases where the system has “passed” the test at the macro
level. Normative oracles can be particularly useful with respect to emergent behaviors of
adaptive systems or systems of systems, in that they provide a framework for distinguishing
desirable (or at least acceptable) emergent behaviors from unacceptable behaviors. In
practice, normative oracles are needed not only for hardware and software performance but
also for human operator performance, effective human-machine teaming, and machine
learning.

10

Finally, sometimes normative oracles can be adapted to directly support operational
dependability via run-time monitoring.8 There is a natural process during development
whereby the evaluations used by some oracles may be incorporated into the system (via a
design change), becoming part of a self-monitoring and corrective-action feedback loop.
For self-monitoring capabilities that get internalized (co-opted) into the system design, we
no longer call the internalized test an “oracle”—it’s now just part of a run-time monitor or
control process. In such cases, the developers and testers will need to establish a standard
for the desired behavior of the new feedback loop and devise new instrumentation and
external oracles that monitor and evaluate the behavior of the new feature. Failure to do
this can lead to situations like the Boeing 787 ADS-B bug, in which an oracle for (scoring
whether transponder data packet boundaries were correctly aligned) was incorporated into
an exception-handling routine (for misaligned packets)—but no new behavioral standard
for the exception-handler was implemented, nor was its performance monitored during
testing. As a result, developers were unaware of how frequently packets were being
misaligned and how long it was taking the system to recover.

Not every oracle can or should be adapted in this way to yield an internalized self-
monitoring capability. Automating the oracle’s evaluation criteria in real time may not be
possible at all, much less in a way that fits within the size, weight, and power constraints
of the system under development. In addition, some oracles will always rely on human
expert observation and judgment.

3. Arguments and Conditional Confidence
A core challenge for TEVV of adaptive autonomous systems is deciding when we are

confident enough to license initial fielding for a particular mission in a particular context.
A related challenge is reestablishing or enhancing confidence after the system has changed,
be it through design changes, new operating concepts, or human or machine learning. How
much testing, and of what kind, do we need to perform to establish the necessary
confidence?

The problem, compared with TEVV of traditional systems, is our limited ability to
model uncertainties associated with actual operating contexts. This is partly due to the
processing and decision-making required of adaptive autonomous systems. Licensure for
non-autonomous systems is based on assurance that the system will faithfully execute
commands—either commands issued in real time or internal commands generated in
response to the current system state. Vetting adaptive autonomous systems requires
additional assurance that the system will dependably command itself—that is, it will make

8 See, e.g., Kurt Rohloff, Joseph Loyall, and Richard Schantz, “Quality Measures for Embedded Systems

and Their Application to Control and Certification,” ACM SIGBED Review – Special Issues on
Workshop on Innovative Techniques for Certification of Embedded Systems 3, issue 4 (October 2006):
58–62.

11

appropriate action decisions, in a timely manner, in a context that may involve interactions
with other adaptive human or machine agents. How can such a system provide evidence
that supports licensure?

Our TEVV approach is to identify a body of available evidence to certify that
licensure for given missions and operating contexts is warranted with respect to particular
dependability cases. Types of evidence include the following:

• Design for certification (formal methods).

• Performance on various tests.

• Comparison of system behavior (in test or in the field) against predicted and
ideal behavior.

• Past certification of related dependability claims (composability).

• Details of the system’s operational history in similar contexts.

Evidence might also plausibly include factors such as the track record of the developer
or development methodology or previous successful uses of individual modules of the
system (e.g., the motion planning engine or the learning algorithm). What constitutes useful
evidence toward licensure will vary according to the type of system, operational contexts,
envisioned missions, and degree of assurance required.

Successful dependability cases will require convincing arguments from demonstrable
evidence, leading to a degree of confidence (preferably quantifiable) sufficient to justify
certification. Historically, such cases have been constructed by hand, primarily in the areas
of safety and security. There is ongoing theoretical work in the area of automated argument
generation for both process-based and product-based evidence.9

B. TEVV Framework
Putting together the pieces described above, and with an eye on the specific TEVV

challenges of autonomy, we can sketch the outline of a licensure-based TEVV framework
for adaptive autonomous systems. Although here we use the language and paradigms of
software testing, we emphasize that this framework applies to all phases and aspects of
development for the complete hardware/software/human system. The framework has three
primary elements:

1. A normative model, in which an exhaustive top-down set of derived normative
oracles is implemented as executable code where possible.

9 See, e.g., John Rushby, “Mechanized Support for Assurance Case Argumentation,” in New Frontiers in

Artificial Intelligence, Lecture Notes in Computer Science 8417, Springer, 2014.

12

2. An embedded software testbed that exercises actual system code in a virtual or
partly emulated environment.

3. Actual physical instances of the SUT executing actual system code

At minimum, the normative model will assess and score observed system behaviors
for desirability. Ideally, the model will also be able to specify the preferred or expected
high-level system behaviors, given a description (at the appropriate level of detail) of the
mission and context.10 We emphasize that the normative model is not a simulation of the
environment or of the actual system design under development, but instead is a reference
or calibration of what characterizes “good” SUT behavior in a given situation, either in the
testbed or in the actual environment. The normative model is a purely behavioral model—
at high levels it will typically use idealized approximations of how the actual system should
behave, without attempting to emulate detailed sensing/reasoning or real physics
processing.

The purpose of the embedded software testbed is to allow progressive testing of
system modules in isolation and in combination, working from unit verification and
validation to full autonomous system-of-systems validation by stages. At every stage, some
or all of the software and hardware modules of the SUT (and the human-machine
interactions) may be emulated using the normative model, with the SUT providing the
remaining functions. The testbed will provide simulation of the operational environment,
including human commanders, other agents, and adversaries. Ideally, this testbed will have
provisions for human-in-the-loop participation in both commander/operator and adversary
roles, to provide realistic human-machine teaming. In some cases, the testbed could provide
virtualization support for live virtual constructive testing.

The ultimate goal of this iterative testing regime is to be able to establish the
licensability of specific system modules (or entire systems) based on arguments using
composable dependability cases covering a specified range of contexts. Section 3 examines
specific uses of the testbed, and associated challenges and capability gaps, associated with
specific phases of the TEVV life cycle.

10 We use the word “behavior” here in its broadest sense, to include both observable actions by the system

and internal processing and all dimensions of performance and dependability. Scoring metrics for these
various dimensions will include both continuous measures and binary (pass/fail) measures (see
companion volume).

13

3. Evidence-Based Licensure Life-Cycle
Implications

The consensus in the dependability literature seems to be that achieving dependable
systems (with high confidence) will require a multifaceted approach. Formal design
processes, normative models, empirical testing, run-time monitoring, and explicit
limitations on operational parameters can all be used to support licensable confidence in
adaptive autonomous systems. Applying these techniques will require special actions
throughout the development and TEVV life cycles. In this section we give a brief overview
of how EBL might affect the execution of various activities and phases.

A. Requirements
EBL is about generating confidence in system dependability, which is assessed

against requirements. As a result, it is vital that the elicitation and specification of system
requirements be fully integrated into the EBL framework from the start. To begin with, any
normative oracle used in EBL must accurately reflect stakeholder preferences for system
behavior—which is to say, requirements. To realize the benefits of normative oracles for
EBL, requirements (including assumptions about concept of operations, environment,
human-machine teaming, and interactions with other agents) must be captured and codified
in a form that supports implementation of a normative model. Current practice does not
typically yield formal system requirements that are sufficiently complete, unambiguous,
and testable to support automated generation of normative oracles. The companion volume
addresses issues associated with requirement specification and normative oracle
generation.

Second, there is considerable ongoing research into formal analytical models to
generate provably dependable code.11 Such methods necessarily begin with a description
of the behavioral requirements (or prohibitions) to be proven. If “design for dependability”
development methods are to be used, the provable certifications for the resulting design
will be contingent on that original requirement specification. The companion volume
addresses the challenges of incorporating formal methods into development.

Finally, the problem of empirical testability will be particularly acute for adaptive
autonomous systems. It will not be enough for requirements to be complete and formally
specifiable; those behavioral requirements that are not a priori provable must be testable in

11 See, e.g., V. Janarthanan and A. Gherbi, “Architectures for Dependable Software Systems,”

Proceedings of the Eighth International Conference on Information Technology: New Generations,
IEEE, 2011.

14

practice. Deriving statements of high-level behavioral goals that can be put into practice is
challenging even for non-autonomous systems; autonomy and learning add a new layer of
complexity. Specifying requirements for how systems should reason and learn and how
they should interact with others, and devising metrics and oracles that make those
requirements testable, is a key challenge. During developmental testing, automated tools
for deriving testable assertions (at the system-state level) from higher level behavioral
requirement descriptions would be useful not only for test design but also as a diagnostic
tool and in support of low-level normative oracle implementation. The companion volume
deals with the particular challenges of learning systems for TEVV.

B. Architecture
Formal methods for generating validated code (and test cases) directly from

requirements offer great promise in contributing to dependability arguments. If such
methods are used, they must be selected and committed to from the start, during the
architecture phase of system development. Hardware architecture, software architecture,
processing architecture, test architecture, and the interfaces among them must be chosen to
support the formal methods that are to be used. Any subsequent changes in the architectures
(e.g., in response to requirements changes or resource constraints) run the risk of
invalidating dependability arguments that depend on formal properties and processes.

At the same time, the architecture(s) selected may have significant implications on
testability. Balancing the demands of formal provability and empirical testability calls for
early and careful consideration of the relative demands of both, along with the relative
contributions that each will be able to make to the planned dependability arguments for the
system. The reasoning module’s architecture must also balance considerations of capability
(i.e., extent and flexibility of potential learning) against the ability to certify the various
dimensions of dependability. A reasoning architecture that supports a tiered
implementation of learning, with higher tiers supporting more sophisticated behaviors that
are more difficult to license, could also support iterative and composable licensure—but
only if such an architecture is adopted early in system development. Similarly, run-time
monitoring of reasoning functions may be indispensable for licensure, but must be
incorporated into the architecture from the start.

There is already a literature on architecture implications for safety. 12 Extending
current safety models to address general dependability cases seems straightforward in
principle, but will almost surely be less straightforward in practice. This is an open research
area.

12 See, e.g., Weihang Wu and Tim Kelly, “Towards Evidence-Based Architectural Design for Safety-

Critical Software Applications,” in Architecting Dependable Systems IV, ed. Rogério de Lemos,
Cristina Gacek, and Alexander Romanovsky (Berlin, Heidelberg: Springer-Verlag, 2007), 383–408.

15

C. Design
“Design for dependability” is a natural extension of the “Design for safety”

approaches to safety-critical systems. As with architecture, there is a premium on early
systems engineering to take maximum advantage of reliable processes and model-based
methods during development. This will be especially true for adaptive autonomous systems
and their teaming with humans.

Several of the more promising approaches to dependability rely on explicit system
modeling of dependability properties (e.g., safety, security, survivability, effectiveness)
combined with run-time monitoring of dependability implications by independent on-
board processes (e.g., normative oracles).13 Adding such “introspective AI” features late
in development to a system whose original design did not incorporate them organically
could greatly increase the difficulty both of achieving good performance and of
establishing confidence in dependability.

As with architecture (again) there will be a tension between the potential capability
of a design and the testability of that design. An explicit goal of the EBL approach is to
make this tension explicit and quantifiable and to support incremental licensure of
restricted applications of a given design. Absent a design approach that explicitly facilitates
testing, the resources required for testing will grow rapidly as a function of system
capability.

D. Development
Once requirements have been elicited, normative oracles have been implemented, an

architecture has been selected, and a design has been proposed, the actual development of
the system can productively begin. Simultaneously, this is when iterative certification of
dependability cases begins.

There is a great deal of work still to be done in the theory and practice of exactly how
evidence acquired during development can most effectively be organized into successful
arguments for licensure within specified bounds. As with most aspects of dependability,
work on safety assurance is currently the most advanced, but even that literature offers
little in the way of concrete mechanisms for generating arguments, composing module-
level licenses into system-level licenses, or designing efficient tests to support licensure.
Promising directions have been identified; it remains to translate those into practical
development tools and to expand them from the domain of safety alone to other
dependability dimensions.14 In particular, we suspect that formally generated normative

13 See, e.g., part 3 of John Fox and Subrata Das, Safe and Sound: Artificial Intelligence in Hazardous

Applications (Cambridge, MA, and London, England: AAAI Press / MIT Press, 2000).
14 Rushby, “Mechanized Support for Assurance Case Argumentation.” See also Rajwinder Kaur Panesar-

Walawege, Mehrdad Sabetzadeh, Lionel Briand, and Thierry Coq, “Characterizing the Chain of

16

oracles will play a substantial role in the design, development, and licensure of adaptive
autonomous systems.

For the specific challenge of architecting, designing, and implementing effective
interactions between human and machine agents in a teaming context, recent work on
Coactive Design seems particularly well suited to development in an EBL framework:

Coactive Design is a new approach to address the increasingly sophisticated
roles that people and robots play as the use of robots expands into new,
complex domains. The approach is motivated by the desire for robots to
perform less like teleoperated tools or independent automatons and more
like interdependent teammates.15

In particular, Coactive Design asserts that the appropriate degree and type of autonomy for
a given system is the autonomy that will produce the most effective teaming behaviors, in
terms of mission performance. Expanding this focus from mission performance to
dependability is straightforward. In general, the most effective teaming relationship will
feature neither the least machine autonomy nor the most autonomy. Rather, it will exhibit
human-machine interactions in which agents issue commands and request or volunteer
information in ways that best support dependability.

Another key research area will be how to respond to requirements changes during
development. Requirements changes pose a significant challenge even for “normal”
systems development. For adaptive autonomous systems being developed under an EBL
framework, requirements changes simultaneously disrupt both the design process (i.e.,
making the system work properly) and the licensure process. There is a very real danger
that design changes driven by new or modified requirements could invalidate the
arguments underlying existing dependability case certifications. Any licenses that rely on
those certifications would be undermined. There is thus a “double effort” associated with
engineering change proposals—one effort to accomplish the change and a second effort to
re-license the changed design, possibly with different context limitations. A strong theory
of composability of evidence would be helpful—both to minimize the amount of licensure
re-work and to support design of regression tests for dependability.

Finally, note that it will also be necessary to test and validate the EBL testbed itself.
Normative oracles, simulation models (both of the environment and yet-to-be-implemented
modules of the SUT), human-in-the-loop interfaces, and the set of dependability cases are

Evidence for Software Safety Cases: A Conceptual Model Based on the IEC 61508 Standard,” Third
International Conference on Software Testing, Verification and Validation, 2010, 335–44, and Sunil
Nair, Jose Luis de la Vara, Mehrdad Sabetzadeh, and Lionel Briand, “An Extended Systematic
Literature Review on Provision of Evidence for Safety Certification,” Information and Software
Technology 54 (2014): 689–717.

15 Matthew Johnson, Jeffrey M. Bradshaw, Paul J. Feltovich, Catholijn M. Jonker, M. Birna van
Riemsdijk, and Maarten Sierhuis, “Coactive Design: Designing Support for Interdependence in Joint
Activity,” Journal of Human-Robot Interaction 3, no. 1 (2014): 43–69.

17

all subject to errors and omissions. Debugging the debugger and verifying the verification
protocol will be nontrivial efforts. For this reason, there is great potential value in the
development and licensure of reusable test infrastructure—high-level dependability case
suites, automated oracle generators, and virtual environments for EBL.

E. Fielding
An important part of the development process will be methods for identifying the

operational contexts within which confidence in the current system is highest. Progressive
licensure during development can be based either on showing that system capabilities have
improved or by identifying operational constraints for which the current system’s behavior
is particularly dependable.

Fielding can occur when the system is licensed for a subset of missions and context
bounds that provide threshold operational utility. For example, an unmanned aerial system
intended eventually for day/night, all-weather, multi-sensor intelligence, surveillance, and
reconnaissance missions might initially be licensed only for electro-optical/infrared
imaging for daytime, fair-weather, low-wind conditions. If that restricted capability has
sufficient operational utility, limited fielding is justified.16 In this case, it is important that
data from the operational experience be leveraged to provide additional evidence in support
of wider licensure. Integration of information from the field with ongoing developmental
testing will be the norm, rather than the exception, requiring new and better coordination
of test organizations and data systems.

F. Post-fielding
The ongoing expansion of licensure even after initial fielding blurs the traditional line

between “development” and “operations.” Data from the field can inform licensure of
unfielded systems; data from test events can inform licensure of fielded units. In a very real
sense, the developmental testing of the system does not (and should not) end.

This will be especially true of systems capable of learning. Because the system’s
behavior will be changing over time, as will its teaming capabilities, it will be necessary to
perform regression testing of system dependability to re-license the new configuration.
This might result in a wider range of licensed missions and contexts or an adjusted range.
(If the range narrows, it may be possible to reset the system to its original fielded state.)
These tests might be periodic, or event-driven, or both. Run-time monitoring of reasoning

16 This “threshold” might not be the threshold capability originally identified during requirements

elicitation. In this respect, EBL resembles agile software development—the first combination of
capability and dependability that is sufficient for fielding is something that the developers, testers, and
users will “know when they see it.”

18

functions might spot an increased mismatch between normative oracles and system
decisions, triggering a “recall” of the unit.

Even for systems without adaptive learning, there will undoubtedly be upgrades and
new features over time. Re-licensure of these systems will also involve regression testing
of dependability. Design of time- and cost-effective regression tests (and the corresponding
licensure arguments) is thus an important research area for adaptive autonomous system
TEVV.

19

4. Summary and Conclusions

TEVV of autonomous systems poses a number of distinct challenges. Adaptive and/or
learning autonomous systems, resulting in the possibility of the same input leading to
different behaviors, complicates test and evaluation. In addition, the impact of dynamic
environments and an effectively inexhaustible state-space for the system are not unique to
autonomous systems, but are more challenging to test and evaluate in the presence of
autonomy. Interactions between autonomous systems and their operators (or adversaries)
are also additionally complex.

This paper addresses these challenges using a licensure paradigm. We enumerate and
discuss the necessary features for a TEVV paradigm that would permit licensure of
adaptive autonomous systems analogous to the way we license human drivers to operate
specified classes of vehicle in specified conditions for specified purposes.

Fortunately, we can capitalize on existing work on complex software systems—
especially those needing safety or security certification in cases of dynamic environments
and inexhaustible state spaces. Considerable progress, both theoretical and practical, has
been made in such fields as aviation safety, medical hardware/software systems, and space
exploration. This body of work informs and is consistent with the EBL paradigm we
describe. EBL provides a mechanism for establishing probabilistic confidence in system
dependability and for determining operational limits on the license in terms of missions
and contexts. We can also expand the basic EBL framework through the use of normative
oracles, in particular normative models that implement executable specifications of
desirable system behavior. Normative models can be useful both as testing tools and as
contributors to run-time dependability.

While capitalizing on this body of work is probably essential for going forward, the
progress to date in TEVV is insufficient to support fielding of autonomous systems that
have learning capability. Gaps in established practice—and in some cases in extant
theory—have been identified throughout the TEVV life cycle. At the start of development,
better ways to automate (or machine assist) the translation of high-level system
requirements into lower level behavior specifications on subsystems, and the translation of
natural-language behavioral specifications into implementable normative models, are
needed. When system architecture is developed, guidelines must be established for
choosing architectures that will support formal derivation of system dependability where
possible and testability of requirements that will need to be empirically verified. During
development, the TEVV community will need improved understanding (and automated
support) for assessing the degree of confidence that is justified by the formal attributes,

20

observed test performance, and other accrued evidence for system dependability—
especially if there have been changes to system requirements since the original architecture
and normative model(s) were developed. At the “end” of development, fielding will require
ongoing monitoring and test and evaluation—especially for systems that can learn—and
will thus not necessarily continue to behave as they did during formal development test.

More detailed treatments of all of these issues (and others) are required before the
EBL testbed we propose can be implemented in practice. The companion volume to this
document provides a first cut at enumerating and beginning to address some of these
concrete implementation issues. Identification of the critical science and technology
research areas relevant to evidence-based licensure will be an essential prerequisite for
implementation.

21

Appendix A.
Abbreviations

COI community of interest
EBL evidence-based licensure
OASD/R&E Office of the Assistant Secretary of Defense for

Research and Engineering
OBT oracle-based testing
SUT system under test
TEVV test, evaluation, verification, and validation
UAV unmanned aerial vehicle

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
(0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE

March 2016
2. REPORT TYPE

Final
3. DATES COVERED (From–To)

Jan 2016 – Mar 2016
4. TITLE AND SUBTITLE

A Framework for Evidence-Based Licensure of Adaptive Autonomous
Systems

5a. CONTRACT NUMBER
HQ0034-14-D-0001

 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Tate, David M.
Grier, Rebecca A.
Martin, Christopher A.
Moses, Franklin L.
Sparrow, David A.

5d. PROJECT NUMBER
AK-2-3944

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Defense Analyses
4850 Mark Center Drive
Alexandria, VA 22311-1882

8. PERFORMING ORGANIZATION REPORT
NUMBER

IDA Paper P-5325
Log: H 16-000084

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

Air Force Research Laboratory
2610 7th Street, Bldg 441
Wright-Patterson AFB OH 45433

10. SPONSOR/MONITOR’S ACRONYM(S)

AFRL

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited (17 May 2016).

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Adaptive autonomous systems of interest to DoD have great potential to complement human performance in a wide range of missions. This
particularly is true for adaptive systems that learn—those whose behavior on a given set of inputs may change over time, even after the
system has been fielded. Such adaptation, however, makes exhaustive testing, certification, and licensure of the final system impossible.
The challenge is to establish high confidence that the system will perform dependably and behave as intended while safely, securely,
reliably, and effectively carrying out the assigned missions. This paper adapts approaches from other disciplines, such as software
assurance theory, where safety as well as performance is paramount. The key features of the approach include taking and retaining
performance data from the beginning of development, establishing a formal means to assess actual performance compared with desired
performance throughout the development, and recognizing that system testing will need to continue beyond a fielding decision. An additional
complexity is that performance testing needs to address how the autonomous modules make decisions and provide a standard for doing
that. That is, test, evaluation, verification, and validation of such systems must inform testers about how a system satisfies requirements
during development and about its potential to make effective system changes after fielding.

15. SUBJECT TERMS

autonomy, TEV&V, adaptation, Normative Oracles, licensure, certification, dependability cases

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
 OF

ABSTRACT

SAR

18. NUMBER
 OF

PAGES

28

19a. NAME OF RESPONSIBLE PERSON
Ms. Kristen Kearns

 a. REPORT
Uncl.

b. ABSTRACT
Uncl.

c. THIS PAGE
Uncl.

19b. TELEPHONE NUMBER (include area code)
(937) 656-9758

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

	1. Introduction
	A. Background
	B. Purpose
	C. Planned Companion Volume

	2. A Candidate Licensure Approach for Autonomy
	A. Evidence-Based Licensure
	1. Bounding the Confidence Space
	2. Developing the Evidence—Oracle-Based Testing
	3. Arguments and Conditional Confidence

	B. TEVV Framework

	3. Evidence-Based Licensure Life-Cycle Implications
	A. Requirements
	B. Architecture
	C. Design
	D. Development
	E. Fielding
	F. Post-fielding

	4. Summary and Conclusions
	Appendix A. Abbreviations

	body.pdf
	1. Introduction
	A. Background
	B. Purpose
	C. Planned Companion Volume

	2. A Candidate Licensure Approach for Autonomy
	A. Evidence-Based Licensure
	1. Bounding the Confidence Space
	2. Developing the Evidence—Oracle-Based Testing
	3. Arguments and Conditional Confidence

	B. TEVV Framework

	3. Evidence-Based Licensure Life-Cycle Implications
	A. Requirements
	B. Architecture
	C. Design
	D. Development
	E. Fielding
	F. Post-fielding

	4. Summary and Conclusions
	Appendix A. Abbreviations

	body.pdf
	1. Introduction
	A. Background
	B. Purpose
	C. Companion Volume

	2. A Candidate Licensure Approach for Autonomy
	A. Evidence-Based Licensure
	1. Bounding the Confidence Space
	2. Developing the Evidence—Oracle-Based Testing
	3. Arguments and Conditional Confidence

	B. TEVV Framework

	3. Evidence-Based Licensure Life-Cycle Implications
	A. Requirements
	B. Architecture
	C. Design
	D. Development
	E. Fielding
	F. Post-fielding

	4. Summary and Conclusions
	Appendix A. Abbreviations

	Blank Page
	Blank Page
	Blank Page

