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Executive Summary 

One of the most powerful features of Bayesian analyses is the ability to combine 
multiple sources of information in a principled way to perform inference.  This feature can 
be particularly valuable in assessing the reliability of systems where testing is limited.  At 
their most basic, Bayesian methods for reliability develop informative prior distributions 
using expert judgment or similar systems.  Appropriate models allow the incorporation of 
many other sources of information, including historical data, information from similar 
systems, and computer models.  We introduce the Bayesian approach to reliability using 
several examples, and point to open problems and areas for future work, including: 

• Reliability for various types of systems: on-demand with pass-fail testing 
(notional SDB-II data) and continuous lifetime data (viscosity breakdown 
times).  These examples include definitions and illustrations of prior 
distributions, likelihood and sampling distributions, posterior distributions, and 
predictive distributions.   

• Additional discussion of how to specify prior distributions is provided, along 
with brief descriptions of methods and possible resources for more complex 
analyses like hierarchical modeling, system reliability with subsystem or 
component level testing, and implementation using Markov chain Monte Carlo 
techniques.   

• Finally, some open research areas are discussed regarding combining 
information across multiple tests for assessment purposes and to plan an 
appropriately sized follow-on test. 
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Abstract

One of the most powerful features of Bayesian analyses is the abil-

ity to combine multiple sources of information in a principled way to

perform inference. This feature can be particularly valuable in as-

sessing the reliability of systems where testing is limited. At their

most basic, Bayesian methods for reliability develop informative prior

distributions using expert judgment or similar systems. Appropriate

models allow the incorporation of many other sources of information,

including historical data, information from similar systems, and com-

puter models. We introduce the Bayesian approach to reliability us-

ing several examples and point to open problems and areas for future

work.
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1 Background

This is an interesting time for statistical reliability. One one hand, shrinking

budgets in areas like defense acquisition lead for calls to “do more with less”

and “use all available data” (NRC, 1998; NCR, 2004; NRC, 2006; NRC,

2015). On the other hand, we are also in the era of “big data,” where

information from sensors, warranty claims, and field data can be used to

supplement traditional reliability testing (Meeker and Hong, 2014). What

these challenges have in common are the need to combine multiple sources of

information from different sources, (e.g., life tests, physics-based knowledge,

expert opinion, computer experiments) using models that acknowledge the

differences in the variation and uncertainty among the sources (Anderson-

Cook, 2009; Reese et al., 2004). Bayesian statistical approaches can provide

a natural and principled way to combine the information.

At their core, Bayesian methods start with Bayes’ Theorem,

π(θ | y) =
f(y | θ)π(θ)

f(y)
. (1)

The left-hand side of the equation is the posterior distribution, which sum-

marizes the current state of knowledge about the parameters in a statistical

model, given the observed data. The first term on the right-hand side of

the equation is f(y | θ), which is the likelihood (the distribution for the data

thought of as a function of θ). The second term, π(θ) is the prior distribution

for θ, which captures our state of knowledge about the parameters before ob-
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serving the current data. The denominator, f(y) =
∫
f(y | θ)π(θ)dθ, is the

marginal distribution for the data. We frequently do not compute f(y) ex-

plicitly, since we know the posterior distribution is a probability density that

integrates to 1. A good way to remember Bayes’ Theorem: the posterior is

proportional to the likelihood times the prior.

Bayesian methods for reliability start from Eq. 1. When we refer to a

Bayesian model, we mean the specification of both the likelihood and the

prior distribution. As with non-Bayesian approaches, much attention is paid

to specifying the likelihood. While there is considerable overlap in the like-

lihoods considered in Bayesian and non-Bayesian reliability methods, hier-

archical models (Section 3.2) and models for multi-level system reliability

(Section 3.3) are more commonly discussed in a Bayesian context and are

described here in some detail.

The prior distribution (Section 3.1) is a key component for Bayesian meth-

ods. There are two necessary features when using a prior distribution: (1)

there is previous information relevant to the analysis, (2) this information

can be summarized as a probability distribution on parameters that are use-

ful in the current analysis. However, the situation where the analyst wants to

summarize “no prior knowledge” can also be captured. Establishing a prior

distribution clearly requires careful thought and modeling, but has the op-

portunity to supplement the data in the current experiment and the potential

to provide improvements in the precision of estimates. As with all statistical

modeling, the final results of an analysis using a prior distribution must be
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carefully examined to determine the sensitivity and impact of assumptions

and modeling choices (Gelman et al., 2013; Reese et al., 2001).

Bayesian methods can also provide computational simplifications when

fitting complex models. Specifically, in reliability problems, censored data

can be incorporated in a very straightforward way (Section 2.2). In addition,

when framed as a Bayesian problem, complex models can often be rela-

tively easily fit using Markov chain Monte Carlo (Section 3.4). In addition,

Bayesian methods easily allow the computation of distributions (to include

point and interval estimates) for complicated functions of model parameters

(e.g., predictions, probability of failure, quantiles of lifetime distribution),

which can support additional modeling to combine information.

2 Basics

2.1 Binomial Example

Systems developed and deployed by the Department of Defense (DoD) un-

dergo a variety of test events that help understand reliability (NRC, 1998).

The company building the system should use “design for reliablity” prac-

tices (Rhoads, 2011) and contractor testing to make an initial assessment of

reliability. The government performs developmental testing, which focuses

on requirements checking, and operational testing, which considers the sys-

tem in realistic settings and environments (Dickinson et al., 2015). During

a system’s lifecycle, there may be several variants that result from repairs,
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upgrades, or life extension programs. Ideally, we would like to design a full

suite of tests for each variant of the system under all operational conditions.

In practice, this is seldom possible, due to a variety of constraints (e.g., cost,

time, treaty restrictions). Consequently, the problem of interest is how we use

all of the information we have collected to understand the current reliability

of the stockpile of systems.

As an example, consider the Small Diameter Bomb-II (SDB-II), which is

a multipurpose bomb that consists of seven subsystems with multiple com-

ponents that are tested with 14 end-to-end tests1. The response of interest

is treated as pass/fail, successful detonation or not. Suppose that of n = 14

tests, SDB-II failed to detonate twice. The test data are modeled with the

likelihood function, f(y | R). This likelihood function is the same starting

point that would be used for a non-Bayesian reliability analysis. The binary

test data of bomb detonations follow a binomial distribution with probability

of a pass of R. That is,

f(y | R) ∝ Rs(1−R)n−s ,

where y is the number of successful tests, s, and the number of failed tests,

n− s.

The prior distribution of SDB-II reliability, π(R), is constructed from

previous data or expert knowledge. The prior reliabilities are captured in

1Data are notional.
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the form of a distribution that is determined before the data are obtained.

Suppose that SDB-II was previously tested and failed 3 out of 17 tests.

Depending on how operationally realistic the previous testing was, we may

choose to include none or all of the prior information into our prior assessment

of reliability, π(R). One approach to including this information is through a

beta distribution

π(R) ∝ Rnpp(1−R)np(1−p) ,

with p as the prior reliability estimate and np ≥ 0 as the weighting factor

of that prior estimate (Johnson et al., 2003). When np is set to 0, we do

not believe that the prior data are relevant to the current test data and the

prior distribution gives equal probability to all values between 0 and 1 (see

the middle panel of Figure 1). As np increases, our confidence in the prior

reliability estimate increases, and the distribution peaks around this estimate

(see the left panel of Figure 1).

The posterior distribution is proportional to the product of the likelihood

function and the prior distribution. The choice of the beta distribution as a

prior is useful for several reasons: it is flexible enough to describe a variety

of prior beliefs, it ensures that R is between (0, 1), and it is the conjugate

prior for the binomial distribution. Conjugate priors have the property that

the form of the prior distribution, when combined with the likelihood, is the

same as the posterior distribution.2 Multiplying the likelihood and prior for

2Conjugate priors exist for many distributions. See Hamada et al. (2008) or Gelman
et al. (2013) for more information.
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SDB-II and rearranging, we have

π(R | y) ∝ Rs(1−R)n−sRnpp(1−R)np(1−p)

∝ Rs+npp(1−R)n−s+np(1−p)

∼ Beta(s+ npp+ 1, n− s+ np(1− p) + 1).

The choice of np and p will impact posterior inference for SDB-II relia-

bility, as well as any functions thereof. If we use a non-informative or diffuse

prior (here, np = 0; see middle panel of Figure 1), the analysis gives a mean

of 0.81 and 95% credible interval of (0.60, 0.96). Contrast this with the non-

Bayesian maximum likelihood estimate of 0.86 and 95% confidence interval

of (0.57, 0.98), with slightly wider intervals and a higher point estimate. Un-

certainty is decreased when our prior assessment matches what the data say

(left panel of Figure 1). The prior data were collected in a semi-operationally

realistic manner, and therefore we set np = 7, resulting in a reliability esti-

mate of 0.85 and 95% interval of (0.67, 0.96). The right panel of Figure 1

shows a prior assessment of reliability that is rather poor (failing 9 out of 17

tests) but the testing was only partially relevant to the current test and is

downweighted (np = 3). These settings result in a SDB-II reliability estimate

of 0.78 and a 95% credible interval of (0.57, 0.94).

In this case, we have chosen a specific np; however, using more complex

models, the weight can be chosen based on the observed data (Reese et al.,

2004; Ibrahim and Chen, 2000; Anderson-Cook et al., 2007).
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Figure 1: Prior (dashed red lines), likelihood (solid blue line), and posterior
(dot-dash purple lines) distributions for the SDB-II reliability analysis with
different prior settings in each panel.

A good statistical analysis should include some check of the adequacy of

the model fit to the data. Sensitivity analysis investigates how much inference

changes when other reasonable priors or models are assumed instead of the

one in use. In the case of SDB-II, the resulting posteriors do not change

drastically under each prior assessment. Depending on the purpose of the

analysis, posterior predictive checking (see Section 2.2) can help determine

the adequacy of model fit and how the model is impacted by changing the

prior.

2.2 Lifetime Example

Now suppose that we consider the data in Table 1. These data are the

viscosity breakdown times (in 1000s of hours) for 50 samples of a lubricating
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5.45 16.46 15.70 10.39 6.71 3.77 7.42 6.89 9.45 5.89
7.39 5.61 16.55 12.63 8.18 10.44 6.03 13.96 5.19 10.96

14.73 6.21 5.69 8.18 4.49 3.71 5.84 10.97 6.81 10.16
4.34 9.81 4.30 8.91 10.07 5.85 4.95 7.30 4.81 8.44
6.56 9.40 11.29 12.04 1.24 3.45 11.28 6.64 5.74 6.79

Table 1: Viscosity breakdown times (in 1000s of hours) for 50 samples of a
lubricating fluid (from Hamada et al. (2008)).

fluid. Unlike the data in Section 2.1, these data are continuous and an

example of lifetime data.

There are a variety of distributions that are commonly used when an-

alyzing lifetime data, which include the exponential, gamma, Weibull, and

lognormal. These distributions capture a variety of different features, includ-

ing different hazard functions. We can think of the hazard function as an

items propensity to fail in the next short interval of time, given that the item

has survived to time t, and we define it as

h(t) =
f(t)

1− F (t)
=
f(t)

R(t)

An exponential distribution has constant hazard, while a Weibull distribution

can have constant, increasing, or decreasing hazard, depending on the choice

of parameters.

One way to choose the appropriate sampling distribution for our data

is to consider a sequence of probability plots for each different distribution;

this suggests the lognormal as appropriate for our data. The lognormal has
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probability density function

f(x | µ, σ2) =
1

x
√

2πσ2
exp

[
− 1

2σ2
(log(x)− µ)2

]
, x > 0, −∞ < µ <∞, σ > 0

with

E(X) = exp(µ+
σ2

2
)

Var(X) = exp(2µ+ 2σ2)− exp(2µ+ σ2)

h(t | µ, σ) =
φ
(

log(t)−µ
σ

)
σt− σtΦ

(
log(t)−µ

σ

)
where φ(·) is the probability density function of the standard normal dis-

tribution and Φ(·) is the cumulative distribution function of the standard

normal distribution. If a random variable X is log-normally distributed,

then Y = log(X) has a normal distribution. The lognormal distribution has

two parameters, µ and σ2, which correspond to the mean and variance of the

distribution of log(X). If σ2 is known, then the normal distribution is the

conjugate prior for µ; if µ is known, then the inverse gamma distribution is

the conjugate prior for σ2.

Suppose that we specify that µ ∼ Normal(2, 1) and independently σ2 ∼

InverseGamma(6, 5). A useful tool to assess the choice of prior distribution

for the parameters is the prior predictive distribution

p(y) =

∫
f(y | µ, σ2)π(µ, σ2)dµdσ2
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Figure 2: Prior (left) and posterior (right) predictive distributions for viscos-
ity data with lognormal likelihood and prior distributions of µ ∼ Normal(2, 1)
and σ2 ∼ InverseGamma(6, 5).

This distribution, shown in the left panel of Figure 2, reflects what we would

expect for a randomly selected fluid breakdown time in the presence of all

a priori uncertainty. Instead of performing the integration, we draw 10,000

observations from the prior, used each pair to draw an observation from a

lognormal distribution, and draw a boxplot of the results.

The prior distribution for this problem is not conjugate. However, the

posterior distribution is still determined using Bayes’ Theorem (Eq. 1). For

this problem,

π(µ, σ2 | y) ∝ 1√
2π

exp(−1

2
(µ− 2)2)

56

Γ(6)
(σ2)−7 exp(− 5

σ2
)∏ 1

yiσ
√

2π
exp(− 1

2σ2
(log(yi)− µ)2)

∝ 1

σ64
exp(−1

2
(µ− 2)2 − 5

σ2
) exp(−

∑ (log(yi)− µ)2

2σ2
) .
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Figure 3: (Left) Contour plot of prior distribution with posterior distribution
overlaid; (Right) Zoomed in on the contour plot of the posterior distribution

Figure 3 shows a contour plot of the prior distribution with the posterior

overlaid in red (left) and a zoomed in contour plot of the posterior (right).

In much the same way as we calculated the prior predictive distribution,

we can compute a posterior predictive distribution

p(x) =

∫
f(x | µ, σ2)π(µ, σ2 | y)dµdσ2

To avoid computing the integral, we use 10,000 samples from the posterior

distribution, use each sampled pair to draw an observation from a

LogNormal(µ(i),(σ2)(i)) distribution, and draw a boxplot of the results (right

panel, Figure 2). The general technique to draw samples from the poste-

rior distribution is Markov chain Monte Carlo, which is briefly described in

Section 3.4.

The posterior predictive distribution shows what we expect to see if we
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draw another observation. It integrates over our current a posteriori uncer-

tainty about the model parameters. We can extend this idea to do model

checking and see if our model is consistent with the data. The idea is that if

our model fits, then replicated data generated under the model should look

similar to observed data (Gelman et al., 2013). More specifically, the ob-

served data should look plausible under the posterior predictive distribution.

The basic technique is to draw simulated values of replicated data from

the posterior predictive distribution and compare some summary of these

samples to the same summary of the observed data. Any systematic differ-

ences between the simulations and the data indicate potential failings of the

model. In our example, we use our posterior draws, draw a replicate data set

of size 50 from a LogNormal(µ(i),(σ2)(i)) distribution, compute a summary

statistic, draw a histogram, and compare to the observed data. In Figure 4

we show two summary statistics: the deviance (-2 * log(likelihood)), which

is a general measure of goodness of fit, and the 75th percentile of the data.

There is no evidence of a discrepancy between the model and the observed

data for these two features.

Censored data could be easily incorporated into the computation of the

posterior distribution using the expressions in Table 2 in the likelihood. In

Eq. 2, all of the data was uncensored, so that each observation made a

contribution of f(t) to the likelihood.
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Figure 4: Histograms created from replicate data sets of size 50 drawn using
posterior samples of (µ, σ2). (Left) Computed deviance from replicate data
sets, with observed data deviance in red. (Right) Computer 75th percentile
from replicate data sets, with observed data 75th percentile in red.

Type of Observation Failure Time Contribution
Uncensored T = t f(t)
Left censored T ≤ tL F (tL)
Interval censored tL < T ≤ tR F (tR)− F (tL)
Right censored T > tR 1− F (tR)

Table 2: Likelihood contributions for censored data.
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3 More Details

3.1 Priors Distributions

Many people are uncomfortable with the Bayesian approach, often because

they view the selection of a prior as being arbitrary and subjective. The prior

distribution should capture the information known about the component or

system of interest and be defensible. Careful thought should always be put

into the prior distribution, as naively specified priors can lead to misleading

results. Building a prior begins with the properties of the parameter of

interest: if a parameter needs to be positive, choose a distribution that is

also positive. From there, prior construction can be broadly grouped into

the specification of informative and non-informative distributions.

The non-informative prior is also commonly referred to as a flat, diffuse,

vague, or objective prior. In general, a non-informative prior tries to capture

the idea of minimal knowledge about the parameter. These priors include

only basic information about parameters, like the reliability has a uniform

chance of being any value between 0 and 1. See Berger (2006) and Ghosh

(2011) for discussion and examples. Note that Jeffrey’s priors are priors that

are invariant under reparametrization of the parameters. While they are

considered objective, these priors are not always proper (i.e., they do not

integrate to 1) and may not perform satisfactorily in some cases (Box and

Tiao, 1973; Datta and Ghosh, 1996).

Informative priors can be based on subject matter expert and subjective
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assessments (see Von Winterfeldt and Edwards (1986); Morgan and Henrion

(1991); U. S. Nuclear Regulatory Commission (1994); Meyer and Booker

(2001); Garthwaite et al. (2005); Bedford et al. (2006); Goldstein (2006);

O’Hagan et al. (2006)), or previous test data (e.g., Johnson et al. (2005);

Dickinson et al. (2015)). Some general notes on developing priors: ensure

that the prior information is relevant to the current reliability evaluation.

Allow for the analysis to change freely based on the data observed. Be

mindful that any value of reliability with zero probability in the prior has

zero probability in the posterior, regardless of the amount of data observed. It

is always prudent to check impact of the prior assumptions: explore the prior

predictive distributions and re-check the analysis with a sensitivity study. A

good model should be fairly robust to prior specifications.

3.2 Hierarchical Models

Situations arise in reliability assessments where multiple parameters are thought

to be similar but not identical. Consider the failure rate for a family of ve-

hicles. Here, knowing that the vehicles are built on the same chassis or have

common parts means data about failure rates from one vehicle variant also

provides information about the failure rate of the other variants. In Dickin-

son et al. (2015), the authors use a hierarchical model for the Stryker family

of vehicles and leverage information across vehicle variant and test phase. Hi-

erarchical models are widely applicable and can provide insight into complex

applications.
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Suppose that a new torpedo is fit with wings and can be dropped from

either a helicopter or a low flying airplane. We are interested in the miss

distance of the torpedo (i.e., the distance from the aim point to the actual

splash point in the water). Testing occurred on two helicopter variants and

three types of airplanes. Due to the placement of the launchers on the var-

ious aircraft, the accuracy of the torpedo is expected to be similar but not

identical depending on which launcher is used. The likelihood function for

the resulting data, y, is Normal, with mean µ and variance σ2. The variabil-

ity is determined to be constant across variant, but each launcher will have

a distinct mean. The prior for the means will also be Normal with mean θ

and variance τ 2 (see the model specification in 2).

yij | µi, σ2 ∼ N(µi, σ
2)

µi | θ, τ 2 ∼ N(θ, τ 2) (2)

Here, i indicates the launcher types (i = 1, . . . , 5) and j denotes the tests

for a given launcher type (j = 1, . . . , ni). The hierarchical model leverages

information from all launcher types while still allowing for distinct mean

values.

3.3 System Reliability

In the discussion so far, we have modeled systems without considering their

constituent components. However, Bayesian methods are readily applicable
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Figure 5: Three-component series system.

Table 3: Data for three-component series system with system data
Units

Successes Failures Tested
Component 1 8 2 10
Component 2 7 2 9
Component 3 3 1 4
System 10 2 12

to assessing the reliability of systems. Consider the fault tree in Figure 5,

which is a series system where the system fails if any component fails. Sup-

pose we have the data given in Table 3, which shows independent pass/fail

data for each component and for the system as a whole.

Let Ri be the reliability for component i, i = 1, 2, 3. As in the example

from Section 2.1, the likelihood for each component can be written as

L(yi | Ri) ∝ Rs
i (1−Ri)

ni−s ,

18



or more concretely for this problem, we can write the likelihood for the first

three rows of component data as

f(y1,y2,y3 | R1, R2, R3) ∝ R8
1(1−R1)

2R7
2(1−R2)

2R3
3(1−R3) .

To complete the specification of the likelihood, we also need to include the

system data. For a series system, we know that the system reliability is equal

to the product of the component reliabilities: RS = R1R2R3. To include the

system data, we have

f(y | R1, R2, R3)

∝ R8
1(1−R1)

2R7
2(1−R2)

2R3
3(1−R3)R

10
S (1−RS)2

∝ R8
1(1−R1)

2R7
2(1−R2)

2R3
3(1−R3)(R1R2R3)

10(1−R1R2R3)
2

To complete the Bayesian analysis, we now specify a prior distribution on our

three unknown component reliabilities. This specification must be done with

considerable care. For example, Figure 6 shows the induced prior distribution

when a uniform distribution is assumed for the three component reliabilities.

Note that the prior is somewhat pessimistic about the prior distribution of

system reliability, and this pessimism is only compounded as the number

of components increases (Parker, 1972). As multi-level models with data

for systems and components become more complicated, the specification of

prior distributions also become increasingly difficult (see, for example, Allella
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Figure 6: Induced prior distribution on three-component series system reli-
ability with uniform prior distributions on each component reliability. The
histogram comes from simulation and the solid line is actual prior density
function.

et al. (2005); Zoh (2012); Guo and Wilson (2013)). Developing robust prior

distributions for systems is an ongoing area of research.

Estimating reliability when no failures have been observed does not create

complications for the Bayesian approach: one simply specifies a prior distri-

bution and uses the likelihood from the observed data to get to a posterior

distribution. Even for a case where there is no observed data, the Bayesian

approach has a reasonable solution. For a single component with no data,
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the posterior is the same as the prior.

The methods that we describe here have been extended in a variety of

ways. For example, Anderson-Cook et al. (2008) considers how to incorporate

multiple diagnostics measured at the components; Guo and Wilson (2013)

describes models for binary, lifetime, degradation, and expert opinion at the

component and system level; Wilson et al. (2007) describes the development

of complex system representations; Wilson and Huzurbazar (2007) general-

ize the system structures to Bayesian networks; Anderson-Cook (2008) and

Zhang and Wilson (2016) describe model checking for incorrect system struc-

ture or dependent data.

3.4 Implementation

Many proposed Bayesian models are analytically intractable, i.e., conjugate

prior distributions do not exist or do not fit physical or theoretical con-

straints. Unless you are working with only a few parameters, the posterior

distribution is obtained by way of Markov chain Monte Carlo (MCMC) meth-

ods (Gamerman and Lopes, 2006; Albert, 2009). MCMC algorithms can be

thought of as general-purpose methods to obtain samples from an arbitrary

distribution – in the case of a Bayesian model, the posterior distribution.

The posterior samples can be used to provide posterior estimates of the pa-

rameters of interest, as well as posterior credible intervals. Posterior samples

can also be transformed to give point and interval estimates of any function

of the parameters, like the hazard or survival function from a given reliability
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model or a combination of component reliabilities to estimate the full system

reliability. For further details, see Hamada et al. (2008), Robert and Casella

(2010) and Gelman et al. (2013).

Note there are many software packages that implement Bayesian models,

including OpenBUGS, JAGS, SAS/PROC MCMC, and R packages (mcmc,

arm, bayesSurv, rstan), and many more.3

4 Areas for Further Research

4.1 Combining Data Across Tests

One of the ongoing challenges for combining information in reliability is how

to use information from multiple tests. Over time, the system changes (e.g.,

through repair or redesign) and the test environments change (e.g., develop-

mental to operational testing). There are typically not enough resources to

fully test each variant of the system during each test event, so the challenge

that arises is how to combine information from the test events to character-

ize the system and its reliability in multiple environments. Anderson-Cook

(2009, p. 241) highlights the potential advantage of solving this problem,

“If we have multiple small data sets that are each individually insufficient

to answer the question of interest, then combining them and incorporating

engineering or scientific understanding of the process should allow us to ex-

tract more from that collection of data compared to just looking at the pieces

3For more tools and resources, see https://cran.r-project.org/web/views/Bayesian.html.
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alone.”

When combining information, there is no omnibus solution. At its sim-

plest, the problem of combining information across tests involves identifying

parameters (or functions of parameters) that appear in models for multiple

tests. This implies that data from multiple tests provides information to

estimate the parameters. However, the models need to be carefully consid-

ered and evaluated to ensure that they accurately reflect the data and the

underlying physical processes. The models have to be simple enough that

they can be distinguished by the data, but at the same time complex enough

to capture the physical processes. One potentially promising approach is to

consider a hybrid of reliability growth models (National Research Council

Panel on Reliability Growth Methods for Defense Systems, 2015), that cap-

ture the arc of the test process, with models that capture, either empirically

or physically, details of the individual systems.

4.2 Assurance Testing

In an era of high reliability requirements and limited resources, leveraging

previous test data to plan the next test is essential. Here the objective is

to demonstrate that at a desired level of confidence, the system will meet

or exceed a specified requirement. Bayesian assurance tests are used to

insure that the reliability of an item meets or exceeds a specified require-

ment with a desired probability. Although practitioners often use “assure”

and “demonstrate” synonymously, Meeker and Escobar (2004) distinguish
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between reliability demonstration and reliability assurance testing. A relia-

bility demonstration test is essentially a classical hypothesis test, which uses

only the data from the current test to assess whether the reliability-related

quantity of interest meets or exceeds the requirement. A reliability assur-

ance test, however, uses supplementary data and information to reduce the

required amount of testing.

Consider SDB-II as an example. Given previous test data on each sub-

system (if available) and the 14 end-to-end tests, assurance testing ideas can

be used to plan the next test phase. We want to determine (n, c) where n

is the test sample size and c is the number of systems allowed to fail before

the “test is failed.” There are two errors we could make, either we decide

the “test is failed” when SDB-II reliability R is higher than a specified πP

or decide the “test is passed” when SDB-II reliability is lower than a spec-

ified πC . These errors are the posterior producer’s risk (choose a test plan

so that if the test is failed, there is a small probability that the reliability at

tI (the time of interest) is high) and the posterior consumer’s risk (choose

a test plan so that if the test is passed, there is a small probability that the

reliability at tI is low).

The posterior producer’s risk is shown mathematically below. Looking at

line (3), this is the probability that R ≥ πP (the integrand) given everything

known about R (i.e., p(R | x) from Section 2.1) and that we observe more
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than c failures (in brackets).

Posterior Producer′s Risk = P (R ≥ πP | Test Is Failed,x)

=

∫ 1

πP

p(R | y > c,x)dR

=

∫ 1

πP

f(y > c | R)p(R | x)∫ 1

0
f(y > c | R)p(R | x)dR

dR (3)

=

∫ 1

πP

[∑n
y=c+1(

n
y )(1−R)yRn−y

]
p(R | x)dR∫ 1

0

[∑n
y=c+1(

n
y )(1−R)yRn−y

]
p(R | x)dR

=

∫ 1

πP

[
1−

∑c
y=0(

n
y )(1−R)yRn−y

]
p(R | x)dR

1−
∫ 1

0

[∑c
y=0(

n
y )(1−R)yRn−y

]
p(R | x)dR

The posterior consumer’s risk is shown mathematically below. Looking at

line (4), this is the probability that R ≤ πC (the integrand) given everything

known about R (i.e., p(R | x) from Section 2.1) and that we observe no more

than c failures (in brackets).

Posterior Consumer′s Risk = P (R ≤ πC | Test Is Passed,x)

=

∫ πC

0

p(R | y ≤ c,x)dR

=

∫ πC

0

f(y ≤ c | R)p(R | x)∫ 1

0
f(y ≤ c | R)p(R | x)dR

dR (4)

=

∫ πC
0

[∑c
y=0(

n
y )(1−R)yRn−y

]
p(R | x)dR∫ 1

0

[∑c
y=0(

n
y )(1−R)yRn−y

]
p(R | x)dR

.

With the posterior producer and consumer risks defined, the number of
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SDB-II tests and allowable failures are chosen such that both risks are below

a threshold. For more details and examples, see Hamada et al. (2008) or

Hamada et al. (2014).

Frequently, test planning for a group of related systems requires assurance

testing ideas. For instance, a family of vehicles may go through multiple

phases of test but the next test will only have three of five variants available.

To obtain a reliability assessment of the family, information must be leveraged

across both test phase and variants. There may also be other covariates, such

as test site or two-seat and four-seat configurations. These extensions to the

assurance testing methodology are areas of future research.

5 Conclusion

Bayesian methods provide a principled way to combine information for re-

liability. They allow inferences and uncertainty quantification for complex

models and are relatively easy to implement with the ever-increasing choices

for software. While we have illustrated these methods using DoD systems,

Bayesian approaches are applicable to a wide variety of problems.

Methods for combining data require detailed thought and analysis at

every step of the process. Care must be taken to identify relevant information

for prior development, specify the likelihood, understand the model structure

(e.g., for a system or a hierarchical specification), check the sensitivity to

assumptions, and examine model fit. This is good statistical practice for any
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analysis involving complex models.
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