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Executive Summary 

A sensitivity experiment is a special type of sequential 
experimental design that is used for binary outcomes.  In this 
tutorial we look at a common live fire test outcome – whether  
armor is penetrated or not by a projectile.  Armor protection and 
projectile lethality tests often use sensitivity experiments to 
characterize a projectile’s probability of penetrating armor as a 
function of the projectile’s velocity.  These tests are referred to 
as “sequential” because the experimental design is sequentially 
updated after each shot is recorded.  Simply put, after every shot 
the velocity of the next projectile shot is updated based on 
previous test outcomes.  Sensitivity experiments are often used 
in armor characterization testing when the objective is to 
estimate the velocity at which the projectile has a 50 percent 
probability of penetration.  In past work, the authors compared 
numerous single factor sequential designs and concluded that 
3Pod was best in terms of robustness to model misspecification, 
and accuracy. 

Multi-factor sequential design, as the name suggests, deals 
with more than one continuous factor.  Velocity is typically a 
primary factor for armor tests, but secondary factors include 

obliquity angle, yaw angle, armor temperature, and other 
physics-based continuous parameters that affect projectile 
penetration.  Sequential design, and multi-factor sequential 
design in particular, are well-suited for Live Fire Test and 
Evaluation because such tests are often conducted in a controlled 
laboratory environments where precise control of multiple 
continuous factors is possible. 

In this mini-tutorial we illustrate the challenge of modeling 
a binary response with a limited sample size, and show how 
sensitivity experiments can mitigate this problem.  We review 
eight different single factor sensitivity experiments, and present 
a comparison of these designs using simulation.  Additionally, 
we present sensitivity experiments for cases that include more 
than one factor, and highlight recent research in this area. 
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Sensit ivity Experiments Best  Pract ices



Out line

1. Introduction to Binary Response Experiments

2. Binary Response Test Design Challenges

3. 1-D Sensitivity Test Designs

4. 2-D Sensitivity Test Designs

5. Case Study: Greg Hutto
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Int roduct ion to Binary Response 
Experiments
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Pharmaceutical Industry

Lethal dose 

Effective dose

Defense Industry

Lethality of munitions

Survivability of systems

Armor Characterization
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Types of Binary Response Experiments



Defense Industry Requirements

“Munition shall have a V50 less than 2,000 ft/s”

“Armor shall have a v50 greater than 2,300 ft/s”

Historically, an arithmetic mean estimator is used to 

calculated V50
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Regression Models



Binary Response Test  Design Challenges
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Binary Response Designs Need Special Considerat ion
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Run # Velocity Response

1 1500 0

2 1500 0

3 1500 0

4 1500 0

5 3000 1

6 3000 1

7 3000 1

8 3000 1

“Evidence of perfect fit” yields bad logistic model fit



Binary Response Designs Need Special Considerat ion
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Run # Velocity Response

1 1500 0

2 1500 0

3 1500 0

4 1875 1

5 2625 0

6 3000 1

7 3000 1

8 3000 1

A zone of mixed results provides a good rough estimate of 
the logistic model curve



Zone of Mixed Results



Test  Designs to Achieve a Zone of Mixed Results

Sequential Methods with Initials Designs

Bayesian Methods
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1-D Sensit ivity Test  Designs
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– Most well-known sequential 
experimentation procedure, primarily due 
to its ease of implementation

– Developed by Dixon in 1948

Up and Down

Details of Implementation

Advantages

Disadvantages

Background

Example

Rules
– If projectile does penetrates armor, decrease velocity.
– If projectile does not penetrate armor, increase velocity.

Inputs 
– Step size
– Velocity of projectile for trial number one

Other details
– fixed step size
– step size calculated from anticipated standard deviation
– Initial shot typically taken at predicted V50

– Useful for estimating V50

– The rules are simple and practical to 
implement

– Not good for V10

– Constant step size can lead to problems 
(especially for large steps)



Langlie Method

Details of Implementation

Advantages

Disadvantages

Background

Example

– Useful for estimating V50

– Has an adaptive step size

– Not designed for d-optimal curve 
fitting

– Not as easy to implement as up and 
down method

– Numerous modified versions exist

– Developed in early 60s



– If projectile does penetrates armor, decrease velocity.

– If projectile does not penetrate armor k times in a row, 
increase velocity.

– The step size is chosen based on the standard deviation of 
the predicted response curve.

– Targets Pth quantile of interest where

– Typically, k=2 (P≈0.3) or k=3 (P≈0.2) 

– Useful for estimating percentiles away 
from the median

– Easy to implement (similar to Up and 
Down method)

K-in-a-row

Details of Implementation

Advantages

Disadvantages

Background

Example

– Less accurate for estimating V50

– A constant step size is susceptible to 
problems

– Similar to Up and Down Method

– Not typically used in armor testing



Robbins Monroe

Details of Implementation

Advantages

Disadvantages

Background

Example

– Developed in 1951
– Numerous variants of this method exist
– Used in armor testing by ARL
– Joseph (2004) improved upon method

– Useful for estimating all quantiles
– A dynamic step size has advantages

– Justification for values of c may seem 
arbitrary, poor choices of c can lead to 
inaccurate results

– Poor guess of the velocity of the first 
shot can lead to slow convergence 
and/or convergence to an inaccurate 
result

– Start the test at predicted V50.
– Determine the velocity of the next shot using

where c is an arbitrary constant , yn is the outcome 
of the nth trial (0,1), P is the desired percentile of 
interest and n is the number of trials. C is optimal 
when:

where F is the response curve and Vp is the velocity 
at the pth percentile

– Step size decreases as n increases



Neyer’s Method

Details of Implementation

Advantages

Disadvantages

Background

Example

– Developed by Neyer in 1989

– First to propose a systemic method 
for generating a good initial design

– Requires coding and capability to 
do maximum likelihood estimation

– Phase 1: Generate penetrations and 
non-penetrations. Bounds the problem. 
Determines if initial gate is too far left, 
right or narrow.

– Phase 2: Break separation. Provides 
unique MLE coefficient estimates and an 
indication that velocity is in the ballpark 
of V50.

– Phase 3: Refine model coefficients. Use 
D-optimality criterion to dictate ensuing 
shots.

Initial 
Design
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– Initial design is useful for quickly 
estimating model coefficients

– Robust to misspecification of input 
parameters



3Pod

Details of Implementation

Advantages

Disadvantages

Background

Example

– Requires maximum likelihood 
estimation

– More complex than Neyer’s 
method

– Phase 1: Generate penetrations and non-
penetrations. Similar to rules to Neyer’s 
method. Uses slightly different logic and 

different step sizes.

– Phase 2: Break separation.  Relies more 
heavily on conditional logic then Neyer’s 
method. 

– Phase 3: Refine model coefficients (and 
estimate of Vp). A portion of resources is 
devoted to D-optimal algorithm and the 
other portion in used for placing shots near 
Vp (velocity percentile value of interest) 
using Robbins Monroe Joseph method.

Initial 
Design

– Developed by Wu in 2013

– Similar to Neyer’s Method

– Similar to Neyer’s Method, good 
initial design



Example of 3Pod Results
• Example of 30 Shots for 3-Phase Approach (3Pod) 



Simulat ion Comparison

20



Simulat ion Factors and Responses

Factors

1. Estimator (Probit-MLE, Arithmetic Mean)

2. Method (Up Down Method, 3Pod, Langlie, etc…)

3. Stopping criteria (“3&3”, break separation)

4. μguess (μtrue - 2σtrue , μtrue , μtrue + 2σtrue )

5. σguess     (1/3σtrue , 1/2σtrue , 2σtrue , 3σtrue )

Calculated as the difference between the “true” V50 (or V10) and 
the V50 (or V10) estimated with the simulated runs

Response
1. V50 Error

2. V10 Error





V50 Error V10 Error



Runs for Stopping Criteria



Recommend 3Pod or Neyer Method

Provides entire logistic model curve fit

Robust estimate for V50 and V10

D-optimal approach



2-D Sensit ivity Test  Designs
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Sensit ivity Test  Designs with Two Factors

– Response is binary
– no interaction terms 
– Two continuous factors
– Primary factor is velocity



Pract ical Mult i-Factor Sequent ial Design

1. Brute force use of single factor sequential designs in multi-dimensional design space
 Intuitive design and easy to implement

2. Propose a modified sequential design to search D-optimal points across multiple factors

3. Bayesian Sequential Design by Dror and Steinberg (2008)
 Established, practical sequential design for multiple factors

 Uses prior information about armor performance to search for D optimal points

Armor Plate Size
S M L

Obliquity
Angle (deg)

0 3Pod 3Pod 3Pod
20 3Pod 3Pod 3Pod
40 3Pod 3Pod 3Pod

Dror and Steinberg, Sequential Experimental Designs for Generalized Linear Models, Journal of the American Statistical Association, p 288-298, March 2008.

Practical multi-factor sequential designs:

Each 3Pod uses 
velocity as factor 



1. 3Pod, Neyer, and DS focus on D-optimality 
 D-optimality is a widely accepted design criteria

 D-optimality is a widely accepted design criteria

 minimizes the confidence ellipsoid on coefficients

2. Multi-factor sequential designs are compared in terms of D-efficiency
 The D-efficiency of a candidate design is calculate as 

Role of D-Opt imality in Sequent ial Designs

𝑋𝑋 is the m x p model matrix.

Σ is the variance-covariance matrix for the m x 1 vector of binomial 
variables, each being ∑𝑗𝑗 𝑦𝑦𝑖𝑖𝑗𝑗 , the sum of events at the 𝑖𝑖𝑡𝑡𝑡 design point. 

Σ is an m x m diagonal matrix with the 𝑖𝑖𝑡𝑡𝑡 diagonal element being 𝑛𝑛𝑖𝑖𝑃𝑃𝑖𝑖 1 − 𝑃𝑃𝑖𝑖 .

The D-optimality designs criterion for fitting a logistic model maximizes the 
determinant of the information matrix among all competing designs Ω . 

The fisher information matrix is 

𝑀𝑀𝑀𝑀𝑀𝑀Ω 𝐼𝐼 𝛽𝛽

Calculation of D-optimality

𝐼𝐼 𝛽𝛽 = 𝑋𝑋′Σ𝑋𝑋

D-efficiency = 
𝑋𝑋′Σ𝑋𝑋 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐷𝐷𝐶𝐶𝐷𝐷𝐶𝐶𝐷𝐷𝐶𝐶

𝑋𝑋′Σ𝑋𝑋 𝐷𝐷−𝑜𝑜𝑜𝑜𝐶𝐶𝐶𝐶𝑜𝑜𝐶𝐶𝑜𝑜 𝐷𝐷𝐶𝐶𝐷𝐷𝐶𝐶𝐷𝐷𝐶𝐶
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D-Optimal Design with 1 Factor

• The single factor logistic regression model, 𝑙𝑙𝑛𝑛 𝑝𝑝
1−𝑝𝑝

= 𝛽𝛽0 + 𝛽𝛽1𝑀𝑀1, 
can be reparametrized in terms of location-scale parameters as 
𝑙𝑙𝑛𝑛 𝑝𝑝

1−𝑝𝑝
= 𝑥𝑥1−𝜇𝜇

𝜎𝜎
, where 𝜇𝜇 = −𝛽𝛽0

𝛽𝛽1
and 𝜎𝜎 = 1

𝛽𝛽1
– 𝜇𝜇 is 𝑉𝑉50 and 𝜎𝜎 is the amount of slope in the curve
– Figure 1 illustrates various logistic model curve fits

• Abdelbasit and Plackett derived the determinant of the fisher 

information matrix: 𝐼𝐼 = 𝑛𝑛2𝑤𝑤1𝑤𝑤2
𝜎𝜎2

(𝑀𝑀1 − 𝑀𝑀2)2, where 𝑤𝑤𝑖𝑖 =

𝑝𝑝𝑖𝑖 1− 𝑝𝑝𝑖𝑖 and  𝑀𝑀𝑖𝑖 = 𝑙𝑙𝑛𝑛 𝑝𝑝𝐶𝐶
1−𝑝𝑝𝐶𝐶

𝜎𝜎 + 𝜇𝜇 , for 𝑖𝑖 = 1, 2.

– Assumes a 2 point design where where 𝑝𝑝1 is symmetrical to 
𝑝𝑝2, and 𝑛𝑛 is the number of runs at each point.

• Abdelbasit and Plackett showed the solution is the 𝛿𝛿 that 
maximizes 𝐼𝐼 , where 𝑝𝑝1 = 𝛿𝛿 and 𝑝𝑝2 = 1 − 𝛿𝛿

• The D-optimal solution (Figure 2) is 𝑝𝑝1 = 0.176 and 𝑝𝑝2 = 0.824
– Meaning that half of the shots are fired at 𝑉𝑉17.6 and the other 

half are fired at 𝑉𝑉82.4

D-Optimal 1-Factor Design 
Specifies Shots at 𝑉𝑉17.6 and 𝑉𝑉82.4

𝐼𝐼

𝛿𝛿

𝛿𝛿 = 0.176

Figure 1 – Example Model Fits

Figure 2 – Numerical Solution

Abdelbasit and Plackett, Journal for the American Statistical Association, Vol. 78, No. 381, pp. 90-98, March 1983.
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D-Optimal Design with 2 Factors

• The dual factor logistic regression model can be expressed as 
𝑙𝑙𝑛𝑛 𝑝𝑝

1−𝑝𝑝
= 𝛽𝛽0 + 𝛽𝛽1𝑀𝑀1 + 𝛽𝛽2𝑀𝑀2 or  𝑙𝑙𝑛𝑛 𝑝𝑝

1−𝑝𝑝
= 𝑢𝑢

• Sitter and Torsney (1995), and Jia and Meyers (2001) 
developed a 4 point D-optimal design

– 2 points are placed at the lower obliquity angle setting 𝜃𝜃𝐿𝐿
and 2 points are placed at the upper setting 𝜃𝜃𝑈𝑈

– Results in a location-scale parametrization:

– 4 point D-optimal design:

– where 𝑢𝑢 and 𝑤𝑤 are numerically solved for using equations:

𝜇𝜇𝐿𝐿 = − ⁄𝛽𝛽0 𝛽𝛽2 − ⁄𝛽𝛽1𝜃𝜃𝐿𝐿 𝛽𝛽2 , 𝜇𝜇𝑈𝑈 = − ⁄𝛽𝛽0 𝛽𝛽2 − ⁄𝛽𝛽1𝜃𝜃𝑈𝑈 𝛽𝛽2 ,𝜎𝜎 = ⁄1 𝛽𝛽2

Location

Weight

Point 1

−𝑢𝑢 − 𝛽𝛽0, 0

𝑤𝑤

Point 2

0,−𝑢𝑢 − 𝛽𝛽0

𝑤𝑤

Point 3

𝑢𝑢 − 𝛽𝛽0, 0

1
2
− 𝑤𝑤

Point 4

0,𝑢𝑢 − 𝛽𝛽0

1
2
− 𝑤𝑤

𝑢𝑢2 3 + 3𝑒𝑒𝑢𝑢 + 2𝑢𝑢 − 2𝑢𝑢𝑒𝑒𝑢𝑢 + 𝛽𝛽02 1 + 𝑒𝑒𝑢𝑢 + 2𝑢𝑢 − 2𝑢𝑢𝑒𝑒𝑢𝑢

+ 𝑢𝑢4 + 14𝛽𝛽02𝑢𝑢2 + 𝛽𝛽04 1 + 𝑒𝑒𝑢𝑢 + 𝑢𝑢 − 𝑢𝑢𝑒𝑒𝑢𝑢 = 0

𝑤𝑤 = �−𝑢𝑢2 + 6𝑢𝑢𝛽𝛽0 − 𝛽𝛽02 + 𝑢𝑢2 + 14𝛽𝛽0𝑢𝑢 + 𝛽𝛽02 24𝛽𝛽0𝑢𝑢 D-Optimal 2-Factor Design 
Specifies Shots at 𝑉𝑉22.7 and 𝑉𝑉77.3

Jia and Myers, Proceedings of the Annual Meeting of the American Statistical Association, August 2001.

𝜃𝜃𝐿𝐿 𝜃𝜃𝑈𝑈

𝜇𝜇𝐿𝐿 = 1392 , 𝜇𝜇𝑈𝑈 = 1932 , 𝜎𝜎 = 120

obliquity angle Impact velocity

Figure 3 – Example Model Fit

Figure 4 – Numerical Solution
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Expanding 3Pod’s D-Optimal Search to Two Factors

• Proposed strategy to implement 3Pod in a two factor space
1. Conduct initial design with velocity as the factor at zero degree obliquity 
2. Conduct an additional initial design with velocity as the factor at 45 degree obliquity 

angle
3. Select next point by searching velocity settings that maximize the determinant of the 

fisher information matrix. 
» Constrain search to velocities at 0 and 45 degree obliquity since we know that is where the 

4 point locally d-optimal points is
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Theoretical Improvement

• We can calculate the improvement gained by expanding the search to additional factors, since 
we can analytically solve for the D-optimal design

• Three 30 run designs considered:

• These designs are infeasible in practice because we don’t have prior knowledge of coefficients
– We must run simulations that include an initial design to determine practical improvement

Obliquity Angle
0 deg 22.5 deg 45 deg

10 runs
(5 runs @ 

V17.6,
5 runs @ 
V82.4)

10 runs
(5 runs @ 

V17.6,
5 runs @ 
V82.4)

10 runs
(5 runs @ 

V17.6,
5 runs @ 
V82.4)

Obliquity Angle
0 deg 45 deg

15 runs
(7 runs @ 

V17.6,
8 runs @ 
V82.4)

15 runs
(7 runs @ 

V17.6,
8 runs @ 
V82.4)

Obliquity Angle
0 deg 45 deg

15 runs
(7 runs @ 

V22.7,
8 runs @ 
V77.3)

15 runs
(7 runs @ 

V22.7,
8 runs @ 
V77.3)

Design 1 Design 2D-optimal Design

D-efficiency:

𝑋𝑋′Σ𝑋𝑋 :

1.0 .896 .600

1.5E9 1.4E9 1.0E9



Simulat ion Setup
12 run factorial experiment

 Response: D-efficiency

 Factors:
 Methods

 3Pod w/ 1-factor D-optimal search (3Pod-1D)

 3Pod w/ 2-factor D-optimal search (3Pod-2D)

 Dror-Steinberg Method (D-S)

 Langlie Method

 Sample Sizes

 60, 120

Method Input parameters
 D-S requires prior uniform distributions on model coefficients

 3Pod requires specification of 𝜎𝜎𝐺𝐺 and 𝜇𝜇𝐺𝐺 at 0 and 45 degree obliquity angle

 To make a fair comparison, inputs for each method need to be equivalent

Constant inputs into simulation
 Assumed true logit model: 𝑏𝑏𝑇𝑇 = 𝑏𝑏0𝑇𝑇 𝑏𝑏1𝑇𝑇 𝑏𝑏2𝑇𝑇 = −11.6 −.1 .0083
 Number of simulations per factorial trial: 1,000



Simulat ion Setup
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Simulation Results



Simulat ion Results

D efficiency
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Recommendat ions

D-S and 3Pod2D perform best

Further investigation into the practicality, and robustness 

of D-S is needed
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