

IN S T IT U T E F O R D E F E N S E A N A L Y S E S

Securely Using Software Assurance (SwA)

Tools in the Software Development
Environment

E. Kenneth Hong Fong, Project Leader
David A. Wheeler
Daniel J. Reddy

July 2018

Approved for public release;
distribution is unlimited.

IDA Document

P-9166

INSTITUTE FOR DEFENSE ANALYSES
4850 Mark Center Drive

Alexandria, Virginia 22311-1882

About This Publication
This work was conducted by the Institute for Defense Analyses (IDA) under contract
HQ0034-14-D-0001, Task AU-5-3856, “Enhancing Program Protection Through Effective
Systems Assurance,” for OUSD(R&E) Enterprise Engineering. The views, opinions, and
findings should not be construed as representing the official position of either the
Department of Defense or the sponsoring organization.
Acknowledgments
Reginald N. Meeson

For more information:
E. Kenneth Hong Fong, Project Leader
ehongfon@ida.org, 703-578-2753
Margaret E. Myers, Director, Information Technology and Systems Division
mmyers@ida.org, 703-578-2782

Copyright Notice
© 2018 Institute for Defense Analyses
4850 Mark Center Drive, Alexandria, Virginia 22311-1882 • (703) 845-2000.

This material may be reproduced by or for the U.S. Government pursuant to the
copyright license under the clause at DFARS 252.227-7013 (a)(16) [Jun 2013].

mailto:mmyers@ida.org

IN S T IT U T E F O R D E F E N S E A N A L Y S E S

IDA Document P-9166

Securely Using Software Assurance (SwA)
Tools in the Software Development

Environment

E. Kenneth Hong Fong, Project Leader

David A. Wheeler
 Daniel J. Reddy

i

Executive Summary

Software assurance (SwA) may be defined as “the level of confidence that software
is free from vulnerabilities, either intentionally designed into the software or accidentally
inserted at any time during its lifecycle, and that the software functions in the intended
manner” [CNSSI 4009]. Since modern systems are under constant attack, sufficient SwA
is vital. In practice, a suite of SwA tools is necessary to help achieve this, as previously
shown in the IDA paper State-of-the-Art Resources (SOAR) for Software Vulnerability
Detection, Test, and Evaluation 2016 [Wheeler 2016].

However, there are potential challenges in securely using a suite of SwA tools.

Software development environments (SDEs) are increasingly under focused attack,
since subverting software during development can be easier than subverting it after it is
deployed. One mechanism for subverting SDEs is to exploit vulnerabilities in an SDE’s
tools or to provide maliciously subverted tools to an SDE. Adversaries know that a suite
of SwA tools is necessary for higher-assurance software and therefore may increasingly
try to attack our systems through our SwA tools.

In addition, SwA tools have properties that can make them attractive targets for
adversaries. Projects should use a large set of SwA tools to increase the probability of
detecting vulnerabilities. In addition, SwA tools often have privileged access to
information such as source code and test data. However, a large number of tools with
privileged access increases the attack surface (the possible points of attack), and
defenders will have difficulty reviewing all those SwA tools before use. In addition,
updates of SwA tools are typically deployed rapidly, adding to the difficulty of timely
review.

Many organizations (including many parts of the Department of Defense (DoD))
impose significant restrictions on installing and updating any software (including SwA
tools), especially in privileged environments or on an organization’s main network. There
are valid reasons for these restrictions, as they are one way to counter some risks.
However, these restrictions can make it especially difficult to use a full suite of SwA
tools, even though a suite is necessary to achieve adequate SwA in practice.

The goal of this paper is to help ease the deployment of SwA tools, by countering
potential objections to using them. To achieve this, we discuss how to protect against
potential supply chain risks of SwA tools themselves, including how to protect the SDE
in general against supply chain risks, and how the mechanisms to counter SwA tool risks
fit into the SDE. We show that it is possible to modify SDE practices to use a wide
variety of SwA tools and still manage the inherent risks. Isolation mechanisms can be

ii

used, for example, to separate tools and restrict access for specific tasks. Isolation
mechanisms can be automated and may reduce risk in a relatively uncomplicated manner.

We first discuss past attacks and countermeasures (Chapter 2), the problem
including the overall security goals (Chapter 3), and security weaknesses of some
common approaches (Chapter 4). This is followed by how to develop solutions (Chapter
5), sample solutions (Chapter 6), and conclusions (Chapter 7). Appendices provide proofs
of concept (Appendix A), a quick implementation guide for the medium solution
(Appendix B), a discussion of DoD policies (Appendix C), and a list of acronyms and
abbreviations (Appendix D) Together, this material discusses how to protect against the
supply chain risks that could be caused by SwA tools themselves and to help ease the
deployment of the many SwA tools necessary for higher-assurance software.

Figure 1. Medium Protection Illustration

In particular, the proposed “medium protection” approach discussed in detail in
Chapter 6 should be easy to incorporate in existing SDEs (this approach is briefly
summarized in Appendix B and illustrated in Figure 1). This sample solution reduces
risks by using isolation mechanisms to separate environments based on the task to be
done (install/update and analysis). This sample solution can be automated, and in some
circumstances it may reduce risk in a relatively uncomplicated manner. These
automations could be implemented with simple scripts that are shared widely, making the
approach easy to implement.

We recommend that organizations fully embrace the use of many SwA tools when
developing software. Where appropriate, they should consider taking the additional steps
discussed here if they determine that the risks of using SwA tools are otherwise too high.
Our hope is that this information will lead to the widespread safe use of suites of SwA
tools.

SwA tool
distribution

Install/update CE
(no code access)

Analysis CE
(no Internet

access)

Rest of (trusted) software
development environment,

including editing environment
and version control

Image
with tool

Forbidden
if tainted

Taints if
writable

iii

Contents

1. Introduction ... 1-1
2. Past Attacks and Countermeasures .. 2-1

 Past Attacks Involving the Software Supply Chain or SDEs 2-1
 Past and Current Methods of Countering Attacks on the Software Supply Chain

or SDEs.. 2-6
3. Problem .. 3-1

 Threats ... 3-1
 Assets ... 3-2
 Overall Environment ... 3-3
 Supply Chain Risk Management (SCRM) .. 3-4
 Security Goals ... 3-4

4. Weaknesses of Common SDE Technical Approaches .. 4-1
 Example 1: Analysis Remotely Executed ... 4-1
 Example 2: Locally Executed with Internet Access .. 4-2
 Example 3: Individual Roaming SDE ... 4-3
 Example 4: Physically Secured Development Environment within

Disconnected Private Network .. 4-5
5. Developing Secure SDE Solutions .. 5-1

 Security Principles ... 5-1
 Project Policies .. 5-2
 Designing the SDE for Security .. 5-3
 Isolation Mechanisms .. 5-5
 Communication Mechanisms .. 5-7
 Solution Implementation ... 5-8
 Maximize Automation ... 5-8

6. Sample Solutions ... 6-1
 Solution 1: Medium Protection ... 6-1

1. Properties ... 6-2
2. Designing CEs for Different Purposes .. 6-3
3. Handling Results ... 6-5
4. Discussion ... 6-5
5. Meeting Security Goals for Solution 1 .. 6-6

 Solution 2: High Protection ... 6-8
1. Properties of Solution 2 ... 6-8
2. Meeting Security Goals for Solution 2 .. 6-13

7. Conclusions ... 7-1
Appendix A Proofs of Concept ... A-1
Appendix B Medium Solution: Quick Implementation Guide ..B-1

iv

Appendix C DoD Policies on Countering Supply Chain or Software Development
Environment (SDE) Attacks ..C-1

Appendix D Acronyms and Abbreviations ... D-1

Figures
Figure 1. Medium Protection Illustration .. ii
Figure 4-1. Analysis Remotely Executed .. 4-1
Figure 4-2. Locally Executed ... 4-3
Figure 6-1. Medium Protection Illustration ... 6-2
Figure 6-2. High Protection Illustration ... 6-8

Tables
Table 2-1. Some Prominent Software Supply Chain or SDE-based Attacks 2-1
Table 3-1. Security Goals and Threat Agents (General).. 3-6
Table 6-1. Security Goal Coverage by Solution 1 ... 6-7
Table 6-2. Security Goal Coverage by Solution 2 ... 6-13

1-1

1. Introduction

Software assurance (SwA) may be defined as “the level of confidence that software
is free from vulnerabilities, either intentionally designed into the software or accidentally
inserted at any time during its lifecycle, and that the software functions in the intended
manner” [CNSSI 4009]. Like safety, this is an idealized goal, and achieving sufficient
SwA requires a combination of measures to remove vulnerabilities and their impact to
systems. Since modern systems are under constant attack, sufficient SwA is vital.

In practice, there is a clear need for “predictable and scalable analysis tools that
increase trust in software” [Wagoner]. Indeed, a suite of SwA tools is necessary to detect
vulnerabilities adequately enough to achieve good SwA. Different SwA tools find
different things, and few guarantee that they will find everything [Wheeler 2016]. The
Building Security in Maturity Model (BSIMM) is the result of a multiyear study of real-
world software security initiatives, and version 8 of the BSIMM survey shows that many
different kinds of SwA tools are in use today across a variety of organizations [BSIMM
2017].1 A step-by-step discussion of how to use SwA static analysis tools is provided in
[Kupsch 2016]. Using many different kinds of SwA tools is an excellent approach for
detecting vulnerabilities in software during development. However, there are challenges
in installing many different kinds of SwA tools.

Many organizations (including many parts of the DoD) impose significant
restrictions on installing and updating software (including SwA tools), especially in
privileged environments or an organization’s main network. Examples of such
restrictions and review processes include the Army Certificate of Networthiness (CoN)
[ArmyCoN], Department of the Navy’s Application and Database Management System
(DADMS), The Defense Information Systems Agency’s DoD Information Network
(DODIN) Approved Products List (APL), the Risk Management Framework (RMF)
“Assess Only” approach, and Common Criteria evaluations. These processes can take
significant time and money, especially if there is a perception of increased risk. These
delays and costs can make it difficult to deploy many SwA tools.

1 BSIMM8 identifies several activities that involve tools, including CR1.4 (Use automated tools along

with manual review, aka static source code vulnerability analysis), CR3.4 (Automate malicious code
detection), ST2.1 (Integrate black-box security tools into the QA process, which focuses on dynamic
analysis approaches like web application scanning), CR3.1 (Use automated tools with tailored rules),
SR2.4 (Identify open source [with known vulnerabilities], aka origin analysis). Note that there are many
different kinds of tools identified.

1-2

A software development environment (SDE) is the collection of hardware and
software tools a system developer uses to build software systems; it augments or
automates the activities comprising the software development cycle, including tasks such
as configuration management, project management, and team management [Dart 1992].
Alternative terms for SDE include software engineering environment (SEE). Note that an
SDE is a collection of tools and supporting processes, not any one tool. The term
integrated development environment (IDE) is usually used to describe a particular type of
tool (an editor and a few related tools) used in an SDE; an IDE is not an SDE by itself.
Similarly, the term programming environment often refers to just the part of the SDE
involved directly in implementation. The term SDE is used even if the software is in a
sustainment (maintenance) stage/phase. Modern software development takes place in
some kind of SDE.

Whether or not an organization imposes significant restrictions on installing and
updating software, there is a disturbing trend: SDEs themselves are increasingly under
focused attack. Examples of attacks on SDEs include XCodeGhost, Expensive Wall /
Shady SDK, and others, as described more fully in Chapter 2. For example, XCodeGhost
distributed subverted software development tools that led to the deployment of subverted
systems. Thus, the risk of attacks on SDEs, including via software tools, should not be
ignored. In addition, adversaries know that a suite of SwA tools is necessary for higher-
assurance software and therefore may increasingly try to attack our systems through our
SwA tools (which may be unintentionally vulnerable or subverted).

In this paper, we focus on identifying practical approaches to protect against the
supply chain risks of SwA tools themselves, with some discussion about how to protect
the SDE in general against supply chain risks and how the mechanisms to counter SwA
tool risks fit into them. Our goal is to help ease the deployment of SwA tools by
countering a potential objection to using them.

This focus on supply chain risks of SwA tools may seem surprising, since SwA
tools are specifically selected and used to improve the security posture of software under
development and/or its execution environment. However, SwA tools can also pose a risk:

1. Like many other tools in the SDE, SwA tools often have privileged access to
information such as source code and test data as typically deployed today.

2. SwA tools are used differently in the SDE in ways that make them easier vectors
for attackers to exploit:

a. Projects should use a large set of SwA tools to increase the probability of
finding vulnerabilities. The number of tools, however, provides attackers a
larger attack surface (the set of all SwA tools used by a project), and
defenders will have difficulty reviewing all those tools before use. Projects
will typically use a large set of SwA tools so that they can address a range of

1-3

technical objectives, because most SwA tools can only address a few
technical objectives. In contrast, in most cases, only one or a few tools are
used for any particular purpose in an SDE (e.g., compilers).

b. Updates of SwA tools are typically deployed rapidly. This makes fully
reviewing SwA tools in a timely way even more difficult. This is in contrast
to tools like compilers, which, in many environments, are updated only after
careful review (since any update could create a new subtle error).

An SwA tool can be a risk even if an SwA tool supplier is not malicious. A
determined adversary could create a malicious SwA tool, but an adversary could also
attempt to subvert a non-malicious supplier’s SDE or supply chain (either upstream or
downstream). The unintentional vulnerabilities in an SwA tool might also be exploited
and allow a foothold for further attack. This means that, in some cases, the risks of SwA
tools should be addressed to ease deployment of many SwA tools.

In this paper, we identify practical approaches to protect against the supply chain
risks of SwA tools themselves, so that projects can use and update a large number of
SwA tools with much greater confidence and acceptable risk. These approaches are
primarily technical measures, so that they can be automated. If these technical measures
can be relatively low cost and scale up to large systems they will reduce a barrier to using
SwA tools. More SwA tools, updated more often, should enable projects to produce more
secure software.

There are other approaches to deal with these risks without using scalable technical
measures as described in this paper. However, those alternatives will often be worse. One
approach is to simply ignore the risk and blindly accept the consequences, but this is
obviously not a good approach.

A second approach would be to use relatively few SwA tools. Unfortunately, that
could lead to more undetected vulnerabilities left within the software under development.

A third approach would be to review SwA tools and their suppliers before using
these tools. Reviews can be helpful in reducing risk. There are two major kinds of
reviews, and each kind has limitations:

• Acquirers can review suppliers and/or their goods and services. Review of SwA
tools for risks is a good idea, and it can be valuable to evaluate SwA tool
suppliers for the potential risks they themselves pose. However, independent
reviews of potential suppliers can be difficult and expensive, and there is always
the potential for missing important problems.

• Potential suppliers can present evidence to acquirers of adherence to best
practices. For example, the Open Group’s Open Trusted Technology Provider
Standard (O-TTPS), aka ISO/IEC 20243, is an “open standard containing a set of

1-4

organizational guidelines, requirements, and recommendations for integrators,
providers, and component suppliers to enhance the security of the global supply
chain and the integrity of commercial off-the-shelf (COTS) information and
communication technology (ICT).” [OpenGroup 2014]. Open source software
(OSS) can attempt to achieve a badge through the Linux Foundation Core
Infrastructure Initiative (CII) Best Practices project [LF2017]. However, in many
cases, suppliers do not have such evidence to provide (e.g., they might not be
following any particular best practices, or may refuse to provide evidence of it).

Reviewing a large number of SwA tools, however, can be challenging. As noted
above, it is best to use a wide variety of SwA tools, since different tools can help find
different problems. In addition, it’s valuable to use the latest versions of SwA tools, since
they are often rapidly improved. Reviews are still valuable for SwA tools and their
suppliers, especially if either are high risk. However, the large number of tools and their
rapid updates make reviews (by acquirer or supplier) difficult to apply to all SwA tools,
and it is wise to be skeptical even after reviews. Other measures, such as those described
in this paper, can provide additional forms of protection.

A fourth approach is to disable all Internet access to SDEs. This can prevent many
kinds of exfiltration. However, analysis results must eventually come out of SwA tools
and SDEs, so this still provides opportunities for exfiltration. In addition, restricting
exfiltration paths does not counter malicious insertion of code. What’s more, isolated
SDEs can be unnecessarily hard to work within. For example, tool updates may be
extremely difficult, and yet these updates can increase overall SwA.

This paper is written in support of the efforts of the DoD Joint Federated Assurance
Center (JFAC). The JFAC charter section 4 states that the “JFAC is the federation of all
[DoD] entities having software and hardware assurance capabilities needed by programs.
The JFAC will develop, maintain, and offer software and hardware vulnerability
detection, analysis, and remediation capabilities…” [JFAC 2015]. In particular, the JFAC
is to provide guidance and best practices (charter section (4)(a)), establish and enable
efficient and affordable acquisition and use of SwA tools (charter section (4)(d)), and
coordinate access to and capability for applying tools and support environments (charter
section (5)(a)(3)). Again, our goal is to help ease the deployment of SwA tools by
countering a potential objection to using them.

We first discuss past attacks and countermeasures (Chapter 2), the problem
including the overall security goals (Chapter 3), and security weaknesses of some
common approaches (Chapter 4). This is followed by how to develop solutions (Chapter
5), sample solutions (Chapter 6), and conclusions (Chapter 7). Appendices provide proofs
of concept (Appendix A), a quick implementation guide for the medium solution
(Appendix B), a discussion of DoD policies (Appendix C), and a list of acronyms and
abbreviations (Appendix D). Together, this material discusses how to protect against the

1-5

supply chain risks that could be caused by SwA tools themselves and to help ease the
deployment of the many SwA tools necessary for higher-assurance software.

2-1

2. Past Attacks and Countermeasures

This chapter discusses past attacks involving the software supply chain or SDEs, as
well as past and current methods of countering such attacks. For more about Department
of Defense policies related to countering attacks on the supply chain or SDEs, see
Appendix C.

Past Attacks Involving the Software Supply Chain or SDEs
Many past attacks have involved the software supply chain or SDE, typically by

exploiting the supply chain to deliver attacks. These attacks appear to be accelerating in
frequency and effectiveness. Table 2-1 lists some prominent software supply chain
attacks. Attack notes marked with “*” are also in the “Software Supply Chain Attacks”
placemat [Shaw 2017a]. That placemat’s supporting reference list [Shaw 2017b] provides
additional notes in those cases; supporting sources for each attack are provided in the text
following the table.

Table 2-1. Some Prominent Software Supply Chain or SDE-based Attacks

Date Attack Name
Target

Technology Attack Vector Attack Note
Nov 2003 Unnamed

attack on
Linux kernel

Linux kernel
source code

Version control
system

Unknown attacker attempted to
insert a vulnerability into the Linux
kernel

Mar 2011 RSA RSA
SecurID

Targeted cyber
attack

Targeted cyber attack on RSA
systems led to an attempted
though failed attack on a DoD
contractor (an RSA customer)

Oct 2014 Unnamed
attack via
Tor

Downloaded
Windows
software

Tor Software downloaded via
anonymizing service Tor was
subverted

Dec 2015 XCodeGhost iOS SDE tool attack “Fake version of the developer
tool distributed to site frequented
by developers”*

Jan 2017 Expensive
Wall / Shady
SDK

Android SDE tool attack “Obfuscation used by malware
developers to encrypted malicious
code, allowing evasion of anti-
malware protections”*

Mar 2017 Dimnie GitHub users Email +
Malicious Word
document +
PowerShell

Malicious Trojan designed to steal
passwords, download sensitive
files, etc. from developers using
the widely used GitHub service

2-2

Date Attack Name
Target

Technology Attack Vector Attack Note
Jun 2017 PyPI attack Python Repository

attack
False libraries uploaded to the
Python Package Index (PyPI)
repository, similar to a
typosquatting attack*

Jun 2017 NotPetya MeDoc Patch site attack “Software infrastructure
compromise to tamper with
code.”*

Jul 2017 Shadowpad Network
management
software
suite

Source code
attack

“Backdoor injected into a network
management software suite then
pushed through software update”*

Aug 2017 Floxif CCleaner Insider/download
site attack

“Infiltration into development or
distribution process before
cryptographic signature for
software occurred”*

Aug 2017 Chrome
extension
attacks

Chrome
extensions

Phishing on
developers of
extensions

Developers of Chrome extensions
had their login credentials stolen
through a phishing attack;
attackers modified the extensions
and compromised 4.8M users

Aug 2017 HackTask JavaScript Software
development
tool attack

Typosquatting attack*

Oct 2017 North
Korean
attack on
Hauri

Hauri anti-
virus
software

Source code
attack

“Infiltrated network of a company
providing computer anti-virus
service [for South Korean
military]”*

In November 2003, someone attempted to modify the Linux kernel to insert a

vulnerability. This attack was detected by the version control (VC) system, as well as by
developers and source code conventions, and was never delivered to users [Andrews
2003].

RSA (then the security division of EMC; now part of Dell Technologies) publicly
disclosed on March 17, 2011, that they had detected a targeted cyber attack on their
systems and that certain information related to their RSA SecurID product had been
extracted. [Coviello 2011]. One RSA customer, “Lockheed Martin, has confirmed that
information taken from RSA has been used as part of a broader attack against it; an attack
that the customer successfully thwarted.” [EMC 2011]. The RSA executive chairman
noted, in testimony to a committee of the U.S. House of Representatives, that “we are
seeing increases in attacks on one organization to be leveraged in an attack on another
organization” [Coviello 2011].

2-3

In 2014, it was revealed that Windows software downloaded via Tor (an
anonymizing service) in some cases was modified to include malicious code. Even files
downloaded through Windows update could be affected [Hern 2014].

The XCodeGhost attack released a subverted version of “Apple’s legitimate
iOS/OSX app development tool called Xcode to distribute [malicious] code in legitimate
apps. XcodeGhost’s creators repackaged Xcode installers with the malicious code and
published links to the installer on many popular forums for iOS/OS X developers.
Developers were enticed into downloading this tampered version of Xcode because it
would download much faster in China than the official version of Xcode from Apple’s
Mac App Store. When the developers installed what they thought was a safe Apple dev
tool, they actually got a tampered version that would compile the malicious code
alongside their actual app’s code. These developers, unaware that their apps had been
tampered with, then submitted those apps to the App Store for distribution to iOS
devices” [Cockerill 2015]. XcodeGhost is the first compiler malware in OS X [Xiao
2015a] and thus is an example of a subverted software development tool. The list of
infected apps includes some of the most popular apps in China, including the ride-hailing
app Didi Kuaidi and WeChat [Goodin 2015], and thus affected hundreds of millions of
users [Xiao 2015b].

“Malware authors hid malicious code inside a software development kit (SDK) that
developers embedded in their Android apps, unwittingly exposing their users to a mobile
malware strain that Check Point identifies as ExpensiveWall… Check Point says it found
the malware hiding in over 100 apps uploaded on the official Google Play Store… the
malicious apps were downloaded between 5.9 million and 21.1 million times” [Cimpanu
2017-ExpensiveWall].

“Open source developers who use GitHub are in the cross-hairs of advanced
malware that can steal passwords, download sensitive files, take screenshots, and self-
destruct when necessary. Dimnie, as the reconnaissance and espionage Trojan is known,
has largely flown under the radar for the past three years. It mostly targeted Russians
until early this year, when a new campaign took aim at multiple owners of GitHub
repositories… The campaign targeting GitHub users starts with e-mails that attach a
booby-trapped Microsoft Word document. The file contains a malicious macro that uses
PowerShell commands to download and execute the payloads… It’s not hard to come up
with plausible theories why either nation-sponsored or financially motivated hackers
would want to spy on this demographic. What’s clear now is that someone is devoting
considerable time and expertise to make that happen.” [Goodin2017-GitHub]

The PyPI attack of 2017 occurred when developers unknowingly used malicious
modules. The Python language provides many built-in libraries, as well as a way to
download many other libraries. Attackers created malicious libraries with the names of
built-in libraries, and unknowing developers downloaded the malicious ones instead.

2-4

[Goodin 2017PyPI]. This was similar to a typosquatting attack discussed in a 2016
research paper, which showed that “typosquatting” (creating packages with names similar
to popular packages) could lead to execution of potentially subverted code; even some
military sites ended up running the potentially subverted code. [Tschacher 2016] [Goodin
2017Pypi]

The NotPetya attack of 2017 began with the penetration of the network of “the small
Ukrainian software firm MeDoc, which sells a piece of accounting software that’s used
by roughly 80% of Ukrainian businesses. By injecting a tweaked version of a file into
updates of the software, [the attackers] were able to start spreading backdoored versions
of MeDoc software as early as April of this year that were then used in late June to inject
the ransomware known [as NotPetya or Nyetya] that spread through victims’ networks
from that initial MeDoc entrypoint. … But just as disturbing … is the continuing threat it
represents: that innocent software updates could be used to silently spread malware. …
One reason [attackers] are turning to software updates as an inroad into vulnerable
computers may be the growing use of ‘whitelisting’ as a security measure, says Matthew
Green, a security-focused computer science professor at John Hopkins University.
Whitelisting strictly limits what can be installed on a computer to only approved
programs, forcing resourceful [attackers] to hijack those whitelisted programs rather than
install their own. ‘As weak points get closed up on the company side, they’ll go after
suppliers,’ says Green. ‘We don't have many defenses against this. When you download
an application, you trust it.’… Even if the company had carefully signed its code, Green
points out… it likely wouldn't have protected the victims in the MeDoc case. …
[attackers] were deep enough in MeDoc’s network that they likely could have stolen the
cryptographic key and signed the malicious update themselves.” [Greenberg 2017-Petya]
Kaspersky labs named this 2017 variant NotPetya, as it is related but has significant
differences from earlier 2016 malicious software named Petya [BBC 2017]. NotPetya
used a variety of techniques to spread to other computers, including the ExternalBlue and
EternalRomance exploits purportedly developed by the U.S. National Security Agency
(NSA) [Fruhlinger 2017].

“ShadowPad is one of the largest known supply-chain attacks… [NetSarang is]
server management software produced by a legitimate company and used by hundreds of
customers in industries like financial services, education, telecoms, manufacturing,
energy, and transportation. [The latest version was making suspicious requests, and] the
vendor did not mean for the software to make these requests... the suspicious requests
were [caused by] a malicious module hidden inside a recent version of the legitimate
software. Following the installation of an infected software update, the malicious module
would start sending DNS-queries to specific domains (its command and control server)…
If the attackers considered the system to be ‘interesting’, the command server would
reply and activate a fully fledged backdoor platform that would silently deploy itself

2-5

inside the attacked computer. After that, on command from the attackers, the backdoor
platform would be able to download and execute further malicious code.” Kaspersky’s
Igor Soumenkov said, “ShadowPad is an example of how dangerous and wide-scale a
successful supply-chain attack can be… given the opportunities for reach and data
collection it gives to the attackers, most likely it will be reproduced again and again with
some other widely used software component.” [Kaspersky 2017]

CCleaner is an example of an attack on the software development/distribution
system. “Avast cryptographically signs installations and updates for CCleaner, so that no
imposter can spoof its downloads [but attackers] infiltrated Avast's software development
or distribution process before that signature occurred, so that the antivirus firm was
essentially putting its stamp of approval on malware, and pushing it out to consumers.”
The attack was unnoticed for almost a month [Cimpanu 2017-CCleaner]. The Greenberg
article made the general observation that attackers are increasingly exploiting “the digital
supply chain to plant tainted code that hides in software companies’ own systems of
installation and updates, hijacking those trusted channels to stealthily spread their
malicious code.” [Greenberg 2017]

Developers of Chrome extensions had their login credentials stolen through a
phishing attack. Attackers modified the extensions and compromised 4.8M users
[Maunder 2017].

An attacker with the account name “HackTask” uploaded at least 38 malicious
packages to npm (the widely used JavaScript package repository). “The attacker used a
technique called ‘typo-squatting’ to register packages with names similar to popular
libraries, but containing typos in their names. For example, the attacker registered a
malicious package named ‘mongose’ [sic] that contained the source of the legitimate
Mongoose project plus extra malicious code. The malicious code in this projects would
execute when developers would compile and run their… JavaScript projects. The code
would collect local environment variables and upload them to the attacker's server… The
attack is dangerous because some information such as hard-coded passwords or API
access tokens is stored as environment variables.” [Cimpanu 2017-JavaScript]

North Korea “reportedly infiltrated Hauri, a South Korean company that provides
antivirus software to that country’s military [and North Korea was] able to grab classified
data that included joint US-South Korea planning in event of war.” [Barrett 2017]

These examples of real-world attacks indicate that there is a real need to protect
against software supply chain and SDE attacks that impact developers.

2-6

 Past and Current Methods of Countering Attacks on the Software
Supply Chain or SDEs
The need to address the software supply chain, and to design an SDE to address

development and sustainment needs, is not a new one. The SAFECode guide to software
integrity controls [Simpson 2010] looks at software supply chain security, including
upstream and downstream of the SDE as well as its impact on the SDE itself. Sutherland
[1989] discusses “nurturing of a systems development environment to precisely meet the
needs of a company.” The Trusted Software Development Methodology (TSDM), later
named the Trusted Software Methodology (TSM), discusses various approaches to
implement environmental administration and controls to counter unintentional and
intentional attacks on the SDE itself [GE 1991].

Many papers discuss how to create an SDE, or at least a collection of tools and
processes, to help develop safe and/or secure software (e.g., [Hussein 2017]). Many
documents discuss how to develop secure software (e.g., [SAFECode 2018] [Wheeler
2015-programming]). However, these topics are not the focus of this paper. Instead, this
paper focuses on protecting the SDE itself, particularly on running SwA tools safely.

There are processes and services that evaluate products, processes, and/or people to
help address supply chain risk management (SCRM). Evaluation processes such as the
Common Criteria are designed to evaluate products. Guidance for addressing SCRM in
DoD systems, including a list of potential key practices, is provided in [Wheeler 2010].
Other approaches are designed to measure organizations (e.g., BitSight2 and FICO
Enterprise Security Scores3). The Open Group’s Open Trusted Technology Provider
Standard (O-TTPS), aka ISO/IEC 20243, is an “open standard containing a set of
organizational guidelines, requirements, and recommendations for integrators, providers,
and component suppliers to enhance the security of the global supply chain and the
integrity of commercial off-the-shelf (COTS) information and communication technology
(ICT).” [OpenGroup 2014]. Reddy [2014a] discusses collaborating between industry
providers and their customers across the supply chain to address taint and counterfeit
items. Reddy [2014b] discusses the use of criticality analysis by commercial-off-the-shelf
(COTS) suppliers, combined with a scalable analysis of supplier risk during acquisition,
to address supply chain risks. OSS can attempt to achieve a badge through the Linux
Foundation CII Best Practices project [LF2017], which establishes criteria primarily on a
product’s development processes. There are many other articles related to SCRM.

2 https://www.bitsighttech.com
3 http://www.fico.com/en/products/fico-enterprise-security-score

2-7

There are a variety of approaches focused on improving the measurability of
security.4 For example:

• The Common Vulnerabilities and Exposures (CVE) is a list of entries of
publicly known cybersecurity vulnerabilities, each containing an identification
number, a description, and at least one public reference.5 CVE is used by many,
including the including the U.S. National Vulnerability Database (NVD).

• The Common Vulnerability Scoring System (CVSS) “provides a way to capture
the principal characteristics of a vulnerability and produce a numerical score
reflecting its severity.”6 CVSS provides a “qualitative representation (such as
low, medium, high, and critical) to help organizations properly assess and
prioritize their vulnerability management processes.”

• The Common Weakness Enumeration (CWE) is a list of software weakness
types.7

• The Common Weakness Scoring System (CWSS) scoring is similar to CVSS
but scores weakness types with prioritization instead of focusing on individual
vulnerabilities.

• The Common Attack Pattern Enumeration and Classification (CAPEC)
catalogues attack patterns. This complements the CWE, since weaknesses in the
abstract may not inform system owners sufficiently to understand which
software attacks tie to particular weaknesses.

• The Common Weakness Risk Analysis Framework (CWRAF) provides a
framework for scoring software weaknesses in a consistent way in the context of
various business domains.8 CWRAF can be used to build a scenario or vignette
of the particular system or mission purpose that is most important to the
developers and system owners. This allows a measurable prioritization with a
resultant focus on attacks that could have the most impact on the systems.
CWRAF combines with CWSS to allow this customization of sets of attacks and
their technical impacts that are most relevant to the system purpose or mission.
A vignette might be crafted that would focus on supply chain attacks that could
impact developed source code and allow for the “execution of unauthorized

4 For an overview of many approaches, see https://makingsecuritymeasurable.mitre.org/
5 CVEs are explained and listed at https://cve.mitre.org/
6 For more, see the Forum of Incident Response and Security Teams (FIRST) page of the Common

Vulnerability Scoring System (CVSS) Special Interest Group (SIG) at https://www.first.org/cvss/
7 See http://cwe.mitre.org/data/
8 See http://cwe.mitre.org/cwraf/

https://makingsecuritymeasurable.mitre.org/
https://cve.mitre.org/
https://www.first.org/cvss/
http://cwe.mitre.org/data/
http://cwe.mitre.org/cwraf/

2-8

code or commands” that could in turn lead to a “Denial of Service: unreliable
execution” or to “Hide Activities.”9 These lower level impact descriptions
provide a more detailed refinement compared to the traditional triad of
confidentiality, integrity, and availability (CIA).

Organizations developing software often find it valuable to begin by working to
counter the “most important” software vulnerabilities. Two widely used lists for this
purpose are the Open Web Application Security Project (OWASP) top 10 (for web
applications)10 and the CWE/SANS top 25 list.11

Mueller [2012] notes the concern that, “many development tools operate at the same
protection level as the operating system kernel and function quite nicely as a [way to
deposit] malicious software. It also provides some hints for creating a secure SDE, e.g.,
noting that inspections must occur only after the source code is placed under
configuration control, or the developer could simply add “the malicious functionality
after the source code passes inspection or provides the inspection team a listing not
containing the malicious functionality.” However, [Mueller 2012] also refers in many
cases to obsolete technologies or practices (e.g., BASIC’s peek/poke, CVS, and
programmers “reserving” source modules), so it should be considered in that context.

In [Wheeler&Reddy 2015], we noted that protecting the SDE and countering supply
chain attacks is important, and briefly discussed in that material some approaches for
countering attacks. Both Wright [2014] and Wright [2017] discuss protecting (“locking
down”) the SDE. Papers that discuss the security issues of VC systems include
[Woiciechowski 2013] and [Wheeler 2015-scm].

A key security principle is “least privilege,” which grants programs or users only the
privileges they need to accomplish their assigned tasks [Saltzer&Schroeder 1975]. One
way to implement least privilege is to implement some kind of “sandbox.” Broadly
speaking, a sandbox can be defined as a mechanism that restricts a running process to a
subset of the privileges and access rights of the invoking user. The concept of
“sandboxing” processes is not new, but there has been an increase in interest in
sandboxes [Simpson 2011]. Later in this paper, we will discuss using sandboxes to limit
tool privileges.

Now that we have reviewed past issues and various policies, we can begin
discussing the problem this paper strives to address.

9 Quotes and capitalization are used here because these are references to specific CWRAF entries.
10 https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
11 http://cwe.mitre.org/top25/ and https://www.sans.org/top25-software-errors

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://cwe.mitre.org/top25/
https://www.sans.org/top25-software-errors

3-1

3. Problem

We want to develop scalable technical measures to reduce risks from SwA tools, so
that projects can use and update a large number of SwA tools with much greater
confidence and acceptable risk. To do so effectively, we must understand the problem
better.

This section discusses the underlying problem in terms of threats, assets, overall
environment, SCRM issues in general, and overall security goals.

Some of the approaches for handling SwA tools may apply to other tools as well,
but our focus is on SwA tools. As noted earlier, unlike many other kinds of tools, there is
value in having a large collection of different SwA tools, including multiple tools in the
same category. Also, SwA tools tend to be updated frequently. In contrast, typically few
compilers are used, and compilers are often updated more cautiously. Editors must be
trusted, but there are usually few, and they require modification rights to source code
(something that SwA tools typically do not require).

 Threats
CNSSI 4009 defines “threat” as “any circumstance or event with the potential to

adversely impact organizational operations (including mission, functions, image, or
reputation), organizational assets, individuals, other organizations, or the Nation through
an information system via unauthorized access, destruction, disclosure, modification of
information, and/or denial of service.” [CNSSI 4009]

The National Initiative for Cybersecurity Careers and Studies (NICCS) glossary
defines “threat agent” as an “individual, group, organization, or government that conducts
or has the intent to conduct detrimental activities” [NICCS]. OWASP defines “threat
agent” similarly but more broadly, as “a group of attackers that carry out an attack. They
can be human (intentional or unintentional) or natural (flood, fire, etc...).” [OWASP
2008].

There are many potential threat agents to an SDE. For purposes of this document,
we group threat agents into the following categories:

• Supplier (of tool). These are suppliers of tools used in the SDE, including
compilers, editors, VC, and SwA tools.

• Supplier (of code/data). These are suppliers of third-party code other than tools
(e.g., to be incorporated into a final product), as well as suppliers of data. By

3-2

“data,” we mean any information (e.g., geospatial data) provided by a third party
that is not third-party code or a tool.

• Authorized Developer. These are individuals authorized to use the SDE to
develop software. We use “developer” in a broad sense to include requirements
engineers, designers, and test engineers.

• Outsider. These are individuals who do not meet the previous categories. This
includes attackers from outside an organization, but may also include a janitor
who works for the company but is not authorized to make changes to the
software. One challenge is that attackers outside an organization may work with
those inside to make it easy to attack.

 Assets
Threats are irrelevant unless there are assets or services that need to be protected.

Typical assets that may need some kind of protection in an SDE are:

• Software code. This can be subdivided into source code and executables:

– Source code includes the source being developed and third-party source that
is incorporated into the final product.

– Executables includes executables generated from source code and any third-
party executables that are incorporated directly into products.

• Software tools. These are the tools used to manage the software code. These
can include editors, compilers, and software analysis tools (such as source code
vulnerability scanners). These tools might not each require the same privileges.
For example, an editor must be able to modify source code, while a SwA
analysis tool typically will not.

• Data. This is other information managed in the SDE not including software
code and software tools. This includes requirements documents, version history,
test data that will be processed by software being developed, and test results.

In all cases, these assets may be custom or reused. Reused components, aka off-the-
shelf (OTS), can come in many forms, including government-off-the-shelf (GOTS) or
commercial off-the-shelf (COTS). COTS may be proprietary or OSS.

The kinds of protection assets needed may differ in terms of confidentiality,
integrity, availability, and non-repudiation. The level of protection necessary to protect
assets depends on the impact of any failure to protect (e.g., lost money, property, and
lives). For example, it may be vital to protect the confidentiality of some custom
software, but confidentiality may be irrelevant for OSS (since it is publicly released

3-3

already). Backups are often useful to help protect against loss of availability, but may not
be adequate to counter loss of integrity.

If code signing is supported, the code signing keys are a particularly sensitive kind
of data. The public key infrastructure (PKI) tools supporting code signing are a
specialized kind of software tool. There may be separate “development” keys with fewer
privileges than final “release” keys. Keys for signing final release software are often kept
completely separate from normal development and isolated from any network.

Modern software development depends on third-party software, both as tools and as
reusable code that will be embedded in the final products. Third-party software may
contain unintentional vulnerabilities. In a worst-case scenario, the third-party software
may be malicious because the supplier was intentionally malicious or because someone
else subverted the supplier’s SDE or supply chain (either upstream or downstream).

 Overall Environment
There are many different kinds of SDEs. An SDE can be as simple a single laptop

managed by a single developer, or it can involve thousands of developers spread across
the globe. An SDE may be contained entirely within physically protected environments
(possibly connected using strong encryption), or it may extend outside physically
protected boundaries. Larger SDEs may be implemented using local SDEs that
communicate with each other. For example, SDEs used directly by developers may
communicate with many staged specialized build or test environments, which themselves
may be centralized or may be managed autonomously. External partners may be
considered part of an organization’s SDE, whether they are completely integrated or have
restricted or occasional access to only specific capabilities.

Today, cloud infrastructures are often used to implement a variety of capabilities,
including part or all of an SDE. Clouds have advantages and disadvantages, which must
be weighed for the circumstance. Their advantages are apparent; they are often less
expensive (due to the sharing of services), may provide higher reliability (due to
redundancy), and often provide faster resource allocation (since the resources are
immediately available).

However, there are also risks when using clouds, depending on how much is shared.
Clouds can be public, community, or private clouds. All clouds are subject to risk from
attack, but public and community clouds have a higher sharing risk because of the
increased numbers of entities who share the same platform. Those other entities may be
subverted or controlled by an attacker. Private clouds significantly reduce the sharing,
which can reduce these risks, but private clouds typically provide fewer resources at
greater costs.

3-4

Clouds typically employ isolation mechanisms such as containers or virtual
machines to separate user data and processing. We will discuss the use of these isolation
mechanisms, particularly in how to use them to implement tool isolation, in section 5.D.

 Supply Chain Risk Management (SCRM)
NIST SP 800-161 notes that “Information and Communications Technology (ICT)

relies on a complex, globally distributed, and interconnected supply chain ecosystem that
is long, has geographically diverse routes, and consists of multiple tiers of outsourcing.”
It defines ICT SCRM as “the process of identifying, assessing, and mitigating the risks
associated with the global and distributed nature of ICT product and service supply
chains.” [Boyens 2015]

Committee on National Security Systems (CNSS) Directive 505 [CNSS 2017] notes
that the “U.S. Government must address the reality of a global marketplace which
provides increased opportunities for adversaries to penetrate, and potentially manipulate,
information and communications technology (ICT) supply chains. Adversaries seek to
subvert the elements or services bound for U.S. Government critical systems to gain
unauthorized access to data, alter data, undermine functionality, interrupt
communications, or disrupt critical infrastructures.”

SCRM is a subset of overall risk management (RM). SCRM, in turn, considers the
supply chain risks imposed by the supply chains of products and services. These products
include the subcomponents that will be incorporated into the final product being
developed. These products also include the tools used during development, such as SwA
tools — a point that is often overlooked.

Software suppliers often unintentionally develop products where vulnerabilities
remain (e.g., allowing an attacker to seize unauthorized control of the tool or to exfiltrate
data from the tool). Suppliers may intentionally insert malicious code, or their
development or distribution processes may have been subverted by another party to
intentionally insert malicious code. Malicious code can even be designed to attack reused
or custom software in another development environment.

Some suppliers, products, or services are riskier than others. Thus, any
consideration of them should consider probability and impact and examine trade-offs in
terms of cost and benefits, including the cost and benefit of countermeasures. Section 2.B
discusses some of the approaches that have been discussed or implemented for addressing
SCRM.

 Security Goals
There are many potential security goals, depending on the circumstance.

3-5

First and foremost is the need for the system or capability to survive and operate in
its intended cyber environment, which is likely to be contested by adversaries at various
levels. Cybersecurity, including SwA, must be built into the system throughout its
lifecycle, and maintained and preserved at all phases of its development and operation.

For joint warfighting systems, these cyber survivability requirements are established
through the system’s System Survivability Key Performance Parameter (SS KPP), in
which specific system cyber survivability requirements are described in their applicable
capabilities documents. Cyber survivability requires that mission critical functions and
information flows be identified, and their components and implementation protected
against threats and adversaries commensurate with the impact of their loss or
compromise. These components include the system’s software. The system’s architecture
will typically be designed to partition and protect these mission critical functions and
information flows into more defensible partitions, with more controlled attack surfaces
and interfaces. SwA should be consistent with the mission assurance objectives of the
system and its capability including systems-of-systems aspects. For each mission critical
function, partition, or component, security goals can then be determined. [Rowell] [Ahner
2017]

 Security goals may be organized using the classic confidentiality, integrity,
availability (CIA) triad, along with non-repudiation (of senders and receivers) as a
separate goal to ease discussion of issues specific to non-repudiation. The CIA triad is
often extended this way (e.g., DoDI 8500.01 adds non-repudiation12 and authentication to
the CIA triad [DoDI8500.01]).

Determining which security goals matter depends on many factors, including the
threat agents (including their purpose and resources). In practice, these goals need to be
segmented further by threat agents and their purposes to ensure that all aspects of these
security goals are considered.

In this paper, we summarize potential segmented security goals for an SDE using
the matrix in Table 3-1. This matrix shows the overall security goals (CIA and non-
repudiation), segmented by different threat agents (complete outsiders, suppliers of tools,
suppliers of code or data, and authorized developers) and the threat agent purpose
(intentional or unintentional). The supplier threat agents cover risks due to the external
supply chain. Note that for simplicity, we omit “unintentional outsider” since if an
intentional outsider can be countered, presumably that counters unintentional ones as
well. The shaded cells show the intersection among each security goal, threat agent, and
threat purpose. The rest of this paper focuses on the “supplier-tool” rows (shown in
orange), as opposed to the other areas (shown in yellow).

12 DoD Instruction 8500.01 spells non-repudiation as “nonrepudiation” (without a dash).

3-6

Table 3-1. Security Goals and Threat Agents (General)

Security Goal/
Threat Agent Threat Purpose Confidentiality Integrity Availability

Non-
repudiation

Outsider Intentional

Supplier-tool Unintentional
Intentional

Supplier-
code/data

Unintentional
Intentional

Authorized
developer

Unintentional
Intentional

Within each intersection, we should consider all relevant assets that need to be

protected. For example, when a supplier provides a tool, we may need to worry that the
tool supplier is intentionally inserting malicious code that could cause the loss of integrity
of custom software being developed in the SDE.

4-1

4. Weaknesses of Common SDE Technical
Approaches

Unfortunately, some common technical approaches to implementing SwA tools in
an SDE do not necessarily address the security goals discussed in section 3.E in an
adequate way. This is most easily shown by example. In this chapter, we briefly describe
several common approaches, and then discuss their weaknesses. Of course, whether or
not an approach is acceptable depends on the risk. In some cases, these weaknesses are
acceptable, but in others they are not. We will discuss in Chapter 5 what can be done if
the risks are unacceptable.

 Example 1: Analysis Remotely Executed
One approach to implementing SwA tools in an SDE is to have the SwA tool run

remotely in an external environment, as illustrated in Figure 4-1. Note that this requires
that the SDE send whatever is to be analyzed to an external environment (e.g., source
code (including build instructions), bytecode, and executables). Here, we assume that the
communication path between the external environment and SDE is protected (e.g., by
HTTPS using transport layer security (TLS) with reasonably secure settings).

Figure 4-1. Analysis Remotely Executed

Many SwA tool suppliers prefer this approach. It doesn’t reveal their own source

code or methods, they do not need to develop software installation systems, and it is easy

Source code and/or
executable

Results (e.g., list of
potential vulnerabilities)

System development
environment

Custom
source

code & data

Third
party software

& data

Other
data (e.g.,

email)

SwA tool
executing

in an external
remote

environment

4-2

to reliably charge tool users for use. Updating the SwA tool in this approach is extremely
easy, relatively low cost, and immediate.

Many commercial organizations using SwA tools also like this approach, because
the organizations can avoid the delays and costs of installing a tool. They can instead
immediately use the SwA tool.

However, in many circumstances there are serious risks to this approach:

• This approach provides additional avenues for loss of confidentiality in both the
material sent to the SwA tool (such as source code), as well as the results of the
tool. This approach trusts the SwA tool supplier and suppliers of any computing
resources. If they are untrustworthy, or subverted by attackers, that material can
be sent to adversaries. This approach also risks the loss of anonymity of the
developing organization. This is fine if confidentiality is not needed (e.g., it’s
OSS in development), but in other cases this is unacceptable. In particular, this
is often unacceptable for classified and controlled13 code unless the suppliers of
the tool and computing resources are approved for this purpose.

• There is a risk in integrity of the results being sent back to the SDE. The SwA
tool supplier, if untrustworthy, might intentionally omit results (such as a
vulnerability report) and instead provide that to others.

• In some cases this may raise serious legal questions. Many systems include third
party software, and their licenses may forbid sending that software to external
parties without further contract adjustments.

This approach is fine for some use cases but inappropriate for others.

 Example 2: Locally Executed with Internet Access
Another approach to implementing SwA tools in an SDE is to install and run the

SwA tool within a local SDE, as illustrated in Figure 4-2. For this example, we presume
that the SDE is connected to the Internet (possibly with firewalls and monitoring
systems) and that the SwA tool has unrestricted access to the source code and executable.

13 For our purposes, controlled code is code that has restricted distribution (e.g., is labelled For Official Use

Only (FOUO), is restricted under International Traffic in Arms Regulations (ITAR), or has distribution
markings).

4-3

Figure 4-2. Locally Executed

One advantage to this approach is that the material sent to the SwA tool (such as

source code), as well as the results of the tool, are not expected to be sent outside the
organization’s SDE. Some anonymity can often be achieved where desired, by having
another organization buy and/or download the SwA tool on the developing organization’s
behalf.

However, there are risks to confidentiality. An untrustworthy SwA tool could still
send outside the SDE various information such as materials for analysis (e.g., source
code) or results. The SwA tool might have additional functionality (such as “report on
crash”) that could cause release of this data. The SwA tool might even send this
information maliciously. The information sent might not be the source code itself; it
could instead be a security defect that was detected by the tool but not reported to its user.
This exfiltrated data can also damage anonymity (where applicable), even if the tool is
bought through another party. In many cases such exfiltration could be easy to achieve,
since it could be hidden in other actions such as during tool or ruleset updates.

There are also risks to integrity. Unless there are other safeguards in place, these
tools often run with the privileges of the developer, which means that the SwA tool may
be able to modify information, such as the code being developed or managed. The SwA
tool might also be able to modify other tools. Any of these modifications could result in
the insertion of errors or malicious functionality.

This approach is fine for some use cases but inappropriate for others.

 Example 3: Individual Roaming SDE
In many commercial situations, individual software developers have their own

computers (typically laptops) that can roam. These computers routinely connect and

System development
environment

Custom
source

code & data

Third
party software

& data

Other
data (e.g.,

email)

SwA tool, license, & updates

License/update queries
SwA tool

distribution

Rest of Internet

4-4

disconnect from the Internet. This flexibility enables developers to routinely work
anywhere they want, including home, coffee shops, and while traveling. This might be
the primary way for using the SDE or merely an extension of the environments described
in the previous examples.

It would be possible to require that the SDE be in a separate trusted environment,
contacted via the Internet, and that these roaming computers would not have local SDEs.
This may be called “remote access.” The developers’ computers are then windows into
the SDE, rather than having an SDE itself fully local. The trusted environment might be
within an organization, and/or implemented by a cloud provider, but in either case, the
SDE is safeguarded by their physical and logical protections. The developer’s computer
may be stolen or subverted, but the primary SDE is somewhat protected. However,
remote access requires that the developer have a continuous Internet connection to get
work done. In many circumstances, continuous Internet connectivity is unavailable or
problematic.

Some organizations instead allow developers to have an SDE within their own
roaming computer, and that development can occur even without continuous Internet
connectivity. Supporting work while disconnected from the Internet may be called
“offline access.” To support this, the developer’s computer must have a working SDE,
complete with local source code copies as needed for modification, as well as many tools
(such as editors). This has become a major and common trend in the software industry,
supported by technologies such as distributed VC systems (such as git).

Offline access has many advantages, but it also has additional risks. Far more
information is on the local system, so far more information can be lost if the developer’s
computer is stolen. Unless special measures are taken, there are typically no limitations
on local tools, including the SwA tools. As a result, all the risks of Example 2 often
apply, and the developer’s local system is often less well protected.

A very common risk countermeasure is to use HTTPS for a developer to connect
back to a remote site. However, by itself this does not provide traffic monitoring of a
developer’s computer. HTTPS can also be used to unwittingly connect to sites that
include malicious attacks (the attacks may be intentional or indirect via systems such as
ad networks).

Another common risk countermeasure is to use a virtual private network (VPN)
from the developer’s computer to a remote system. This is often paired with the use of an
HTTPS proxy, so that HTTPS traffic can be intercepted, decrypted, and re-encrypted by
the organization. When used, this enables traffic monitoring for dangerous activities and
makes it easier to prevent access to malicious sites. However, this only works when the
VPN is active. VPNs and HTTPS proxies insert network traffic delay. In addition, a VPN

4-5

cannot prevent attacks due to a SwA tool itself, since the SwA tool is typically already
running within the SDE.

 Example 4: Physically Secured Development Environment within
Disconnected Private Network
A completely different approach to securing an SDE is to physically secure the SDE

within an organization’s facility and use a private network that is not connected to any
external network, including the Internet. In many cases, there is no external network
connection at all. The physical security may be implemented with locked buildings,
separate physical areas for development teams, armed guards, fences, TEMPEST
shielding, and so on. This approach is often used for classified work and/or where SwA
tool approvals are slow (because they cannot connect to a larger network without the
approvals).

Clearly this reduces many risks, since it is more difficult for an adversary to
penetrate this SDE. On the other hand, this may also gravely reduce productivity. In
addition, the SDE must still bring in external data (e.g., software updates and new
libraries for use). These mechanisms for transferring data are generally called cross-
domain solutions (CDS) and may be implemented in a variety of ways (e.g., using a high-
assurance guard). However, CDS rely on people and technology to determine if the
transfer is acceptable, and this is by no means guaranteed to be perfect. Indeed, the
software brought into the isolated SDE could be malicious. These occasional data
transfers are necessary yet reduce the effectiveness of this approach.

In some circumstances, it would be wise to consider other solutions. The next
chapter will discuss how to develop alternative solutions.

5-1

5. Developing Secure SDE Solutions

The SDE, including the SwA tools, should be designed and implemented to meet its
requirements, including its security requirements. The challenge is that some
organizations focus on the software to be developed and fail to consider the security
requirements of the SDE itself.

The best approach for addressing SDE security requirements depends on the risk,
and thus depends on the threats, the assets to be protected, and the potential impact. It
also depends on the distribution of developers (e.g., it may vary based on whether or not
there are remote developers). We will discuss sample solutions later, but we will first
describe how to develop solutions.

As noted in section 3.A, SwA tool suppliers are potential threat agents, and this may
be a surprise to some. SwA tools can have unintentional defects, and some of them come
from less trustworthy sources. What’s more, SwA tool suppliers may themselves be
attacked and subverted.

Supplier trustworthiness is not necessarily a problem, because it’s quite possible to
design the overall SDE to reduce the trust that must be given to SwA tools. Approaches
such as isolated environments, limited privileges, and limiting data transfers can reduce
risk in a cost-effective way. These approaches can also be used to address risks from
other kinds of tools within the SDE. That said, other tools (such as editors and compilers)
have very different characteristics from typical SwA tools; in this paper, we focus on
SwA tools.

 Security Principles
Saltzer and Schroeder identified key security design principles in their seminal work

[Saltzer&Schroeder 1975]. These principles also apply to the SDE in general, and some
are particularly relevant to the solutions discussed in Chapter 5:

a. Economy of mechanism: “Keep the design as simple and small as possible.”

b. Fail-safe defaults: “Base access decisions on permission rather than exclusion.”

c. Complete mediation: “Every access to every object must be checked for
authority.”

d. Open design: “The design should not be secret.”

5-2

e. Separation of privilege: “Where feasible, a protection mechanism that requires
two keys to unlock it is more robust and flexible than one that allows access to
the presenter of only a single key.” Today, we would call this “two-factor
authentication.”

f. Least privilege: “Every program and every user of the system should operate
using the least set of privileges necessary to complete the job.” This limits
damage. In section 6.A.2, we discuss creating computational environments with
limited privileges for SwA tools, to limit the damage that they can cause.

g. Least common mechanism: “Minimize the amount of mechanism common to
more than one user and depended on by all users.” In section 6.A.2, we discuss
creating computational environments with copies of data, so that originals
cannot be compromised.

h. Psychological acceptability: “It is essential that the human interface be designed
for ease of use, so that users routinely and automatically apply the protection
mechanisms correctly.” We will later discuss automation to ease developer use
and ensure consistency.

An additional secure design principle is the use of input validation, even though it is
not expressly identified in [Saltzer&Schroeder 1975]. Input validation is the practice of
checking all input data for appropriate formatting and ranges of values. We will later
discuss the potential role of validating data from SwA tools before they are accepted into
other circumstances.

All of these secure design principles are relevant. In the context of protecting
against unintentional and intentional vulnerabilities in SwA tools, the principles of least
privilege, least common mechanism, and input validation are especially important.

 Project Policies
Projects will need to select various policies depending on the security goals and

threats, as well as trade-offs in cost, schedule, and performance.

For example, if the software being developed has very strong confidentiality
requirements, management may choose to have a project policy that the software being
developed must not ever leave a controlled physical environment. DoD requires this
when developing classified software. This policy can be costly, slow development, and
even prevent many developers from participating, so the trade-offs of this policy decision
should be carefully considered when a trade-off is allowed. A policy to restrict
development locations could be considered to be grounded in the fail-safe defaults
principle (because allowing external development expands the attack surface) and the

5-3

least privilege principle (because allowing external development may enable attackers to
contact the attack surface unnecessarily).

Another example might be to have releases always be signed using a private key
that is never placed on a computer connected to the Internet. Such a policy would be
grounded in the least privilege principle.

 Designing the SDE for Security
The project’s SDE needs to be designed to implement the project’s security goals

against the threats the project’s SDE needs to counter. Completely addressing the security
of the entire SDE is large and beyond the scope of this paper, but we cannot ignore the
larger SDE issues since they may create bigger problems. Thus, designing the SDE for
security is foundational.

In general, the SDE should be designed to meet the security goals against various
threat agents, as shown in Table 3-1. This section covers some aspects of designing the
SDE for security, including some aspects that may not be obvious. To secure the SDE,
the designers and maintainers of the SDE must determine which combinations of security
goals, threat agents, and threat purpose are relevant and address each relevant
combination with adequate countermeasures. What is adequate for one situation may
inadequate for another, so the strength of the countermeasures must be considered.

Although this paper emphasizes SwA tools, here are some approaches or issues you
could consider when trying to cover the security goal, threat agent, and threat purpose in
designing and maintaining an SDE for security:

• Isolate the development, build and test environments and possibly other
environments to limit damage (see section 5.D):

– Use many test environments, all isolated from the final build environment.

– Ensure that a malicious SwA tool can’t exfiltrate or modify source code, tools,
etc.

– Isolation can be implemented by separate machines, virtual machines, and/or
containers, possibly implemented on a private or hybrid cloud. In some cases,
this can speed building and testing by providing more computing resources.

– SwA tool results could be provided using isolation mechanisms such as
viewing a virtual machine display, HTML display, etc.

• Harden software against attack to the maximum extent practical. This includes the
virtual machine monitors, operating systems, runtime libraries, container systems,
etc. You can harden software using security configuration guides such as Security
Technical Implementation Guides (STIGs). This is more effective if combined

5-4

with configuration scanners provided with proper permissions to deeply analyze
the system.

• Control communication mechanisms within the SDE environments (see section
5.E). For example, use diodes for one-way information transfer, which ensure that
data only transfers in one direction. These may be procedural or electronic.

• Cache third-party information (including tools and other software) locally for
trusted access:

– Provide controlled/protected transfers.

– Check digital signatures of third-party information before any use.

– Maintain availability when Internet access denied.

– Enable review.

– Alert and possibly prevent use of known problematic versions.

• Ensure configuration management is maintained, including version control (VC)
that is hardened against attack:

– Limit read/write access to developers authorized to do so.

– Record and digitally sign every commit, including who, what, and when. This
enables tracking the actions (“attack attribution”) of a malicious developer or
a subverted developer’s account. This disincentivizes attacks by a malicious
developer and eases later recovery should a malicious developer succeed.

– For more information about security and VC systems, see [Woiciechowski
2013] and [Wheeler2015-scm].

• Consider using SwA tools to examine and counter other tools. SwA tools can
sometimes to be used to examine each other and/or their proposed changes. In
many cases this is not practical (e.g., due to cost).

• Perform backups to enable restoration.

• Protect communication links in and out of the SDE:

– Use encrypted links.

– Use redundant links.

– Use an anonymizer. This limits the revelation to outsiders of who is doing
what.

– Use organizational proxies and blind buys to prevent suppliers from knowing
exactly what a product will be used for; for example, when purchasing
something, purchase as “US government” or as a large contractor, not as a

5-5

specific project (which might be targeted). This is impractical in many cases;
for example, sometimes it is important to work with a supplier so that the
supplier can provide the right products and information for proper use.

– Use a firewall.

• Monitor the SDE for abnormal and malicious behavior:

– Detect unusual/unexpected behavior (e.g., by malicious developer).

– Counter what gets through, because no prevention is perfect.

• Develop a recovery plan if SDE is compromised.

• Sign releases of software:

– Review and certify protection of release signing infrastructure.

– Ensure that developer signatures are not the same as release signatures.

– Strongly protect release signature keys (e.g., ensure their private keys are
offline).

These often depend on isolation mechanisms and communication mechanisms, so
we will briefly discuss each in turn.

 Isolation Mechanisms
Implementing many of these security design principles requires some kind of

isolation of the less-trusted functions (e.g., a SwA tool) from other parts of the SDE. For
example, least privilege requires that the less-trusted functions do not have concurrent
access to both the Internet and private source code unless that is needed. These isolation
mechanisms for computing environments (CEs) are key for running code while limiting
privilege.

There are many different kinds of different isolation mechanisms. These include:

• Isolated computer (“air-gapped” computer): a computer used in isolation with no
network connectivity and possibly with other physical protections (e.g.,
TEMPEST shielding against electromagnetic radiation, isolated power, and so
on). An isolated computer can still be attacked through input/output systems (e.g.,
USB connections when they occur) or through side channel attacks (e.g., via
noise).

• Bare metal server: a physical server dedicated to a single tenant.14

14 https://www.rackspace.com/en-gb/library/what-is-a-bare-metal-server

5-6

• Virtual machine (VM): an efficient, isolated duplicate of [a] real machine [Popek
1974]. VMs are implemented by a hypervisor, aka a virtual machine monitor
(VMM). Hypervisors may be implemented directly on hardware (aka “native,”
“bare metal,” or “type 1”) or as an application (aka “hosted” or “type 2”).

• Container: A process running on a shared operating system kernel that is isolated
from other processes. A container runs a container image, which is a “lightweight,
stand-alone, executable package of a piece of software that includes everything
needed to run it: code, runtime, system tools, system libraries, settings.”15
Containers are also called “zones” or “jails.” The ability to run containers is also
called operating-system-level virtualization.

• Chrooted process: A process running on a shared operating system kernel that has
its filesystem isolated from other processes using the chroot system call. The
chroot system call was introduced to Unix version 7 in 1979 [Bell Labs 1979],
and is widely available in Unix-like systems (including Linux). Some consider a
chrooted process to be a kind of container (aka operating-system-level
virtualization), while others consider a container as something distinct from a
chrooted process.

• Separate user account: Sets of processes are isolated from each other by assigning
them to different user accounts. Most operating systems have built-in mechanisms
for isolating users and protecting them from each other. For example, on the
Android operating system, different applications are assigned to different user
accounts to separate the privileges of applications.

Different isolation mechanisms tend to be stronger or weaker at isolation, and
different implementations will differ in the quality of their isolation. The list above is in
approximate order of strength, from strongest to weakest. For example, virtual machines
tend to provide stronger isolation than container-based systems, because virtual machines
do not share a single underlying operating system kernel, but virtual machines also
require more resources. In contrast, container-based systems are much faster to start and
tend to require fewer resources, but because they share a single underlying operating
system kernel with far more interfaces, they tend to provide weaker isolation [Wheeler
2017cloud]. That said, these orders are only approximate; a well-hardened system of any
kind is typically far more resistant to attack than a poorly configured one.

The right isolation mechanism for a particular situation depends on the risk and cost.
Attackers may develop software to work around or subvert an isolation mechanism.
Properly configured strong isolation mechanisms, especially those in series (requiring
multiple vulnerabilities to get through), can provide a strong defense against attacks.

15 https://www.docker.com/what-container

5-7

As discussed later in Chapter 5, we can use these isolation mechanisms to reduce
the privileges granted to SwA tools. For example, we can put a SwA tool in its own
virtual machine or container, limiting the access it has to other resources (including the
Internet).

The BSIMM activity “Use application containers” (SE3.4) notes the value of using
application containers to support security goals, but the BSIMM survey version 8 also
finds that only 4% (4/109) of the surveyed firms do this [BSIMM 2017]. Application
containers are used in organizations today; drivers for their use include “ease of
deployment, a tighter coupling of applications with their dependencies, and isolation
without the overhead of deploying a full OS on a virtual machine.” However, BSIMM
only counts application containers if they are used to support the organization’s software
security goals, and for BSIMM’s purposes “containers used in development or test
environments without reference to security do not count.” That said, BSIMM notes that,
“containers provide a convenient place for security controls to be applied and updated
consistently,” so we expect that their use will increase over time.

 Communication Mechanisms
Totally isolated environments are rarely useful. Instead, we typically want

environments that are mostly isolated but permit specifically approved communication
mechanisms. In general, the approach to communication depends on risk and cost.

Here are some options for communicating between environments:

1. View one environment’s results and manually respond in another. This could
use, for example, a secure Virtual Network Computing (VNC) display or a
virtual machine display. This strongly isolates the environment, but does require
extra work for a developer to separately jump to the “same place” in the
software editing environment.

2. View an environment’s outputs by bringing them into a protected viewer. For
example, the isolated environment could run a webserver viewable only by the
main SDE; the SDE’s web browser is used to view the data and is trusted to
provide a defense against whatever the isolated environment does.

3. Copy/paste text between environments (where supported).

4. Create “diffs” (proposed changes) in sender, transfer them (e.g., as a file), and
review them in the receiver before acceptance. VC systems can commit these
changes, perhaps marked in some way so they can be reviewed further or
reverted.

5. Allow direct transfer of data from one environment to another, but filter it (this
enables automation and can restrict damage but provides less isolation). This

5-8

filter must use whitelist to check the data and help counter attack. Filtered output
may need to be processed by a trusted tool in the receiving environment.

6. Allow direct transfer, but log/monitor it (this provides even less isolation).

7. Allow direct transfer without any control (this provides little isolation).

It would be possible for environments to share direct access to files (e.g., of the
source code to be analyzed). However, this sharing is a violation of the “least common
mechanism” principle. It is typically safer to send copies of source code to the SwA tool,
so that it cannot directly modify the “real” code.

 Solution Implementation
Once a solution has been designed, it needs to be implemented. Here are a few notes

about implementing a secured SDE — in particular, for securing SwA tools.

Ensure that your isolation mechanisms are ready before putting the SwA tools in
them. Test the SwA tools in a safer and/or isolated environment with sample code before
using a copy of the real thing. Isolation mechanisms make testing easier, because they
limit damage and make it easier to restore to a known state.

As software development teams get larger, there tends to be more specialization. For
example, some people may focus on supporting the development environment (or at least
the configuration management system). In larger organizations, there might be a
specialized team that is in charge of the SDE, including assessing the tool supplier as part
of due diligence, assessing tool capabilities, bringing new tools (including SwA tools)
into the SDE, and continuously updating tools.

 Maximize Automation
It is important that tool actions be maximally automated (e.g., with a script), to

implement the principles of section 5.A. Otherwise, the tools may not be used correctly.

For example, if SwA tools are started within a separate isolated environment, and
then a copy of the source code is sent to that environment, a simple script should do this
automatically so that it will be done correctly every time. This automation should be
reviewed by others before use, to ensure that it works correctly. In many cases, the
automation should be designed to work even if the developer is working at a remote
location (where policy permits this). Developers should not need to know the details
about how the automation works, and the automation should be reliable so that the
developers can focus on their work instead of debugging their tools.

6-1

6. Sample Solutions

The best approach to solving the problems noted earlier depends in part on the risk,
including threats, assets, and impacts. The overall goal is to manage risk — not
necessarily to eliminate risk.

This chapter discusses some sample solutions, building on the weaknesses noted in
Chapter 4 and the approach for developing solutions described in Chapter 5. We use the
term “sample” because there are many possible solutions, and thus it is not possible to be
comprehensive. However, it is possible to illustrate useful solutions to build on, and this
chapter provides those samples.

We present two sample solutions, “medium protection” and “high protection.” We
do not show a “low protection”; if the risk is considered low, typically developers would
not work hard to counter the risk. The medium protection approach provides some
defenses against malfunctioning SwA tools while not requiring significant resources. The
high protection approach provides more (and more costly) defenses and shows how
protections against malfunctioning SwA tools can be addressed in a larger context. These
are merely samples; you may find that selecting only some elements or using a different
approach would work better in your environment.

There are costs to any change, but these changes also have advantages. Most
obviously, they counter certain kinds of attacks. Since these attacks are countered, they
can have the effect of enabling users to use many more SwA tools with confidence and to
update them more regularly. Since using many SwA tools increases the ability to detect
problems early, and newer versions of SwA tools are typically better than previous
versions, these changes can have the overall effect of increasing the assurance of the
software being developed or evaluated. In addition, these mechanisms can be used for
tools other than SwA tools, providing a ready mechanism for handling tools that are not
completely trusted.

 Solution 1: Medium Protection
Solution 1 provides medium protection against SwA tools while not requiring

significant resources. It does not try to protect against malicious developers.

Figure 6-1 illustrates this medium protection solution. The SDE includes two
different computing environments (CEs) for each SwA tool, install/update and analysis.
The install/update CE can access the supplier’s distribution system, but not the rest of the

6-2

trusted software development environment. The install/update CE creates an image with
the SwA tool. The analysis CE uses this image, receives the data to be analyzed (such as
source code), and produces results.

Figure 6-1. Medium Protection Illustration

The following subsections explain this approach in more detail.

1. Properties
Solution 1 has the following properties:

1. Each SwA tool is run within a CE that is isolated from the rest of the
development environment. This isolation provides protection from potentially
malicious SwA tools to the rest of the (trusted) software development
environment. The CE may be implemented as a container, virtual machine, or
similar mechanism. In general, containers have faster start-up time and require
less storage (they do not duplicate the operating system kernel and can more
easily use optimizations like copy-on-write), however, containers typically
provide less isolation because there is a shared kernel.

2. Although the CE is isolated in general, it has specifically approved input/output
interfaces. In particular, it must have interfaces so that software to be analyzed
can be supplied to the CE and results can be retrieved. These interfaces may be
implemented as using various mechanisms such as shared directories, shared
drives, secure shell (SSH) file transfer protocol (SFTP), and virtual displays.

3. The isolated CE is run within the organization (not within an external public
cloud service). Note that in some circumstances, this property might be relaxed.

SwA tool
distribution

Install/update CE
(no code access)

Analysis CE
(no Internet

access)

Rest of (trusted) software
development environment,

including editing environment
and version control

Image
with tool

Forbidden
if tainted

Taints if
writable

6-3

4. There are two different kinds of CEs to be used with SwA tools, “install/update”
and “analysis,” used as described below.

5. The install/update CE creates or updates an image that includes the SwA tool
and its data, whereas the analysis CE uses an image. An image may be untainted
or tainted; an image is tainted if it could have data from the development
environment that should not be publicly revealed. Note that that “taint” in this
context has nothing to do with whether or not the SwA tool is malicious.

These properties are used to prevent software source code from unauthorized
exfiltration by a SwA tool, unintentionally or intentionally, as well as to prevent a SwA
tool from performing unauthorized changes.

2. Designing CEs for Different Purposes
These two kinds of related CEs must be used as follows:

• Install/update: When using an install/update CE, the CE must have access to SwA
tool installation/update information; in many cases it may be granted access to the
Internet to obtain this information. For example, in some cases, the CE may need
to create a dynamic query to receive an updated tool, tool data, or tool license.

Use of this CE produces a new or updated image that contains a new or updated
SwA tool and tool data. This image might be transferred to other computer
systems (e.g., if analysis is done in a network-isolated development environment).
Encryption (e.g., https) and/or digital signature verification is used to ensure that
tool and tool updates are those provided by the supplier.

A key aspect of the install/update CE is that it never has access to any data to be
analyzed, such as source code to be analyzed. As a result, this CE cannot reveal
confidential code, since it never has access to it. It also cannot perform
unauthorized modifications of the code, since again, it never has access to the
code to violate its integrity.

A tool supplier could provide an image that has the tool already installed within it
to be run by the analysis CE. For example, the tool may be provided as an Open
Container Initiative (OCI) image to be run by a container runtime (such as
Docker), or an Open Virtualization Format (OVF) to be run in a virtual machine
(such as VMWare or VirtualBox). In this case, there’s no need to run the
install/update CE to install the tool, and updates can be performed by directly
acquiring an updated image. Accepting this image does not mean that it is totally
trusted, for example, be sure that the image will not require or have access to the
Internet when run as an analysis CE (as described next).

6-4

• Analysis: When using an analysis CE, the CE has access to an image containing a
SwA tool (e.g., as created through the install/update CE) and data to be analyzed
(including source code). However, the analysis CE cannot access the Internet, so
it cannot send its data directly to the Internet or use other mechanisms that might
reveal that data (protecting confidentiality).

Images may be tainted or untainted. When an image with a SwA tool is first
created it is considered untainted. If an analysis CE has read-only access to an
image, then that image does not become tainted. However, if an analysis CE has
ever had access to data to be analyzed, and then can gain write access to an image
at any point after that, then that image becomes tainted and cannot be used with
an install/update CE. This prevents any exfiltration because, although the SwA
tool could incorporate analyzed source code in the SwA tool itself (e.g., through
caches), that data could not be exfiltrated during the next install/update process.

There are some subtleties involving the image:

1. We have intentionally defined an image as being “tainted” if it could have data
from the development environment that should not be publicly revealed. It is
typically difficult to determine if writes to an image include unauthorized
information, but it is easy to determine if an image is writeable. Thus, we focus
on writeability. If an image could have unauthorized data on it, it is tainted. An
organization could use a manual review process to review the changes and
determine that the image is untainted, though that could be expensive (especially
if steganography is to be countered).

2. An image could be copied. For example, an untainted image could be copied to
a second image, and only the second image could be made writeable by the
analysis CE. The second image would become tainted, but the original image
would be unchanged and thus untainted. If the image contains a SwA tool, there
may be licensing issues in making a copy depending on the license and whether
or not the original image is considered a backup.

3. Some systems make it possible to make an image immutable (read-only) and
create a separate “difference image” when writes occur. For example,
VirtualBox can do this. If an analysis CE uses these mechanisms, the original
image is unchanged (and thus untainted), while the difference image becomes
tainted. This approach may be especially useful with some proprietary tools,
because in this approach no additional copy of the SwA tool is made (reducing
the risk of an unintentional license violation).

4. In some cases an analysis CE may use an image purely as a read-only image,
and either provide results back or store them elsewhere (which then become
tainted, because they’re based on data that should not be released).

6-5

3. Handling Results
Naturally, the SwA tool results need to be handled safely. Results from SwA tools

vary depending on the tool. Many SwA tools provide reports about vulnerable lines of
code or specific inputs that cause crashes. Some SwA tools can provide proposed
modifications to the source code (aka changes, patches, or diffs).

Here are a few approaches, depending on how the tool works and the level of
acceptable risk:

• Users view the results by only viewing the virtual screen of the analysis CE, for
example, using the viewer of a virtual machine’s screen or a secured Virtual
Network Computing (VNC) client. The underlying interface is limited (e.g.,
screen image updates, mouse motion within a certain region, and keyboard
actions when selected), which limits the attacks that can be performed.

• Users view the results by using their web browser to connect to a web server
running on the analysis CE. This tends to have a larger risk, because it opens a
larger attack surface. For example, if the web server serves malicious or
erroneous pages, the web browser is being relied on to defend against these
pages, and web browsers have bigger attack surfaces (e.g., they must be able to
securely run JavaScript sent to them by the server).

• Users could download the results and check them before any use. These checks
should be performed using a rigorous whitelist filter, for example, validation of
XML against a strict XML schema, checking that the encoding is valid (e.g.,
UTF-8), and checking that only valid characters are allowed for each field. This
is riskier, since the filter may allow some attacks through, but it does mitigate
others. This presumes that the downloading system will not just execute
malicious code during download. The check needs to run on a more trusted
system, because we do not fully trust the analysis CE.

• Proposed modifications can be downloaded to the editing environment and
manually reviewed before accepting them in the real source code.

• Users could download the results into the editing environment directly. This
presents more risks, because the data is being directly imported, though it may be
acceptable depending on the type of result and level of perceived risk.

4. Discussion
Some organizations use SwA correlation tools that combine the results of many

different SwA tools. In this case, a set of CEs is used, one for each traditional SwA tool
and another for the correlation tool. The results of one CE would then be input to another

6-6

CE. Thus, the whole approach is scalable, both for using many tools and for combining
tools results using yet more tools.

Using different kinds of CEs is somewhat similar to the Biba integrity model [Biba
1975]. In short, using a CE to analyze software “contaminates” the CE from future tool
updates. Of course, tools might not maliciously exfiltrate software; it can happen
unintentionally (e.g., via caches). This approach greatly increases confidence in which we
can use software, without the expense and delay of reviewing the tool’s code in detail.

This approach is in some ways similar to Example 1 (section 4.A), in the sense that
the tool is run in an environment separate from the rest of the development environment.
However, unlike that example, the tool supplier never has an opportunity to see the
source code being analyzed. Instead of sending the source code to the tool supplier, the
tool is run a separate environment controlled by the developer, and source code is never
present when the tool is able to contact the tool supplier (e.g., for updates).

This approach is in some ways also similar to Example 2 (section 4.B), in that the
tool is not run within the tool supplier’s environment. However, this approach creates a
separate isolated environment, instead of being part of a single overall development
environment that has no internal isolation mechanisms.

One risk in this approach is that if developers accidentally misconfigure the CEs
there could be a loss of confidentiality or integrity. An obvious solution is to maximally
automate these steps; see section 5.G.

5. Meeting Security Goals for Solution 1
This approach is focused on countering SwA tool suppliers as threat agents. This is

not guaranteed (e.g., it depends on the strength of the isolation mechanisms, the strength
of the filtering of results, and developer practices), but it nevertheless reduces risks. The
following table shows the security goals, the threat agents against them, and how this
approach addresses them.

6-7

Table 6-1. Security Goal Coverage by Solution 1

Security Goal/
Threat Agent Threat Purpose Confidentiality Integrity Availability

Non-
repudiation

Outsider Intentional - - - -

Supplier tool Unintentional &
Intentional

Only install/update
CE has access to
supplier; it has no
source code
access and it is
isolated from
analysis CE which
has source code
access

Analysis CE
only has a copy
of source code,
and is partly
isolated from
rest of
development
environment.
Results are
handled in a
risk-based
manner,
countering
attack via tool

Analysis CE can
run regardless
of state of
supplier.

HTTPS/digital
signature
verification is
used to verify
that the tool is
signed by the
supplier’s key
(the sender).
This does not
directly supply
non-repudiation
of the receiver.

Supplier
code/data

Unintentional In some cases, SwA tools can help detect/counter
unintentional vulnerabilities, but this depends on the tool
and data available (e.g., source code analysis requires
source code).

-

Intentional Addressing this requires the use of SwA tools that can
detect intentional malicious code. Detecting previously
unknown malicious code is difficult. Mitigating this risk
would be typically supplemented by other means.

-

Authorized
developer

Unintentional SwA tools help detect/counter unintentional vulnerabilities
in custom software. There is a risk of accidentally
misconfiguring CE use, which can be countered by
maximizing automation.

-

Intentional - - - -

Note that solution 1 primarily focuses on countermeasures for SwA tools, as noted
in Table 3-1.

This approach does not address all possible security issues. This approach does not
by itself counter malicious threat agents who are outsiders, though if the development
environment and the SwA CEs are protected (e.g., by firewalls), then outsiders can be
countered to a limited extent. This approach has a limited capability to address non-
repudiation of suppliers of code/data, since the code/data is not necessarily isolated when
it executes in other contexts. Perhaps more importantly, this approach does not counter
attacks from authorized developers since they are trusted. Whether or not this matters
depends on the security goals.

This approach could be entirely executed within a protected enclave. It could also be
implemented on individual developer systems (e.g., on laptops), where the CEs run on

6-8

the developer system, and the updates to code could then be sent back to repositories
accessible to others (e.g., via encrypted links).

 Solution 2: High Protection
Here, we present a specific example of a solution that provides higher protection

against SwA tools and malicious developers, accepting that more resources are required.
This shows how mechanisms to counter malicious SwA tools can be incorporated in a
larger solution for protecting an SDE against malicious developers and other problems.

1. Properties of Solution 2
Solution 2 builds on solution 1 (incorporating all of it) but adds additional

mechanisms in cases where the costs are justified.

Figure 6-2. High Protection Illustration

Figure 6-2 illustrates this high protection solution, which is more complex than the

medium protection solution discussed in section 6.A. This example solution adds the
following:

• All third party information (shown in the lower left in Figure 6-2) is retrieved
using encrypted links through a firewall. It is retrieved using anonymizers so
that external parties, and in some cases suppliers, will not know who is making

6-9

the request and thus are less likely to perform an attack. In addition, we suggest
that the encrypted links should be redundant with failover (to provide
availability).

• All externally retrieved information (tools, code, and data) are verified to be
from their expected source before they are used. These integrity checks do not
counter malicious suppliers, but they may thwart man-in-the-middle attacks.
Here are some verification mechanisms that should be considered (using more
than one can make the process stronger):

o Verify digital signatures before using the information. This requires that
the supplier signs the information, and that the receiver has the
information to correctly verify the signature. A digital signature is only to
be trusted if there is some assurance that the information was created and
maintained using key principles like least privilege and need-to-know with
keys that are protected. The supplier’s developers should not able to easily
create the final release builds of production code. The entire digital
signing infrastructure of the supplier should be audited for security
technology and practices by a team with code signing and development
experience.

o Verify cryptographic hashes of the information to ensure they have correct
values. This requires knowing the correct values. These cryptographic
hash values may be retrieved from a trusted website that uses HTTPS (but
this does not help if the website is subverted). The values may also be
provided through an out-of-band process.

o Use HTTPS to download the information. If the certificates are correct,
this verifies that the providing website has the necessary private
certifications, and this verification is easy to do. However, the use of
HTTPS by itself does not counter subverted websites.

o Verify that the website and package name is correct. When using a
website, temporarily disable internationalized domain names to counter
homographic attacks (names that look the same but are not). Consider
checking the website’s country via the browser, as unexpected results may
reveal an attack. Verifying names can help counter typosquatting (where
an attacker creates sites or packages with intentionally similar names).

o Download the information, wait for a period of time, and then verify it
again before using it. If the source website is broken into, the website
owner may notice and fix it.

6-10

• Third party information is retrieved and stored in protected version controlled
distribution stores for later distribution (as shown in pink). This ensures, for
example, that the information is available even when the external network is
under attack. This also makes confidentiality of users easier to achieve, since
users typically receive the information indirectly from these stores. This
information can be reviewed to determine which information is appropriate for
further use.

• An “install/update CE” is created and tools are run to install/update SwA tools
so they are prepared for use (shown in the figure as a blue rectangle). In many
cases, the CE will not have a connection to an external network (e.g., the
Internet); the SwA tools and data would instead be retrieved from the version-
controlled repository. However, in some cases an Internet connection may be
necessary (e.g., for license key verification or other special purposes). In some
enclaves, if an Internet connection is necessary, the “install/update CE” will
have to run in an external environment, and the resulting image is separately
brought into the environment (the image is not shown in the figure). Images may
be tainted, and tainted images cannot be later used by the install/update CE.
Note that this is similar to solution 1.

• There are other CEs, each with specific purposes (build, analysis/test/debug, and
editing). This is similar to solution 1, but in solution 1 there was just a special
CE for each analysis tool. For example, users using the editing environment can
create copies of custom code, modify it, check in the modified versions, and
request building and testing. Compilation and debugging should occur outside
the editing environment where practical, say by allowing debug interaction with
isolated test environments. That way, even compromised builds cannot modify
code in the editing environment. Here, the approach of using more CEs is
expanded to other tools as well, again to limit the privileges to only those
needed by the tools.

• Custom code is under VC and edited via an editing CE. Custom code may be a
small or large part of the overall system. Many systems today involve mostly
third party code and a small amount of integration code. However, even if it is a
small part of the overall system, custom code for a given system is critical, so
we emphasize it in the figure with a separate color. In practice, the VC system
used for custom code may be the same as for other data. In many cases, keeping
custom code confidential is vitally important; in other cases, it may be publicly
viewable. In all cases, the integrity of custom code must be preserved. Changes
to custom code typically should include information on who made the change,
the change made, and when the change was made, and ensure that this cannot be
forged.

6-11

• A logging/monitoring system is included so that malicious activity may in some
cases be detected, and in any case those activities can be forensically reviewed
later. Logs must typically be protected from later modification (this is often
done by using a separate logging system with append-only mechanisms often
connected through encrypted channels and sometimes extended with digital
signatures or hashes). In practice there must be automated log analysis, because
the volume of logs in modern systems is typically too great to only do manually.
These may be implemented, at least in part, through an intrusion detection
system (IDS) and/or intrusion prevention system (IPS). Application-aware
sensors could be added to check changes in application behavior or privileges.16

• Honeypots are data or systems that appear legitimate, but are isolated and
monitored, and are intended to be appealing to attackers. Properly implemented,
they can aid logging/monitoring systems. For example, they can signal real
attacks, countering the false positive problems of logging/monitoring systems.
Honeynets are networks of honeypots; in practice, honeynets would be used, but
the term “honeypot” is more widely known.

• Diodes, aka one-way communication paths, prevent information or attacks from
leaking in the reverse direction of a communication path. This prevents certain
kinds of exfiltration and is a form of least privilege. Diodes are shown as one-
way arrows in Figure 6-2.

• Returned data from isolated environments, such as results of SwA tool analyses,
are filtered and isolated for safety based on the anticipated level of risk. This
expands on solution 1’s method of handling results, as discussed in section
6.A.3, to cover other kinds of results. This filtering and isolation makes it
difficult for an attacker to attack other parts of the SDE by creating malicious
returned data.

As noted earlier, handling of returned data may be implemented in a variety of ways
(e.g., only presenting screen views of returned data, or providing the returned data to a
web browser as untrusted service (using the web browser’s protection mechanisms to
protect the rest of the SDE)). The mechanisms that should be used will depend on the
risks (probability and impact of attack), and must consider the measures to be countered.
For example:

• Malicious SwA tools may omit warnings of dangerous constructs. This can be
countered by using other (additional) tools to detect those constructs.

16 For example, the OWASP AppSensor project “defines a conceptual framework and methodology that

offers prescriptive guidance to implement intrusion detection and automated response into applications.”

6-12

• Malicious SwA tools may propose obviously malicious changes (e.g., backdoors
or disabled functionality). These can be countered by human (manual) review
and, in some cases, tool review.

• Malicious SwA tools may propose maliciously misleading code (aka
underhanded code). Maliciously misleading code is code that is written to look
like it does one thing to human reviewers but instead intentionally does
something else.17 Maliciously misleading code can often be countered with
simple countermeasures, such as forcing code reformatting, requiring the use of
style checkers, using editor syntax highlighting (which can reveal anomalies
such as code hidden in comments), and using memory-safe languages.
Reviewers could be required to retype proposed changes to counter problems
such as homograph attacks (where similar or identical symbols have unexpected
meanings, e.g., swapping lower case “l” with digit “1” or using Cyrillic when
Latin characters were expected). Reviews of the results by other tools can also
help, since some of those changes may attempt to insert vulnerabilities that other
tools can detect.

There are various enhancements that should be done but are not directly shown in
the figure:

• Users often need access to other capabilities (e.g., email, external Internet
access, etc.). These would typically be provided by still more CEs, which are
isolated (at least partially) from the other CEs shown here. That way, for
example, a subversion of one tool (such as of an email reader or web browser)
does not easily turn into a subversion of the rest of the SDE. This depends on
how well the different CEs are isolated.

• As part of SCRM, third party tools, other code, and data are archived and are
reviewed before use depending on their risk. For example, malware detectors are
used to detect previously identified malicious code. We assume the SCRM
process also reviews the supplier (e.g., the supplier’s processes, tools, and
trustworthiness). This is not as obvious from the figure because the figure shows
an architectural view rather than a process view.

• VC software and processes are enhanced, for example, to ensure that what is
released is what was reviewed.

• The SDE’s environment is hardened against attack and is routinely updated.
Access controls are put in place to prevent unauthorized activity.

17 The Underhanded C Contest <http://www.underhanded-c.org/> has examples of maliciously misleading

code.

6-13

It is important that these capabilities be easy to use and understand. Users will try to
work around mechanisms that are cumbersome to use. Where possible, the mechanisms
should be essentially invisible to their users.

2. Meeting Security Goals for Solution 2
Table 6-2 shows how this solution provides countermeasures against various threat

agents to meet security goals. In some cells, we put “Cell above” to show a repetition of
the cell above it (to reduce the size of the table). We put “Solution 1” to indicate that the
corresponding countermeasures of solution 1 also apply.

Table 6-2. Security Goal Coverage by Solution 2

Security
Goal/

Threat
Agent

Threat
Purpose Confidentiality Integrity Availability Non-repudiation

Outsider Intentional Encrypted links
outside to all
suppliers (including
tools and code),
firewall,
logging/monitoring,
honeynets,
isolation, secured
systems

Encrypted links
outside, firewall,
logging/monitoring,
honeynets,
verification measures
such as digital
signatures, secured
systems

Encrypted links
outside, firewall,
redundant links for
failover,
logging/monitoring,
honeynets, secured
systems

Logging/monitoring,
digital signatures,
secured systems

Supplier
tool

Unintentional Solution 1 +
anonymizer and
protected
distribution stores

Solution 1 +
verification measures
such as digital
signatures, build/test
isolated from
development (in
addition to tools);
version control;
results separated

Solution 1 +
build/test isolated
from development (in
addition to tools);
version control;
results separated

Solution 1 + Tools
must digitally
signed and verified

Intentional Cell above Cell above + results
separated to prevent
attack via results, VC
requires developers
to actively sign
changes

Cell above +
separated to prevent
attack via results

Cell above

Supplier
code/data

Unintentional Solution 1 + Code:
Execution of third-
party software
often cannot send
data outside
(including to
supplier) due to
isolation; Id:

Solution 1 +
Build/test isolated
from development;
version control;
results separated;
SCRM (including
analysis of supplied
items using isolated

Solution 1 +
Build/test isolated
from development;
version control;
results separated

Code must be
digitally signed and
verified

6-14

Security
Goal/

Threat
Agent

Threat
Purpose Confidentiality Integrity Availability Non-repudiation

anonymizer and
protected
distribution stores

component test
environment)

Intentional Solution 1 Cell above + SCRM
analyses focused on
looking for intentional
(malicious)
information

Cell above +
separated to prevent
attack via results

Cell above

Authorized
developer

Unintentional Solution 1 + Code:
VC limits who can
read; system
development,
build, and test
environments
isolated from
Internet (no easy
exfiltration); diodes
prevent info
release back;
separate
environments for
Internet access;
spillage of
identities
prevented by
anonymizer and
protected
distribution stores

Solution 1 + VC limits
who can make
changes; isolation
limits
damage/unintentional
change

Solution 1 + Isolation
limits unintentional
destruction; backups

VC records who did
what change when
in NR way

Intentional Cell above +
logging/monitoring
system

Cell above + review,
VC records who did
what change when
and that what’s used
is what’s reviewed

Cell above + ensure
developers can’t
destroy mechanisms
(VC, backups, etc.)

Cell above

Of course, other solutions are possible, depending on the risks and costs. See section

5.C for more discussion about designing the SDE for security goals and threats.

One extension to solution 2 would be to add a requirement to have a “reproducible
build,” aka a “deterministic compilation.” “A build is reproducible if given the same
source code, build environment and build instructions, any party can recreate bit-by-bit
identical copies of all specified artifacts.” [Reproducible] The purpose of reproducible
builds is to resist attacks where a built artifact does not match its purported source code.
More information on this can be found at the reproducible builds site
<https://reproducible-builds.org/>.

6-15

Another extension would be to do more evaluation of SwA tools and code. We
already emphasize doing some examination of third-party SwA tools and code. We could
go further and require that SwA tool and code must be examined using detonation
chambers before they are used. A detonation chamber is a highly monitored environment
specifically designed to trigger, detect, and analyze malicious indicators. Examples of
tools that can implement detonation chambers (and sometimes other capabilities) include
the following: Comodo Internet Security’ Defense+ Sandbox [Comodo], FireEye
Malware Analysis, Symantec Content Analysis, and Cuckoo Sandbox. Detonation
chambers often require significant resources to maximize detection and analysis. Where
used, they should be similar enough to the final environment so that malicious code
cannot easily avoid being triggered in them. Solution 2 uses isolated environments to
limit damage, but no isolation mechanism is perfect; adding detonation chambers
increases the likelihood that malicious code will be detected.

7-1

7. Conclusions

In practice, a suite of many SwA tools is necessary to detect vulnerabilities
adequately enough to achieve good SwA. However, simply adding them to an unchanged
SDE may introduce, or appear to introduce, unnecessary risk. As shown in Chapter 2,
there really are adversaries who attack SDEs. Adversaries know that a suite of SwA tools
is necessary for higher assurance software, and therefore may increasingly try to attack
our systems through our SwA tools.

Our goal in this paper is to help ease the deployment of SwA tools, by countering a
potential objection to using them. Instead of being reluctant to use SwA tools, or using
them without considering risks, we have shown that it is possible to use many SwA tools
while modifying SDEs to manage risks.

In particular, in our “medium protection” sample solution, we have shown that
simple steps can reduce risks while using many SwA tools. This sample solution reduces
risks by using isolation mechanisms to separate environments based on the task to be
done (install/update and analysis). This sample solution can be automated, and in some
circumstances it may reduce risk in a relatively uncomplicated manner. These
automations could be implemented with simple scripts that are shared widely, making the
approach easy to implement.

We recommend that organizations fully embrace the use of many SwA tools when
developing software. Where appropriate, they should consider taking the additional steps
discussed here if they determine that the risks of using SwA tools are otherwise too high.
Our hope is that this information will lead to the widespread safe use of suites of SwA
tools.

A-1

Appendix A
Proofs of Concept

Here, we provide brief proofs of concept. We first demonstrate the “medium
protection” approach using a virtual machine (VM), as implemented by VirtualBox. We
then demonstrate the “medium protection” approach using a container, as implemented
by Docker. These are essentially experiments to demonstrate that it possible to do these
things using either VMs or containers. For the purpose of these experiments, we will
assume that the implementation of VMs and containers is trustworthy and provides
adequate protection against attack. Note that cloud environments typically employ
isolation mechanisms such as containers or virtual machines to separate user data and
processing.

These proofs of concept are simple examples. Real use of these approaches would
typically be hardened further, and fully automated through some script to make it easy to
use them correctly. Those automated scripts would be need to be maintained (possibly by
those who maintain the build scripts) and would need to be themselves protected from
attack.

A.1. Medium Protection Using a Virtual Machine
Purpose and/or Objective: Demonstrate the “Medium Protection” approach

(install, analysis, update) using a virtual machine.

Method or Procedure: Here we installed a VM with a software assurance (SwA)
tool, performed an analysis, and then updated the tool, all within a virtual machine with
various security restrictions.

We used VirtualBox as a demonstration platform, as it is freely available, available
on many systems, and is open source software (OSS) (enabling easy repetition and
system changes if necessary). We used a GUI for many actions, as that was convenient; if
this was to occur often, those should be automated (VirtualBox supports automation with
a large set of script interfaces).

For our experiment, VirtualBox version 5.2.8 on Windows 7 was used as a host with
Ubuntu Linux as the guest. We used the OSS tool “flawfinder” as our sample SwA tool;
this avoided any possible licensing issue because it is OSS, and most of it was developed
by David A. Wheeler.

A-2

Part 1. Install Initial Version of the SwA Tool
VirtualBox was installed and started up. A new VM was created via File/New,

giving the VM the name “tools,” type “Linux,” and version “Ubuntu 64-bit.”18 We
picked a memory size (8GB) and created a hard disk. For our tests, we created a
VirtualBox Disk Image (VDI) image, dynamically allocated, with 100GB. Unless
otherwise noted, we kept default values; in particular, the VM had network access via a
NAT during installation of the initial version.

We downloaded Ubuntu Linux from https://www.ubuntu.com/; in our test we used
Ubuntu desktop, specifically “ubuntu-16.04.4-desktop-amd64.iso.” This image has much
more than we really need for the experiment (e.g., a web browser and office suite), but it
is fine for the experiment. This image included Python3, a language system required for
the tool we were about to install. We then right-clicked on the new “tools” VM, selected
Settings / Storage, selected the fixed image, chose a virtual optical disk file, set it to the
downloaded Ubuntu file, and selected “OK.”

We then pressed “Start” to start the new VM. At this point, the usual Ubuntu install
began. We selected “Install Ubuntu” and selected “Download updates while installing
Ubuntu,” “Erase disk and install Ubuntu,” and “Continue.” We selected our time zone
and language, and entered “who are you” information (including a password). We
selected “log in automatically,” since this VM can only be started by those already
logged in. The system then began installing as usual. This took about 20 minutes (this
time varies greatly depending on factors such as system and network speed). Once done,
we selected “Restart Now.” The virtual DVD was automatically ejected, so we confirmed
the restart with “Enter” and then had a VM with an installed operating system.

We wanted to be able to access the system using secure shell (SSH), so we installed
the SSH server. We also needed to install pip, an installer for software that uses Python3.
We first right-clicked in the background and selected “Open Terminal.” We then installed
it using the following (the first install requires the user password, and the “--yes” option
automatically downloads and installs dependencies):

sudo apt-get install --yes openssh-server

sudo apt-get install --yes python3-pip

We then installed a specific version of a SwA tool (in this case, flawfinder version
2.0.5) via the terminal. We downloaded and installed it using the following command
(note there are two equal signs, and we use pip3 so that the tool will use Python3)19:

18 The ending periods and commas here are in most cases not part of the data. IDA’s technical style

requires that we insert periods and commas within quotation marks, even when they are not part of the
data.

19 It is possible to tell pip3 to ignore certificates by passing it the option and argument “--trusted-host
pypi.python.org” just after “install.” For experimentation, we used this approach instead of installing

A-3

pip3 install flawfinder==2.0.5

We then cleanly shut down the virtual machine (you can do this by right clicking on
the star on the right-hand side and then selecting “Shut down”).

We then had an untainted image with a working environment, including the SwA
tool. However, we didn’t want to run any analysis directly in this working environment,
because we will want to later update it with access to the network, and when network
access is enabled we want to be confident that the system running this image uses an
untainted image (an image that cannot have the analyzed material).

There are a large number of different ways to implement this requirement. We could
have used VirtualBox’s ability to create snapshots and use differencing images (which
can be chained), so that when we ran an analysis, all changes would go to a separate real
file that could later be deleted. This might be especially important to do with some
proprietary software, since in some cases the license may forbid making a copy (even if it
is not being used). This is not relevant in this example; all of the software used in this
experiment is OSS and thus may be freely copied.

To keep things simple, we simply created a pristine backup copy of the storage
image. This copy remained untainted. We made this copy by first exiting the VirtualBox
application (to ensure that the running application didn’t interfere with anything) and then
executing these Windows commands (where “dwheeler” is the current user) to copy all of
the state of that machine (contained in the “tools” directory, including its configuration
file tools.vbox and its disk image tools.vdi):

cd \Users\dwheeler\VirtualBox VMs

robocopy tools tools.PRISTINE /COPY:DATSO /MIR

We can later copy the backup (pristine) copy back onto the original “tools.vdi” and
thus erase any work done in it since.

The VirtualBox documentation has many warnings about creating clones of disk
images that do not apply in this case. It warns about simple file copying like this, and
says that copying must instead be done using VirtualBox’s Virtual Media Manager (in
\Program Files\Oracle\VirtualBox) because “VirtualBox assigns a unique identity number
(UUID) to each disk image, which is also stored inside the image, and VirtualBox will
refuse to work with two images that use the same number.” However, we didn’t plan to
ever use the images simultaneously, so there was no need to use the Virtual Media
Manager in this case. In a more sophisticated setup, the Virtual Media Manager (or
similar tool) might be needed.

certificates in a temporary VM. In real-world applications, this option should not be used, since it
enables a man-in-the-middle attack. Also, executing pip3 in this environment notified us that a more
recent version of pip3 was available and how to perform the update. For our purposes, the version of
pip3 didn’t matter, so we ignored the notification.

A-4

Part 2. Run SwA Tool in a Constrained Environment
With the VM shut down, we went to “Settings/Network” and changed the network

settings so that the VM could no longer leak data out to the Internet. The most secure
setting would be to completely disable the network, but that would mean that we could
not use a virtual network to transfer information to and from it. For our experiment, we
selected “host-only adapter,” so that the VM can contact the host machine over the
network but not the outside network. This is not the only approach. For example, we
could have modified the image to place files within them for analysis. But the approach
described here is enough for demonstration purposes.

We then selected the VM, selected “Start” to run the VM, and again right-selected
the background to “Open Terminal.” We created a directory to work in and ran “ifconfig”
inside the VM to find its non-loopback IP address (192.168.56.101 in our case).

mkdir analysis; cd analysis

ifconfig

We then needed to transfer information for the tool to analyze. We analyzed the
trivial test file “junk.c” provided in flawfinder version 2.0.5 (version 2.0.6 has the same
unchanged file). We separately downloaded that into the host system and sent it to the
guest system using the usual “secure copy” tool (which runs over SSH):

scp -r junk.c dwheeler@192.168.56.101:/home/dwheeler/analysis/

We confirmed connection, provided the password, and the file for analysis was
copied. The “-r” option isn’t really necessary here, but that would allow recursive
copying of whole directories (not just a single file). Other tools, such as rsync, could also
be used to copy this data for analysis. (We didn’t use rsync, since it’s not needed and we
would have had to install it.)

Note that at this point, this image became tainted, because it had potential access to
the source code. In this case, the source code is actually in the image.

Now, on the VM side, we could run the SwA tool to perform analysis. Here, we ran
the tool in a simple way (the “.” means “begin at current directory”):

flawfinder ./

The following figure shows a screenshot after the SwA tool has executed on the test
software (after making it full-screen and changing the font size to 18 point). The details
of the display aren’t important; what’s important is that the SwA tool was run and
produced analysis results.

A-5

Here, we are depending on the virtual machine monitor (VMM) to prevent the

display of the SwA tool results from being able to attack the larger system.

Once we were done, we shut down the guest VM.

Part 3. Update SwA Tool
Now we want to upgrade the SwA tool. We cannot upgrade the image we just used,

because it is tainted. However, we can replace the tainted image with a copy of an
untainted image. Here is how we did that. We first shut down VirtualBox. On the host
command line, we overwrote the modified image and restored the original backup
(“pristine”) version:

cd \Users\dwheeler\VirtualBox VMs

rem We can keep modified version by running rename tools tools-modified

robocopy tools.PRISTINE tools /COPY:DATSO /MIR

At this point, the tainted image has been erased and been replaced with an untainted
image.

We then started up VirtualBox. We checked to confirm that the VM configuration
once again had access to the network (Settings/Network are NAT). However, this image
has never had access to the software that was analyzed, so the update process cannot leak
any information about the software that was analyzed.

We then selected “Start,” right-clicked in the background, and opened a terminal.

Next, we needed to update the SwA tool. This was done with this command:
pip3 install --update flawfinder==2.0.6

A-6

Then we shut down the VM. Once again, we could stop VirtualBox and back up the
state of the system to create a pristine version for future updates.

Conclusion or Discussion
In short, we were able to implement the medium protection approach using VMs. In

practice, it would be important to automate this process (to simplify its use and avoid
errors from incorrect application). There are many other ways to implement this approach
using VMs; this is merely an example to illustrate the approach.

A.2. Medium Protection Using a Container
Purpose and/or Objective: Demonstrate the “Medium Protection” approach

(install, analysis, update) using a container.

Method or Procedure: Here, we created a container image that includes a SwA
tool of a particular version, performed an analysis, and then created a new container
image that contained a newer version of the SwA tool.

We used Docker as a demonstration platform, as it is freely available, available on
many systems, and is OSS (enabling easy repetition and system changes if necessary).
We ran Docker on top of Ubuntu, which in turn was within a virtual machine
implemented by VirtualBox (as described above). For our experiment we used Docker
version 18.03.0-ce build 0520e24, running inside Ubuntu 16.04.4 (ubuntu-16.04.4-
desktop-amd64.iso). Ubuntu was running within VirtualBox version 5.2.8 while
Windows 7 was used as a host. We again used the OSS tool “flawfinder” as our sample
SwA tool; this avoided any possible licensing issue because it is OSS and most of it was
developed by David A. Wheeler.

In practice, most Docker commands require running root. We’re not thrilled about
this requirement; one solution is to run Docker within a virtual machine to isolate the
containers further. However, this was not a problem for our demonstration.

Docker uses a “Dockerfile” to create container images. The following Dockerfile
was developed to create container images for our experiment.

Dockerfile: Create an image for flawfinder analysis that is restricted

in what it has access to.

FROM python:3.6.5-slim-stretch

ARG FLAWFINDER_VERSION

We could create a special unprivileged user inside this container, but

the user is actually unprivileged to start with, so we won't bother.

A-7

This uses "pip3" to install flawfinder (per its directions).

If the host system is Ubuntu, pip3 requires disabling its default DNS masking.

Do this by editing /etc/NetworkManager/NetworkManager.conf

to comment out or remove this line:

dns=dnsmasq

For more information, see:

https://stackoverflow.com/questions/44761246/temporary-failure-in-name-resolution-
errno-3-with-docker

On our system must disable certificate checking or provide certs.

For our experiment, we'll disable using --trusted-host. Don't do this

in 'real' systems.

RUN pip3 install --trusted-host pypi.python.org flawfinder==${FLAWFINDER_VERSION}

Instead of providing a fixed "entrypoint" in the build, we'll let users

provide the command. This is much more flexible.

dwheeler@tools:~/demo$ cat Dockerfile

Dockerfile: Create an image for flawfinder analysis that is restricted

in what it has access to.

FROM python:3.6.5-slim-stretch

ARG FLAWFINDER_VERSION

We could create a special unprivileged user inside this container, but

the user is actually unprivileged to start with, so we won't bother.

This uses "pip3" to install flawfinder (per its directions).

If the host system is Ubuntu, pip3 requires disabling its default DNS masking.

Do this by editing /etc/NetworkManager/NetworkManager.conf

to comment out or remove this line:

dns=dnsmasq

For more information, see:

https://stackoverflow.com/questions/44761246/temporary-failure-in-name-resolution-
errno-3-with-docker

On our system must disable certificate checking or provide certs.

For our experiment, we'll disable using --trusted-host. Don't do this

in 'real' systems.

RUN pip3 install --trusted-host pypi.python.org flawfinder==${FLAWFINDER_VERSION}

Instead of providing a fixed "entrypoint" in the build, we'll let users

A-8

provide the command. This is much more flexible.

It is a good practice to create a non-privileged user within the container, and then

use that. We did not bother to do that here, since this is a simple experiment, but that
should be done if the system is to be seriously used.

We also created a small “makefile” to store the scripts used to implement the
experiment as follows (the long indents are initial tab characters):

Demo use of Docker to contain a potentially-malicious SwA tool.

Here we set the default version of the SwA tool.

This can be overridden, e.g.:

make FLAWFINDER_VERSION=2.0.6 run

FLAWFINDER_VERSION=2.0.5

The "run" command invokes copy-analysis to create an analysis directory,

and then runs the Docker image to perform the analysis.

We make a copy *and* do a readonly bind mount to ensure that the SwA tool

cannot modify the "real" files (either one would be enough, but using

both approaches makes it even harder to thwart).

We accept data *back* from the tool... but what if the tool is malicious?

To deal with that, we filter the output against a whitelist to prevent

attacks. In our case, we use "tr" to implement a whitelist of

the set of permitted characters (this case, we only allow tab,

return, newline, and printable ASCII). This means that anything not listed

(such as control characters) will be filtered out.

The result, after filtering, is stored in "results".

run: copy-analysis

 sudo docker run --network none --read-only --tmpfs /tmp --tmpfs /tmp \

 --mount type=bind,source="${PWD}/analyze",destination=/mnt,readonly \

 -w /mnt \

 flawfinder-demo-$(FLAWFINDER_VERSION) flawfinder ./ | \

 tr -cd '\t\r\n[:print:]' > results

Copy files to be analyzed into a separate directory.

We create copies so that the SwA tool never has an opportunity to edit

the 'real' files, and thus cannot modify anything in an unauthorized way.

A-9

copy-analysis:

 rm -fr analyze/

 mkdir analyze/

 cp -p *.c analyze/ # do whatever to copy files into analyze/

The "build" command builds a Docker image from its Dockerfile.

build:

 sudo docker build -t flawfinder-demo-$(FLAWFINDER_VERSION) \

 --build-arg FLAWFINDER_VERSION=$(FLAWFINDER_VERSION) .

.PHONY: run copy-analysis build

Part 1. Install Initial Version of the SwA Tool
We created a container with the SwA tool on a system connected to the network by

running the following command:
make build

This is an extremely simple command, because the real work is done by the files
listed earlier. This command kicks off a “docker build” command, which downloaded the
necessary images and ran the installation commands to create a Docker container. Our
makefile by default installed flawfinder 2.0.5, so this command created a container
named flawfinder-demo-2.0.5. The resulting image was untainted, since it never had
access to the data to be analyzed that should not be publicly released.

Part 2. Run SwA Tool in Constrained Environment
We ran the container to analyze software by doing the following:
make run

This copied files to be analyzed into a special “analysis” directory that is outside the
container image and then ran the container using the previously created container image
to analyze those files. Note that in this step we expressly disable access all network
access by the container. All filesystems here have been made read-only or temporary. A
“bind mount” is used to give the container temporary access to a copy of the source code.
Since the image with the SwA tool is always run read-only, it cannot become tainted.

As the results are retrieved, we pass the results through a whitelisting process. In
this particular case, we only accept the following characters: tab, carriage return, newline,
and printable characters. The results, after filtering, are stored in the file “results.” This
means that even if the SwA tool attempts to create malicious output (e.g., by inserting
escape codes or other control information), those results are first filtered to prevent many
kinds of attacks.

A-10

Part 3. Update SwA Tool
We then needed to demonstrate upgrading the SwA tool. We found it easier to

simply create a new container, which we did as follows:
make FLAWFINDER_BUILD=2.0.6 build

Since this builds a new container from scratch, there is never an opportunity for the
SwA tool to reveal any data from previous analyses – the new container has never had an
opportunity to see that data.

Once the new container is built, it can be used. For this example, we executed it this
way:

make FLAWFINDER_BUILD=2.0.6 run

Conclusion or Discussion
In short, we were able to implement the medium protection approach using

containers (as well as VMs). In practice, it would be important to automate this process
(to simplify its use and avoid errors from incorrect application). There are many other
ways to implement this approach using containers; this is merely an example to illustrate
the approach.

B-1

Appendix B
Medium Solution: Quick Implementation Guide

This appendix provides a quick technology-independent summary of the key
requirements of solution 1 (medium protection) described in section A. The purpose of
this approach is to reduce the risk that a software assurance (SwA) tool that is vulnerable
(intentionally or not) is unlikely to lead to the loss of confidentiality, integrity, or
availability.

The process for executing the SwA tool needs to implement two computing
environments (CE):

1. Install/update. In this CE, the tool and its dependencies are installed and may be
updated, and network access would typically be allowed, but there is never read
or write access to non-public data (including source code). This CE creates an
untainted image that will be used in the analysis CE; only untainted images can
be connected to the install/update CE.

2. Analysis. In this CE, the tool is used for analysis, so it must have read access to
non-public data (such as source code). It may be able to write analysis reports,
but the system protects from potential attacks via those reports (e.g., the report
may only be accepted if it is in an intentionally limited format, it may go
through input validation or filtering to counter potential attack, or trusted tools
such as web browsers may be used that are designed to resist attacks). The tool
running in this analysis CE may be able to modify copies of source code as
proposed changes, but those proposed changes can be reviewed before they are
accepted. The tool cannot share non-public data to outsiders or other untrusted
users (e.g., it has no external network connection, and any execution cannot leak
its data later to untrusted users). The analysis CE uses an image created by the
install/update CE, which may be read-only or allow writes:

a. If the image is always read-only while in analysis CE, then the image can be
reused because non-public data cannot leak into the read-only image. This is
an “untainted” image.

b. The analysis CE may instead allow writes to the image while in analysis CE.
If writes are allowed, that modified image must never be used in
install/update CE, because the modified image may include non-public data
that could be leaked to an external network. This is a “tainted” image.

B-2

The SwA tool must be isolated in both CEs so that it cannot “break out” of the CE
isolation mechanisms. These isolation mechanisms must be adequately strong to defend
against the expected level of attack. For examples of how to implement this approach
using virtual machines and containers, see Appendix A.

C-1

Appendix C
DoD Policies on Countering Supply Chain or
Software Development Environment (SDE)

Attacks

DoD has a number of security policies, many of which relate to countering attacks
on the software supply chain and/or SDEs. This section discusses some DoD policies
related to them, since the DoD has its own complexities and must counter determined
adversaries.

A.1. DoDI 5000.02
DoD Instruction (DoDI) 5000.02 (Operation of the Defense Acquisition System)

“assigns, reinforces, and prescribes procedures for acquisition responsibilities related to
cybersecurity in the Defense Acquisition System.” Its enclosure 14, “Cybersecurity in the
Defense Acquisition System,” notes that “Cybersecurity is a requirement for all DoD
programs and must be fully considered and "implemented in all aspects of acquisition
programs across the life cycle.” Enclosure 14 states that the system architecture and
design will address how the system “is structured to protect and preserve system
functions or resources, e.g., through segmentation, separation, isolation, or partitioning”
and “is configured to minimize exposure of vulnerabilities that could impact the mission,
including through techniques such as design choice, component choice, security technical
implementation guides, and patch management in the development environment
(including integration and T&E), in production and throughout sustainment” [DoDI
5000.02]. Enclosure 14 also states that Program Managers will “incorporate automated
software vulnerability analysis tools throughout the life cycle to evaluate software
vulnerabilities, as required by Section 933 of Public Law 112-239.”

DoDI 5000.02 enclosure 3 includes a discussion of the program protection plan
(PPP). It notes that “where a DoD capability advantage derives from the integration of
commercially available or custom-developed components, program protection manages
the risk that design vulnerabilities or supply chains will be exploited to destroy, modify,
or exfiltrate critical data, degrade system performance, or decrease confidence in a
system.” Enclosure 3 also states the following:

“Program managers will describe in their PPP the program’s critical
program information and mission-critical functions and components; the
threats to and vulnerabilities of these items; the plan to apply

C-2

countermeasures to mitigate associated risks; and planning for
exportability and potential foreign involvement. Countermeasures should
include anti-tamper, exportability features, security (including
cybersecurity, operations security, information security, personnel
security, and physical security), secure system design, supply chain risk
management, software assurance, anti-counterfeit practices, procurement
strategies, and other mitigations in accordance with DoD Instruction
5200.39 (Reference (ai)), DoD Instruction 5200.44 (Reference (aj)), and
DoD Instruction 8500.01 (Reference (x)). Program managers will submit
the program’s Cybersecurity Strategy as part of every PPP.
Countermeasures should mitigate or remediate vulnerabilities throughout
the product life cycle, including design, development, developmental and
operational testing, operations, sustainment, and disposal. Program
Managers will implement the use of automated software vulnerability
detection and analysis tools and ensure risk-based remediation of software
vulnerabilities is addressed in PPPs, included in contract requirements,
and verified through continued use of such tools and testing (as required
by section 933 of P.L. 112-239, Reference (l)).” [DoDI 5000.02]

A.2. Program Protection Plan (PPP)
To implement a PPP, the DoD provides a PPP outline and guidance [DoD PPP].

This guidance recommends that programs address questions related to the development
environment such as:

• “How will the program identify new vulnerabilities (both system-level and in
the development environment) to the [Critical Program Information (CPI)] and
mission-critical functions and components?”

• “Indicate the RFP Contract Line Item Number (CLIN) or Data Item Description
(DID) that will be used to ensure that CPI and critical functions/components are
protected in the development environment and on the system”

• “Contractor development environments may host CPI and should be evaluated
for protection.”

• “How will the development environment be protected? / List the development
environment tools”

• Who has access to the development environment?

In addition, the supporting PPP template [DoD PPP Template] asks additional
questions about the development environment:

• “How will software architectures, environments, designs, and code be evaluated
with respect to CVE (Common Vulnerabilities and Exposures), CAPEC
(Common Attack Pattern Enumeration and Classification), and CWE (Common
Weakness Enumeration)?”

C-3

• “Explain how supply chain threat assessments will be used to influence system
design, development environment, and procurement practices. Who has this
responsibility? When will threat assessments be requested?”

• “Specify the way in which the program will identify new vulnerabilities to the
CPI and mission-critical functions and components (both system-level and in the
development environment).”

In short, the PPP outline and guidance, along with its supporting template, clearly
notes that the development environment is important. However, their primary suggested
approaches focus on areas such as carefully selecting tools and having controlled access
with only cleared personnel. If the tools themselves may be malicious, these areas may
not be enough. As we will discuss later, we offer approaches to protecting the
development environment even if malicious tools slip through evaluation and end up
being used.

A.3. DoDI 5200.44
DoD Instruction 5200.44, Protection of Mission Critical Functions to Achieve

Trusted Systems and Networks (TSN), “establishes policy and assigns responsibilities to
minimize the risk that DoD’s warfighting mission capability will be impaired due to
vulnerabilities in system design or sabotage or subversion of a system’s mission critical
functions or critical components, as defined in this Instruction, by foreign intelligence,
terrorists, or other hostile elements.” [DoD 5200.44]

This instruction states that “Risk to the trust in applicable systems shall be managed
throughout the entire system lifecycle. The application of risk management practices shall
begin during the design of applicable systems and prior to the acquisition of critical
components or their integration within applicable systems, whether acquired through a
commodity purchase, system acquisition, or sustainment process.”

It states that for applicable systems risk management shall include processes, tools,
and techniques such as:

• “Reduce vulnerabilities in the system design through system security
engineering.”

• “Control the quality, configuration, software patch management, and security of
software, firmware, hardware, and systems throughout their lifecycles….”

• “Detect the occurrence of, reduce the likelihood of, and mitigate the
consequences of unknowingly using products containing counterfeit components
or malicious functions….”

C-4

• “Detect vulnerabilities within custom and commodity hardware and software
through rigorous test and evaluation capabilities, including developmental,
acceptance, and operational testing.”

DoDI 5200.44 includes a reference to the “SCRM Key Practices guide,” whose
development was led by IDA [Wheeler 2010].

This also references the PPP.

A.4. DoDI 8500.01
DoD Instruction 8500.01, Cybersecurity, applies to “All DoD IT” and “All DoD

information in electronic format” [DoDI 8500.01]. It states that:

• “DoD will implement a multi-tiered cybersecurity risk management process….”

• “Risks associated with vulnerabilities inherent in IT, global sourcing and
distribution, and adversary threats to DoD use of cyberspace must be
considered….”

• “Risk management will be addressed as early as possible in the acquisition of IT
and in an integrated manner across the IT life cycle.”

This instruction briefly discusses enclaves and refers to Committee on National
Security Systems (CNSS) Instruction 4009 for their definition. CNSS Instruction 4009
defines enclave as “A set of system resources that operate in the same security domain
and that share the protection of a single, common, continuous security perimeter” [CNSSI
4009], a definition from IETF RFC 4949 Version 2.

DoDI 8500.01 does not directly refer to software development environments.

A.5. Risk Management Framework (RMF)
NIST Special Publication 800-39 is intended to provide guidance to the entire U.S.

federal government for “an integrated, organization-wide program for managing
information security risk to organizational operations (i.e., mission, functions, image, and
reputation), organizational assets, individuals, other organizations, and the Nation
resulting from the operation and use of federal information systems.” It states that senior
leaders/executives define the organizational risk frame (tier 1) and that mission/business
owners apply their understanding of the organizational risk frame to address concerns
specific to the organization’s missions/business functions (tier 2). At tier 3, “program
managers, information system owners, and common control providers apply their
understanding of the organizational risk frame based on how decision makers at Tiers 1
and 2 choose to manage risk,” and the Risk Management Framework (RMF) is the
primary means for addressing tier 3 risk. [NIST SP 800-39]

C-5

NIST Special Publication 800-37 was developed to transform “the traditional
Certification and Accreditation (C&A) process into the six-step Risk Management
Framework (RMF).” Three of its key steps are to select, implement, and assess security
controls. It also states that “Information security requirements are satisfied by the
selection of appropriate management, operational, and technical security controls from
NIST Special Publication 800-53.”

NIST Special Publication 800-53 provides “guidelines for selecting and specifying
security controls for organizations and information systems.” In particular, it provides a
“security controls catalog,” a list of many potential security controls organized into
families. These families include Configuration Management (CM), Risk Assessment
(RA), and System and Services Acquisition (SA). Within the families are specific
controls, and some controls have many possible enhancements. NIST SP 800-53 version
4 lists over 800 possible security controls or control enhancements. NIST 800-53
identifies some of these controls or control enhancements as assurance-related controls
(i.e., those controls are intended to increase assurance).

NIST SP 800-53’s control, SA-12 (Supply Chain Protection), specifically focuses
on supply chain and has a number of enhancements. NIST SP 800-53 includes some
controls that support the custom development of secure software. These include:

• SA-4 Acquisition Process,

• SA-8 Security Engineering Principles,

• SA-10 Developer Configuration Management,

• SA-11 Developer Security Testing and Evaluation,

• SA-14 Criticality Analysis,

• SA-16 Developer-Provided Training,

• SA-17 Developer Security Architecture and Design,

• SA-20 Customized Development of Critical Components,

• RA-5 Vulnerability Scanning.

NIST SP 800-53’s control SA-15 (Development Process, Standards, and Tools)
covers software development processes and tools, and includes a number of control
enhancements. For example, SA-15(7) (Development Process, Standards, and Tools |
Automated Vulnerability Analysis) states that, “The organization requires the developer
of the information system, system component, or information system service to: (a)
Perform an automated vulnerability analysis….” The development environment is also
mentioned in SA-4 (Acquisition Process).

C-6

However, the security of the development environment against potentially malicious
tools is not especially a strong focus of SP 800-53 version 4. There are certainly controls
that describe general measures that can be taken to resist attacks, such as SI-3 (Malicious
Code Protection), AC-4 (Information Flow Enforcement), SC-3 (Security Function
Isolation), and SC-7 (Boundary Protection). But this is not the same as making it clear
that it might be useful to counter attacks from development tools themselves.

No single set of security controls would be appropriate to all systems. NIST SP 800-
53 addresses this by identifying baseline controls, which are “the starting point for the
security control selection process.” NIST SP 800-53 identifies three security control
baselines “corresponding to the low-impact, moderate-impact, and high-impact
information systems.”

DoD Instruction 8510.01, Risk Management Framework (RMF) for DoD
Information Technology (IT), establishes “the RMF for DoD IT” [DoDI 8510.01].
However, the DoD and intelligence community use a finer-grained approach to selecting
controls. As described in Committee on National Security Systems (CNSS) Instruction
1253, system requirements are divided into confidentiality, integrity, and availability
(CIA), and the impact is selected as being low, medium, or high for each division. These
values then determine the recommended set of baseline controls. [CNSSI 1253]

It is important to understand that the baseline controls are not necessarily
implemented by all systems. As NIST SP 800-53 version 4, appendix E explains, “When
assurance-related controls cannot be satisfied, organizations can propose compensating
controls (e.g., procedural/operational solutions to compensate for insufficient technology-
based solutions) or assume a greater degree of risk with regard to the actual security
capability achieved.”

A.6. Enclave Test and Development (T&D) Security Technical
Implementation Guide (STIG)

The T&D STIG is intended to provide the “information protection guidance
necessary to ensure secure implementation of Information Systems (ISs) and networks
providing test and development services. [They] provide guidance for the separation of
network traffic, functionality, and supplement existing security requirements already
levied against test and development systems.” It defines several kinds of zones, zones A
through D, with different required characteristics such as network connectivity and STIG
compliance [DISA Enclave 2016]. It defines the zones as follows:

• “The Zone A environment is typically configured as a mirrored operational
network for final end stage testing. This environment will have connectivity to
the live operational network for final data testing prior to the product or
application deployment into the operational network… Development within the

C-7

environment should be minimal for final revisions and minor updates of
products in the final testing phase. While all systems performing development
must be IA compliant, the use of compilers and other development tools on
these systems are permitted with approval from the organization’s Authorizing
Official.”

• “Zone B follows and is similar to Zone A from a network connectivity
perspective, but with much stricter control mechanisms in the infrastructure
supporting the environment. The Zone B environment is the designated zone
permitting connectivity for moving sanitized data for testing purposes along
with development of applications destined for a live and operational DoD
network…. Full development within the environment will be crucial for initial
coding and tweaking of products in development phase. While systems
performing development must be IA compliant, permitting the use of compilers
and other documented development tools on these systems is permissible.”

• “Zone C environments are specific in nature to organization’s that have a
mission to interconnect with other organization’s to create a fully closed multi-
environment network for product testing and evaluation…. In Zone C, the
network will be isolated from the rest of an organization’s operational network.
Direct access to the DISN is not permitted for Zone C environments as the DISN
is used to transmit data between environments.”

• The Zone D environment is “a fully closed and physically separate network
from any DoD live operational network. Permitted activities in the environment
includes, but are not limited to, extensive testing using prohibited tools, working
with malicious code, virus samples, working with Ports, Protocols, and Services
(PPS) that are otherwise restricted via DoD policy…. Development within the
environment is generally not an encouraged practice. If development occurs, all
systems performing development must be IA compliant. The use of compilers
and other development tools on these systems will be permitted with
documented approval from the organization’s AO. Prohibiting the connection of
development systems within the environment connected to any internal network
configured for the environment is required, in particular if Internet access is
available. Any applications developed in the environment must be in compliance
with the Application Security and Development (ASD) STIG. All applications
must go through a code review to ensure the application will not pose a risk to
DoD networks when migrated.”

Note that development is (mostly) discouraged in Zones A and D, and Zone C is a
special case. Thus, of the identified zones, only Zone B allows real development. Yet
Zone B has a lot of overhead (e.g., you have to specially review each tool, and it must
have an information assurance (IA)-compliant infrastructure). This makes it difficult to

C-8

do real work with modern tools. Also, Zone B doesn’t protect against potentially
malicious tools (because there is no required protection required inside the zone).

The Enclave T&D STIG notes that it’s important to protect source code’s
confidentiality and integrity:

Building a secure infrastructure will minimize the risk of theft and
corruption of source code either accidentally or maliciously. Remote
access capabilities described for each zone environment is crucial for
testers and developers to access the appropriate tools needed to do their
job while maintaining the proper physical and/or logical separation.
Development of applications is the most important aspect of the T&D
environments. Securing the source code needs to be the highest priority
prior to migration into a live operational network. Compromise of the code
can cause integrity and availability issues if proper vetting is not complete
prior to migration.

This STIG specifically discusses virtualization:
While implementing virtualized systems into T&D environments to reduce
infrastructure costs, security should be a priority to thwart the risk of data
theft or other malicious attacks and unintentional activity in the virtualized
environment. Virtualizing the T&D environment can be a great way to
reduce overall systems and save time in standing up new testing platforms
in an ever-growing environment. However, relaxing separation restrictions
should be assessed when dealing with different levels of data sensitivity
and classification. The most important rule is that no system spanning
classifications levels shall be allowed to reside on the same physical host.
Securing systems to the highest classification otherwise is necessary, the
risk for potential theft and spillage may occur.
Virtualization within differing zones may occur but only if they reside
with other like systems. Secure virtualized development systems may not
reside on the same physical platform or share the same hypervisor as a
non-compliant virtualized testing platform. Zone A and B may be shared
across physical hosts if the systems are separated in a systematic manner
where proper logical separation is configured and IA-compliant T&D
standards are met. All physical hosts running the hypervisor must be IA
compliant when connected to any network with outside connectivity. They
must be managed through a network segment dedicated for management
work only.

However, this STIG focuses on network mechanisms (which may be virtualized in
some cases) to provide isolation and protection. This means that there is no necessary
protection within an environment should malicious tools be present.

In addition, this STIG has limited applicability. Its scope does not include “networks
not directly connected to the Defense Information Systems Network (DISN),” nor does
its scope include “Research, development, testing, and evaluation of Platform IT” [DISA

C-9

Enclave 2016]. Thus, in many cases, this STIG does not necessarily apply (e.g., in the
development of weapon systems), though of course organizations can apply it if they see
fit. An easy way to escape all the zone requirements is to develop on a system not
connected to the DISN, as this evades the entire STIG. In practice, software development
is often done in isolated systems, isolated networks, or in some cases systems connected
to the Internet but without access to test data.

A.7. Application Security and Development (ASD) STIG
The ASD STIG is intended to “improve the security of Department of Defense

(DoD) information systems,” and is “designed to be applied to all enterprise applications
connected via the network.” It is a “requirement for all DoD- developed,
-architected, and -administered enterprise applications and systems connected to DoD
networks. An enterprise application (EA) is defined as an application or software that is
used by the organization to assist in the execution of the organizations missions or
meeting organizational goals or tasks.” It may be used “for both in-house application
development and to assist in the evaluation of the security of third-party applications,”
however, some sections may not apply to third-party products. [ASD STIG 2018]

The ASD STIG clearly states that tools are important. In section 4, it identifies two
kinds of tools in particular along with recommendations for their use:

1. Application Code Scanner. The ASD STIG defines this as “an automated tool
that analyzes application source code for security flaws, malicious code, and
back doors… These tools can often help developers identify potential flaws in
the program logic allowing them to correct the issue prior to application release.
Source code is not always required in order to perform code security tests. Some
application code scanners will operate on binary or compiled byte code allowing
system administrators to perform code scanning tests on application code
without having access to the actual source code itself.” The ASD STIG states
that “Application code scanners should be utilized whenever [possible,
particularly] in the development environment where code that has been
identified as requiring remediation can be addressed prior to release.”

2. Application Scanner (active vulnerabilities testing tool). The ASD STIG defines
this as “a tool that is able to communicate with the application and test the
application for known security vulnerabilities. An application scanner can be
used to test development or production application systems for security
vulnerabilities resulting from either application code errors or application
system misconfigurations. These vulnerabilities include SQL Injection, Code
Injection, Cross Site Scripting (XSS), file disclosures, permissions, and other
security vulnerabilities that can be found in network accessible applications.
Application vulnerability scanners can identify security weaknesses that are

C-10

related to the underlying system configuration enabling administrators to
reconfigure systems in order to eliminate identified vulnerabilities.” The ASD
STIG states that “Application vulnerability scans must be utilized and should be
conducted on a regular basis, such as after any product updates or major
reconfigurations and prior to activating new applications in their production
environment.”

The ASD STIG defines severity category codes (each referred to as a CAT) as “a
measure of vulnerabilities used to assess a facility or system security posture.” Each
security rule is assigned a severity category code of CAT I, II, or III. CAT I is the most
“Any vulnerability, the exploitation of which will directly and immediately result in loss
of Confidentiality, Availability, or Integrity.”

The ASD STIG contents list a large number of rules. For example, rule id “SV-
84899r1_rule” is titled “The application must not be vulnerable to overflow attacks” and
provides the following discussion: “A buffer overflow occurs when a program exceeds
the amount of data allocated to a buffer. The buffer is a sequential section of memory and
when the data is written outside the memory bounds, the program can crash or malicious
code can be executed….”

A positive trait of the ASD STIG is that it can be placed on contracts, unlike most
guidance documents that are not designed for that purpose. It also encourages some
automation, which is important for modern software.

However, the ASD STIG rules have many gaps. For example:

• Rule “SV-84899r1_rule” for overflow attacks only directly discusses writing
outside a buffer boundary. Some attacks, such as Heartbleed, involve reading
outside a buffer boundary [Wheeler 2017Heartbleed], a possibility not
considered in the ASD STIG.

• Rule “SV-84865r1_rule” mentions XML External Entity (XXE), but only states
that, “An XML firewall function must be deployed to protect web services when
exposed to untrusted networks.” This is weak, because no other countermeasures
for XXE are suggested, and there is no reason to believe this would always be
sufficient. What’s more, this is only given CAT II severity (less important). This
is in contrast to the 2017 edition of the Open Web Application Security Project
(OWASP) top 10 [OWASP 2017]. This widely used publication added the need
to address XXE attacks to their list of the most important attacks to address due
to their increasing prevalence. Such attacks could have a variety of impacts on
an SDE.

Another problem with the ASD STIG is that it maps rules to specific severity
categories. This is a simplifying assumption, but it is often wrong. In the end, severity

C-11

should be mapped to mission needs, not just to a technical type of vulnerability. Trained
developers or evaluators should be able to propose alternative priorities based on mission
need (e.g., because a given vulnerability is not exploitable, is exploitable only by trusted
administrators and thus less important, or is more important in a given context).

D-1

Appendix D
Acronyms and Abbreviations

AO Authorizing Official [DISA Enclave 2016]
APL Approved Products List
ASD Application Security and Development
BSIMM Building Security in Maturity Model
CAPEC Common Attack Pattern Enumeration & Classification
CE Computing Environment
CIA Confidentiality, Integrity, and Availability
CII (Linux Foundation) Core Infrastructure Initiative
CLIN (RFP) Contract Line Item Number
CM Configuration Management
CNSS Committee on National Security Systems
CoN (Army) Certificate of Networthiness
COTS Commercial Off-the-Shelf
CPI Critical Program Information
CPU Central Processing Unit
CVE Common Vulnerabilities and Exposures
CVSS Common Vulnerability Scoring System
CWE Common Weakness Enumeration
CWRAF Common Weakness Risk Analysis Framework
CWSS Common Weakness Scoring System
DADMS Department of the Navy Application and Database Management

System
DID Data Item Description
DISA Defense Information Systems Agency
DISN Defense Information Systems Network
DoD Department of Defense
DoDI DoD Instruction

D-2

DODIN DoD Information Network (DISA)
DON Department of the Navy
EA Enterprise Application
GOTS Government Off-The-Shelf
HTML Hypertext Markup Language
HTTPS Hypertext Transfer Protocol Secure
ICT Information and Communication Technology
IDA Institute for Defense Analyses
IDE Integrated Development Environment
IDS Intrusion Detection System
IEC International Electrotechnical Commission
IETF Internet Engineering Task Force
IM Instant Messaging
IPS Intrusion Prevention System (IPS)
ISO International Organization for Standardization
IT Information Technology
JFAC Joint Federated Assurance Center (DoD)
KPP Key Performance Parameter
NIST (U.S.) National Institute of Standards and Technology
NVD (U.S.) National Vulnerability Database
OCI Open Container Initiative
OSS Open Source Software
OTS Off-The-Shelf
O-TTPS Open Trusted Technology Provider Standard
OVF Open Virtualization Format
OWASP Open Web Application Security Project
PKI Public Key Infrastructure
PPP Program Protection Plan
PyPI Python Packaging Index
RFP Request for Proposal
RA Risk Assessment
RM Risk Management
RMF Risk Management Framework

D-3

SA System and Services Acquisition
SCRM Supply Chain Risk Management
SDE Software Development Environment
SDK Software Development (Tool)Kit
SEE Software Engineering Environment
SFTP SSH (or Secure) File Transfer Protocol
SS KPP System Survivability Key Performance Parameter
SSH Secure Shell
SOAR State-of-the-Art Resources, see [Wheeler2016]
STIG Security Technical Implementation Guide
SwA Software Assurance
T&D Test and Development
T&E Test and Evaluation
TLS Transport Layer Security
TSDM Trusted Software Development Methodology
TSM Trusted Software Methodology
TSN Trusted Systems and Networks
UCS Universal Coded Character Set
UTF-8 Unicode/UCS Transformation Format
VC Version Control
VM Virtual Machine
VMM Virtual Machine Monitor (aka hypervisor)
VNC Virtual Network Computing
VPN Virtual Private Network
XML Extensible Markup Language
XXE XML External Entity

BB-1

Bibliography

Note that URLs may have changed since publication. In some cases, we provide notes
about the source material.
[Ahner 2017] Ahner, Darryl K and Bill Rowell. “T&E of Warfighting System Cyber

Security Capabilities.”
http://itea.org/images/pdf/conferences/2017_Cyber/Proceedings/AHNER%20ROWE
LL%20-%20ITEA_Cyber_Security_Workshop.pdf

[Andrews 2003] Andrews, Jeremy. 2003-11-05. “Linux: Kernel “Back Door” Attempt”
KernelTrap.
https://web.archive.org/web/20051122074510/https://kerneltrap.org/node/1584

[ArmyCoN] Army. Army Networthiness Program (Certificate of Networthiness).
Retrieved 2017-11-29.
https://www.atsc.army.mil/tadlp/implementation/config/networthiness.asp

[ASD STIG 2018] Application Security and Development (ASD) Security Technical
Implementation Guide (STIG), Ver 4, Rel 5. 2018-01-26.
https://iasecontent.disa.mil/stigs/zip/U_ASD_V4R5_STIG.zip

[Barrett 2017] Barrett, Brian. “Kaspersky, Russia, and the Antivirus Paradox.” Wired.
2017-11-10. https://www.wired.com/story/kaspersky-russia-antivirus/

[BBC 2017] BBC News. 2017-06-28. “Global ransomware attack causes turmoil.” BBC
News. http://www.bbc.com/news/technology-40416611

[Biba1975] Biba, K.J. Integrity Considerations for Secure Computer Systems, MTR-
3153, The MITRE Corporation, June 30, 1975.
http://seclab.cs.ucdavis.edu/projects/history/papers/biba75.pdf

[Bell Labs 1979] Bell Labs. Unix Seventh Edition Manual. 1979.
https://s3.amazonaws.com/plan9-bell-labs/7thEdMan/index.html

[Boyens2015] Boyens, Jon, Celia Paulsen, Rama Moorthy, Nadya Bartol. April 2015.
Supply Chain Risk Management Practices for Federal Information Systems and
Organizations. NIST Special Publication 800-161.
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-161.pdf

[BSIMM2017] Building Security in Maturity Model (BSIMM). 2017.
https://www.bsimm.com/

[Cimpanu 2017-CCleaner] Cimpanu, Catalin. 2017. “CCleaner Compromised to
Distribute Malware for Almost a Month.” BleepingComputer.
https://www.bleepingcomputer.com/news/security/ccleaner-compromised-to-
distribute-malware-for-almost-a-month/

[Cimpanu 2017-ExpensiveWall] Cimpanu, Catalin. 2017-09-14. “Developers Unwittingly
Embedded Malware in Their Android Apps via Shady SDK.” Bleeping Computer.

BB-2

https://www.bleepingcomputer.com/news/security/developers-unwittingly-embedded-
malware-in-their-android-apps-via-shady-sdk/

[Cimpanu 2017-JavaScript] Cimpanu, Catalin. 2017-08-04. “JavaScript Packages Caught
Stealing Environment Variables.” Bleeping Computer.
https://www.bleepingcomputer.com/news/security/javascript-packages-caught-
stealing-environment-variables/

[CNSSI 4009] Committee on National Security Systems (CNSS) Instruction 4009.
National Information Assurance (IA) Glossary. 2015-04-06.
https://www.cnss.gov/CNSS/issuances/Instructions.cfm

[CNSSI 1253] Committee on National Security Systems Instruction 1253, Security
Categorization and Control Selection for National Security Systems, March 15, 2012,
March 27, 2014, as amended. https://www.cnss.gov/CNSS/issuances/Instructions.cfm

[CNSS 2017] Committee on National Security Systems (CNSS). 2017-07-26. Supply
Chain Risk Management. Directive 505.
https://www.cnss.gov/CNSS/issuances/Directives.cfm

[Cockerill 2015] Cockerill, Aaron. 2015-09-20. “Hundreds of millions of devices
potentially affected by first major iOS malware outbreak.” Lookout Blog.
https://blog.lookout.com/xcodeghost

[Coviello 2011] Coviello, Jr., Arthur W. (in his capacity as Executive Chairman, RSA,
The Security Division of EMC). 2011-10-04. “Written Testimony: U.S. House of
Representatives, Permanent Select Committee on Intelligence.”
https://fas.org/irp/congress/2011_hr/100411coviello.pdf

[Dart1992] Dart, Susan A., Robert J. Ellison, Peter H. Feiler, A. Nico Habermann, and
edited by Peter Fritzson. “Overview of Software Development Environments.”
January 1992. University of California at Irvine.
http://www.ics.uci.edu/~andre/ics228s2006/dartellisonfeilerhabermann.pdf
https://www.researchgate.net/publication/237774668_Overview_of_Software_Develo
pment_Environments

[DISA Enclave 2016] Defense Information Systems Agency (DISA), 2016-01-22,
Enclave Test and Development STIG Overview, V1R3 DISA
http://iasecontent.disa.mil/stigs/zip/Jan2016/U_Enclave_Test_and_Development_V1
R3_STIG.zip

[DoD PPP] DoD PPP Outline. July 2011. Program Protection Plan Outline & Guidance,
Version 1.0. http://acqnotes.com/acqnote/careerfields/program-protection-plan

[DoD PPP Template] Protection Plan Template.
http://acqnotes.com/acqnote/careerfields/program-protection-plan

[DoDI 5000.02] DoD Instruction (DoDI) 5000.02, Operation of the Defense Acquisition
System.” 10 Aug 17 (Change 3). http://acqnotes.com/acqnote/acquisitions/dodi-5000

[DoDI 5200.44] DoD. July 27, 2017. Protection of Mission Critical Functions to Achieve
Trusted Systems and Networks (TSN). DoD Instruction 5200.44.
http://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/520044p.pdf

http://www.ics.uci.edu/%7Eandre/ics228s2006/dartellisonfeilerhabermann.pdf
https://www.researchgate.net/publication/237774668_Overview_of_Software_Development_Environments
https://www.researchgate.net/publication/237774668_Overview_of_Software_Development_Environments

BB-3

[DoDI 8500.01] Department of Defense (DoD). 2014-03-14. Cybersecurity. DoDI
8500.01.
http://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/850001_2014.pdf

[DoDI 8510.01] DoD Instruction 8510.01, Risk Management Framework (RMF) for DoD
Information Technology (IT). July 28, 2017.
http://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/851001_2014.pdf

[EMC 2011] EMC, RSA Division. 2011-07. Frequently asked questions about RSA
secured: Information for RSA Customers. Customer faq 0711.
https://www.emc.com/collateral/guide/11455-customer-faq.pdf

[Fruhlinger 2017] Fruhlinger, Josh. 2017-10-17. “Petya ransomware and NotPetya
malware: What you need to know now.” CSO Online [Not confirmed to be an
abbreviation]. https://www.csoonline.com/article/3233210/ransomware/petya-
ransomware-and-notpetya-malware-what-you-need-to-know-now.html

[GE 1991] General Electric (GE). 1991-12-23. Trusted Software Development
Methodology (TSDM) Report. Volumes 1 and 2. Product numbers A075-101A and
A075-102A. For the Strategic Defense Initiative (SDI) Organization, later known as
the Missile Defense Agency. A minor update was later published on 1993-07-02.

[Goodin 2015] Goodin, Dan. 2015-09-21. “Apple scrambles after 40 malicious
“XcodeGhost” apps haunt App Store: Outbreak may have caused hundreds of
millions of people to download malicious apps.” Ars Technica.
https://arstechnica.com/information-technology/2015/09/apple-scrambles-after-40-
malicious-xcodeghost-apps-haunt-app-store/

[Goodin 2017PyPI] Goodin, Dan. 2017-09-16. “Devs unknowingly use “malicious”
modules snuck into official Python repository: Code packages available in PyPI
contained modified installation scripts.” Ars Technica.
https://arstechnica.com/information-technology/2017/09/devs-unknowingly-use-
malicious-modules-put-into-official-python-repository/

[Greenberg 2017] Greenberg, Andy. 2017-09-18. “Software has a Serious Supply-Chain
Security Problem.” Wired. https://www.wired.com/story/ccleaner-malware-supply-
chain-software-security/

[Greenberg 2017-Petya] Greenberg, Andy. 2017-07-07. “The Petya Plague Exposes the
Threat of Evil Software Updates.” Wired. https://www.wired.com/story/petya-plague-
automatic-software-updates/

[Goodin 2017-GitHub] Goodin, Dan. 2017-03-29. “Someone is putting lots of work into
hacking GitHub developers: Dimnie recon trojan has flown under the radar for three
years... until now.” Ars Technica. https://arstechnica.com/information-
technology/2017/03/someone-is-putting-lots-of-work-into-hacking-github-
developers/

[Hern 2014] Hern, Alex. 2014-10-28. “Tor users advised to check their computers for
malware: Users of the anonymising service may have accidentally downloaded
malware thanks to a malicious Russian hacker.” The Guardian.
https://www.theguardian.com/technology/2014/oct/28/tor-users-advised-check-
computers-malware

BB-4

[Hussein 2017] Hussein, Mahmoud, Reda Nouacer, and Ansgar Radermacher. 2017-09-
28. “Towards a Safe Software Development Environment.” IEEE Xplore.
http://ieeexplore.ieee.org/document/8049827/

[JFAC 2015] Joint Federated Assurance Center (JFAC). 2015. Joint Federated Assurance
Center (JFAC) Charter. Signed by Robert O. Work (Deputy Secretary of Defense) on
2015-02-09. https://www.acq.osd.mil/se/docs/JFAC-Charter-020915-SansMemo.pdf

[Kaspersky 2017] Kaspersky Labs. 2017-08-15. “ShadowPad: How Attackers hide
Backdoor in Software used by Hundreds of Large Companies around the World:
ShadowPad is one of the largest known supply-chain attacks. Had it not been detected
and patched so quickly, it could potentially have targeted hundreds of organizations
worldwide.” https://www.kaspersky.com/about/press-releases/2017_shadowpad-how-
attackers-hide-backdoor-in-software-used-by-hundreds-of-large-companies-around-
the-world

[Kupsch 2016] Kupsch, James A., Elisa Heymann, Barton Miller, and Vamshi Basupalli.
2016-04-29. “Bad and good news about using software assurance tools.” Later
published in Software Practice and Experience (after online publication), Volume 47,
Issue 1, January 2017, pp. 143–156.
http://onlinelibrary.wiley.com/doi/10.1002/spe.2401/full

[LF 2017] CII Best Practices Badge Program. https://bestpractices.coreinfrastructure.org/
[Maunder 2017] Maunder, Mark. 2017-08-17. “PSA: 4.8 Million Affected by Chrome

Extension Attacks Targeting Site Owners”. Wordfence.
https://www.wordfence.com/blog/2017/08/chrome-browser-extension-attacks/

[Mueller 2012] Mueller, Carl J. August 27, 2017. “Securing the Software Development
Environment.” TAMU-Central Texas in Killeen, Infosec Institute.
http://resources.infosecinstitute.com/securing-the-software-development-
environment/. This has some old references, e.g., CVS & Peek, but it does note the
risk of malicious developers.

[NICCS] National Initiative for Cybersecurity Careers and Studies (NICCS). NICCS
Glossary. https://niccs.us-cert.gov/glossary

[NIST SP 800-37] NIST Special Publication (SP) 800-37 revision 1. Guide for Applying
the Risk Management Framework to Federal Information Systems: a Security Life
Cycle Approach. 2014-06-10. https://csrc.nist.gov/publications/detail/sp/800-37/rev-
1/final

[NIST SP 800-39] NIST Special Publication (SP) 800-39. Managing Information
Security Risk. 2011-03.
http://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-39.pdf

[NIST SP 800-53] NIST Special Publication (SP) 800-53 rev 4. Security and Privacy
Controls for Federal Information Systems and Organizations. Includes updates to
2015-01-22. https://csrc.nist.gov/publications/detail/sp/800-53/rev-4/final

[OpenGroup 2014] Open Group. 2014-07-29. Open Trusted Technology Provider
Standard (O-TTPS), Version 1.1. Identical to ISO/IEC 20243:2015.
https://publications.opengroup.org/c147

http://resources.infosecinstitute.com/securing-the-software-development-environment/
http://resources.infosecinstitute.com/securing-the-software-development-environment/
https://niccs.us-cert.gov/glossary

BB-5

[OWASP 2008] Open Web Application Security Project (OWASP). 2008-06-20. Threat
agent template. https://www.owasp.org/index.php/Threat_agent_template Retrieved
2017-12-27.

[OWASP 2017] Open Web Application Security Project (OWASP). 2017. Top Ten
Project. https://www.owasp.org/index.php/Category:OWASP_Top_Ten_2017_Project

[Popek 1974] Popek, Gerald J., and Robert P. Goldberg. “Formal requirements for
virtualizable third generation architectures.” Communications of the Association for
Computing Machinery (ACM) (CACM). Volume 17 Issue 7, July 1974. Pages 412-
421. https://dl.acm.org/citation.cfm?doid=361011.361073

[Reddy 2014a] Reddy, Dan. March/April 2014. Collaborating Across the Supply Chain to
Address Taint and Counterfeit. CrossTalk.
https://www.crosstalkonline.org/storage/issue-archives/2014/201403/201403-
Reddy.pdf

[Reddy 2014b] Reddy, Dan. July 2014. Criticality analysis and the supply chain:
Leveraging representational assurance. Technovation.
http://dx.doi.org/10.1016/j.technovation.2014.01.009 and
http://www.sciencedirect.com/science/article/pii/S0166497214000108

[Reproducible] Reproducible builds. Definitions. https://reproducible-
builds.org/docs/definition/

[Rowell] Rowell, William F. and Darryl K. Ahner. “Improving the T&E Workforce’s
Understanding of the New Approach to Developing Warfighting System Cyber
Requirements.” The ITEA Journal of Test and Evaluation. September 2017.

[Saltzer&Schroeder 1975] Jerome H. Saltzer, and Michael D. Schroeder. “The Protection
of Information in Computer Systems.” Invited tutorial paper. Proceedings of the IEEE
63, 9 (September 1975). pp. 1278–1308. Reprinted in Protection of Information in
Computer Systems. IEEE 1975 CompCon tutorial, David D. Clark and David D.
Redell, editors, IEEE # 75CH1050-4. Also reprinted in Advances in Computer System
Security, Rein Turn, editor, ArTech House, Dedham, MA, 1981, pages 105–135,
ISBN 0-89006-096-7. Also reprinted in “Protecting Data & Information: A Workshop
in Computer & Data Security,” by Marvin S. Levin, Steven B. Lipner, and Paul A.
Karger, Digital Equipment Corporation, 1982. A draft dated October 3, 1974, was
circulated locally as M.I.T. Project MAC Computer Systems Research Request for
Comments #60. http://web.mit.edu/Saltzer/www/publications/protection/index.html
http://www.cs.virginia.edu/~evans/cs551/saltzer/

[Shaw 2017a] Shaw, Richard A. October 30, 2017. “Software Supply Chain Attacks.”
https://csrc.nist.gov/CSRC/media/Projects/Supply-Chain-Risk-
Management/documents/ssca/2017-winter/NCSC_Placemat.pdf

[Shaw 2017b] Shaw, Richard A. October 30, 2017. “Software Supply Chain Attacks”:
Reference List. https://csrc.nist.gov/CSRC/media/Projects/Supply-Chain-Risk-
Management/documents/ssca/2017-winter/NCSC_Reference%20List.pdf

[Simpson 2010] Simpson, Stacy (editor). 2010-06-14. Software Integrity Controls: An
Assurance-Based Approach to Minimizing Risks in the Software Supply Chain.
SAFECode. June 14, 2010.

https://www.owasp.org/index.php/Threat_agent_template
https://www.crosstalkonline.org/storage/issue-archives/2014/201403/201403-Reddy.pdf
https://www.crosstalkonline.org/storage/issue-archives/2014/201403/201403-Reddy.pdf
http://dx.doi.org/10.1016/j.technovation.2014.01.009
http://www.sciencedirect.com/science/article/pii/S0166497214000108
http://web.mit.edu/Saltzer/www/publications/protection/index.html
http://www.cs.virginia.edu/%7Eevans/cs551/saltzer/

BB-6

http://www.safecode.org/publication/SAFECode_Software_Integrity_Controls0610.p
df

[Simpson 2011] Simpson, Stacy (editor). 2011-02-08. Fundamental Practices for Secure
Software Development: A Guide to the Most Effective Secure Development Practices
in Use Today. 2nd Edition.
https://www.safecode.org/publication/SAFECode_Dev_Practices0211.pdf. Note that
there is a third edition, [SAFECode 2018], but that version does not discuss
sandboxing.

[SAFECode 2018]. 2018-03. Fundamental Practices for Secure Software Development:
Essential Elements of a Secure Development Lifecycle Program, 3rd edition.
SAFECode. https://www.safecode.org/publications/

[Sutherland 1989] Sutherland, D. 1989-01. “Designing the software development
environment: a case study.” Proceedings of the Twenty-Second Annual Hawaii
International Conference on System Sciences. Volume II: Software Track.
http://ieeexplore.ieee.org/document/48113/#full-text-section

[Tschacher 2016] Tschacher, Nikolai Philipp. 2016. Typosquatting in Programming
Language Package Managers. Thesis. University of Hamburg Department of
Informatics. http://incolumitas.com/data/thesis.pdf

[Wagoner] Wagoner, Larry. Date Unstated. “Software Assurance Tool Status and Gaps -
System Assurance PTF.” National Security Agency.
http://sysa.omg.org/docs/swa_nsa.pdf

[Wheeler 2010] Wheeler, David A. (leader of Key Practices Group) et al. for the Supply
Chain Risk Management (SCRM) Program Office, Trusted Mission Systems and
Networks Directorate. 2010-02-25. “Key Practices and Implementation Guide for the
DoD Comprehensive National Cybersecurity Initiative 11 – Supply Chain Risk
Management Pilot Program.”
https://rmfks.osd.mil/rmf/Guidance/RMFRelatedTopics/Pages/SCRM.aspx

[Wheeler 2015-scm] Wheeler, David A., 2015, “Software Configuration Management
(SCM) Security.” https://www.dwheeler.com/essays/scm-security.html

[Wheeler 2015-programming] Wheeler, David A. 2015-09-19. “Secure Programming
HOWTO.” https://www.dwheeler.com/secure-programs/

[Wheeler&Reddy 2015] Wheeler, David A. and Dan Reddy. 2015. “Countering
Development Environment Attacks,” RSA 2015,
http://www.rsaconference.com/events/us15/agenda/sessions/1613/countering-
development-environment-attacks

[Wheeler 2016] Wheeler, David A., and Amy E. Henninger. November 2016. State-of-
the-Art Resources (SOAR) for Software Vulnerability Detection, Test, and Evaluation
2016 (aka SOAR Report). https://www.acq.osd.mil/se/docs/P-8005-SOAR-2016.pdf
or https://www.acq.osd.mil/se/initiatives/init_jfac.html

[Wheeler 2017cloud] Wheeler, David A. 2017-04-19. “Cloud Security: Virtualization,
Containers, and Related Issues.” https://www.dwheeler.com/essays/cloud-security-
virtualization-containers.html

http://www.safecode.org/publication/SAFECode_Software_Integrity_Controls0610.pdf
http://www.safecode.org/publication/SAFECode_Software_Integrity_Controls0610.pdf
https://www.safecode.org/publication/SAFECode_Dev_Practices0211.pdf
http://sysa.omg.org/docs/swa_nsa.pdf
https://rmfks.osd.mil/rmf/Guidance/RMFRelatedTopics/Pages/SCRM.aspx
http://www.rsaconference.com/events/us15/agenda/sessions/1613/countering-development-environment-attacks
http://www.rsaconference.com/events/us15/agenda/sessions/1613/countering-development-environment-attacks
https://www.acq.osd.mil/se/docs/P-8005-SOAR-2016.pdf
https://www.acq.osd.mil/se/initiatives/init_jfac.html
https://www.dwheeler.com/essays/cloud-security-virtualization-containers.html
https://www.dwheeler.com/essays/cloud-security-virtualization-containers.html

BB-7

[Wheeler 2017Heartbleed] Wheeler, David A. 2017-01-29. How to Prevent the next
Heartbleed. https://www.dwheeler.com/essays/heartbleed.html

 [Woiciechowski 2013] Woiciechowski, Stephanie (EMC Product Security Office, EMC
Corporation), 2013, “Source Code Protection: Evaluating Source Code Security.”
https://www.slideshare.net/perforce/whitepaper-source-code-protection

[Wright 2014] Wright, Madeline Wright and Dr. Carl Mueller. Nov/Dec 2014. “Soft
Locking Down the Software Development Environment.” Crosstalk.
http://www.crosstalkonline.org/storage/issue-archives/2014/201411/201411-
Wright.pdf

[Wright 2017] Wright, Madeline and Carl Mueller. 2017. “Locking Down the Software
Development Environment.” Crosstalk. http://m.crosstalkonline.org/issues/16/142/
http://cross5talk2.squarespace.com/storage/issue-archives/2017/201707/201707-0-
Issue.pdf
http://static1.1.sqspcdn.com/static/f/702523/25771604/1418603717260/201411-0-
Issue.pdf?token=EaiuLIiDQo57KcMgBFU3VqZsqpU%3D

[Xiao 2015a] Xiao, Claud. 2015-09-17. “Novel Malware XcodeGhost Modifies Xcode,
Infects Apple iOS Apps and Hits App Store.” Palo Alto Networks.
https://researchcenter.paloaltonetworks.com/2015/09/novel-malware-xcodeghost-
modifies-xcode-infects-apple-ios-apps-and-hits-app-store/

[Xiao 2015b] Xiao, Claud. 2015-09-18. “Malware XcodeGhost Infects 39 iOS Apps,
Including WeChat, Affecting Hundreds of Millions of Users.” Palo Alto Networks.
https://researchcenter.paloaltonetworks.com/2015/09/malware-xcodeghost-infects-39-
ios-apps-including-wechat-affecting-hundreds-of-millions-of-users/

https://www.dwheeler.com/essays/heartbleed.html
http://www.crosstalkonline.org/storage/issue-archives/2014/201411/201411-Wright.pdf
http://www.crosstalkonline.org/storage/issue-archives/2014/201411/201411-Wright.pdf

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std, Z39.18

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington
Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a
collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From – To)

00-07-18 Final
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Securely Using Software Assurance (SwA) Tools in the Software Development
Environment

HQ0034-14-D-0001
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBERS

6. AUTHOR(S) 5d. PROJECT NUMBER

David A. Wheeler, Daniel J. Reddy AU-5-3856
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES 8. PERFORMING ORGANIZATION REPORT
NUMBER

P-9166 Institute for Defense Analyses
4850 Mark Center Drive
Alexandria, VA 22311-1882
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR’S / MONITOR’S ACRONYM

OUSD(R&E) Thomas D. Hurt
Dir. JFAC, Dep.Dir. SW Eng./SW Assurance, OUSD(R&E) Enterprise Engineering
Engineering Enterprise
4800 Mark Center Dr., Suite 16D-08
Alexandria, VA 22350-3600

11. SPONSOR’S / MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

Project Leader: E. Kenneth Hong Fong

14.ABSTRACT Software assurance (SwA) may be defined as “the level of confidence that software is free from vulnerabilities, either intentionally
designed into the software or accidentally inserted at any time during its lifecycle, and that the software functions in the intended manner.” Since modern
systems are under constant attack, sufficient SwA is vital. In practice, a suite of SwA tools is necessary to help achieve this. However, there are potential
challenges to securely using a suite of SwA tools. Software development environments (SDEs) are increasingly under focused attack, since subverting
software during development can be easier than subverting it after it is deployed. One mechanism for subverting SDEs is to exploit vulnerabilities in its
tools or to provide maliciously subverted tools to an SDE. The goal of this paper is to help ease the deployment of SwA tools, by countering potential
objections to using them. To achieve this, we discuss how to protect against potential supply chain risks of SwA tools themselves, including how to protect
the SDE in general against supply chain risks and how the mechanisms to counter SwA tool risks fit into the SDE. We show that it is possible to modify
SDE practices to use a wide variety of SwA tools and still manage the inherent risks. Isolation mechanisms can be used, for example, to separate tools and
restrict access for specific tasks. This approach can be automated and may reduce risk in a relatively uncomplicated manner. In particular, the “medium
protection” approach discussed here should be easy to incorporate in existing SDEs. We recommend that organizations fully embrace the use of many SwA
tools when developing software. Where appropriate, they should consider taking the additional steps discussed here if they determine that the risks of using
SwA tools are otherwise too high. Our hope is that this information will lead to the widespread safe use of suites of SwA tools.

15. SUBJECT TERMS Software assurance; SwA; tool; SwA tool; software development environment; SDE; development environment; malicious code;
malicious software; malicious tool; subversion; subverted tool; isolation; virtual machine; container; containerization; protection; medium protection; risk
management; countermeasure; life cycle; supply chain; supply chain risk management; SCRM; computing environment; trust; trustworthy; trustworthiness;
approved products list; certificate of networthiness; software engineering environment; integrated development environment; programming environment;
static analysis; dynamic analysis; malicious supplier; insider threat; Joint Federated Assurance Center; JFAC; confidentiality; integrity; source code

16. SECURITY CLASSIFICATION OF:
17. LIMITATION OF

ABSTRACT

Unlimited

18. NUMBER
OF PAGES

92

19a. NAME OF RESPONSIBLE PERSON
Thomas D. Hurt

a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include Area
Code)

 571-372-6129 Unclassified Unclassified Unclassified

	1. Introduction
	2. Past Attacks and Countermeasures
	A. Past Attacks Involving the Software Supply Chain or SDEs
	B. Past and Current Methods of Countering Attacks on the Software Supply Chain or SDEs

	3. Problem
	A. Threats
	B. Assets
	C. Overall Environment
	D. Supply Chain Risk Management (SCRM)
	E. Security Goals

	4. Weaknesses of Common SDE Technical Approaches
	A. Example 1: Analysis Remotely Executed
	B. Example 2: Locally Executed with Internet Access
	C. Example 3: Individual Roaming SDE
	D. Example 4: Physically Secured Development Environment within Disconnected Private Network

	5. Developing Secure SDE Solutions
	A. Security Principles
	B. Project Policies
	C. Designing the SDE for Security
	D. Isolation Mechanisms
	E. Communication Mechanisms
	F. Solution Implementation
	G. Maximize Automation

	6. Sample Solutions
	A. Solution 1: Medium Protection
	1. Properties
	2. Designing CEs for Different Purposes
	3. Handling Results
	4. Discussion
	5. Meeting Security Goals for Solution 1

	B. Solution 2: High Protection
	1. Properties of Solution 2
	2. Meeting Security Goals for Solution 2

	7. Conclusions
	Appendix A Proofs of Concept
	A.1. Medium Protection Using a Virtual Machine
	A.2. Medium Protection Using a Container

	Appendix B Medium Solution: Quick Implementation Guide
	Appendix C DoD Policies on Countering Supply Chain or Software Development Environment (SDE) Attacks
	A.1. DoDI 5000.02
	A.2. Program Protection Plan (PPP)
	A.3. DoDI 5200.44
	A.4. DoDI 8500.01
	A.5. Risk Management Framework (RMF)
	A.6. Enclave Test and Development (T&D) Security Technical Implementation Guide (STIG)
	A.7. Application Security and Development (ASD) STIG

	Appendix D Acronyms and Abbreviations

	Blank Page
	P-9166 - SF 298.pdf
	Form Approved OMB No. 0704-0188

	Blank Page

