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Executive Summary 

Open source software (OSS) is “software for which the human-readable source code 

is available for use, study, reuse, modification, enhancement, and redistribution by the 

users of that software.” [DoD2009]  An OSS approach is an approach to software 

research and development (R&D) that releases OSS and encourages the collaborative 

development of OSS.  Using an OSS approach can enable and speed technology 

transition, but many researchers and government program managers are unfamiliar with 

how to use an OSS approach to support technology transition. 

This document provides guidance on how to use an OSS approach to support 

technology transition.  The goal of this guide is to help researchers (including principal 

investigators) turn their ideas into successfully deployed solutions, and also to help 

program managers as they select research proposals and oversee researchers’ work.  This 

guide focuses on aiding technology transition for work supported by the Department of 

Homeland Security (DHS) Science and Technology (S&T) Directorate, particularly its 

Cyber Security Division (CSD), which focuses on defensive cybersecurity research.  This 

includes research on developing trustworthy cyber infrastructure, on foundational 

elements of cyber systems, on cybersecurity user protection and education, on research 

infrastructure to support cybersecurity, and on cyber technology evaluation and transition 

(per http://www.dhs.gov/csd-program-areas). However, portions of this guide may also 

be useful to others performing technology transition of government-funded research. 

There are many potential advantages for using an OSS approach.  The Department 

of Defense (DoD) has identified many positive aspects of OSS, particularly for its users.  

In particular, “the continuous and broad peer-review enabled by publicly available source 

code supports software reliability and security efforts through the identification and 

elimination of defects that might otherwise go unrecognized by a more limited core 

development team.  The unrestricted ability to modify software source code enables 

[users] to respond more rapidly to changing situations, missions, and future threats…OSS 

is particularly suitable for rapid prototyping and experimentation, where the ability to 

‘test drive’ the software with minimal costs and administrative delays can be important.” 

[DoD OSS 2009].  Many quantitative studies show that OSS programs are often a 

reasonable or superior alternative to their proprietary competition according to measures 

such as market share, reliability, performance, scalability, security, and total cost of 

ownership [Wheeler2014a]. 
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OSS is often mistakenly called “non-commercial.”  OSS almost always meets the 

definition of a “commercial item,” as that term is defined under U.S. procurement law 

(41 U.S.C. § 103(1)).  Under this definition, an item qualifies as a “commercial item” if it 

is not real estate, is customarily used for non-government purposes, and is either licensed 

to the public or offered for license to the public.  Since nearly all OSS meets these 

criteria, nearly all OSS can be considered commercial computer software. 

This guide begins with an introduction to the basics of technology transition, open 

source software, and applying OSS approaches to technology transition.  It then discusses 

how to build on existing work, including how to evaluate existing software and modify 

existing OSS.  This guide then describes how to establish a collaborative environment for 

a new OSS project when necessary, including selection of hosting services, a governance 

process, and license, and dealing with the issues of contributor agreements and 

contributor assignments.  The key issues in OSS project inputs and results are then 

discussed, including processes for accepting technical contributions and a variety of 

common conventions.  Tips for making an OSS project successful are then provided, 

focusing on those that have been statistically verified as really working.  The document 

closes with approaches for overcoming common impediments.  

Simply developing and releasing software can be useful (e.g., for documenting past 

research so it can be repeated), but it does not necessarily create a successful OSS 

project.  The guidelines in this document should increase the probability of success.  

However, there are some potential impediments to OSS projects that are common and 

have specific corrections.  These include the following: 

Users/developers do not know of the project 

A common problem is that users and potential co-developers are unaware of the 

OSS project.  A clear (preferably unique) project name can help them find the project, 

once they know of it, but a unique name will not (by itself) help them discover that it 

exists in the first place. It is critical to have a front-page website that clearly describes the 

purpose of the project; this can help those who are searching for it.  This will help those 

specifically seeking projects like it, especially once others start linking to the project front 

page (since this increases search rankings).  However, many users will not know to seek 

out the project, and obscure projects often have low rankings in web searches. 

Missing functionality 

All software could have additional functionality added, and many users will want 

functionality that the current software lacks.  There are steps that can make missing 

functionality less of an impediment in some cases; they can be grouped into those making 

it easy to work around missing functionality and those making it easy to add that 

functionality. 
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Inadequate quality or trustworthiness 

Users are far less likely to use buggy software, especially if those defects directly 

affect their primary reasons for using the software.  OSS projects should use a variety of 

techniques to provide and maintain good quality.  This includes general quality issues 

(e.g., functions that perform incorrectly), but also security issues (e.g., enabling attack).  

This is even true for security-related programs; a security-related program can itself have 

vulnerabilities that enable instead of counter attack.  Since no single mechanism 

guarantees high quality, a variety of approaches should be used; some of them have 

already been noted above. 

Low trust 

Users may not trust a project, even if the code itself is trustworthy.  Thus, it is 

important to make it clear to users why they should trust the project. People are often 

more willing to trust a project if many others trust it.  Thus, focusing on improving the 

software so that it will help many users – and growing that user base – can also help gain 

the trust of others. 

Excessive user cost/time/effort 

Potential users have limited time, and co-developers in OSS projects often start as 

users.  Thus, any barrier for user actions can lead to dramatically fewer users and 

developers.  Consider tasks from the user’s point of view and constantly work to reduce 

their cost, time, and effort.  Efforts to reduce cost, time, and effort must typically 

continue over time.  The good news is that once a project begins gaining contributions 

(because it has reduced that effort to some reasonable level), other contributions can help 

reduce the effort further. 

An OSS approach can be a very effective way to perform technology transition of 

cybersecurity R&D.  However, as with any approach, it needs to be applied well; this 

guide should help researchers and PMs successfully apply it. 
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1. Introduction 

The United States and its allies depend on computer and network systems, and these 

are currently under attack.  To address this challenge, the U.S. Government actively 

invests in cybersecurity research.  However, a serious problem with today’s cybersecurity 

research is inadequate technology transition.  Technology transition is the set of all 

efforts to ensure that technologies developed in research settings will eventually be 

deployed and used operationally [Maughan2013].  A newer approach to transitioning 

technology based on open source software (OSS) is now available.  OSS approaches have 

the potential to improve technology transition in many cases.  However, OSS approaches 

only work well when they are properly applied. 

OSS can be defined as “software for which the human-readable source code is 

available for use, study, reuse, modification, enhancement, and redistribution by the users 

of that software.” [DoD2009]  An OSS approach is an approach to software research and 

development (R&D) that releases OSS and encourages the collaborative development of 

OSS.  As explained further below, using an OSS approach can enable and speed 

technology transition.  However, many researchers and government program managers 

are unfamiliar with how to use an OSS approach to support technology transition. 

This paper provides guidance on how to use an OSS approach to support technology 

transition.  The goal of this guide is to help researchers (including principal investigators) 

turn their ideas into successfully deployed solutions, and also to help program managers 

as they select research proposals and oversee researchers’ work.  This guide focuses on 

aiding technology transition for work supported by the Department of Homeland Security 

(DHS) Science and Technology (S&T) Directorate, particularly its Cyber Security 

Division (CSD), which focuses on defensive cybersecurity research.  This includes 

research on developing trustworthy cyber infrastructure, on foundational elements of 

cyber systems, on cybersecurity user protection and education, on research infrastructure 

to support cybersecurity, and on cyber technology evaluation and transition (per 

http://www.dhs.gov/csd-program-areas). However, portions of this guide may also be 

useful to others performing technology transition of government-funded research. 

This guide focuses on two key roles: 

 Researcher: A researcher proposes research and development (R&D) to be 

performed, performs the R&D if selected, and/or supports individuals 

performing R&D.  This role includes the principal investigator, any other 

investigators, software developers, and all other individuals in their organization 
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who support them.  It also includes the organizations these individuals work for 

or represent, including their subcontractors at all tiers.  The offeror is a 

researcher (or the organization the researcher works for) who develops a 

proposal for evaluation by DHS S&T.  There is no specific limit on who a 

researcher works for, if anyone.  Thus, a researcher may work for a university, a 

government (federal, state, local, tribal, or non-U.S.), a non-profit company, or a 

for-profit company.  The specific individuals and their involvement may change 

over time, e.g., as a technology matures, a researcher whose primary skill is 

leading the development of production software may become more involved or 

become a leader of the effort. 

 Program manager (PM): A PM selects research proposals to be funded and/or 

oversees the selected work as it proceeds.  The PM also determines whether 

additional phases of the work should be funded.  Generally, PMs are 

government employees or their delegates. 

This guide first briefly describes technology transition and OSS concepts in general.  

It then provides a brief overview of how to apply an OSS approach to technology 

transition.  It then focuses on the basics of applying OSS approaches to technology 

transition in general.  It then discusses how to build on existing work, including how to 

evaluate existing software and modify existing OSS.  This guide then describes how to 

establish a collaborative environment for a new OSS project when necessary, including 

selection of hosting services, a governance process, license, and the issues around 

contributor agreements and contributor assignments.  The key issues in OSS project 

inputs and results are then discussed, including processes for accepting technical 

contributions and a variety of common conventions.  Tips for making an OSS project 

successful are provided, focusing on those that have been statistically verified as really 

working.  The document closes with approaches for overcoming common impediments. 

Researchers and PMs who plan to use an OSS approach should incorporate their 

OSS plans as part of their proposal, since planning ahead can reduce the risk, cost, and 

time for technology transition.  That said, an OSS approach can be applied even after a 

proposal has been accepted without such plans, although some actions may be more 

difficult. 

This guide focuses on technology transition issues specific to applying an OSS 

approach.  Other papers, such as [D’Amico2013], provide general guidance for 

technology transition regardless of whether or not an OSS approach is being used.  Many 

papers and books provide tips for establishing and running an OSS project including 

[Scott2011], [Fogel2009], [Raymond2000], and [Gabriel2005].  We include some of 

these tips also noted elsewhere because they are important.  However, this document 

emphasizes recommendations that either are especially important to researchers or are 

recent conventions or lessons learned that are not always mentioned in older guides.  
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Specific technologies and organizations are mentioned in this guide, but no 

endorsement is implied. 
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2. Basics of Technology Transition 

As noted earlier, technology transition is the set of all efforts to ensure that 

technologies developed in research settings will eventually be deployed and used 

operationally [Maughan2013].  This section briefly explains why technology transition is 

important, then it discusses how an OSS approach can be used to help perform 

technology transition.  This section concludes with a description of the Need, Approach, 

Benefit, and Competition (NABC) framework; this is a simple way to quickly 

communicate an idea and its value proposition. 

A.  Technology transition is important 

The cybersecurity problem is large and growing; both government and industry are 

routinely victims of severe attacks.  New and innovative solutions are urgently needed; 

however, merely creating new solutions is useless.  “New and innovative technologies 

will only make a difference if they are deployed and used.  It does not matter how 

visionary a technology is unless it meets the needs and requirements of customers and 

users, and it is available as a product via channels that are acceptable to the customers 

and users…We cannot afford to have technologies be put on a shelf because the funded 

projects ended and the researchers moved on to new problems that were yet unsolved.”  

[Maughan2013]. 

Technology transition is the set of all efforts to ensure that technologies developed 

in research settings will eventually be deployed and used operationally [Maughan2013]1.  

DHS S&T focuses not just on creating technology, but also on successfully transitioning 

technology to users.  Clearly it is important to the government, and the public the 

government serves, that technology be successfully transitioned so that government 

investments can help solve cybersecurity problems.  In addition, many researchers and 

PMs want more than the publication of academic papers; they want their ideas to be put 

into practice so that their work can actually help people. 

Technology transition does not just happen.  Everett M. Rogers, in his book 

Diffusion of Innovation, states that “technology transfer is difficult, in part, because we 

have underestimated just how much effort is required for such transfer to occur 

                                                 

1
 In this paper we use the term technology transition broadly (just as [Maughan2013] does).  We do not 

make the distinction between technology transition and technology transfer that is sometimes used in the 

DoD community. 
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effectively” and that “technology transfer is usually a two-way, back-and-forth process of 

communication” [Rogers2003,pp150-152].  The gulf between creating technologies and 

implementing them is often so large, and fails so often, that it is sometimes referred to as 

the “valley of death.” The “introduction and acceptance of new technology often depend 

more on social, cultural, and historical factors than on technological merit…once 

technologies become entrenched, change is very difficult to effect…volumes have been 

written about failures in technology transition and the disastrous consequences that befall 

[organizations] that fail to recognize and adopt pivotal new technologies” [NRC2004]. 

DHS S&T enables technology transition through pervasive emphasis, early 

involvement, active engagement, and tangible support.  There is no single path to 

successful technology transition, so DHS S&T uses a variety of approaches, including 

establishing a government-funded project, establishing a proprietary product or service, 

and establishing an OSS approach for technology transition. 

B. An open source software approach can be used to help perform 

technology transition 

An OSS approach can be used to help perform technology transition.  “For all R&D 

[research and development] sources of new technology, open source is an alternative to 

traditional transition channels.  A number of government programs encourage or require 

technology to be released under open source licensing, as part of the R&D activities.  

Open source availability is well documented as a powerful and effective means to bring 

important capabilities into adoption, use, and support by larger communities” 

[Maughan2013]. 

An OSS approach provides a mechanism to quickly make results available to many 

potential users, including other researchers (who may be able to build on that work and 

innovate further) and end users (who need implementations of these research ideas).  In 

all cases an OSS approach enables the two-way, back-and-forth process of 

communication that [Rogers2003] identifies as being critical for technology transfer.  

This quick availability of results and two-way communication is of benefit to PMs (who 

want to see the work they fund made available to users) and to researchers (who along 

with seeing their work being employed, will benefit from association with a well-known 

OSS project, which can increase the likelihood of future funding through growth in 

reputation). 

An OSS approach can also counter some of the problems that inhibit technology 

transition: 

 Some new technologies can be difficult to apply because potential users do not 

understand what they do and why they work.  Papers can help in some cases, but 

all too often papers fail to reveal key issues relevant to potential users.  OSS 
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makes it easy for potential users to examine exactly what a technology does and 

how it works. 

 Some technologies apply to only a limited set of circumstances.  OSS makes it 

easier to determine those limitations, and also makes it possible to make changes 

to the software that may expand its application. 

 Some implementations of a technology are not rigorously tested.  OSS makes 

obvious what its regression test suite covers and enables potential users to avoid 

or fix the untested areas as appropriate. 

 Some implementations must be changed to meet the needs of users.  For 

example, changes may be required to meet changing requirements, to work 

under different than intended circumstances, to add functionality, to make it 

more efficient, or to interface with other systems or components. OSS enables 

users to make those changes (directly or by contracting others to do so). 

In some solicitations, DHS S&T has declared “a strong preference for open source 

licensing of software for all software developed and delivered and the licenses for all 

proposed software deliverables will have to be identified in submitted white papers and 

proposals,” although “researchers may also offer a strong technical transition plan for 

deployment of the technologies developed” as an alternative to OSS release [DHS-

Mobile2014] [Walker2014]. 

All technology transition approaches (including an OSS approach) need to be 

considered early, while the technology is still in development.  Otherwise, there is a risk 

that the transition will be delayed by years, if it occurs at all.  Even if a technology 

appears to be non-viable, transitioning it to OSS enables others to review it to either 

replicate the results or find an improvement that might make it viable. 

Note that using an OSS approach for technology transition is an example of open 

security.  Open security is “the application of open source software (OSS) approaches to 

help solve cyber security problems. An OSS approach collaboratively develops and 

maintains intellectual works (including software and documentation) by enabling users to 

use them for any purpose, as well as study, create, change, and redistribute them (in 

whole or in part). Cyber security problems are a lack of security (confidentiality, 

integrity, and/or availability), or potential lack of security (a vulnerability), in computer 

systems and/or the networks they are a part of.” [Wheeler2013a] 

C. Need, Approach, Benefit, Competition  

The NABC framework is a simple way to quickly communicate an idea and its 

value proposition.  NABC was promulgated in a book, Innovation – The Five Disciplines 

for Creating What Customers Want, by Carlson and Wilmot [Carlson2006].  SRI 
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International uses NABC to identify and refine an idea with potential business merit 

[SRI2011].  In the article “Developing Better Value Propositions Using the NABC 

Framework,” [Schindlholzer2008] describes the NABC framework as one that answers 

the following questions: 

1. Need: What is the most important customer and market Need? 

2. Approach: What is the unique Approach for addressing this need? 

3. Benefit: What are the specific Benefits per costs that result from this approach? 

4. Competition: How are the benefits per costs superior to the Competition’s and 

other alternatives? 

In this document, we will use NABC to examine applying OSS to an entire project, 

and also use NABC to examine options that support a given project.  In many cases, we 

will not specifically use the NABC terms (need, approach, benefit, and competition) but 

simply imply them through prose to make the text easier to read. 
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3. Basics of Open Source Software  

This section briefly describes the basics of OSS for those less familiar with it.  This 

section describes what OSS is, how it is typically developed, examples of OSS projects, 

and some reasons for using an OSS approach; counters some misconceptions about OSS; 

and briefly notes legal requirements for releasing software as OSS when it is developed 

with government funding.  This is only a brief introduction; see the citations for more 

information. 

A. What is open source software (OSS)? 

As noted earlier, Open Source Software (OSS) is “software for which the human-

readable source code is available for use, study, reuse, modification, enhancement, and 

redistribution by the users of that software.” [DoD2009]  The Open Source Initiative 

(OSI) (http://www.opensource.org) publishes the widely used “open source definition,” a 

lengthy definition that includes a checklist of specific requirements that OSS licenses 

must meet.  The OSI lists licenses that they have determined meet their criteria.  The Free 

Software Foundation (FSF) (http://www.fsf.org) publishes the “Free Software 

Definition,” which defines the related term “Free software” (a term they use to indicate 

user freedoms, not no-cost).  The key is that OSS is licensed in a way that grants users 

various freedoms, including the ability to make improvements and to collaborate with 

others when creating these improvements.  Software that is not open source is often 

called “proprietary software” or “closed source software.”  As explained below, nearly all 

OSS is commercial software as defined in U.S. law. 

B. How is OSS typically developed? 

OSS is typically developed collaboratively with users and other developers as part 

of an OSS project.  Figure 1 presents a simplified model of how OSS is typically 

developed.  Users can get the software from a location termed a “trusted repository”; this 

is typically a publicly accessible website, possibly running on top of common sites such 

as GitHub (https://www.github.com) or SourceForge (http://sourceforge.net).  Users can 

also get the software indirectly via distributors, who may package the software with other 

software or services (such as warranties and training).  Some people are authorized to 

make changes to the trusted repository; these people are trusted developers.  Users can 

submit bug reports and feature requests to these developers, typically through the OSS 
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project’s website.  All of these processes are not significantly different from those for 

proprietary (a.k.a. closed source) software. 

A key difference is that OSS users need not merely be consumers of the software.  

Users can also modify the software or hire someone to modify the software.  Users can 

choose to keep those software modifications inside their organization, but this is often an 

unwise decision.  Keeping modifications within an organization can be costly because 

this can make it difficult and expensive to update to the next version of the software 

(since these modifications must be re-merged).  Software sustainment costs are typically 

80% of the software lifecycle, so choosing to maintain a modified version “in-house” can 

quickly escalate an organization’s costs.  An obvious solution is to contribute those 

changes back to the OSS project’s trusted developers, eliminating the need to re-merge 

the changes.  If a user continues to do this, the user may eventually become a trusted 

developer.  This collaboration, over time, can lead to a vibrant community of developers 

and users of that OSS. 

 

 
Figure 1. Model of Open Source Software Development Process 

 

C. What are examples of successful OSS projects? 

Well-known successful OSS projects include the Linux kernel 

(https://www.kernel.org) and Apache web server (httpd.apache.org).  Examples of 

successful OSS projects that are transitions of government-funded research and 

development include the Internet (whose TCP/IP protocols were developed with 

government funds and released as OSS), Suricata (suricata-ids.org), Security-Enhanced 

Linux (SELinux) (selinuxproject.org), and OpenStack (http://www.openstack.org/).  For 

a much longer list of government-funded OSS work (including lists of lists), see 

http://www.dwheeler.com/government-oss-released/. 
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D. Why use an OSS approach? 

There are many potential advantages for using an OSS approach.  The Department 

of Defense (DoD) has identified many positive aspects of OSS, particularly for its users.  

In particular, “the continuous and broad peer-review enabled by publicly available source 

code supports software reliability and security efforts through the identification and 

elimination of defects that might otherwise go unrecognized by a more limited core 

development team.  The unrestricted ability to modify software source code enables 

[users] to respond more rapidly to changing situations, missions, and future threats…OSS 

is particularly suitable for rapid prototyping and experimentation, where the ability to 

‘test drive’ the software with minimal costs and administrative delays can be important.” 

[DoD OSS 2009].  Many quantitative studies show that OSS programs are often a 

reasonable or superior alternative to their proprietary competition according to measures 

such as market share, reliability, performance, scalability, security, and total cost of 

ownership [Wheeler2014a]. 

E. What are some common misconceptions about OSS? 

OSS is often mistakenly called “non-commercial.”  OSS almost always meets the 

definition of a “commercial item,” as that term is defined under U.S. procurement law 

(41 U.S.C. § 103(1)).  Under this definition, an item qualifies as a “commercial item” if it 

is not real estate, is customarily used for non-government purposes, and is either licensed 

to the public or offered for license to the public.  Since nearly all OSS meets these 

criteria, nearly all OSS can be considered commercial computer software. 

When dealing with the government, it is important to understand that OSS is almost 

always commercial, for at least three reasons.  First, government officials must follow a 

large set of rules; if they do not know what rules to follow, they often find it difficult to 

act.  Once they understand that OSS is usually commercial, this problem disappears, 

because they are typically already familiar with the rules for commercial software.  

Second, U.S. Government procurements must give commercial items (including nearly 

all OSS) appropriate statutory preference in accordance with 10 USC 2377 and include 

them in market research.  For more information, see the Federal Acquisition Regulations 

(FAR) 2.101(b), 12.000, and 12.101, and the DoD FAR Supplements (DFARS) 212.212 

and 252.227-7014(a)(1).  Third, once government officials and contractors understand the 

statutory definitions and requirements, they realize that they are required to consider OSS 

and that releasing OSS is a valid commercialization approach. 

Some organizations think that they cannot develop OSS if they also develop 

proprietary software, or intend to develop proprietary software in the future; however, 

this is not true.  Many organizations participate in the development of OSS while 

simultaneously developing proprietary software, or they use OSS as a portion of a 

proprietary product. 
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Software released to the public as OSS can be used and modified by anyone, and the 

original developers retain fewer or no exclusive rights to it.  This enables all researchers 

(not just the original developers) and users to collaborate together.  Enabling user-

centered innovation can offer great advantages [vonHippel], and enabling a wider pool of 

researchers has the potential of speeding research as well.  Organizations are free to use 

the OSS they develop to develop products and services, subject to all legal and contract 

requirements. 

Some mistakenly assume that OSS is always less secure than proprietary software.  

The DoD notes that, “The continuous and broad peer-review enabled by publicly 

available source code supports software reliability and security efforts through the 

identification and elimination of defects that might otherwise go unrecognized by a more 

limited core development team” [DoD2009]. In practice, some OSS is very secure, and 

some is not, so individual OSS programs must be evaluated on their own merits.  There is 

a related myth that anyone in the world can change OSS and this immediately changes 

the software in user supply chains.  In actuality, only some (trusted) developers have the 

permissions to change any particular OSS program, and the distributed nature of its 

source code makes it much easier to detect unauthorized changes.  In addition, users can 

choose which software and supply chain to use.  Users must always evaluate the software 

they use, whether it is OSS or not, to determine whether it is appropriate for their 

purposes. 

An OSS approach is different from other approaches for developing or procuring 

software that government personnel and contractors are often more familiar with.  

[Wheeler2013b] discusses some of the key challenges and opportunities in the 

government application of OSS. 

F. What is legally required to release government-funded OSS? 

Software can only be released as OSS by those who have the legal right to do so.  

[Wheeler2011a] includes a list of five main questions to answer to determine whether 

someone (identified as “you”) has the legal right to release government-funded software 

as OSS: 

1. What contract applies (including terms and decisions)? 

2. Do you have the necessary copyright-related rights? 

3. Do you have the other intellectual rights (e.g., patents)? 

4. Do you have permission to release to the public? 

5. Do you have all the materials (source code) and are they properly marked? 

If an OSS approach is to be used, it is best to ensure that ensure that all legal 

requirements will be met before any code is written. 
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4. ABCs of OSS Approaches to Technology 

Transition 

As noted earlier in section C, the “Need, Approach, Benefit, and Competition” 

(NABC) framework is a simple way to quickly communicate an idea and its value 

proposition [Carlson2006] [SRI2011] [Schindlholzer2008]. 

Here we briefly describe a potential NABC description for using an OSS approach 

as a whole to technology transition in general.  This may be useful when considering 

whether or not to apply an OSS approach in a particular case. 

 Need.  The need for research work is specific to the research work itself.  In U.S. 

cybersecurity research, the rationale can typically trace back to the fact that the 

United States depends on computer and network systems, and those are under 

attack. 

 Approach.  The general approach for applying OSS is described in section 3.  

When developing software under research it is possible to release OSS in 

various ways; for our purposes we will focus on these three: 

– Released as unmaintained software.  Here a typical primary goal is to 

document what was done for reproducibility (a vital requirement for science 

that is often lost) and demonstration, instead of software that will be used 

directly.  We recommend in these cases that it be designed to be easy to 

automatically rebuild (e.g., include ant, maven, cmake, automake, or 

makefile directives) so that the results can be reproduced more easily. 

– Modify existing OSS.  Here a typical primary goal is to get the software 

functionality into people’s hands, and there is an existing OSS project that 

can be modified to do so.  Where the OSS is already in wide use, this makes 

it easy to get the functionality out to others, but the PM must work with the 

existing OSS project to ensure that the new functionality will actually be 

included. 

– Start new OSS project.  A typical primary goal here is to get the software 

functionality into people’s hands, and there is no existing OSS project that 

can be modified to do so (or there are problems doing so).  When starting a 

new project there’s no requirement to work within an existing structure, but 

it will take time to ensure that potential users can actually find the software, 

never mind use it, and it will take time to enlist new co-developers. 
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 Benefits of OSS approach.  Section D discusses some of the advantages of OSS, 

particularly from a user’s point of view.  For a PM and researcher, an advantage 

is that the idea can be quickly adopted and deployed.  Another advantage is that 

the researchers can collaborate with users of the software, enabling user-

centered innovations that offer “great advantages over the manufacturer-centric 

innovation development systems” [vonHippel]. 

 Competition for OSS approaches.  Some alternatives to OSS release are: 

– Paper publication alone.  Many academics only publish papers (especially 

if they are in a “publish or perish” environment).  However, papers omit 

vital information that can lead to irreproducibility.  The experience of the 

LIMMAT developers is an instructive example: “From the publications 

alone, without access to the source code, various details were still 

unclear…what we did not realize, and which hardly could be deduced from 

the literature, was [an optimization] employed in [the previous work] 

GRASP and CHAFF [was critically important]…Only [when CHAFF’s 

source code became available did] our unfortunate design decision became 

clear…The lesson learned is, that important details are often omitted in 

publications and can only be extracted from source code. It can be argued, 

that making source code… available is as important to the advancement of 

the field as publications” [Biere2004].  What’s more, paper publications 

cannot be executed, and thus cannot be tested, examined, or improved in the 

ways that executable software can.  If the goal is adoption of an approach, 

“running code” is more likely to be effective than merely publishing a 

paper. 

– Proprietary software or service.  Another approach is to work with 

researchers to create proprietary software or a service, and sell that.  This 

approach can work and is well-understood, and DHS has done this many 

times.  However, the disadvantages of this approach are often not as widely 

understood, and justify considering alternatives.  From the government 

PM’s point of view, establishing a proprietary software or service as the 

result of research often creates a situation where there is only a single 

effective supplier (especially if the researchers gain exclusive rights to any 

patents or copyrights for the works created using government funds).  

Monopolies tend to drive costs up and quality down for potential users.  

Should the business fail, the results may become unavailable to everyone.  

Proprietary software and services are often difficult to build on, and thus, 

this approach can actually impede further research in the same area (those 

who control the proprietary software or service can decide who make 

improvements, and how, and it may not be in their interests to encourage 
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this).  Also, this approach typically requires establishing a business; many 

researchers are not interested in, or not good at, establishing and running a 

business.  External businesses might buy rights, but in many cases existing 

businesses will have some difficulty evaluating the work and turning it into 

a product.  External businesses may have difficulty turning the approach 

into a product, or may even choose to purchase exclusive rights to prevent 

their use (to inhibit competition and thus raise their profits).  Finally, these 

approaches tend to inhibit, instead of enable, user-centered innovation; a 

proprietary business earns money because it has the exclusive right to 

maintain the software, and this exclusive right can be threatened by user-

centered innovation.  Proprietary software can bring innovations to users, 

but these potential issues suggest that other avenues should be considered. 

The following figure illustrates these three different ways to release software as 

OSS in the context of research work. 

 

 

Figure 2. Options for Releasing OSS from Research 

 

If the research releases unmaintained OSS, it is possible that someone else may use 

it to start an active OSS project.  In the other cases, the research works with an existing 

OSS project or starts a new OSS project.  In all cases, once the software is added to an 

existing OSS project or is used to start a new OSS project, there is interaction with the 

users that is vital to its future use. 

The following figure shows how an OSS project can interact with its users, focusing 

on some of its inputs and outputs and the issues related to technology transfer.  An OSS 

project performs development and sustainment, governed by some sort of governance and 

licensing process.  The OSS project takes in various inputs, including contributions and 
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feedback, reused components, and standards.  It produces a project website (where people 

can go to get the software or contribute to it), as well as the software and documentation 

itself.  Ideally it should go to users and potential users, but many impediments may 

interfere with this (as we will examine and discuss how to counter).  Ideally the users and 

potential users provide contributions and feedback, leading to improvements. 

 

 

 

Figure 3. OSS Project Interactions 

 

The following sections of the document discuss these issues, focusing on how to 

increase the likelihood of success.  We will apply the NABC framework more minutely 

in several cases to identify various more detailed ways to apply an OSS approach. 
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5. Building on Existing Work 

Research should build on existing work where practical.  Identifying relevant 

existing OSS projects early can eliminate a lot of unnecessary work (by avoiding 

redevelopment of software that already exists).  It will also speed up later technology 

transition, because the researchers will have thought about how to deliver the 

improvements to potential users and possibly embedded the improvements into software 

that is already in use. 

A. Evaluating existing software 

Researchers should identify various reuse options, analyze them, and then select the 

major software components that they plan to use, extend (e.g., through modifications or 

plug-ins), and create (This list of options is sometimes called “adopt, modify, and 

create.”).  This should be done prior to designing and implementing any software, since it 

becomes increasingly more difficult to take advantage of this information later. 

We recommend that the researcher document this information in a short reuse 

options report.  In the report the researcher identifies the major component candidates 

found, along with the key features of each.  The report should also identify the final 

selections and the rationale for those selections.  This basic analysis of alternatives should 

justify the final choices.  If a choice turns out to not work for some reason, the report can 

reduce research risks because alternatives have been documented.  The report also 

provides confidence to others (such as PMs) that the key options have been considered.  

The report need not be lengthy; it simply needs to identify the key alternatives, key traits, 

and final selection.  The process of writing the report increases the likelihood that 

important reuse options will be considered. 

The analysis process involves evaluating different software components.  There are 

many ways to evaluate software.  One way is to use the four-step “IRCA” process 

described in [Wheeler2011b]: (1) Identify candidates, (2) Read existing reviews, (3) 

Compare the leading programs’ basic attributes to the needs, and then (4) Analyze the top 

candidates in more depth.  The following paragraphs describe this, and list specific issues 

relating to using OSS to support cybersecurity technology transition. 

The first step in the IRCA process is to identify candidate software for reuse.  Search 

engines such as Google can often find OSS software components that have been given 

search terms for the functionality.  The HOST project website at https://host-project.org/ 

provides a list of many other potentially useful components, in particular, its “Open 

https://host-project.org/
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Security Catalog” at https://host-project.org/open-security-catalog.  [Wheeler2011b] 

provides some more tips for finding relevant candidates.  A central repository of 

components for a programming language or an operating system being used can also be 

an excellent source (see section D below).  Some examples of common tasks in 

cybersecurity-related research, and plausible existing projects that support them, include 

the following: 

 Static source code analysis: LLVM/clang (http://llvm.org/), gcc 

(https://gcc.gnu.org/), Frama-C/why3 (http://frama-c.com/ and 

http://why3.lri.fr/) 

 Dynamic web application analysis: W3AF (http://w3af.org/), OWASP ZAP 

(https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project) 

 Packet analysis and network intrusion detection/prevention: Wireshark 

(https://www.wireshark.org/), Suricata (http://suricata-ids.org/) 

 Satisfiability modulo theories (SMT) module: CVC4 

(http://cvc4.cs.nyu.edu/web/), alt-ergo (http://alt-ergo.lri.fr/). 

 Boolean satisfiability (SAT) solver: MiniSAT (http://minisat.se) and Sat4j 

(http://www.sat4j.org/),. 

 Fuzz testing: American Fuzzy Lop (AFL). 

Reading reviews, comparing, and analyzing are the next steps.  For the most part, 

they are the same for any software, whether it is OSS or not.  As always, important 

attributes to consider include functionality, cost (including costs to make changes), 

market share, support, maintenance, reliability, performance, scalability, usability, 

security, flexibility/customizability, interoperability, and legal/license issues. 

In some cases existing software should not be reused.  In some cases a reused 

component may be hard to build or install on a user’s system.  Also, a reused component 

with vulnerabilities may insert vulnerabilities into your project.  In particular, if only a 

very small portion of a project is reused, or if using the component will cause problems 

for users, perhaps that small component should be broken out, something else should be 

considered, or that small functionality should be redeveloped. 

Some plausible candidates for reuse might be OSS, and others might not be.  We 

will first discuss the OSS case, followed by the non-OSS case. 

Researchers should be sure to check each OSS project to verify that it actually has 

an OSS license.  The OSI maintains a list of licenses that they have certified as OSS 

licenses at http://opensource.org/licenses.  Unfortunately, some software projects fail to 

include any license.  Generally speaking, the absence of a license means that the default 

copyright laws apply. This means that the developer retains all rights to the source code 

https://host-project.org/open-security-catalog
http://llvm.org/
https://gcc.gnu.org/
http://frama-c.com/
http://why3.lri.fr/
http://w3af.org/
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.wireshark.org/
http://suricata-ids.org/
http://cvc4.cs.nyu.edu/web/
http://alt-ergo.lri.fr/
http://minisat.se/
http://www.sat4j.org/
http://opensource.org/licenses
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and that nobody else may reproduce, distribute, or create derivative works.  

[Github2014]. 

Researchers considering OSS components should prefer OSS projects that are active 

(e.g., ones that have active discussions through mechanisms like mailing lists and 

routinely respond to reported issues).  The majority of successful growth projects have 

greater than 1,000 downloads [Schweik2012,272], so projects with many downloads 

should be preferred.  Obviously, ones that provide necessary functionality and quality 

should be preferred.  Quality can be difficult to measure directly, but there are often 

indirect measures that provide evidence of quality (e.g., many users and a strong 

regression test suite).  However, note that missing some functionality is not necessarily a 

problem; in some cases, it may be better to create the missing functionality for an 

otherwise-useful OSS program. 

Sometimes promising non-OSS components can be reused to build or run a new 

OSS component.  However, if these non-OSS components are required, it is important to 

examine their potential disadvantages (as well as their advantages) to make a reasoned 

decision. 

It is typically more difficult to deploy an OSS component if non-OSS components 

are required to build or use it.  Since the whole point of an OSS approach is to maximize 

potential collaboration, anything that impedes that collaboration can inhibit further 

development and thus increase the risk of long-term failure.  It is fine to port (run) on 

non-OSS components, as long as there is a way to use an alternative OSS component; 

indeed, porting to optional non-OSS components can increase the likelihood of 

collaboration. 

Some non-OSS components are widely ubiquitous and cheap enough that 

deployment is not as significantly impeded.  Researchers should state this (noting any 

exceptions).  PMs should examine the list of required non-OSS components to evaluate 

the potential risks (if any) that might be caused by limited collaboration. 

If an existing OSS component is being considered for use but must be modified, 

investigate early any particular contribution requirements.  In particular, check whether it 

requires any contributor agreements or contributor (copyright) assignments; these may 

require significant legal review, and this review can cause delays or prevent use of the 

component. 

B. Modifying existing OSS 

After examining the options, it may be determined that the best way forward is to 

modify some existing OSS to provide new functionality or capacity.  If these 

modifications are necessary to deploy the new capability, and the intent is not to simply 

throw away the resulting software, then an effort should be made to submit those changes 
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to existing OSS projects in a way that the project can accept.  This avoids “project 

forking” (creating a separate derivative project) that has to be separately maintained.  A 

project fork will not normally be maintained by those collaborating on the original 

project and thus risks becoming obsolete or imposing higher (duplicative) maintenance 

costs. 

It is not wise to commit, in a contract, that someone else will accept some unwritten 

proposed changes.  However, it is possible to commit to submitting the proposed 

changes.  Also, a little planning and early discussion usually prevents later problems. 

Most OSS projects have a number of rules for proposed changes, and an effort 

should be made to meet them.  Discussions with the OSS project developers should take 

place before changes are made to determine these rules and a plan to meet them.  For 

example: 

1. OSS projects typically require that proposed changes be submitted using the 

project’s OSS license or a license that is even less restrictive.  Otherwise the 

project would have to change its license to accept the change, and this is 

unlikely.  It is possible to release changes under other licenses also. 

2. If the changes are large, an OSS project will typically require the changes to be 

broken into smaller logical changes so that they can be separately reviewed for 

correctness.  Changes are usually tracked using version control software such as 

git, mercurial, or subversion. 

3. The proposed changes must be easily compiled, tested, and run in an automated 

way using widely available tools and libraries (preferably those already used by 

the project). 

4. Proposed changes should enable easy and separate updates of dependencies such 

as support libraries.  If a proposed change embeds dependencies (such as 

libraries) in a way that makes them difficult to update, those dependencies can 

quickly become obsolete. 

There are many ways to contribute proposed changes to an OSS project. Proposed 

changes may be provided in a text file or an email body using the patch command’s 

format; proposed changes in this form are often called “patches.”  Users of distributed 

version control systems, including the widely-used git program, may instead send “pull 

requests.”  For consistency, we refer to these proposed changes (regardless of their form) 

as “changes.” 

Potential submitters of changes must go to the OSS project website to determine 

how the project prefers changes to be submitted, and then follow the project’s preferred 

approach for submission and responding to reviews.  In general, researchers should work 

with the OSS project developers and try to make accepting changes easy; many OSS 
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projects have a large number of proposed changes to consider.  OSS projects vary in 

many ways on the details of how they accept and process changes; however, there are 

many nearly universal rules that researchers should follow; here are some of them 

([Raymond2000] [Kegel2004]): 

1. Follow the OSS project’s conventions (e.g., choice of language, style guide, 

version control system, submission process). 

2. Send changes against a current version of the software.  If the changes are 

against an old version, they can be difficult to integrate.  If the researcher only 

has changes against old versions of the software, update and apply the changes 

to a current version first. 

3. Include just one bugfix or new feature per change.  Do not send a massive single 

change, since these are nearly impossible to reasonably review.  This is 

especially easy to do using distributed version control software such as git. 

4. Make any code changes easy to read.  Carefully choose names (especially in 

interfaces), include comments that define every application programming 

interface (API) (e.g., every class, method, function, or procedure), and include 

comments to explain unusual or complex situations that cannot be simplified. 

5. Include regression test cases.  Adding test cases for a bugfix or new feature 

when the bugfix or feature is added makes it far less likely that future changes 

will cause undetected failures. 

6. Be respectful to people, and hard on the code.  In many cases, the OSS project 

will request the researcher to revise the proposed changes before they will be 

accepted (because of defects, design limitations, style problems, and so on).  

Researchers should respond to those requests and re-submit the updated 

changes. 

C. Standards (de jure and de facto) 

There are many data format and interface standards.  Using standards (particularly 

those for data formats and interfaces) can make a component much easier to integrate into 

larger systems, simplifying technology transition.  However, some standards are released, 

or have patents enforced, in a way that discriminates against some uses (such as use by 

OSS).  Thus, although use of standards is generally encouraged, standards use should be 

carefully weighed if they discriminate against those who wish to voluntarily collaborate. 

Thus, researchers should identify ahead of time any relevant standards (for use, 

improvement, or creation), and check to see whether these standards are actually 

compatible with their technology transition approach.  A significant amount of literature 

on this topic and about the definition of the term “open standard” is available.  For our 
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purposes, a useful start is OSI “Open Standards Requirement (OSR) for Software” 

(http://opensource.org/osr).  The OSR’s fundamental requirement is that an open standard 

“must not prohibit conforming implementations in open source software” and has the 

following criteria (capitalization is retained from the original): 

1. “No Intentional Secrets: The standard MUST NOT withhold any detail 

necessary for interoperable implementation. As flaws are inevitable, the 

standard MUST define a process for fixing flaws identified during 

implementation and interoperability testing and to incorporate said changes into 

a revised version or superseding version of the standard to be released under 

terms that do not violate the OSR. 

2. Availability: The standard MUST be freely and publicly available (e.g., from a 

stable web site) under royalty-free terms at reasonable and non-discriminatory 

cost. 

3. Patents: All patents essential to implementation of the standard MUST: 

a. be licensed under royalty-free terms for unrestricted use, or 

b. be covered by a promise of non-assertion when practiced by open source 

software  

4. No Agreements: There MUST NOT be any requirement for execution of a 

license agreement, non-disclosure agreement (NDA), grant, click-through, or 

any other form of paperwork to deploy conforming implementations of the 

standard. 

5. No OSR-Incompatible Dependencies: Implementation of the standard MUST 

NOT require any other technology that fails to meet the criteria of this 

Requirement.” 

For this document, a standard is a specification that has achieved some sort of 

consensus, regardless of its source or history.  There are many standards-setting bodies, 

such as the Internet Engineering Task Force (IETF) and the International Organization 

for Standardization (ISO).  Country-based organizations, such as the National Institute of 

Standards and Technology (NIST), also develop or advance standards.  Standards may 

also be developed by smaller or less formal groups; this is especially likely for highly 

specialized fields or uses.  For example, Satisfiability Modulo Theories (SMT) tools 

automatically determine the satisfiability of first-order mathematical formulas with 

respect to some logical theory.  Some defensive cybersecurity tools may be productively 

implemented using SMT tools, or enhanced by improvements to SMT tools.  In these 

cases, the researcher should consider using the SMT-LIB (http://smt-lib.org/) standards, 

since using them can simplify replacing one SMT implementation with another.  

Similarly, those using automated theorem-proving (ATP) tools should consider using the 

http://opensource.org/osr
http://smt-lib.org/
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Thousands of Problems for Theorem Provers (TPTP) language, since many ATP tools 

support this language (http://www.tptp.org). 

A standard may be formally approved by some standards-setting body, but not 

actually in use.  Thus, before committing to a standard, researchers should determine 

whether it already has users and what the alternatives are.  It may be fine to use a newly 

released standard or re-invigorate a standard that has fallen into disuse, but researchers 

should determine where this is the case and consider how to reduce risk where they can. 

Researchers must test compliance with key open standards; otherwise, in practice, 

software will not comply.  Where possible, this should be demonstrated by replacing each 

component that implements an open standard with an independent implementation that 

also implements the open standard. For example, if a web application is built on open 

standards such as HTTP, HTML, and CSS, it must be demonstrated with alternative 

common web browsers that implement those standards.  [Scott2011] 

If a new standard must be created (which itself will typically build on existing 

work), consider having it developed or eventually maintained by an independent 

standards-setting body.  It may be best to work with organizations that will make the 

specification available free of charge, since such specifications are more likely to be read 

(and thus used).  Some standards-setting organizations that can support this include the 

IETF, W3C, and OASIS.  Some organizations (such as ISO) typically charge large fees 

for copies of their standards, even though they often do not pay the authors and technical 

reviewers for their work.  Historically, this was justified because of the costs of printing.  

However, this practice has become controversial; the Internet has eliminated this 

justification, and the fees have become a serious impediment to the use of standards since 

modern systems build on a large number of standards [Jelliffe] [Weird2010].  

Governments often pay for the development of standards using public funds; in these 

cases it is becomes especially difficult to justify why the public must pay again to receive 

the standards they already paid to have developed.  It is possible to get organizations like 

ISO to allow standards to be published free of charge (this occurred with the Common 

Criteria), but this must typically be agreed on ahead of time.  Researchers who want to 

ensure that standards are widely available to potential users may prefer developing 

standards in an organization that has a practice of releasing the document to the public 

without fee (such as IETF, W3C, and OASIS), or get a special agreement in writing. 

http://www.tptp.org/
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6. Establishing New OSS Projects’ Collaborative 

Environments 

In some cases it’s necessary to start a new project, whether or not some existing 

OSS can be reused.  In these cases, there are other issues to consider, as this and the 

following sections discuss.  Knowing about these issues can also help when examining 

existing OSS projects, or when considering a major change in an existing OSS project’s 

governance or license. 

In this section we consider the basic issues that must be considered for establishing 

a collaborative environment (an environment in which collaboration can take place).  

This includes choosing a name and purpose, a hosting service (a technical infrastructure 

for collaboration) such as GitHub, a foundation if one will be used, a governance process, 

and a license, and deciding whether any contributor agreements or assignments will be 

used.  For most of the issues we discuss the need, potential approaches, benefits, and 

competition (NABC). 

A. Project name and purpose 

Researchers should give each new project a name that is distinct, clearly 

pronounceable, and easily found via a web search.  Do not use common words like “the” 

or “why” as a name.  It is often best to choose a unique name that is not used by another 

project (Google searches and examining large repositories like Debian’s can increase the 

likelihood of choosing a name that is unique).  A unique name may make the name 

harder to pronounce, but a unique name makes the project easier to find… and that is 

typically more important. 

Each new project needs a concrete, limiting, and short purpose statement so that 

others will understand what the project is about; craft this statement so others will 

understand it.  The statement should clearly differentiate the project from other projects.  

For example, “improve the world” is not an appropriate purpose; it is too vague and is not 

a differentiator from other projects (most software is written to improve the world in 

some way).  In contrast, “develop a high-speed web server” is a clear purpose (if most 

people in your audience know what a “web server” is). 

B. Hosting Services 

Researchers starting a new project need to establish basic technical mechanisms for 

collaboration.  Today this would normally include a version-controlled public code 
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archive for the software (usually managed using git), an “on-ramp” web page and 

supporting material so potentially interested people can learn about the project (this 

includes basic information about the project’s goals), an issue tracker for bugs (defects) 

and feature requests, a mechanism for group discussion (often a mailing list), and a way 

to release new formal versions.  Many projects include a wiki for easy contribution of 

new information (this wiki may allow anyone to edit or may restrict who can directly 

make changes).  There are many options and technical approaches for doing this, and we 

expect even more options to come over time.  At this time we recommend using git for 

version control of a new project; it is OSS, widely used, widely supported, and supports a 

number of mechanisms that aid collaboration.  Researchers may choose to simply use an 

existing hosting service (such as GitHub), or may establish their own. 

These technical services are available from many hosting services (sometimes called 

“forges”), and are often free for OSS development.  GitHub is an especially popular 

choice today.  Many other hosting services exist, including SourceForge, Atlassian 

Bitbucket, GitLab, GNU Savannah, and Canonical’s Launchpad.net2.  Note that GitHub 

and SourceForge can be especially convenient for U.S. federally funded work, because 

they have existing agreements with the U.S. Government on their terms of service for 

U.S. Government employees.3 

It is also possible to self-host a hosting service (on one’s own systems or some 

cloud service), though this is typically not a good approach for a new OSS project.  OSS 

options for self-hosting software include Allura (the Apache Foundation software that 

runs SourceForge), GitLab, Kallithea, and Savane (the software that runs Savannah).  Git 

itself is OSS, but the GitHub software is proprietary; GitHub’s proprietary software can 

be separately licensed for self-hosting as “GitHub Enterprise.”  GitLab’s “GitLab 

Community Edition” is OSS; they also sell a proprietary variant of it for self-hosting 

called GitLab Enterprise.  Self-hosting is common for proprietary software development, 

in part to reduce the risks of exfiltration, but since OSS software is normally available to 

the public, this concern is irrelevant.  Many larger OSS projects self-host, to support their 

various special needs, but when starting a new OSS project it is often unclear what 

special needs might apply.  Thus, it is typically better to use some existing hosting 

service when starting a new project and then consider self-hosting once the project is 

more established and its special needs (if any) become clear.  Modern hosting services 

now provide enough services and “hooks” that even special needs often don’t require 

                                                 

2
  A much longer list of hosting options can be found at 

https://en.wikipedia.org/wiki/Comparison_of_source_code_hosting_facilities. 

3
  GitHub is also used for collaborative development of government-related documents, e.g., 

https://github.com/WhiteHouse/fitara/pull/39. 

https://en.wikipedia.org/wiki/Comparison_of_source_code_hosting_facilities
https://github.com/WhiteHouse/fitara/pull/39
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self-hosting today.  In short, while self-hosting is a possible approach, in most cases this 

is not the best approach for a new project. 

Changing the hosting service can take time, so it is best to choose a service that will 

meet expected needs.  Data directly managed by git is often relatively easy to move 

because git is a distributed version control system (DVCS); this means git can easily 

make a copy of a repository and put it somewhere else.  However, it may be harder to 

move other information (such as tracker data and wiki contents) and mailing lists.  In 

addition, it may take time to adjust processes when moving to another hosting service.  

The time and effort necessary to move to another site will temporarily detract and slow 

project progress.  Perhaps most importantly, users over time will expect a URL to be the 

“official” project site, so for a time a new site will have a lower search rank and be harder 

for users to find. 

C. Foundations 

Researchers may choose to create an OSS project under the umbrella of a larger 

organization, sometimes called a “foundation.”  Foundations provide a variety of services 

and mechanisms, depending on the foundation.  These often include a formal legal 

framework (often as a non-profit), as well as already established mechanisms for 

governance, conferences, and marketing.  In many cases foundations can accept money 

and manage that money for the project.  Foundations can be very helpful when starting a 

new project, especially if the new project is strongly related to an existing project in the 

foundation, or if the researchers are not familiar with OSS development processes. 

However, foundations typically impose a number of additional rules on their 

member projects (e.g., licensing requirements, legal processes, and so on).  For example, 

some foundations run their own hosting service, or have a preferred hosting service, so 

foundation and hosting service decisions may be interconnected.  Foundations often 

impose specific governance structures, which may or may not be desired.  In addition, it 

can be more difficult for a project to leave a foundation than to join it.  Therefore, 

researchers should make sure that a foundation is compatible with the researcher’s goals 

and technology transition plan before choosing to create a new project within a 

foundation.  A well-chosen foundation can reduce risk; a poorly chosen one can increase 

it. 

Some well-known organizations that operate as foundations include: 

 Apache Software Foundation (ASF) (http://www.apache.org) 

 Eclipse Foundation (http://www.eclipse.org) 

 Free Software Foundation (FSF) (http://www.fsf.org) 

 Software in the Public Interest (SPI) (http://www.spi-inc.org) 
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 Open Web Application Security Project (OWASP) (https://www.owasp.org) 

 Linux Foundation (LF) (http://www.linuxfoundation.org/). 

In cybersecurity research OWASP is a common choice when choosing a foundation, 

but it is by no means the only one. 

Most projects do not choose a foundation, at least initially, unless their work is 

strongly connected to an existing project in an existing foundation.  We recommend that 

researchers consider using a foundation, but not start with one unless the foundation 

provides specific advantages to the specific project; it is always possible to join one later. 

D. Governance (decision) process 

An OSS project needs to encourage collaboration, but it must also have a way to 

make decisions (such as rejecting contributions where warranted).  Common governance 

approaches for making final decisions include a benevolent dictator (one person who is in 

charge of the final decision) and “group decision-making” (where a group votes).  

Governance can change over time, but it is much easier to change once there is some 

governance process in place.  After all, once there is a process for making decisions, that 

process can be used to change how to make decisions in the future. 

The job of those in governance is to encourage improvements to the project’s 

results, including their functionality, quality, and documentation.  Governance is needed 

because not all proposed changes are actually improvements.  First-time contributors, in 

particular, often need information on how to modify their proposed changes so that they 

will work in a larger context. 

Initial projects typically have a benevolent dictator because this is easy to establish 

and execute, so we recommend that in most cases as a starting point.  Most starting 

projects do not need a more complex decision-making process.  However, if multiple 

parties already have a stake in the result, a different governance process that explicitly 

lets them have a voice may be needed. 

The benevolent dictator model is not as dictatorial as it sounds.  All OSS licenses 

permit the creation of project forks – that is, competing projects based on a version of the 

pre-existing project’s source code.  This creates a built-in escape valve if the governance 

process becomes actively harmful to the project.  As stated in [Wheeler2014], “The 

ability to create a [project] fork is important in FLOSS development, for the same reason 

that the ability to call for a vote of no confidence or a labor strike is important. 

Fundamentally, the ability to create a fork forces project leaders to pay attention to their 

constituencies…Often, the threat of a fork is enough to cause project leaders to pay 

attention to some issues they had ignored before, should those issues actually be 
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important. In the end, forking is an escape valve that allows those who are dissatisfied 

with the project’s current leadership to show whether or not their alternative is better.” 

E. Licenses for new software 

If you are modifying existing OSS, you would typically use at least the existing 

license.  That way, the modifications can be incorporated into the main project.  You may 

in some cases also release your changes with other licenses as well.  However, with new 

projects, an important question is what license to use. 

Choosing a license for a new OSS project is an important step.  A license 

determines the rules of the road for potential contributors, and it is sometimes difficult to 

change after the proposed work is started. 

A complication of license selection is that there are different options, each with 

different pros and cons.  However, some basics can be stated up front.  The following are 

important requirements researchers should consider when choosing an OSS license for a 

new project (based on the DoD OSS FAQ [DoDFAQ]): 

1. Do not create a new OSS license.  New licenses often fail to be OSS, even if 

they are intended to be, because few lawyers are trained in how to create OSS 

licenses.  Even if a new license is OSS, a new license (typically called a “vanity 

license”) imposes a large legal burden on every user, developer, and 

organization, each of which must examine the license text to understand its 

terms and check its compatibility with other licenses. 

2. Choose an already accepted OSS license.  Choose a software license that is 

recognized as an Open Source Software license by the Open Source Initiative 

(OSI), is also recognized as a Free Software license by the Free Software 

Foundation (FSF), and in addition is acceptable to widely used Linux 

distributions (such as being a good license for Fedora).  License evaluation is a 

difficult legal specialty; it is much better to choose licenses that have already 

been evaluated by specialists.  The licenses recommended in the following 

paragraphs all pass these tests. 

3. Ensure the license will work with the expected uses.  Ensure that the license will 

permit (or even enable) anticipated uses and business models.  If the OSS 

component must work with other components, or is anticipated to work with 

other components, ensure that the license will permit it.  In particular, if the 

intent is to embed the software into an existing OSS component, choosing that 

component’s license or at least a license compatible with it is typically a wise 

choice. 
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4. Choose a GPL-compatible license. The GNU General Public License (GPL) is 

the most common OSS license.  There is no need to necessarily use the GPL, but 

it is usually unwise to choose a license incompatible with the majority of OSS 

licenses. In particular, avoid releasing software only under the original (4-

clause) BSD license (which has been replaced by the new or revised 3-clause 

license), the Academic Free License (AFL), the now-abandoned Common 

Public License 1.0 (CPL), the Open Software License (OSL), or the Mozilla 

Public License version 1.1 (MPL version 1.1, which has been superseded by the 

GPL-compatible MPL 2.0).  The Eclipse license is also unfortunately GPL-

incompatible. 

The Apache 2.0 license is incompatible with GPL version 2, but is compatible 

with GPL version 3, and most software released under the GPL is released as 

“version 2 or later” (much of the rest is version 3 or versions 2 or 3).  Thus, for 

our purposes we will consider the Apache 2.0 license as generally GPL-

compatible. 

5. Choose a popular license.  Unusual licenses can inhibit collaboration in at least 

two ways.  First, every organization must separately review each new license to 

understand its ramifications.  This additional legal review effort, which often 

must be done by a lawyer in each organization that is considering the software, 

can significantly slow any initial use or acceptance of the software.  Second, 

unusual licenses are often incompatible with other more popular licenses, 

resulting in an inability to use the software in important ways (and thus 

discouraging its use and support).  The OSI maintains a list of what it perceives 

as “popular licenses” at http://opensource.org/licenses. 

Given these basic requirements, researchers must choose a license that best meets 

their goals.  A reasonable approach is to pick the type of OSS license (from three basic 

types), then select a license of that type after learning about the popular options for that 

type.  Here are the three basic types of OSS licenses, along with recommended popular 

OSS licenses for each choice: 

1. Permissive.  A permissive license permits arbitrary use of the program, 

including making proprietary versions of it.  If the goal is to maximize the use of 

a technology or a standard in a variety of different applications/implementations, 

including proprietary software, then permissive licenses may be especially 

useful.  Popular permissive OSS licenses include the MIT license, the BSD 2-

clause (Simplified or FreeBSD) license, the BSD 3-Clause (New or Revised) 

license, and the Apache license 2.0.  The Apache license 2.0 includes 

statements that provide some protection for later developers and users against 

patent claims by previous contributors. 

http://opensource.org/licenses
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2. Strongly protective.  A strongly protective license protects the software from 

becoming proprietary, and instead enforces a “share and share alike” approach 

between parties.  Strongly protective licenses even forbid linking the software 

into a larger proprietary work.  If the goal is to encourage longevity and cost 

savings through a commonly maintained application, protective licenses may 

have some advantages because they encourage developers to contribute their 

improvements back into a single common project.  Such licenses do prevent 

linking the software into proprietary software, but the software can still be used 

in many other ways.  In particular, like all OSS licenses, the GPL can be used 

for any purpose (including commercial purposes) and such software can be 

commercially supported by one or more organizations.  The most popular 

strongly protective OSS licenses are GNU General Public License (GPL) 

version 2 or 3.  Typically these are implemented as “GPL version 2 or greater” 

or “GPL version 3 or greater” to enable future compatibility. 

3. Weakly protective.  A weakly protective license is a compromise between the 

two previous categories (permissive and strongly protective), preventing the 

covered component (typically a library) from becoming proprietary yet 

permitting it to be embedded in larger proprietary works.  If the goal is to 

encourage longevity and cost savings through a commonly maintained library 

while allowing the library to be included in a larger proprietary work, then 

weakly protective licenses may have some advantages.  The most popular 

weakly protective licenses are the GNU Library or Lesser General Public 

License (LGPL) version 2.1 or 3.  Typically these are implemented as “LGPL 

version 2.1 or greater” or “LGPL version 3 or greater” to enable future 

compatibility.  The LGPL or GPL may including a “GPL linking exception” that 

enables software projects which provide library code to be “linked to” the 

programs that use them, without applying the full terms of the license to the 

using program under certain conditions. 

The strongly protective and weakly protective licenses are sometimes also called 

copylefting licenses. 

When choosing a license, researchers should examine the major options and 

implications.  Many documents and web pages discuss OSS licensing and its 

implications; read several of them to get a fuller picture.  GitHub provides the web site 

http://choosealicense.com/.  OSS Watch provides an on-line license differentiator at 

http://oss-watch.ac.uk/apps/licdiff/.  An actively-maintained Wikipedia page compares 

OSS licenses at https://en.wikipedia.org/wiki/Comparison_of_free_and_open-

source_software_licenses.  Other documents, such as [Morin2012], can also be helpful.  

Finally, read the actual text of the most promising licenses; none of them are long (for 

legal documents), and in the end it is that text that governs. 

http://choosealicense.com/
http://oss-watch.ac.uk/apps/licdiff/
https://en.wikipedia.org/wiki/Comparison_of_free_and_open-source_software_licenses
https://en.wikipedia.org/wiki/Comparison_of_free_and_open-source_software_licenses
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The GPL is the single most popular OSS license.  However, a large amount of OSS 

software is released under permissive licenses, and the total of the permissive licenses is 

greater than that of the protective licenses.  The popularity of various licenses changes 

over time, and their specific values depend on the source data used.  The following 

representative table is from Black Duck.  This table reports the popularity of licenses in 

the OSS projects that Black Duck tracks as of August 2014 (only licenses with at least 

5% popularity are shown; more detail can be found at http://www.blackducksoftware.co

m/resources/data/top-20-open-source-licenses): 

 

Table 1. Popularity of OSS Licenses  

Rank License % 

1 GNU GPL 2.0 26% 

2 MIT license 18% 

3 Apache license 2.0 15% 

4 GPL 3.0 11% 

5 BSD 3-clause 7% 

6 Artistic License (Perl) 5% 

7 GNU LGPL 2.0 5% 

Source: Black Duck 

 

A variant of the permissive approach is to release software without any copyright 

restrictions, but this can involve some surprising complexities.  Information without 

copyright restrictions is sometimes said to be in the public domain in the copyright 

sense.4  In the United States, works by U.S. Federal Government employees that are 

created as part of their official duties are not normally subject to copyright within the 

United States.5  There have been some debates on whether or not it is even possible to 

truly disclaim copyright in United States in other cases, but for this paper, all that matters 

is the final legal effect.  A common mechanism for achieving similar results (when the 

author is not a U.S. Federal Government employee) is to use the Creative Commons CC0 

license, a.k.a. the Universal (CC0 1.0) Public Domain Dedication, which dedicates the 

work to the public domain (in the copyright sense).  However, the CC0 and similar 

licenses were not specifically designed with software in mind; in particular, it is unclear 

                                                 

4
  The term “public domain” means something different when it is used in the context of export control 

regulations; the term instead means “information that is published and generally accessible to the public,” 

including via sales and conferences. Thus, “copyright public domain” and “export control public 

domain” are different; most people mean copyright public domain when they say “public domain.”  

5
  The U.S. Government can receive copyrights, including copyrights from contractors, and it can also 

assert copyright in other countries. 

http://www.blackducksoftware.com/resources/data/top-20-open-source-licenses
http://www.blackducksoftware.com/resources/data/top-20-open-source-licenses
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whether they can effectively disclaim warranties as part of the license.  In addition, these 

dedications can create barriers; many organizations (such as the Apache Software 

Foundation) are unprepared to deal with software that has no copyright claim. 

All of the above apply to the general case when releasing a new OSS project.  When 

releasing changes to an existing OSS project, it is typically necessary to at least release 

the software under the OSS license used by the project (since it will usually not be 

accepted otherwise).  If the new OSS project must tightly integrate with other projects, 

those other projects’ licenses must be considered, and in some cases it may be wise to 

adopt them. 

We suggest that researchers use the MIT license if they have no idea of what license 

to apply.  This permissive license is extremely short and simple (http://opensource.org/lic

enses/MIT), and it is easy to transition to other licenses in later versions if desired.  The 

BSD 2-clause license is practically equivalent to the MIT license and is also a reasonable 

choice.  This guide suggests the MIT license as the default because it is simple but 

explicitly lists allowed actions; GitHub also recommends it for those who “want it simple 

and permissive.”  However, all of the licenses listed above are popular, and any of them 

can be a reasonable choice depending on other factors. 

The license text for software should, at least, be included in a file at the top of its 

directory with a conventional file name (e.g., the filename LICENSE or COPYING, 

possibly with the .txt or .md extension). 

It is best if every file also include near the top a copyright notice followed by either 

the text of the license or brief text that identifies the license.  A good copyright notice is: 

“Copyright [year project started] - [current year], [project founder] and the [project name] 

contributors.”  Copyright notices are not strictly required legally, but they are easy to add 

and provide some modest advantages [Balter2015].  This could be followed by text that 

states the license, at least “Licensed under the <license name including its version 

number>.” The license name could be the full name, or at least the official SPDX name 

of the license.  This helps later developers and reviewers ensure that the software is 

legally licensed. 

A significant amount of software is released without any license, but researchers 

should avoid this mistake.  In most cases software without a license statement means that 

the default copyright laws apply, and in most cases the defaults are that nobody else may 

reproduce, distribute, or create derivative works without permission.  Software without a 

license statement is not usually OSS, because others cannot legally use it in most 

circumstances.  Courts may find in some cases an implied right, but developers should 

work to stay out of courts instead of requiring a court to decide what rights were intended 

(the court may make a determination very different from what was intended).  Before 

1976, software had to include a copyright statement to be copyrighted, but that was a 

http://opensource.org/licenses/MIT
http://opensource.org/licenses/MIT
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long time ago, and essentially all countries (including the United States) impose 

copyright restrictions by default on any work immediately on creation in a fixed form 

(e.g., as text). 

Documentation can be released under OSS licenses, but if the focus is on creating 

documentation, it might be best to choose a license designed for documentation while 

using an OSS approach.  In general, researchers should choose a license for releasing 

Free Cultural Works (as defined in https://creativecommons.org/freeworks).  This 

includes material licensed under the CC-BY, BY-SA, or CC0 licenses from the Creative 

Commons.  In these cases, list those licenses instead or in addition to the OSS licenses.  If 

researchers have no idea what license to choose, we suggest using CC-BY, for similar 

reasons. 

F. Contributor agreements and assignments 

OSS projects need to set up a legal mechanism to enable legal contributions, enable 

whatever it wants to do later, and reduce the risk of later legal problems.  By definition, 

all OSS projects select OSS license(s) that are included as part of the work, as described 

above, to set up a basic legal framework. 

There are additional legal mechanisms that some OSS projects use.  Two of the 

most common are contributor agreements and contributor (copyright) assignments.  

Contributor agreements can, in turn, be divided into a Developer Certificate of Origin 

(DCO) and other contributor agreements. 

The additional legal mechanisms of contributor agreements and contributor 

assignments can have legal benefits and might reduce certain legal risks, but many of 

them also carry risks to the success of the entire project.  Contributor agreements other 

than DCOs, and especially contributor (copyright) assignments, can significantly reduce 

the number of potential contributors, potentially leading to failure of the entire OSS 

project.  This means that contributor agreements beyond DCOs and contributor 

assignments include a significant risk of project failure that attorneys do not always 

mention, so researchers and PMs need to consider all risks (not just the legal risks that 

attorneys consider).  This section describes the contributor agreement and contributor 

assignment approaches, their benefits, and their drawbacks, as summarized in Figure 4. 

https://creativecommons.org/freeworks
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Figure 4. Options for Contributor Agreements and Contributor Assignments 

 

A contributor agreement, also termed a contributor license agreement (CLA), makes 

an agreement or assertion when contributing change(s).  A contributor agreement may be 

physically signed, digitally signed, or even an unsigned electronic assertion.  A 

contributor agreement typically includes the following (see [Corbet/Bottomley2014]): 

1. The assertion that the contributor has the right to contribute the code 

2. An identification of the contribution itself 

3. An agreement (consent) that the code can be distributed under the project 

license. 

An especially simple type of contributor agreement is a Developer Certificate of 

Origin (DCO) (http://developercertificate.org/).  In this approach the contributor agrees, 

as part of the contribution, to provide an electronic certificate of origin that the 

contribution meets the contributor agreement points listed above.  These are asserted 

directly by the contributor, instead of requiring the contributor to get someone else to 

sign them (as noted in their name, a developer certificate of origin is provided by the 

developer).  In addition, these are typically not physically signed, and are instead 

electronically referenced when submitting a contribution.  Their usual implementation is 

usually a one-line note that the contributor agrees to the DCO terms.  Since they are 

directly provided by the contributor (instead of being from the contributor’s employer), 

are normally not physically signed, and are easy to add, DCOs are easy to do and have 

little risk of inhibiting contributions.  Projects that use DCOs include the Linux kernel 

[Linux2011], git, and Docker [Docker2014]. 
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Some projects choose to require other kinds of contributor agreements, including 

those signed by an employer (if one exists) and/or physically signed contributor 

agreements.  A benefit of these agreements is that they can reduce risk if someone later 

asserts that a contribution was not legal.  A signed agreement by someone authorized by 

the employer provides a strong legal defense if an employer later claims that an 

employee’s contribution was not legally provided.  A physically signed contributor 

agreement is considered by some to be stronger evidence that the agreement was valid.  

These other contributor agreements are not as difficult to get as copyright assignments (to 

be discussed), but they can still have a significantly detrimental effect on contributions 

because obtaining them can be time-consuming and can either cause the contributor to 

not contribute (even if they legally could) or can cause a significant delay.  If a signature 

must be from someone authorized to speak for a company (typically an employer), this 

can impose significant delays on a contribution, and if an employer is too busy this 

mechanism can inhibit perfectly legal contributions.  Physical signatures require mailing 

and tracking, creating an extra processing burden.  Thus, other kinds of contributor 

agreements inhibit or delay some contributions and can increase the risk that the OSS 

project will not receive enough contributions to continue.  What’s more, it is not clear 

that agreements actually provide significantly more legal protection; organizations 

generally cannot verify that the signer in another organization is authorized to do so, or is 

even the person they claim to be, and generally cannot verify a physical signature before 

the fact.  Thus, the legal protection assignments these approaches are supposed to provide 

may prove elusive.  Others who have looked into the issues also argue against using 

contributor agreements beyond DCOs in most cases [Kuhn2014]. 

An assignment transfers legal rights, usually the copyright, to another party.  Thus, 

they are also called copyright assignment agreements (CAA).  A potential benefit of an 

assignment is that it can provide some additional legal defense against someone who 

claims, for example, that they hold the copyright to some portion and that the OSS 

project cannot distribute that portion.  In particular, in the United States, only a copyright 

holder has standing to sue for copyright infringement, so an organization that wants to 

enforce a license in court on copyright grounds needs copyright in at least some portion 

of the software.  Of course, the assignment might not be valid (perhaps the person who 

signed the assignment was not authorized to do so), but the risk is somewhat reduced 

because many people will be willing to sign an assignment only if they believe they have 

the authority to do so.  Assignments can make it easy to release the software under a 

different license; without an assignment it may be impractical to release the software 

under a different license.  Some business models may also require assignment (e.g., if the 

OSS is released under a protective license and a company intends to sell proprietary 

versions of it). 
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However, assignments significantly increase the risk of OSS project failure.  Many 

organizations will not sign assignments even if they will sign contributor agreements.  

Even if they will sign assignments, they might only sign them under unusual 

circumstances.  Also, getting assignments signed often inserts a long delay that takes 

longer than merely getting an agreement.  Such assignments significantly inhibit and 

slow contributions because (1) they must often be specially signed by contributors’ 

company lawyers or management and (2) they create risks for the contributors because 

they lose rights that they would otherwise be able to execute.  Such assignments are 

especially risky for contributors if the assignment is a for-profit entity (instead of a non-

profit entity).  The incentives of the for-profit entity might be very different than those of 

the contributors, and the contributors would typically have no recourse if the assignee 

decides to take a direction the contributors do not desire.  Another problem is that most 

assignments assume there is a copyright to grant; in the United States, a work developed 

by a U.S. Government employee as part of his or her duties does not have copyright 

protection in the United States, making an “assignment” a complicated legal question.  In 

short, assignments can risk project success because of the time it takes to get such 

agreements (slowing progress) and because many potential contributors cannot or will 

not sign these assignments.  In addition, organizations generally cannot verify that the 

signer of another organization is actually authorized to sign, making their legal strength 

weaker than might first appear. 

None of these mechanisms are legally required to create an OSS project; most OSS 

projects do not have contributor agreements or contributor assignments.  Submitting a 

contribution with the project license has the effect of releasing the software under that 

license.  Laws already forbid contributing information that a contributor has no right to 

provide (including the laws governing copyright and fraud).  What is more, doing nothing 

is easy.  In short, the primary “competition” for agreement and assignment approaches is 

simply to not use them at all. 

Some successful OSS projects do require a DCO.  The Linux kernel, for example, 

has been ongoing for more than two decades without any copyright agreements (it instead 

uses a DCO). What is more, the Linux kernel has overall fared quite well in court cases 

claiming copyright infringement, in spite of rigorous legal attack. 

We recommend that researchers normally have a DCO or no agreement requirement 

at all.  In particular, we recommend that projects do not require copyright assignments 

unless they have a compelling need for one.  Anything that significantly impedes 

contributions also risks viability of the whole project and should only be considered with 

caution.  However, alternatives may be appropriate if the business model requires it or 

there are unusually high legal risks (e.g., that companies will later retract their 

employees’ contributions). 
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G. Discuss decisions publicly using the OSS project’s collaborative 

environment 

Once the OSS project’s collaborative environment is established (such as its 

website, discussion system, version control system, and trackers), use that environment to 

publicly discuss and record all decisions – even if all the current participants are within a 

single organization.  This way, other participants can see the decisions that were 

previously made and why (e.g., so they won’t repeat past mistakes), and potential 

contributors are more likely to trust that you will treat their contributions fairly (since the 

decisions are being made publicly). 

There are various ways of doing this.  On GitHub, comments specific to a particular 

proposal (via an issue or pull request) might be discussed as responses to the issue or pull 

request, while broader issues might be discussed more broadly (e.g., via a mailing list). 

In a few cases it may be necessary to discuss issues more privately, in which case, 

do so, but try to limit them. 
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7. OSS Project Inputs and Results 

A project, when viewed as a system, receives a number of inputs (in particular 

contributions) and produces results (in particular software, documentation, and related 

information such as its website).  These are, of course, deeply related: inputs that are 

accepted become part of the project results.  Some practices that are good software 

development practices in general become more important in OSS because they can enable 

collaboration.  Below, we discuss key points about OSS projects inputs and outputs, with 

an emphasis on those that are especially important when developing an OSS project to 

enable technology transition. 

A. Workflows and requirements for accepting technical contributions 

We previously discussed the reuse of existing components (the reuse of unmodified 

components was discussed in section A, and the reuse of modified ones were discussed in 

section B).  We also previously discussed the role of standards (in section C). 

We now turn to a fundamental task in any project: encouraging, processing, and 

accepting technical contributions.  There are many kinds of technical contributions; they 

include bug reports, feature requests, proposed changes to the code, and documentation 

improvements.  The workflow (process) for submitting technical contributions, and the 

minimum requirements for them, should be documented so that submitters will know 

what is required.  We will cover each in turn. 

1. Workflow for technical contributions 

There are many different possible workflows, aka processes, for accepting technical 

contributions.  When there is only a single developer, an extremely simple workflow is 

possible.  However, even then, it is useful to have tools that track potential changes to 

allow comparisons and reversions to past versions.  As the number of developers 

increases, it becomes even more important to use tools and processes to efficiently handle 

contributions. 

Various technical terms have emerged to describe actions and workflows: 

 A repository is simply a database that records the results of a project, including 

current and past versions, along with a record of who changed what and when. 

 A centralized version control system (the older method of doing version control) 

supports a single central repository that developers work with. 
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 A distributed version control system (the newer method of doing version 

control, implemented by tools such as git) enables a peer-to-peer approach to 

version control; each user has at least one complete repository, and the version 

control system supports communication between interacting repositories.  In 

general we recommend using a distributed version control system today, in 

particular git. 

 A pull request occurs “when a developer asks for changes committed to an 

external repository to be considered for inclusion in a project’s main repository.” 

[Johnson2013]. 

 The upstream and downstream of a repository or project refer to that repository 

or project’s intended location in a supply chain.  The terminology is an analogy 

to a river; those who receive a product or service are downstream, while those 

who produce products and services are upstream.  A project is often in the 

middle, and thus is downstream from some and upstream of others.  Projects that 

make changes to the products they use should typically send changes back 

upstream so that everyone (including themselves) will receive those changes 

merged with other useful changes. 

Distributed version control systems enable many workflows that are difficult to do 

with the older centralized version control systems, and thus some workflows may be 

unfamiliar to some developers.  The key is to pick one that works (for now) and 

document it; workflows can be changed later.  Here are some examples based on Pro Git 

and other sources: 

1. Fully centralized workflow: A centralized repository is used, and all authorized 

developers are authorized to directly update its contents.  This workflow is 

common with centralized version control systems and with developers who are 

primarily familiar with them.  However, this approach is limiting, and those 

limitations can slow development. 

2. Feature branch workflow/GitHub flow.  This uses a centralized repository that 

all authorized developers can modify, as with the fully centralized workflow, but 

all feature development takes place in a dedicated branch for each feature 

instead of the master branch.  A master branch is used to identify the current 

version of the software.  When the new feature is ready to be merged into the 

master branch, a developer can merge the branch into the master branch or send 

a pull request for the feature to be merged into the master branch.  This requires 

developers to create new branches for new features, but it is far more flexible 

than the fully centralized workflow. 

The GitHub flow workflow, advocated by GitHub, adds one additional rule: 

Anything in the master branch must be deployable (see https://guides.github.co

https://guides.github.com/introduction/flow/
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m/introduction/flow/).  Scott Chacon argues that the GitHub flow approach is 

useful because of its simplicity; see http://scottchacon.com/2011/08/31/github-

flow.html.  GitHub recommends that you not wait for a feature to be complete 

before submitting a pull request; these early requests can enable additional 

review and feedback (see https://github.com/blog/1124-how-we-use-pull-

requests-to-build-github). 

3. Gitflow workflow (aka git-flow).  This approach, advocated by Vincent Driessen, 

uses more branches, e.g., “master” for the full releases and “develop” for the 

latest merged version in development, with feature branches starting from the 

“develop” branch.  Once a feature is completed it is merged into “develop,” and 

after some point that combination is merged into “master.”  Often this workflow 

term implies that there is a centralized repository that all authorized developers 

can modify.  One advantage of the gitflow workflow is that it clearly separates 

the current development version from the release versions, which can be an 

advantage if there is a separate review process that takes a long time and cannot 

be put into a continuous integration process.  However, it is more complicated 

than many other workflows, leading to the potential for some confusion. 

4. Integration-Manager Workflow.  Each developer has write access to their own 

public repository and read access to everyone else’s public repository.  Typically 

there is a blessed repository that can be read by all, but only directly changed by 

the integration manager.  Developers modify their private repositories and push 

to their individual public repositories, and then send a pull request to the 

integration manager(s) when they want their changes integrated into the blessed 

version. 

5. Dictator and Lieutenants Workflow.  This is a variant of a multiple-repository 

workflow.  It’s typically used only when there are hundreds of simultaneous 

collaborators (e.g., the Linux kernel).  This workflow is essentially a recursive 

application of the integration-manager workflow.  In this workflow, various 

integration managers (called lieutenants) are in charge of certain parts of the 

repository, and the lieutenants have one integration manager known as the 

benevolent dictator. The benevolent dictator’s repository serves as the reference 

repository from which all the collaborators need to pull their copies. 

Some sources for more information on workflows include the Pro Git section on 

distributed workflows at http://git-scm.com/book/en/v2/Distributed-Git-Distributed-

Workflows and the Atlassian tutorial at https://www.atlassian.com/git/tutorials/comparin

g-workflows/centralized-workflow. 

In addition, when using a tool like git, anyone who is not an authorized developer 

can still propose a change.  The external developer can fork an existing repository 

https://guides.github.com/introduction/flow/
http://scottchacon.com/2011/08/31/github-flow.html
http://scottchacon.com/2011/08/31/github-flow.html
https://github.com/blog/1124-how-we-use-pull-requests-to-build-github
https://github.com/blog/1124-how-we-use-pull-requests-to-build-github
http://git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows
http://git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows
https://www.atlassian.com/git/tutorials/comparing-workflows/centralized-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/centralized-workflow


7-4 

(typically some blessed or central repository), modify it (possibly by first making a 

private copy and then pushing its contents to a public one), and then submit a pull request 

to someone authorized to accept it. 

The best workflow is, in the end, whatever workflow is acceptable and works for the 

project participants.  That said, we suggest that new projects seriously consider applying 

the GitHub flow workflow to their authorized developers, as it is relatively simple yet 

flexible.  The GitFlow workflow should also be considered, especially if there is a 

separate special process for transitioning development software into released software 

(beyond its continuous integration process).  The integration-manager workflow should 

be considered if the software is highly sensitive yet has contributors from many 

potentially less-trusted developers, since it only allows one or a few developers to 

directly modify the blessed repository.  Note, however, that workflow processes can be 

changed much more easily than other decisions such as licenses; it is quite common to 

start with a simple workflow, and increase its formality as the project grows in size. 

2. Requirements for technical contributions 

A key issue with technical contributions is that the project should encourage their 

submission, yet insist on a reasonable quality. 

1. For bug reports, there needs to be enough information so that the bug can be 

fixed by developers.  The most important item in a bug report for developers is 

the set of steps necessary to reproduce the defect, according to one survey of 

OSS project developers [Bettenburg2008].  In short, developers must be able to 

duplicate a problem before they can find and fix it. Thus, bug reporters should 

be encouraged to provide enough information so that the incorrect behavior can 

be reproduced and identified as such.  This also suggests that programs should 

be designed so that behaviors are easier to reproduce. 

2. For feature requests, there needs to be enough information to understand the 

suggestion. 

3. For code changes, the code should provide the expected functionality with 

adequate quality.  Here review is often critical.  Initial contributors will not 

know all of the project’s local conventions, so it is unsurprising when a reviewer 

replies with specific issues to fix.  However, reviewers need to provide enough 

feedback to the contributor so that the contribution can be updated and re-

submitted. 

4. For documentation, the information must be clear, accurate, and useful to its 

intended audience. 

Projects should not accept proposed changes (particularly code changes) of poor 

quality, but if a project waits for idealized perfection it will wait forever.  A project 



7-5 

should work to clearly identify its minimum expectations, identify with specificity the 

problems with a proposed change that keeps it from being accepted, and focus on 

incremental improvement. 

Work to ensure that existing material meets your quality expectations (and if not, 

specifically document why it doesn’t and ask for help in that area).  Contributors will 

look to existing material as examples of what you expect, and in any case, it’s 

hypocritical to ask people to “do as I say, not as I do.” 

Many projects use Wikis, where anyone in the group (or possibly anyone) can make 

immediate changes to at least some of the documentation and/or the website but those 

changes can be trivially reverted.  In these cases, projects make a conscious decision to at 

least temporarily accept proposed changes because their impact tends to be smaller, but 

they can still reject or modify the changes later if they are inadequate. 

It is important to provide timely and specific feedback to proposed changes.  

Timeliness is especially important for new contributors; new contributors will often start 

by proposing a small change, to see if the project is live and open to contributions.  New 

contributors will also typically not know enough to be able to make sweeping changes.  If 

contributors receive timely feedback on their proposed changes, and it is clear what is 

necessary for the changes to become acceptable, the contributors are more likely to be 

able to make the changes. 

The long-term goal should be to encourage quality contributions from a variety of 

people and organizations, since this leads to sustained activity in the OSS project. 

The following sections discuss potential requirements on inputs and results to 

ensure that they are quality contributions and results. 

B. Code and test contribution requirements 

Code and test contributions should meet whatever coding style guideline the project 

uses.  Coding style guidelines pre-resolve questions such as how the code should be 

indented, how names should be used, and what code constructs should be used or 

avoided.  A consistent coding style makes the code easier to understand, avoids common 

mistakes, and also makes the software easier to integrate.  For example, if someone 

reformats code in the process of making a change, it can be harder to re-integrate that 

change into a larger work.  Coding style guidelines also reduce many kinds of arguments, 

and help people focus instead on technical content. 

On new projects, code style guidelines are selected by whoever starts the project, 

and are often established by pointing to some existing guideline(s).  Coding style 

guidelines must cover issues for the specific programming language(s) to be used and 
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should generally use prevailing practices for those languages (where they exist).  

Examples include: 

 GNU Coding Standards http://www.gnu.org/prep/standards/standards.html 

 Linux kernel Coding style 

https://www.kernel.org/doc/Documentation/CodingStyle 

 Google style guides for OSS projects https://github.com/google/styleguide, 

including the Google Java style guide 

http://google.github.io/styleguide/javaguide.html 

 Mozilla Coding Style: https://developer.mozilla.org/en-

US/docs/Mozilla/Developer_guide/Coding_Style. 

C. Change (commit) formats and rewriting history 

Proposed changes should focus on a specific logical change, since this enables code 

review, and be individually short enough to review.  A single change that rewrites most 

of the program is typically impractical to review.  Since most OSS developers use git, we 

will discuss git here, although the principles are the same for other version control tools 

(especially distributed version control tools). 

In practice, the need for logical changes means that git users should create at least 

one separate git branch for each different logical set of changes they wish to make (e.g., 

there might be a branch for adding a new type of input file, and a different branch for 

improving the performance of some internal calculation algorithm).  These different 

branches make it easier to keep logically different changes separate. Inside a branch there 

may be one or more commits that lead up to the desired logical change (e.g., the first one 

may refactor the system to make it easier to change, followed by a logical progression of 

commits that lead to the desired change in total). 

Sometimes development by a single developer does not proceed linearly.  For 

example, changes may start to go in one way, the developer may realize that does not 

work, and then other changes go in a different way to obtain a final result.  The developer 

may constantly commit even minor changes to ensure their progress (or what they hope is 

progress) is not lost.  The developer may also constantly update their local copy from the 

upstream project, in which case the history of their changes will be interspersed with 

changes from the upstream project.  When this happens, there is an important question: 

should the developer submit all that history (including directions that did not pan out and 

merges from upstream) or should the developer submit a cleaner version that shows what 

a logical progression would have looked like (had it been followed)? 

There are many reasons to not include every irrelevant twist and turn in a set of 

local commits.  It is difficult to review these complex changes, since many of those 

http://www.gnu.org/prep/standards/standards.html
https://www.kernel.org/doc/Documentation/CodingStyle
https://github.com/google/styleguide
http://google.github.io/styleguide/javaguide.html
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Coding_Style
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Coding_Style
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changes will be later changed.  Also, tools like “git bisect” (which can help find where a 

bug was introduced) are harder to use if some commits partially work or introduce known 

problems that will be fixed in later stages. 

Thus, projects may ask committers to provide a simplified commit history to 

simplify review, especially once the project has made significant progress.  Git provides 

tools to help do this, including git rebase and git cherry-pick.  With these tools a 

developer can rewrite a local repository’s history to make development look like a simple 

logical sequence of steps – even when reality was more complicated.  Developers may 

often rewrite private history (history that has not been sent elsewhere) so that the final 

commitment is a simple, logical progression of changes that can be easily reviewed. 

However, this desire for a simpler history can lead newcomers to a serious mistake: 

rewriting public history in an already public branch.  It is fine to rewrite a branch’s 

history in a local repository as long as it has not been sent out publicly.  For example, if a 

developer likes to commit changes every few minutes using “git commit,” without 

publishing those changes elsewhere, then using rewriting commands that rewrite 

commands (such as “git commit --amend”) can be perfectly fine. 

However, never rewrite public history.  Once a branch’s information is copied out to 

others’ repositories (including being made public), it will have a specific sequence of 

cryptographic values that identify each commit (including the final one).  Any attempt to 

change a public branch will produce different cryptographic values; this can be confusing 

and possibly look like an attack.  Instead, simply create another (different) branch with 

the rewritten history, and ask people to pull from that rewritten branch instead. 

More information is available in the “Pro Git” section on rewriting history6 and the 

Atlassian git tutorial on rewriting history.7 

D. Use pre-packaged components 

Sometimes proposed inputs will add dependencies on other components.  In general, 

encourage the consideration of prepackaged components for reuse, but evaluate these 

components before they are used to ensure that they are acceptable (see section A).  

Where practical, use existing package management systems to simplify acquiring and 

updating these other reused components (typically through the network). 

Most operating systems today include a package management system for managing 

application software installed on them and for downloading additional or updated 

                                                 

6
  https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History 

7
  https://www.atlassian.com/git/tutorials/rewriting-history/ 
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packages, and in practice there may be more than one package manager on a given 

system.  On some systems, such as traditional Linux distributions and the *BSDs, these 

package management systems are also used to manage software libraries.  Systems such 

as Red Hat Enterprise Linux, CentOS, and Fedora store operating system packages in the 

rpm format and can download packages using tools such as yum or dnf.  Systems such as 

Debian and Ubuntu store operating system packages in the deb format and can download 

packages using tools such as apt-get.  Windows installer is the native method for 

installing applications on Microsoft Windows.  On Apple MacOS systems the Mac App 

Store is the official digital distribution platform, while Homebrew is a popular package 

manager based on git.  Mobile systems (such as Android and iOS) typically have at least 

one app store available to them for downloading and installing end-user applications. 

Many programming language ecosystems today include a system for quickly getting 

and managing libraries for that language from some common repository.  These systems 

include a centralized package repository with corresponding package conventions (at 

least a standard data format), along with tools for automatically acquiring and updating 

software from the centralized repository.  Examples of languages with a common 

repository, and a common repository used by that language, are shown in Table 2. 

 

Table 2. Examples of Common Language-specific Repositories 

Language Repository 

Clojure Clojars (http://clojars.org/) 

Common Lisp QuickLisp (https://www.quicklisp.org/) 

Go GoDoc (http://godoc.org) 

Haskell Hackage (http://hackage.haskell.org/) 

Java (Maven) Central Repository (http://central.sonatype.org/ ; see also the 

search system at http://search.maven.org/ 

Javascript npm (http://npmjs.org) especially for server-side and Bower 

(http://bower.io/) especially for client-side 

OCaml OCaml Package Manager aka OPAM (http://opam.ocaml.org/) 

Perl Comprehensive Perl Archive Network (CPAN) (http://www.cpan.org/) 

PHP Packagist (https://packagist.org/) 

Python Python Package Index (PyPI) (https://pypi.python.org/pypi) 

Ruby RubyGems.org (https://rubygems.org/) 

Rust Crates (https://crates.io/) 

 

It may also be convenient to build on containers.  Docker containers are extremely 

popular today.  The Open Container Project is an effort backed by the Linux Foundation 

to unite various projects, including Docker, to create a standard format for containers. 

http://clojars.org/
https://www.quicklisp.org/
http://godoc.org/
http://hackage.haskell.org/
http://central.sonatype.org/
http://search.maven.org/
http://npmjs.org/
http://bower.io/
http://opam.ocaml.org/
http://www.cpan.org/
https://packagist.org/
https://pypi.python.org/pypi
https://rubygems.org/
https://crates.io/


7-9 

As of 2015, many repositories, especially those for programming languages, are not 

cryptographically signed [VersionEye2014].  Some repositories do not even have basic 

protections against man-in-the-middle attacks.8  Thus, before using a package 

management system, check that it has at least basic protection against man-in-the-middle 

attacks (such as using https for all uploads and downloads).  If it does not, the software 

that is used may not be the same as the software originally developed; mitigations such as 

cross-checking with the project website or getting the package manager to improve may 

be needed.  The good news is that users are increasingly demanding that repositories 

improve their security, and specifications and libraries (such as “The Update Framework” 

at http://theupdateframework.com/) are being developed and implemented to enable 

repositories to easily meet a minimum bar for security. 

ModuleCounts maintains a list of some package management systems for individual 

languages and the number of components in them (http://www.modulecounts.com/).  

Wikipedia maintains a list of software package management systems at 

https://en.wikipedia.org/wiki/List_of_software_package_management_systems. 

E. Use current common build tools and conventions. 

Developers of OSS may build (compile) software on a variety of platforms, for a 

variety of platforms.  Thus, while it is a good to have a flexible build system for any 

system, it is especially important when developing OSS, because this enables more 

developers and users.  It is generally best to prefer common OSS build tools and 

conventions so that potential developers can concentrate on improving the software 

instead of trying to understand an unusual build system.  Note that some tools identified 

here as “build tools” do much more than older tools called build tools, e.g., many also 

support downloading and configure dependencies, testing, and/or configuration and 

installation.  

When writing software in Java, common build tools include Gradle, Maven, Ant, 

and Apache Buildr.  When writing software in C/C++, common build tools include the 

autotools (especially autoconf and automake) and cmake; directly using “make” 

(particularly GNU make) is also relatively common.  Developers who use make directly 

may want to consider using “:=” or the new-to-POSIX “::=” assignment because these 

assignment statements eliminate the exponential growth in time that can occur when 

using make’s traditional “=” assignment. 

                                                 

8
 The HOST project identified the lack of man-in-the-middle protection on the Cygwin project in 2015. 

Cygwin is a project that provides many OSS packages to Microsoft Windows users. The Cygwin project 

agreed and fixed the problem (in this case by switching to using only https). 

http://theupdateframework.com/
http://www.modulecounts.com/
https://en.wikipedia.org/wiki/List_of_software_package_management_systems
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When compiling to object files on Unix-like systems, a common and important 

convention to support is the DESTDIR convention.   This is a simple convention where if 

the make macro “DESTDIR” is set, that value is prepended to any filename when files 

are copied on installation.  This convention is a necessary precondition for many 

packaging systems, and thus following this convention can make software easier to 

install. 

One mistake is assuming that your development or build system always has network 

connectivity, then checking or downloading software.  Platforms that execute final build 

systems are often intentionally disconnected from the Internet (to make them hard to 

attack), falsifying this assumption.  Most programs that implement build systems support 

caches that make it possible to safely preload software ahead of time; if yours does not, 

add any necessary mechanisms or simply create a subdirectory for each reused 

component for use as a cache for the purpose. 

Another mistake is using a recursive make approach.  As software gets large, a 

common structuring method is to use directories and subdirectories to divide it up.  By 

itself, this is fine.  However, a common mistake is to attempt to recursively call each 

subdirectory to have each subdirectory built separately, even when the subdirectories are 

interrelated components of a larger system (and not totally isolated separate projects).  

When this is done, the build system never has complete information on what has been 

changed and requires rebuilding; the result is often incorrect results and/or lengthy build 

times.  Build systems should have the complete information for software so that they 

have the correct information to perform a build.  It is fine to separately build independent 

components, and the data for subdirectory builds can be divided into subdirectories; the 

key is that the build system should be provided with the correct information.  It may be 

counterintuitive, but a non-recursive make is often significantly faster than a recursive 

make.  The recursive make approach can happen in any build system, whether or not it 

uses make.  For more information on the problems of recursive make, see [Miller1998]. 

The instructions for building should be included with, and maintained, just like the 

rest of the source code.  For more on common build tools and conventions (including 

DESTDIR), see [Wheeler2013c]. 

F. Regression test suites and continuous integration 

Include in the software an easily invoked regression test suite.  Use common 

conventions, e.g., if your build system uses makefiles it should support invoking the test 

suite via “make check” (similar conventions exist in other build systems).  In this way, 

developers can easily do a local check that their changes do not break existing 

functionality, and they are more likely to add tests if the regression test suite is already 

present. 
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A regression test suite may exist but fail to be thorough.  One way to measure 

thoroughness is by measuring the branch coverage of the regression test suite.  Some 

OSS projects, such as SQLite, achieve 100% branch coverage in their regression tests.  

These regression tests should include unit tests (testing at a unit/component level) and 

functional tests (which test the functionality of the software as a whole).  Few projects 

today achieve 100% branch coverage, but even moderately thorough regression tests can 

immediately detect many defects in a proposed change, and in particular make code 

refactoring much more effective. 

In addition, use continuous integration.  Historically, regression tests were re-run 

every night if at least one change occurred after rebuilding the software (the daily build).  

However, the current best practice (due to increased availability of computing power) is 

to re-run the build and regression test suite after every push into selected branches; this is 

called a continuous build process or continuous integration.  Continuous integration is 

often implemented using a continuous integration server, which monitors every change to 

the source code; each change triggers automatic analysis, rebuilding, and regression 

testing (including unit testing and extensive functional testing).  This monitoring can be 

triggered or even implemented by version control mechanisms such as git’s hooks.  

Continuous integration is the logical follow-on to daily (or nightly) builds because it 

speeds identification of problems even faster than daily/nightly builds. 

Continuous integration makes it easier to quickly identify exactly what change 

caused a problem so that it can be fixed.  Examples of continuous integration servers that 

help implement continuous integration include CruiseControl, Jenkins, and Tinderbox. 

G. Develop secure software 

Of course, software needs to work securely, countering the attacks that are 

inevitable in today’s environment.  In particular: 

1. Strive to develop secure software throughout its development.  Be aware of, and 

counter, common types of vulnerabilities.  Ensure that the program checks every 

input, particularly from untrusted users, against a whitelist to ensure that the 

inputs meet expected formats (e.g., are syntactically correct and within expected 

ranges); reject all other inputs.  When using an SQL database, use prepared 

statements or similar mechanisms that counter vulnerabilities.  Design the 

program so that it has the least necessary privileges.  In general, develop the 

software in a way that reduces the likelihood of security vulnerabilities or their 

impact.  Such approaches also tend to make software more robust and reduce 

debugging time. 

2. Use tools to look for unknown vulnerabilities so that they can be detected and 

repaired.  The DHS Software Assurance Marketplace (SWAMP) at 
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https://continuousassurance.org/ enables software to be uploaded and analyzed 

by a variety of tools.  State-of-the-Art Resources (SOAR) for Software 

Vulnerability Detection, Test, and Evaluation [Wheeler2014b] identifies many 

types of tools and techniques for analyzing software and helps identify the 

various technical objectives that they can help achieve. 

3. Use tools to look for known vulnerabilities in included or required software.  

Check that any included or required software (e.g., libraries) does not have 

known vulnerabilities, and in particular, update those libraries to versions 

without known vulnerabilities.  This requires periodic re-examination because 

vulnerabilities may have been found since the library was selected earlier.  

Origin analysis tools can help identify known vulnerable components; OWASP 

DependencyCheck is one such tool, and Sonatype, Black Duck, Codenomicon, 

and VersionEye have a variety of such products. 

4. Include both positive and negative tests in the regression test suite.  Many 

regression test suites only include correct inputs (positive tests) as test cases.  

For security, this is a mistake.  The regression test suite should also include 

negative tests, that is, inputs that should be rejected.  For numbers, include 

numbers that are too small, too large, or incompatible with other values. For 

text, include the null string, text that is not in the current locale (typically these 

are byte sequences that are not UTF-8 or UTF-16), overly large text strings (if 

that applies), and text that does not meet the parsing requirements. 

H. Software releases 

Software undergoes continuous improvement; it is important to indicate to users that 

a particular version is “done” and ready for use. 

Released software should have a simple and clear version number that clearly 

indicates to potential users that this is current compared to previous versions.  One of the 

most common versioning conventions today is the “semantic versioning” system 

described at http://semver.org/ which uses the version number format 

MAJOR.MINOR.PATCH, where you increment: 

 MAJOR version when you make incompatible API changes, 

 MINOR version when you add functionality in a backward-compatible manner, 

and 

 PATCH version when you make backward-compatible bug fixes. 

Major version zero (0.y.z) is reserved for initial development.  In initial 

development anything may change at any time and the public API should not be 

considered stable. 

http://semver.org/
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The semantic versioning system is easily distinguished from decimal numbers 

because it uses two periods (not just one).  Some versioning systems use only one period, 

but then it is not clear whether 3.2 is before or after 3.11; in contrast, programs for 

comparing version numbers can unambiguously determine that 3.2.0 is always before 

3.11.0 (since this is the semantic versioning convention).  Another advantage of semantic 

versioning is that users can estimate, at a glance, the difficulty of upgrading to the new 

version.  Still another advantage of semantic versioning is that it can easily support 

multiple development lines, e.g., 3.0.7 and 2.8.6 might both be current releases, and users 

can immediately understand their differences (there must have been an incompatible API 

change).  Some use release dates as a version number; if they are done in ISO date order 

(YYYYMMDD) then it is easy to see what is first, but this scheme does not easily handle 

having more than one actively supported branch (a common situation). 

Avoid creative version numbering schemes.  For example, Frama-C uses the 

element names corresponding to an atomic number (e.g., “Sodium” for major version 11), 

while TeX adds an extra digit to its version number to asymptotically approach pi (as of 

June 2015 its version number is 3.14159265).  In many cases people must assemble 

thousands or hundreds of thousands of programs (including libraries transitively).  

Managing large number of programs requires automated tools to manage dependencies 

and upgrades, and idiosyncratic version number systems interfere with these tools.  They 

also make it difficult for users to determine whether they are up to date, e.g., is Sodium 

before or after Neon?9  Codenames or informal names can be fine, but only if they are 

closely tied to clear version numbering schemes like semantic versioning. 

Releases should be provided to potential users in ways that they will find easiest to 

use.  If the software is a library, try to get the library included in a common library 

system for that programming language, using a common format for libraries in that 

language.  Similarly, if it is an application for a common operating system, it may be 

wise to package it for that operating system.  See section D, which discusses packaging 

systems, but now consider it in the context of releasing software in these forms. 

Be sure to include, with each release, brief information for users on why the new 

release should (or should not) be installed.  In particular, users will want to know whether 

it fixes security vulnerabilities (and if it does, which ones), and whether it will be easy to 

update to (e.g., if it changes an API, including any storage formats). 

                                                 

9
  Sodium is after Neon, because Sodium’s atomic number is 11 and Neon’s is 10. Note that determining 

which is first is not trivial for most people. In contrast, determining whether “11.0.0” is before or after 

“10.0.0” is extremely easy. 
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I. Continuously improve 

It is not possible to do everything at once, nor is it necessary.  Instead, focus on 

continuously improving.  One reason to prefer common conventions is that others, who 

are expert in specific tools or processes, can more easily help you apply related tools to 

your specific circumstance. 
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8. Tips for Making an OSS Project Successful 

Many actions can increase – or decrease – the likelihood of OSS project success.  

This section contains a collection of tips for making OSS projects successful. 

A key source for the first two subsections is the work by Charles M. Schweik and 

Robert C. English of the Massachusetts Institute of Technology (MIT).  They performed 

5 years of painstaking quantitative research to answer the question, “What factors lead 

some open source software (OSS) commons (i.e., projects) to success, and others to 

abandonment?” [Schweik2012].  Their work divided OSS projects into two phases, 

initiation (before the first public software release) and growth (after the first public 

software release), and identified the key issues for each phase.  Quotes in the next two 

subsections are from [Schweik2012] unless noted otherwise. 

A. Tips for initiation 

During initiation (before the first public software release), Schweik and English 

determined that the following are the most important issues (in order of importance) for 

OSS project success (the “you” here applies to the researcher): 

1. “Put in the hours. Work hard toward creating your first release.” The details in 

chapter 11 tell the story: If the leader put in more than 1.5 hours per week (on 

average), the project was successful 73% of the time; if the leader did not, the 

project was abandoned 65% of the time. They are not saying that leaders should 

put in only 2 hours a week; instead, the point is that the leader must consistently 

put in time for the project to get to its first release. 

2. “Practice leadership by administering your project well, and thinking through 

and articulating your vision as well as goals for the project. Demonstrate your 

leadership through hard work….” 

3. “Establish a high-quality web site to showcase and promote your project.” 

4. “Create good documentation for your (potential) user and developer 

community.” 

5. “Advertise and market your project, and communicate your plans and goals with 

the hope of getting help from others.” 

6. “Realize that successful projects are found in both [GPL and non-GPL 

licenses].” 
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7. “Consider, at the project’s outset, creating software that has the potential to be 

useful to a substantial number of users.” Remarkably, the minimum number of 

users is surprisingly small; they estimate that successful growth stage projects 

typically have at least 200 users. In general, the more potential users, the better. 

B. Tips for growth 

Similarly, once OSS projects switch to growth these are the factors that matter in 

order of importance (again, “you” is the researcher): 

1. “Your goal should be to create a virtuous circle where others help to improve the 

software, thereby attracting more users and other developers, which in turn leads 

to more improvements in the software….” Researchers should do this the same 

way it is done in initiation: spending time, maintaining goals and plans, 

communicating the plans, and maintaining a high-quality project web site. The 

user community should be actively interacting with the researcher’s 

development team.  Researchers should make it easy for people to get to try out 

the software.  Similarly, researchers should make it easy for potential 

collaborators to improve the software and submit those improvements. 

2. “Advertise and market your project.” In particular, successful growth projects 

are frequently projects that have added at least one new developer in the growth 

stage. 

3. Have some small tasks available for contributors with limited time. 

4. Welcome competition (e.g., other OSS projects that do similar things), as 

“competition seems to favor success.”  Competition often encourages projects to 

do better. 

5. Consider accepting offers of financing or paid developers (they can greatly 

increase success rates). This point, in particular, should surprise no one.  

Researchers should not automatically reject financial offers, as long as they are 

legal, contribute to the overall goal, and avoid ethical problems such as conflicts 

of interest.  PMs should be prepared to discuss potential collaboration and try to 

find ways to manage issues such as potential conflicts of interest. 

6. “Keep institutions (rules and project governance) as lean and informal as 

possible, but do not be afraid to move toward more formalization if it appears 

necessary.” 

There is strong empirical proof that “adding more developers [during the growth 

stage] causes success” [Schweik2012,170], so researchers should have a strong focus on 

adding more developers (at least one) from a different organization once the project’s 

software has been initially released.  There are many reasons for this.  Obviously 
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additional developers can speed development in general, and their different skill sets will 

often make previously difficult problems easier.  Additional developers also reduce the 

perception of risk by potential users and developers; should the original developer stop 

working on the project, the project is more likely to continue because there are other 

developers.  The development team itself can be small; many successful OSS projects 

have only two to three primary developers.  However, projects with more developers can 

directly tackle larger problems. 

The majority of successful growth projects have greater than 1,000 downloads and 

at least 200 users [Schweik2012, 272-273].  This, unsurprisingly, suggests that OSS 

projects should strive to be general enough to support at least that many potential users.  

A user may eventually become a collaborative developer or hire one; if this happens 

often, the project itself will become very active.  Projects cannot be “all things to all 

people,” but it is important to provide enough capability to enough people so 

collaboration will continue. 

None of this is surprising, but it is confirmed by quantitative data analysis. Some 

goals, such as keeping complexity low, were not differentiators for success.  Indeed, 

successful projects tended to have a little more complexity than abandoned projects. This 

does not mean a project should strive for complexity.  Instead, both successful and 

abandoned projects often strive to reduce complexity—so complexity is not something 

that distinguishes them.  Also, a project that focuses on user needs probably is more 

complex than one that does not, simply because user needs can sometimes be complex. 

C. Other issues, including those to do with standard conventions 

Other tips for establishing and running an OSS project can be found in [Scott2011], 

[Fogel2009], [Raymond2000], and [Gabriel2005]. 

In general, researchers should try to identify and follow standard conventions, prefer 

the use of widely used tools, and apply widely accepted best practices (some of these 

have been noted above).  Doing so makes it easier for potential collaborators to begin 

collaborating.  For example, researchers should strongly consider the following: 

1. Use git for version control.  As noted above, git is a widely used OSS 

distributed version control tool, and its use simplifies collaboration with other 

projects.  Git has a reputation for being hard to use, but more recent versions and 

services have made it easier to use.  Other tools that might be useful include 

mercurial and subversion; however, mercurial and bazaar are less common, and 

subversion cannot support distributed version control (it only supports 

centralized version control). 

2. Use widely used coding style conventions for the selected programming 

language(s).  For more, see section B. 
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3. Prefer the use of current common build tools and conventions.  For more 

information, see section D. 

4. Include an easily invoked regression test suite and use continuous integration.  

For more information, see section F. 

5. Ensure the software is secure.  For more information, see section G. 
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9. Overcoming Impediments 

Simply developing and releasing software can be useful (e.g., for documenting past 

research so it can be repeated), but it does not necessarily create a successful OSS 

project.  The preceding guidelines should increase the probability of success.  However, 

there are some potential impediments to OSS projects that are common and have specific 

corrections.  Here are a few common impediments and ways to counter them. 

A. Users/developers do not know of the project 

A common problem is that users and potential co-developers are unaware of the 

OSS project.  A clear (preferably unique) project name can help them find the project, 

once they know of it, but a unique name will not (by itself) help them discover that it 

exists in the first place. 

It is critical to have a front-page website that clearly describes the purpose of the 

project; this can help those who are searching for it.  This will help those specifically 

seeking projects like it, especially once others start linking to the project front page (since 

this increases search rankings).  However, many users will not know to seek out the 

project, and obscure projects often have low rankings in web searches. 

OSS project leaders will typically want to identify those who might be especially 

interested in the project, and make them aware of it.  This can include contacting 

individuals who are interested in the area, mailing lists, groups, and organizations, 

Briefings at related conferences can also help spread the word.  At the least, identify web 

sites that have pages that are especially relevant, and ask them to add a link to the project 

front page (providing them specific text that is appropriate to insert in their specific 

page).  The project leader may also want to try to get interviewed on various relevant 

podcasts (e.g., FLOSS Weekly) and blog sites (e.g., Slashdot), or have articles written 

about the project (e.g., in lwn.net or opensource.com).  In short, an OSS project needs to 

“market” its existence, especially at first, so that those who might be interested in the 

project can learn about it. 

B. Missing functionality 

All software could have additional functionality added, and many users will want 

functionality that the current software lacks.  There are steps that can make missing 

functionality less of an impediment in some cases; they can be grouped into those making 
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it easy to work around missing functionality and those making it easy to add that 

functionality. 

There are many ways to design software so that users can more easily work around 

missing functionality.  This includes using standard data formats (e.g., JSON, XML, and 

various specific specifications), providing a programming API (e.g., a REST API) so 

other programs can control your software, and storing data in databases that can be 

separately queried.  This way, users can send and extract data through your program to 

other systems that can add missing functionality. 

There are also many ways to design software so that users can more easily add 

functionality.  This includes providing a plug-in architecture, clean design and code, and 

thorough current developer documentation.  Good names (e.g., for classes and methods) 

can make a program much easier to modify.  Following common practices and including 

a regression test suite also makes it easier to add functionality.  These apply to any 

software, but for OSS these can be especially important.  Some potential collaborators 

start by wanting to make only a small change; by making small changes easy to do, more 

substantial changes are more likely to be contributed as well. 

C. Inadequate quality or trustworthiness 

Users are far less likely to use buggy software, especially if those defects directly 

affect their primary reasons for using the software.  OSS projects should use a variety of 

techniques to provide and maintain good quality.  This includes general quality issues 

(e.g., functions that perform incorrectly), but also security issues (e.g., enabling attack).  

This is even true for security-related programs; a security-related program can itself have 

vulnerabilities that enable instead of counter attack.  Since no single mechanism 

guarantees high quality, a variety of approaches should be used; some of them have 

already been noted above. 

Compiler warning flags should be maximally enabled to detect potentially erroneous 

constructs.  The code should be written to try to compile warning-free (no warnings are 

reported even when flags are maximally enabled).  This is an ideal; some warning flags 

cannot be practically enabled for some projects, and some warnings may be unavoidable.  

However, avoiding dangerous constructs where practical can reduce defects, including 

those that lead to vulnerabilities. 

Refer to some coding guide, so that instead of arguing about what formatting or 

construct is okay, the project can focus on the actual functionality (see section B).  

Refactor the software while changing it so it will be easier to maintain in the future.  

There should be general striving to make the software code clear, since complex code is 

more likely to have hidden defects. 
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Static analysis tools should be used to detect code quality issues, especially code 

vulnerabilities.  As noted above, source code can be sent to the SWAMP for analysis for 

potential vulnerabilities.  Many proprietary tool vendors have projects for evaluating OSS 

to find vulnerabilities ahead of time. 

Regression tests should be thorough and included with the project, and combined 

with continuous integration (see F).  The software should be developed to be secure in 

general (see G). 

D. Low trust 

Users may not trust a project, even if the code itself is trustworthy.  Thus, it is 

important to make it clear to users why they should trust the project. 

Don’t just perform the tasks in the previous section, but make it clear to users what 

is being done to provide high quality, with evidence to back it up.  To the extent possible, 

make decisions transparently and with a good rationale; this provides evidence that future 

decisions will be reasoned and not capricious.  Limit the promises made, but strive to 

keep them. 

People are often more willing to trust a project if many others trust it.  Thus, 

focusing on improving the software so that it will help many users – and growing that 

user base – can also help gain the trust of others. 

E. Excessive user cost/time/effort 

Potential users have limited time, and co-developers in OSS projects often start as 

users.  Thus, any barrier for user actions can lead to dramatically fewer users and 

developers.  Consider tasks from the user’s point of view and constantly work to reduce 

their cost, time, and effort.  This includes: 

 Reduce the cost/time/effort to initially try out the software.  Users will typically 

want to briefly try out the software.  Provide ways to try out the software as 

quickly as possible.  This could be by providing a setup that runs just their web 

browser, by providing a prebuilt container (e.g., as a Docker container) or virtual 

machine, or by providing simple installation mechanisms that just work on 

common platforms.  Using standard installation systems (e.g., cmake or 

autotools for compiled programs) and working with packagers to ensure the 

software is easy to package and widely available as a package also helps.  

Simple introductory tutorials (video, audio, and/or documentation) can be 

helpful as well. 

 Reduce the cost/time/effort to learn/train.  Users who decide that the software 

may be valuable or have decided to start using it (typically on a small pilot 
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project) will need to learn how to use the software.  Ideally the software’s user 

interface would be so obvious that no training is needed; this ideal is sometimes 

impractical, but where possible, build on knowledge and interfaces that your 

users are likely to already know.  Provide documentation and/or more detailed 

tutorials to help people learn. 

 Reduce the cost/time/effort to use/apply.  Software that is easy to learn but hard 

to use practically is not very welcome.  If the program has a user interface, it is 

often instructive to simply give a program to a potential user and ask them to 

perform a task while explaining what they are doing and why.  This can reveal 

confusing aspects of user interfaces and missing functionality needed in the real 

world.  It can also reveal where a user interface is simply too clumsy to use 

repetitively.  If the program is a library, implement a standard API and/or have 

an API that is easy to use for simple common cases.  Wisely chosen defaults and 

simple interfaces for common cases can help provide deep functionality when 

necessary while still leaving the software easy to use for most cases. 

 Reduce the cost/time/effort to integrate/onboard the software.  Provide standard 

interfaces, and in particular accept or export data formats that are in common 

use for that kind of software.  It should be possible to incrementally increase the 

use of the software; few people will want to “bet the company” on software 

they’ve never seen before. 

Efforts to reduce cost, time, and effort must typically continue over time.  The good 

news is that once a project begins gaining contributions (because it has reduced that effort 

to some reasonable level), other contributions can help reduce the effort further. 
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10. Conclusions 

Researchers (including principal investigators) and program managers (PM) can use 

an OSS approach to successfully transition technology into successfully deployed 

solutions.  OSS approaches can build on existing work, either by modifying existing 

components and/or using those components to build new systems. 

New projects require establishing a collaborative environment, including selection 

of hosting services, a governance process, and license, along with the issues involving 

contributor agreements and contributor assignments.  A variety of common conventions 

for OSS project inputs and results can improve the likelihood of success, as can tips 

derived from previous projects.  Common impediments should be identified and 

overcome. 

Any technology transition process requires planning, time, and effort.  Full 

technology transfer using an OSS approach requires submitting changes to existing OSS 

projects and/or creating a self-sustaining project.  This is not difficult, and many people 

have done it, but it still requires planning, time, and effort.  It also need not happen all at 

once.  But technology transition is vital – technology research typically only helps people 

if it is transitioned to those who need it.  OSS approaches can be a valuable way to 

practically implement technology transition. 
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Acronyms and Abbreviations 

Below is a glossary of key abbreviations used in this guide.  Well-known 

abbreviations are omitted (such as “U.S.” for United States).  This list does not include 

terms that are not abbreviations (e.g., “LLVM” is not an acronym, it is the full name of 

the project). 

AFL Academic Free License or American Fuzzy Lop 

API Application Programming Interface 

ASF Apache Software Foundation 

ATP Automated Theorem Proving 

BSD Berkeley Software Distribution 

CAA Copyright Assignment Agreement 

CLA Contributor License Agreement 

CPL Common Public License 

CSD Cyber Security Division 

CSS Cascading Style Sheets 

DCO Developer Certificate of Origin 

DHS Department of Homeland Security 

DoD Department of Defense 

FAQ Frequently Asked Questions 

FSF Free Software Foundation 

GNU GNU’s Not Unix 

GPL General Public License (GNU’s) 

HOST Homeland Open Security Technology 

HTML Hypertext Markup Language 

HTTP Hypertext Transfer Protocol 

IETF Internet Engineering Task Force (IETF) 

IRCA Identify candidates, Read existing reviews, Compare 

the leading programs’ basic attributes to the needs, 

Analyze 

ISO International Organization for Standardization (sic) 

MIT Massachusetts Institute of Technology 

MPL Mozilla Public License 

NDA Non-Disclosure Agreement 

NIST National Institute of Standards and Technology 

OSI Open Source Initiative 

OSL Open Software License 

OSS Open Source Software 

OWASP  Open Web Application Security Project 

OSR Open Standards Requirement 

PM Program Manager 
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