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Power Approximations for Generalized Linear Models 
Using the Signal-to-Noise Transformation Method1 
Thomas H. Johnson, Laura J. Freeman, James D. Simpson, and Colin E. Anderson

Statistical power is a useful measure for assessing the adequacy of an 
operational test. It is the probability of correctly concluding that a factor in 
the experiment significantly impacts the response variable. For normally 
distributed response variables, power calculations are widely available in 
experimental design software. However, many defense testing applications 
use non-normal response variables. Generalized linear models provide many 
useful analysis methods for non-normal responses. While statistical software 
routinely includes generalized linear models in model-fitting packages, 
power calculations for generalized linear models are not widely available 
in experimental design modules. This paper proposes a signal-to-noise 
transformation method (SNRx) that enables generalized linear model power 
approximations using normal linear model power equations, making them 
generally available to all practitioners.

1 Based on “Power Approximations for Generalized Linear Models Using the Signal-to-Noise 
Transformation Method,” Quality Engineering, October 2017, https://www.tandfonline.com/
doi/full/10.1080/08982112.2017.1361537. 
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Introduction

Experimental designs are used to help with planning, executing, and analyzing 
an experiment. In the planning phase test objectives are determined. These 
objectives guide the development of the factors, levels, and response variables 
(Freeman et al. 2013). Recent Department of Defense policy has emphasized 
the importance of using principles of design of experiments in all operational 

testing (Johnson et al. 2012, 61). 

Equally important in the planning phase is the assessment of the 
experimental design. An assortment of measures is available to 
assess the goodness of an experiment prior to data collection. Hahn, 
Meeker, and Feder (1976) call these measures of precision. These 
include standard error of predicted mean responses, standard error 
of coefficients, correlations metrics, and optimality criteria values. 
Measures of precision are affected by many aspects of the plan 
for the experiment, including the choice of factors and levels, the 
assumed model form, the combination of factor settings from run to 
run, and the total number of runs. 

Power—the focus of this paper—is an important measure of 
precision. Power is the probability of correctly concluding that an 
effect has an impact on the response variable. In general, the power 
of an effect increases with sample size, making it a useful measure 
for determining the scope of an operational test. Here, we focus 
on a second-order model for designs with multilevel categorical 
factors. Effects considered include the main effects and two-factor 

interactions (Montgomery 2008, 4). 

Experimental design software that calculates power for classical linear models 
is widely available. However, power calculations should reflect the knowledge 
that the result will not be normally distributed, when it is known before running 
the experiment. Techniques for calculating power for experimental designs with 
generalized linear models are not widely available in commercial software; such 
calculations usually require Monte Carlo simulation studies. Accounting for the 
knowledge of the planned analysis is important when planning the test because 
different distributions can require dramatically different sample sizes to achieve 
high-effect power.

Our goal is to provide a simple method to obtain power for a generalized 
linear model by transforming the effect size in the power calculation for a 
classical linear model. Existing software (e.g., JMP, Minitab, and Design Expert) 
that accommodates classical linear model power calculations allows the user 
to adjust the signal-to-noise ratio or alter the model coefficients under the 
alternative hypothesis. SNRx provides a means of setting the signal-to-noise 
ratio or the coefficients so that the calculation represents the generalized linear 
model power calculation. The target audience of SNRx is the analyst who has 
statistical design experience and is comfortable working with popular statistical 
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software, but who is not inclined to calculate power for generalized linear 
models using custom code and Monte Carlo simulation.

Model Formulation

A generalized linear model generalizes the classical linear model and is defined 
in terms of its three components (McCullagh and Nelder 1989, 27):

Random component. Response variables Y1,..., Yn share the same distribution 
from the exponential distribution family, where the vth response of the 
experiment has an expected value equal to the mean, μv.

Systematic component. The unknown coefficients systematically specify the 
linear predictor ηv such that ηv 

= Zv ψ + X� λ, where Zv and Xv represent the vth 
row of the test and nuisance matrix.

Link between the random and systematic components. The link function g(⋅) 
relates the mean and linear predictor in the expression (μv) = ηv. 

Generalized linear models may also include as special cases linear regression, 
logistic regression, and log-linear models for count data. 

Model Inference

We are interested in a hypothesis test for the significance of a multilevel 
categorical factor or interaction between multilevel categorical factors. 
Specifically, we want to be able to test whether the coefficients belonging 
to a main effect or two-factor interaction effect are equal to zero. Thus, the 
hypothesis test for an individual effect is

H0: ψ = 0,

H1: ψ ≠ 0.

The classical and generalized linear models use similar techniques for 
evaluating these hypothesis tests. A classical linear model uses analysis of 
variance (ANOVA), which is based on an F statistic. The analogue of an ANOVA 
for generalized linear models is an analysis of deviance, which is based on a 
likelihood ratio statistic.

Some classical linear model software allows the user to specify the details of a 
planned experiment, and the software outputs the power associated with this 
hypothesis test. The user can input the design matrix, choose the model form, 
set the anticipated coefficients (i.e., set ψ under H1), and obtain power.

The SNRx method is useful in situations where the practitioner only has access 
to classical linear model software, but is interested in calculating power for 
a specific generalized linear model. In this situation, the SNRx method sets 
ψ under H1 so that the ANOVA hypothesis test well represents an analysis of 
deviance for the specific generalized linear model.
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SNRx Method

The approach assumes that for each run in the experiment (v = 1, 2,..., N) the 
linear predictors ηv in a generalized linear model can be modeled as the 
response variable Yv in a classical linear model. That is, Yv = ηv = Zv ψ + Xv λ + 

ϵv, where ϵv ∼ N(0, σ2), and the error term ϵv is independent and identically 
distributed. The variance σ2 is the transformed noise, meaning it represents the 
variance of the linear predictor for the generalized linear model.

Another assumption in this approach is that σ2 is constant and is evaluated 
at the overall mean across the design space —μ. For example, an analyst may 
anticipate a 70 percent average probability of success across the design space 
that can be fit with a logistic regression model. The overall mean —μ impacts σ2 
and, in turn, affects power.

A tenet of generalized linear models is that the variance of Y depends on the 
mean μ and the dispersion parameter ϕ. Since we are assuming a nonzero 
effect size for ψ under the alternative hypothesis, an implication is that μ is not 
constant; thus, neither is σ2. For this reason, only small effect sizes should be 
considered. 

Another assumption is that the hypothesis test is constructed without 
considering nuisance effects. That is, for the hypothesis test ψ = 0, the nuisance 
coefficients take the form λ = (λint|0)T. Without this assumption, significant 
values of λ could further invalidate the assumption that σ2 is constant because λ 
impacts μ, which, in turn, affects the variance of Y.

We define the signal-to-noise ratio as κ = δ/σ. For SNRx, we must transform δ and 
σ to the linear predictor space. Since Y is a random variable with E(Y) = μ, we can 
use g(Y) as an estimator of g(μ). Using the delta method from Casella and Berger 
(2002), we can approximate that

We also know that Var(Y ) = a(ϕ)Var(μ) for generalized linear models. Substituting 
this into the above equation, taking the square root, and evaluating g'(μ) and 
Var(μ) at —μ, we obtain the following estimate of the noise:

Now that the noise is transformed, we turn our attention to the signal. If the 
upper and lower bounds of the signal of interest are —μ + δ/2 and —μ – δ/2, we can 
convert this quantity to a value in the linear predictor space as g(—μ + δ/2) and 
g(—μ – δ/2), respectively, where g(⋅) is the link function for the generalized linear 
model of interest.
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The signal-to-noise ratio is described as the ratio of the signal and noise within 
the linear predictor space, as shown in the equation below.

Mission Success Example

In logistic regression, the response variable is binary (1 or 0). For this example, 
let 1 and 0 represent a mission success and failure, respectively. In an 
experiment with N groups or strata, Yv represents the number of successes in 
the vth group out of mv attempts, where v = 1, 2,..., n. Then, a logistic regression 
model assumes that Yv 

∼ binom(mv, πv).

A few pieces of information are needed to set up the power calculation. The 
first is the assumed mean response across the design space —μ. For logistic 
regression, the mean response is bounded between zero and one and represents 
the average probability of success across the design space. For this example, we 
assume a nominal 70 percent probability of success, or —μ = 0.7.

The second element is the effect size δ. Recall that δ is the change in the mean 
response that is symmetric about —μ. In this example, we assume δ = 0.3 so that 
the change of interest ranges from 55 to 85 percent probability of success.

The next step is to calculate the signal-to-noise ratio κ. The signal-to-noise 
ratio can be directly inputted into some software, such as Design Expert, and 
the corresponding effect power is outputted. In other software, such as JMP, 
the coefficients anticipated under the alternative hypothesis must be manually 
inputted using the approach outlined below. Using the assumed values for this 
example, we get

To obtain the approximate coefficients, we first construct the marginal mean 
effect so that its range is equal to κ and then convert it to coefficients. The 
coefficients for a three-level main effect are

ψ = [.70/2 – .70/2)]T.

In this example, assume the experiment includes three factors and the sample 
size is 96. That is, the operational test includes 96 missions. The experimental 
design is a full factorial that is replicated four times so the model matrix M 
is size 96 × 18. The first column of M corresponds to the intercept, columns 2 

=

log(
. 7 + .3/2

1 (.7 + .3/2)
) log(

. 7 .3/2
1 (.7 .3/2)

)

1
. 7(1 .7)

(1).7(1 .7)
= .70. 

=
( + /2) ( /2)

( ) ( ) ( )
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through 7 correspond to the main effects, and columns 8 through 18 correspond 
to the two factor interactions. The coefficient vector β is size 18 × 1. The power 
calculation requires that we split the model matrix into the test matrix Z and the 
nuisance matrix X.

For the test on the main effect, the test matrix Z is size 96 × 2, and the previously 
calculated test coefficient vector ψ is size 2 × 1. The nuisance matrix is 96 × 
16. We calculate the hat matrix W, and use W, Z, and ψ in the equation for the 
noncentrality parameter, which is given as

γF = (Zψ)T (I – W )(Zψ),

and we find that γF = 7.91. By setting the significance α = 0.05, we then calculate 
the critical F value that is equal to fcrit 

= 3.11. Finally, we calculate power, which is 
equal to 0.69. Clearly, 96 missions does not provide enough power to determine 
if the main effect significantly affects mission success. Additional missions are 
required to provide a robust evaluation. Further details about this calculation 
can be found in the full-length version of this paper. 

Conclusion

This work provides a practical approach for sizing operational tests. Compared 
to current approaches, our hope is that this methodology will be more 
accessible to the test and evaluation community. Properly scoped tests should 
lead to more rigorous evaluations, which, in turn, should lead to well-informed 
acquisition decisions.
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