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Predicting Effects of Toxic Inhalation Exposures1 
Alexander J. Slawik, Nathan Platt, and Jeffry T. Urban

Our results raise 
the question 
of how best 
to model the 
toxic effects of 
acute inhalation 
exposures for 
the complex 
time-varying 
atmospheric 
concentration 
profiles 
characteristic 
of real-world 
airborne toxic 
release incidents.

1 Based on A. Slawik, N. Platt, and J. T. Urban, “User-Oriented Independent Analysis of the Toxic 
Load Model’s Ability to Predict the Effects of Time-Varying Toxic Inhalation Exposures,” Regulatory 
Toxicology and Pharmacology 106 (August 2019): 27–42, https://doi.org/10.1016/j.yrtph.2019.04.003. 

The toxic load model is a popular way to assess inhalation hazards posed 
by exposure to toxic chemicals. The model is well-defined for constant-
concentration exposures, but several generalizations for time-varying exposures 
have not been validated by experimental evidence. We independently analyzed 
data from a three-year experiment on rats of time-varying exposures to inhaled 
toxins to assess the utility of the toxic load model and its proposed 
extensions to the hazard prediction modeling community.

Introduction
The toxic load model is a phenomenological exposure-response model 
of the effects of inhalation of toxic industrial chemicals. It was designed 
to improve upon Haber’s Law, which states that toxic effects depend only 
on dosage, usually measured by the time-integrated airborne chemical 
vapor concentration. The toxic load model attempts to account for time-
dependent biological response indirectly by replacing dosage as the 
measure of exposure with a quantity called the toxic load. 
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Previous research by ten Berge, Zwart, and Appelman (1986) showed that the 
toxic load model fits exposure-response data better than Haber’s Law for certain 
chemicals. However, most experimental work to parameterize and validate the 
model used only steady exposures of constant concentration. This type of exposure 
is not representative of real-world atmospheric dispersion events, in which 
atmospheric turbulence can lead to highly fluctuating and intermittent chemical 
vapor concentrations due to in-plume turbulence and turbulent plume meander, 
respectively (Wilson 1995). 

The Naval Medical Research Unit Dayton (NAMRU-D) conducted a three-year 
experimental campaign of the effect on rats of time-varying exposures to hydrogen 
cyanide (HCN) or carbon monoxide (CO) (Sweeney, Sharits, Gargas, et al. 2013; 
Sweeney, Summerville, and Channel 2014; Sweeney, Summerville, Channel, et al. 
2015; Sweeney, Summerville, Goodwin, et al. 2016—collectively referred to hereafter 
as Sweeney et al.). The U.S. Army’s Edgewood Chemical and Biological Center (ECBC) 
designed and managed the experiments.

We independently analyzed the ECBC/NAMRU-D data to assess the potential utility of 
the toxic load model and its proposed extensions to the hazard prediction modeling 
community. None of five proposed extensions to the toxic load model for the case of 
time-varying exposures in the literature have been validated. None of these proposed 
extensions have been definitively demonstrated to be preferred over another. 

Methodology
Our analysis methodology focused on applying and assessing the toxic load model 
within a user-oriented context, which differs from that used in the ECBC/NAMRU-D 
experiments. We tried to emulate the hazard prediction modelers’ practice of 
estimating the number of human casualties. They estimate casualties using time 
series of atmospheric concentrations. To do so, they apply a chosen extension of the 
toxic load model to the concentration time-series data. They typically express the 
toxic load model in terms of parameters using data from the toxicological literature. 
Our method follows a similar procedure to predict lethality for each trial in the ECBC/
NAMRU-D experiments. 

We generated predictions for each of five proposed extensions of the toxic load 
model to the case of time-varying chemical vapor concentrations. We applied 
statistical measures of scatter and bias to determine the degree of agreement 
between toxic load model predictions and observations, and performed statistical 
tests to determine whether any disagreement between predictions and observations 
is within the range that is expected from small sample size errors (i.e., variability due 
to small numbers of rats per exposure in the laboratory experiments). Our analysis 
methodology is not designed to explain differences between model predictions and 
experimental observations; it merely quantifies those differences so that model users 
can determine how much confidence they should have in their modeling protocols.
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In our analysis protocol, we considered the HCN data and CO data separately, but 
combined the 2012 and 2013 HCN data sets. For each type of exposure, HCN or CO, 
we applied a multi-step analysis protocol:

1. Fit the toxic load model using constant-concentration exposure data to determine 
the toxic load model parameters

2. Determine regimes of exposure duration in which the constant-concentration 
exposure data are well-fit by the toxic load model

3. Compare model predictions to laboratory observations for all trials for each time-
varying exposure profile and each proposed extension to the toxic load model

4. Assess the predictive performance of each proposed extension to the toxic 
load model

5. Determine regimes of exposure duration in which model predictions using the 
time-varying exposure data agree with observations

It’s important to note that our method differs from the original work in several ways, 
leading to different conclusions. Our objective was to help the hazard prediction 
modeling community understand how much confidence they should have in their 
toxicology models, so our analysis methodology is designed to determine how 
well the predictions of the toxic load model and its time-varying extensions match 
experimental observations. We therefore compared the predicted and observed 
fractions of rats that died in each trial. Sweeney et al. used more indirect measures: 
they compared derived toxicity parameters to each other on a profile-by-profile 
basis. In general, Sweeney et al. sought to verify the applicability of the toxic load 
model to the case of time-varying profiles by demonstrating that the derived toxic 
load parameters were consistent from profile to profile.

We also employed a user-oriented approach in our data-fitting protocols. We fit 
the toxic load model using the constant-concentration data and then used the 
fitted parameters to frame the time-dependent extensions to the toxic load model. 
Constant-concentration exposure data is the type of data that is generally available 
in the inhalation toxicology literature, so any phenomenological toxicity model 
probably will need to be parameterized using constant-concentration exposure data 
for the time being. Our procedure of assessing the predictive performance of the 
time-varying extensions to the toxic load model using a different data set allowed us 
to avoid “tuning” the models with the same data used for the original experiments.

Some other ways in which our methodology differs from that of Sweeney et al. 
include the models we considered, the way we accounted for uncertainty, and the 
way we treated outliers. Our method of identifying exposure durations that result in 
poor fits of the toxic load model also differs somewhat from that of Sweeney et al., 
leading us to somewhat different conclusions.
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Findings
We found that the constant-concentration exposure data are fit the toxic load 
model well for the full set of carbon monoxide exposures from 10 to 60 minutes 
although the data are sparse near the high and low ends of the exposure-response 
curve. The constant-concentration exposure data do not fit well for the full set of 
hydrogen cyanide exposures from 2.3 to 30 minutes although the hydrogen cyanide 
data fit well for exposures from 10 to 30 minutes. We used the fits to the constant-
concentration exposure data to parameterize five proposed extensions of the 
toxic load model to the case of time-varying exposures. For the hydrogen cyanide 
exposures, we parameterized the models using the 10- to 30-minute exposure data 
and evaluated the model extensions using the same subset of exposure durations, 
although we also explored the sensitivity of our results to the choice of the set of 
exposure durations.

Our analysis of Sweeney et al.’s data on stair-step and intermittent exposures 
indicates that all five proposed extensions to the toxic load model have difficulty 
predicting lethality in rats. We also observed some systematic differences in 
predictive performance among the five models. In particular, the models that define 
toxic load as a monotonic function of time tend to over-predict lethality, but the 
time-averaging models do not consistently over-predict or under-predict rat lethality.

Although some of the five models perform better than others with particular data 
sets, all the models, when parameterized by the constant-concentration exposure 
data, show statistically significant systematic prediction biases on an individual 
profile-by-profile basis, and none of the models predict rat lethality within the 
bounds expected by small sample size errors. Furthermore, no one model appears 
to be clearly superior across both the hydrogen cyanide and carbon monoxide 
data sets. Consequently, although the toxic load model is thought to be a good 
phenomenological toxicity model, we urge caution within the hazard prediction 
modeling community when selecting and applying extensions of this model. We 
also recommend caution when applying this model to exposure durations shorter 
than 10 minutes, at least for hydrogen cyanide. Further work likely will be necessary 
to determine whether the toxic load model is “good enough” for specific hazard 
prediction modeling applications.

It is difficult to quantify how failures of toxicological models will affect hazard 
prediction modeling. The impact of an inaccuracy in the toxicological model will 
depend on the nature of the hazard event. For example, errors at the low end of the 
exposure-response curve (e.g., below 10 percent of the population responding) could 
result in large errors in the predicted size of the hazardous area, whereby edges 
typically consist of long spatial tails of low concentrations. The significance of errors 
in the predicted size of the hazardous area in turn depends on where the at-risk 
population is located. 



ida.org 57

Potential Approaches to Modeling Inhalation Toxicity
Our results raise the question of how best to model the toxic effects of acute 
inhalation exposures for the complex time-varying atmospheric concentration 
profiles characteristic of real-world airborne toxic release incidents. Real-world 
atmospheric concentration profiles are much more complex than the idealized 
laboratory profiles explored by Sweeney et al. and by Saltzman and Fox (1986). 
They may be composed of fluctuations that span several timescales and contain 
intermittent periods of various durations; total exposure durations may range from 
minutes (or shorter) to tens of minutes (or longer). A practical toxicological modeling 
approach—whether simple or complex—should be robust across the range of 
relevant exposure durations and profile shapes. We explored several potential 
approaches to modeling the effects of real-world inhalation exposures and came up 
with the following suggestions:

 • Future research would benefit from closer collaboration between the toxicology 
community and hazard prediction modelers in the military, intelligence, 
emergency response, environmental regulation, chemical process safety, and 
transportation safety communities; 

 • Further research is needed to determine the answer to whether it is possible to 
build accurate and practical models for time-varying inhalation exposures that 
have reasonable data requirements; and 

 • Further development of the toxic load model is not warranted at this time. 

We recommend that any new toxicological research in this area focus on theoretical 
efforts to develop new toxicological models, coupled with exploratory experiments 
to help develop the form of the models, experiments to determine the biologically 
based parameters for the models, and experiments to validate the models using 
laboratory exposures that are representative of real-world atmospheric exposures. 
Relevance to hazard prediction modelers should be considered throughout this 
effort from beginning to end. Any comprehensive effort to build new models should 
bring together theoretical toxicologists, experimental toxicologists, and hazard 
prediction modelers to guide each other’s work.
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