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We developed 
two greedy 
heuristics that 
enable us to 
accelerate the 
solution to the 
aircraft weapon 
budgeting 
problem, with 
minimal loss in 
the quality of 
the solution.

The military service branches use modeling and simulation to determine their 
requirements for nonnuclear weapons fired from aircraft at targets on the 
ground. The annual modeling exercise is complicated, and solutions take a long 
time to compute. In this article, a father-son team demonstrate ways to reduce 
computation time that still offer high-quality solutions to the complex problem 
of determining requirements for conventional air-to-ground weapons.

Introduction
Determining requirements for U.S. military aircraft weapons involves 
numerous combinations of delivery aircraft, weapon types, and targets, 
which makes the modeling problem high-dimensional and slow to 
converge to a solution. 

Two distinct problems need to be solved (see Figure 1). The first problem, 
aircraft weapon budgeting, is at the strategic level. The objective is to 

https://www.jstor.org/stable/26853512?seq=1
https://www.jstor.org/stable/26853512?seq=1.
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determine the optimal inventory of air-to-ground weapons for fighting in a particular 
wartime scenario; the next several years’ budgets are devoted to procuring that 
inventory. The second problem is weapon target assignment, which occurs at the 
tactical level in the theater of military operations. As part of their daily air tasking 
orders, air operations commanders match weapons in their local inventories with 
potential targets to destroy the highest-value set of targets (see U.S. Department 
of Defense, Joint Chiefs of Staff 2019). The ability to hit targets is constrained by the 
number of sorties (missions) available in the wartime theater for each aircraft that can 
feasibly deliver each type of weapon.

The military branches generally use nonlinear programming to solve these 
problems, and that is our approach as well. In our original paper, we made three 
major contributions:

1. We extended the work of Boger and Washburn (1985) by deriving an expression for 
the expected number of targets that would be destroyed when multiple aircraft-
weapon combinations attack a given target population, and when some “dead” 
targets appear “live” and act as decoys.

2. We demonstrated the applicability of two heuristics that identify the preferred 
weapons to maximize a utility function defined over various types of targets 
destroyed.

3. We investigated the ability of those two heuristics to reduce the dimensionality of 
the problem and accelerate the solution.

This article summarizes the last two of these contributions. We developed two greedy 
heuristics that enable us to accelerate the solution to the aircraft weapon budgeting 
problem, with minimal loss in the quality of the solution.

Weapon Target Assignment

Aircraft Weapon 
Budgeting

Figure 1. Relationship Between Aircraft Weapon Budgeting and Weapon Target Assignment
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Current Practice
The military branches often estimate their requirements for aircraft weapons in two 
stages. They do not impose an explicit budget constraint in the optimization model 
during the first stage, but only constraints based on the number of sorties available 
in the wartime theater. The solution to that problem generates requirements for 
weapons, to which they apply cost factors to estimate the budget needed to fully 
purchase them. The budget amount is treated as an output (byproduct) of the 
optimization rather than an input (constraint). Next, they run budgetary excursions 
in which they incrementally reduce the budget below 100 percent to see how 
the optimal solution changes and how much wartime capability is sacrificed. The 
budgetary excursions also highlight cases in which the optimal inventory is too 
expensive to purchase in the next year’s budget (netting out current inventories), and 
has to be spread out over several years’ budgets in the future.

Greedy Heuristics 
We wondered whether greedy heuristics would be useful in either partially 
characterizing or fully computing a solution. A simplified version of our problem is 
similar to the fractional (or continuous) knapsack problem first studied in a classic 
paper by Dantzig (1957), who developed a “bang-per-buck” criterion for entering 
variables into the solution.

As a first step, we reduced the number of aircraft-weapon-target combinations 
considered in aircraft weapon budgeting by omitting those we deemed infeasible. 
The infeasible combinations included aircraft that cannot carry certain types of 
weapons and aircraft-weapon combinations that are not effective against certain 
targets. We next developed two heuristics that further reduce the number of aircraft-
weapon-target combinations to be considered.

Either heuristic, or a hybrid of the two, greatly reduces time to produce a solution for 
the particular circumstances. We identified two cases in which the smaller, faster-
running model produced the same number of expected kills as the full model: (1) the 
number of sorties available to deliver the weapons in the scenario being modeled is 
unlimited or (2) the weapon procurement budget is unlimited. These cases—called 
“edge cases”—although unlikely, demonstrate the gain in computational speed by 
pre-screening the aircraft-weapon-target combinations to a reduced number. Our 
research question was whether the improvement in computational speed outside of 
the edge cases comes at the price of some degradation in the quality in the solution— 
the utility provided by the expected numbers of targets destroyed of each type. Details 
about these heuristics follow.

Least Cost to Kill 
Goldberg (1991) supplied mathematical conditions under which the least cost-to-kill 
(LCTK) criterion identified the optimum combination for destroying a single type of 
target when the budget constraint is binding but the sortie constraints are not. The 
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cost-to-kill ratio divides the cost to purchase a weapon by its pure probability of kill 
against the target type, without adjustment for decoys. That ratio is minimized or, 
equivalently, its inverse ratio—“bang-per-buck”—is maximized. The LCTK heuristic 
eliminates choice variables from the optimization problem that would never appear 
in positive quantities in the optimal solution under the specified circumstances. 
However, the LCTK heuristic only partially characterizes the solution to the nonlinear 
program. The heuristic determines the aircraft-weapon combination to use against a 
particular target type but not the allocation of budget dollars to destroying each type. 

Expected Kills per Sortie 
We complemented Goldberg’s previous research by exploring a greedy heuristic in the 
converse situation, when the sortie constraints are binding but the budget constraint 
is not. The expected kills-per-sortie (EKS) heuristic considers only combinations 
that destroy the most targets per sortie. This criterion, like the LCTK criterion, favors 
weapons with a high probability of kill; but rather than contrasting that probability 
against procurement cost, it favors aircraft with a high load factor so that more 
weapons can be delivered on a single sortie. 

In an illustrative analysis of the EKS heuristic, we considered an aircraft that can carry 
either four 500-pound bombs or two 1,000-pound bombs on a single sortie. A sortie 
against unprotected or immobile targets might destroy an average of 1.2 targets if 
loaded with four 500-pound bombs but only 1.0 targets if loaded with two 1,000-pound 
bombs. However, a sortie against heavily defended or moving targets might destroy 
an average of 1.6 targets if loaded with four 500-pound bombs but 1.8 targets if loaded 
with two 1,000-pound bombs. The EKS heuristic would steer the model solution 
toward the preferred weapon type in both situations.

Performance Exercise
Next, we performed a computational exercise to demonstrate the tradeoff between 
increased calculation speed versus loss of quality when using these heuristics. We 
estimated the computational advantage to prescreening the aircraft-weapon-
target combinations so that only those satisfying either the LCTK criterion or the 
EKS criterion enter the problem. Using a realistically sized problem for the U.S. Air 
Force, we compared results using our heuristics against results obtained with the 
full optimization model after one hour of calculation time. In our simulations, the 
heuristics often came up with a solution in just 10 minutes that was superior to the 
solution the full model came up with in an hour. 

Approach 
We drew our parameters primarily from Wirths (1989), who provided an unclassified 
data set derived from the U.S. Air Force’s then-current Joint Munitions Effectiveness 
Manual. Wirths supposed that two aircraft were available to fly sorties limited to 108 
and 81, respectively, over the course of a campaign. He considered 24 weapon types 
and 13 target types. For the target types, he provided target populations, their relative 
utility values, and decoy rates. 
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Table 1. Comparison of Results for 10 Sets of Parameters
Budget 

constraint
Full 

model
EKS 

model
LCTK 

model
Hybrid 
model

Panel A: Average objective values 100% 838.1 853.7 736.5 850.1
90% 723.4 701.5 697.8 728.4
80% 647.3 594.6 654.2 648.8
70% 599.7 537.2 610.0 602.6
60% 489.0 456.5 506.1 493.5

Panel B: Average weighted kill percentages 100% 73.4% 75.1% 64.8% 75.0%
90% 63.7% 61.8% 61.6% 64.1%
80% 57.5% 52.7% 58.5% 57.8%
70% 52.7% 47.7% 53.9% 53.6%
60% 43.3% 40.5% 45.0% 44.0%

Panel C: Counts of objective values superior to full model 100% n/a 10 0 9
90% n/a 2 3 10
80% n/a 0 8 8
70% n/a 0 10 8
60% n/a 0 10 10

Wirths did not provide data pertaining to weapon costs, load factors, or kill 
probabilities, so we simulated these parameters to allow us to test the efficacy of 
our heuristics under a variety of conditions. In all, we generated 10 sets of random 
parameters to use in our experiments. For each set of parameters, we tested a series of 
four models: the full aircraft weapon budgeting model (no heuristic), the EKS model, 
the LCTK model, and a hybrid model having all of the variables in the EKS and LCTK 
models. All models were run using IBM ILOG CPLEX optimization modeling software 
on an Intel Core Duo central processing unit at 2.67 gigahertz. 

We allowed the full model a maximum runtime of one hour, and each heuristic model 
was permitted a maximum runtime of 10 minutes. We first ran each model with no 
budget constraint and recorded the highest budget requested by any of the models. 
We then tested each model with a budget constrained to, respectively, 90, 80, 70, and 
60 percent of the unconstrained requirement. 

Results
We provide the results of our demonstration in Table 1, where the highest performing 
figures at each budget level is in bold. The results show that the speed-quality tradeoff 
is quite favorable: by applying the heuristics, solutions were calculated much faster 
and the quality was only occasionally less than that of full models to which we did not 
make any predetermined exclusions of aircraft-weapon-target combinations. Having 
the choice of three heuristics allows for useful alternatives to the full budgeting model 
across the entire range of budget constraints tested.
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When assigning an unlimited budget, we found that the EKS model yielded 
superior objective values relative to the full model in all 10 trials despite being 
given a maximum of only one sixth of the solve time. EKS model solutions required 
an average of only 13.8 seconds to eclipse the objective value that the full model 
achieved in an hour. Thus, even when run for only a short period of time, the EKS 
model provided excellent results for estimating military requirements. The EKS 
model was not nearly as effective when run with restrictions upon the budget. When 
the budget was restricted to 90 percent, the EKS model achieved superior solutions 
only twice in 10 trials, and when the budget was even further restricted, the EKS 
model did not produce any superior solutions (Panel C of Table 1).

Compared to the EKS model, the LCTK model performed particularly well with a 
budget constraint below 80 percent, providing superior objective values relative to 
the full model in all 10 trials with budgets of 60 and 70 percent. At a budget of 60 
percent, the LCTK model required an average of 31.1 seconds to eclipse the full model’s 
objective values, and at a budget of 70 percent, it required an average of 74.7 seconds. 
The LCTK model was fairly versatile in that it was effective at various budget levels. 

The hybrid model was effective regardless of the level of budget. On average, it 
produced superior solutions relative to the full model across all budget constraints 
that we tested, and it outperformed the full model in 45 of 50 pairwise comparisons. 

In short, when examining military requirements with an unlimited budget, the 
EKS model provided an expedient alternative to the full model. Conversely, when 
considering a situation in which the budget is quite restricted, the LCTK model 
reliably supplied superior solutions in short periods of time. The hybrid model 
provided excellent solutions regardless of the budget constraint, and it is especially 
useful when applied in situations with a moderate budget constraint. 

The results observed are explained, in large part, by the extent to which each 
heuristic reduces the size of the problem being solved. In mathematical terms, we 
use Xijk to denote the number of weapons of type j delivered by aircraft of type i 
against targets of type k. The full models that we generated using the 10 samples 
studied averaged Xijk variables numbering 152.4. 

As shown in Table 2, the number of variables considered by our heuristic models 
varied widely, while the number of positive (nonzero) Xijk variables in the solutions 
they reached show far less variability. The full model expended great computational 
effort with variable selection, whereas the heuristic models determined many or 
most of the positive variables in advance.

Table 2. Variables Considered
Average number of

Xijk variables
Average number of 

positive Xijk variables
Average percentage of Xijk 

variables selected

Full model 152.4 19.7 12.9%

EKS model 26.0 13.6 52.4%

LCTK model 13.0 9.1 70.0%

Hybrid model 38.8 17.1 44.1%
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Conclusion
We used analytical and numerical methods to complete the theoretical 
understanding of the military’s aircraft weapon budgeting problem. First, we 
extended the work of Boger and Washburn (1985) by deriving an expression that 
accounts for the possibility that some dead targets may appear live, acting as decoys 
and drawing additional fire. 

Second, we demonstrated the applicability of two greedy heuristics that identify 
the preferred weapons to maximize a utility function defined over targets destroyed 
of various types. Goldberg (1991) had provided a formal justification for the LCTK 
heuristic, in a situation where a binding budget constraint exists but sortie 
constraints do not. We developed a corresponding criterion using highest EKS for 
the converse situation in which binding sortie constraints exist, but the budget 
constraint does not. Although a monetary cost-to-kill ratio does not apply in such 
a situation because there is no active budget constraint, the scarcity of sorties 
motivates an alternative criterion. In this latter situation, the preferred weapons are 
those that economize on scarce sorties by offering the highest EKS. 

Finally, we investigated the ability of those two heuristics to reduce the 
dimensionality and accelerate the solution in a realistically sized problem for the U.S. 
Air Force. The EKS heuristic correctly preselects the aircraft-weapon combinations 
that appear in the optimal solution when the procurement budget is fully funded. 
For our Air Force example, when the procurement budget is set at 60 percent to 
80 percent of full funding, the LCTK heuristic achieves a better solution than the 
full optimization model does in a fraction of the runtime. When the procurement 
budget is set at about 90 percent of the requirement, the solution may be 
accelerated by a hybrid approach that includes only the subset of aircraft-weapon 
combinations that are suggested by either of the two heuristics. 
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