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The test 

community has 

struggled with 

how to compare 

a few data points 

from live testing 

to the potentially 

hundreds of data 

points from the 

PRA Testbed, 

and, once that 

comparison occurs, 

how to conclude 

whether the PRA 

Testbed reasonably 

represents what 

was observed in  

live testing.

Validating the Probability of Raid Annihilation 
Testbed Using a Statistical Approach
Dean Thomas and Rebecca Dickinson

Live test events of new weapon systems are often 
expensive, and only a limited number of test events can be 
conducted. A well-designed test will intelligently distribute 
such events across the operational envelope. Nonetheless, 
when only limited data are available, there will be holes 
in our understanding of system performance. M&S can be 
used to extend the test results throughout the operational 
envelope. Validation is the process of determining the extent 
to which the M&S adequately represents the real world for 
its intended use. Thus, a question that testers often ask 
is how to best use a small number of live test results to 
validate that the M&S is providing meaningful results. 

The Navy’s Air Warfare (AW) Ship Self-Defense (SSD) 
Enterprise is an overarching test methodology that examines  
the ability of shipboard combat systems to defend a ship 
against a cruise missile attack. The primary metric is Probability 
of Raid Annihilation (PRA), which is the probability of defeating 
the entire raid of cruise missiles through a combination 
of reduced ship signature, missile and gun systems, and 
decoys and countermeasures. The AW SSD Enterprise uses a 
combination of live test results from a fleet ship, live test results 
from an unmanned, remote-controlled test ship,1 and a model, 
the PRA Testbed, to assess performance. Analysts use the PRA 
Testbed to extend the results of live testing to threats that are 

THE PROBLEM
Modeling and Simulation (M&S) often provides essential 
information in evaluations of operational effectiveness, 
suitability, and survivability, especially in cases where end-to-
end missions cannot be assessed because of safety, cost, or test 
range restrictions. Before M&S is used, analysts should validate 
the model to ensure that it reasonably represents the real 
world. Unfortunately, in operational testing it is often the case 
that only limited data are available for validation. 

1 The unmanned Self-Defense Test Ship (SDTS) conducts tests that are  
too risky on a manned ship. The test community has divided cruise  
missile threats into six categories. Safety restrictions preclude testing 
against most of these threats on a manned ship. In fact, short-range  
self-defense systems on manned ships can be tested against only one  
of the six categories, and there are restrictions even for that category.  
To understand performance against the threat, the unmanned SDTS,  
which has fewer safety restrictions, is used to test against a larger set  
of threat categories.
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not available on test ranges and 
to other environmental conditions 
that may affect ship performance.

The test community has always 
understood that only a limited 
number of live test events would 
be available for validation of the 
PRA Testbed. Many scenarios – 
for example, USS America (LHA 
6) defending itself against a 
maneuvering supersonic cruise 
missile raid – will be examined in 
only one live test event. The PRA 
Testbed, however, can simulate that 
same event tens or even hundreds 
of times. Consequently, the test 
community has struggled with how to 
compare a few data points from live 
testing to the potentially hundreds 
of data points from the PRA Testbed, 
and, once that comparison occurs, 
how to conclude whether the PRA 
Testbed reasonably represents 
what was observed in live testing. 

This article outlines an approach 
IDA developed as part of our support 
to the Director, Operational Test 
and Evaluation, who oversees and 
approves the Navy’s test strategies 
and plans.  The statistical approach 
we developed can be used to formally 
compare results from the PRA 
Testbed runs to live test shots. The 
literature describes various methods 
for validating models, including 
graphical comparisons between 
live and simulation outcomes, 
hypothesis tests to compare means, 
and Fisher’s combined probability 
test to compare distributions. 
These methods, however, do not 
address potential correlation in 
the test results, described below, 
that may occur in PRA scenarios.

PRA TESTBED OVERVIEW 
The PRA Testbed is a complex 

federation of models. The individual 
federates model elements of the 
ship’s combat system plus the 
environment and the threat. For 
example, to model USS America’s 
combat system, the PRA Testbed 
includes federates for each of the 
ship’s air defense radars (SPS-48, 
SPS-49, and SPQ-9B), each of the 
missile systems (Rolling Airframe 
Missile (RAM) and Evolved SeaSparrow 
Missile (ESSM)), the command and 
decision system (Ship Self-Defense 
System (SSDS)), and other combat 
system elements. The PRA Testbed 
also includes federates that model 
environmental conditions and 
specific incoming cruise missiles. 
The federates run simultaneously 
and interact with each other over 
a network. Consequently, the 
PRA Testbed inherently includes 
interactions between systems. For 
example, if a ship’s self-defense 
decoy or countermeasure deceives 
an incoming cruise missile, the 
threat federate will alter the missile’s 
trajectory, which is fed into the 
radar federates, which provide new 
positional updates to the tracker 
federate, which feeds a new track 
into the command and decision 
federate, which can then affect the 
scheduling of weapon launches. 

A typical PRA Testbed scenario 
includes multiple incoming cruise 
missiles and multiple decoys and self-
defense missiles. A notional scenario 
consists of two incoming threat 
cruise missiles with two RAM missiles 
launched against each cruise missile 
(four RAM total). Four scenarios, 
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examining four different threats, 
will be executed in live testing.

MODEL VALIDATION 
Validation is the process of 

determining the degree to which a 
model and its associated data provide 
an accurate representation of the 
real world from the perspective of 
the intended uses of the model. The 
intended purpose of the PRA Testbed 
is to extend live test results to other 
environmental conditions and threats 
by first showing that the model can 
replicate the results of the live test 
events with known environmental 
conditions and threats. Many of 
the individual federates within the 
PRA Testbed have been used in 
previous studies, and consequently 
have been validated separately. 
However, the overall PRA Testbed 
that brings together all of the 
federates has not been validated 
in an end-to-end manner. 

Our approach examines 
intermediate metrics to increase 
the amount of data available for 
the validation. Using PRA only 
would provide one data point per 
event – yes/no, the ship defeated 
the raid. Each of the continuous 
metrics, however, provides more 
than one response per event. For 
example, a single event (live test 
or PRA Testbed run) will yield two 
initial detection ranges (when the 
ship detects each cruise missile), 
four RAM miss distances, and 
four RAM intercept ranges. 

A statistical model is built 
for each of the continuous 
metrics. For example, using initial 

detection range (IDR), the statistical 
model can be expressed as

IDR = β0 + β1TestType + β2TestThreat 
+ β3(TestType * TestThreat) + ϵ. 

(1)

The statistical model is a function 
of two categorical factors: Test Type 
and Test Threat. Test Type has two 
levels: live test or simulation run. Test 
Threat has four levels for the four 
threat categories presented during live 
testing. The model also includes the 
interaction term. If Test Type is not 
significant, the live tests and the PRA 
Testbed runs are providing statistically 
indistinguishable data. Previous testing 
shows that the initial detection range 
can vary substantially from one threat 
to the next, so the factor Test Threat 
should be statistically significant. 
The interaction term will indicate 
whether differences between live test 
shots and PRA Testbed runs depend 
on a specific test threat (e.g., the PRA 
Testbed is providing good results 
for only three of the four threats). 

POWER CALCULATIONS
Statistical power is a useful tool 

for determining data requirements 
for validation. More data (e.g., more 
PRA Testbed runs or more live test 
events) result in higher probabilities 
of detecting differences between 
the PRA Testbed and live tests in 
the midst of variability in the data. 
In this example, the number of 
live test events is limited to one 
event per threat category, so the 
statistical power is used to select 
the number of PRA Testbed runs. 
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Because the observations within 
a single event may be correlated, 
IDA’s analysis examined power curves 
for “best-case” and “worst-case” 
scenarios. The best-case scenario 
assumes that the two detection ranges 
within a single event are completely 
independent of each other. The worst-
case scenario assumes that the two 
detection ranges within a single event 
are perfectly correlated. To illustrate 
this correlation, consider the two 
initial detection ranges from a single 
event (live event or simulation run). 
Since both threats in a scenario are 
identical and fly similar flight profiles, 
if a radar detects the lead threat at X 
nautical miles, it likely will detect the 
trail threat at about the same range. 

Figure 1 shows power curves for 
the factor Test Type for the response 
initial detection range. Statistical 
power in this case measures the 
probability to correctly conclude 
that the PRA Testbed and live testing 
are providing different results when 
they truly are different. The curves 
in Figure 1 assume a signal-to-noise 
ratio of 1.2 There were no historical 
data with which to determine an 
appropriate signal-to-noise ratio. 
Ultimately, a signal-to-noise ratio 
of 1 was selected because a smaller 
signal-to-noise ratio would imply 
that the model results and live 
results essentially overlap. If the 
two distributions completely or 
nearly completely overlap, then the 

Figure 1. The power curve, assuming a confidence level of 95 percent and using  
a signal-to-noise ratio of 1, for the factor Test Type and the response initial 
detection range. The best-case scenario assumes detection ranges within a 
single event are completely independent; the worst-case scenario assumes 

that detection ranges within a single event are perfectly correlated.

2 The signal-to-noise ratio is a ratio of the signal, which is the desired detectable change in the 

response variable, and the noise, which is the magnitude of the inherent system variability.
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 Figure 2. The separations between model and live test notional initial 
detection range distributions for signal-to-noise ratios of 0.5, 1, and 2.

PRA Testbed provides a reasonable 
representation of the real world. If 
the signal-to-noise ratio is larger 
than 1, the two distributions are 
separated enough to conclude that 
the PRA Testbed does not provide 
a reasonable representation of 
the real world. Figure 2 illustrates 
this point, showing the separation 
between normal distributions for 
three different signal-to-noise ratios. 

Figures 3 and 4 show the power 
curves for the factor Test Threat 
and the Test Type x Test Threat 
interaction for the response initial 
detection range. In Figure 3, the 
power curves are based on a larger 
signal-to-noise ratio of 2 because past 
operational testing indicates that 
combat system performance varies 
significantly between different threats. 
Consequently, large differences in 
the results should occur that are 
easy to detect. In Figure 4, the power 
curves using a signal-to-noise ratio 

of both 1 and 2 are shown to cover 
a wider range of possibilities.

The various power curves 
exhibit similar behavior, and all 
curves show only incremental gains 
in power after just 10 PRA Testbed 
runs. Similar behavior is seen with 
other continuous metrics such as 
missile miss distance. The small 
gains in power are attributable to the 
fact that there will be only one live 
test event per test threat. Overall, 
the figures show that this approach 
has reasonable power (0.61 to 0.91 
at 20 runs) to detect differences 
between threats and marginal power 
(0.49 to 0.79 at 20 runs) to detect 
differences between the model and 
live test results when aggregating over 
all threats. Unfortunately, the only 
way to improve the ability to detect 
differences between the model and live 
testing, especially for a given threat 
(Figure 4), is by adding expensive 
live tests; in the case of LHA 6, no 
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Figure 4. The power curve, assuming a confidence level of 95 percent 
and using the signal-to-noise ratios 1 and 2, for the interaction factor 

Test Type x Test Threat and the response initial detection range.
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Figure 3. The power curve, assuming a confidence level of 95 percent and using a signal-to-
noise ratio of 2, for the factor Test Threat and the response initial detection range.  The best-case 

scenario assumes that detection ranges within a single event are completely independent; the 
worst-case scenario assumes that detection ranges within a single event are perfectly correlated.
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additional live tests can be added 
to the test program at this point. 

STATISTICAL ANALYSIS
Once the data are collected, an 

analysis will need to be conducted 
to support validation. As noted 
earlier, one of the complications that 
the analysis will need to consider is 
possible correlation in the data. If 
complete independence among all of 
the data is assumed (or no correlation 
between responses from the same 
event), the statistical model is a 
standard linear model. For example, 
for initial detection range, the model is

IDRi = β0 + β1TestTypei + β2TestThreati 

+ β3(TestType * TestThreat)i +ϵi   

(2)

where i=1,2,…,N is the total number 
of observations, and ϵi~N(0,σ2) 
are the model errors. The model 
errors ϵi are assumed to follow a 
normal distribution with a mean of 
0, a constant variance σ2, and are 
independent of one another. 

To account for the possibility 
that observations from the same 
event (or group) are correlated, a 
linear mixed model is employed. 
A mixed model allows for a wide 
variety of correlation patterns (or 
variance-covariance structures) to 
be explicitly modeled through an 
additional random effect, δi. For initial 
detection range, the mixed model is 

IDRij = β0 + β1TestTypei 

+ β2TestThreati + β3 
(TestType*TestThreat)i +δi+ϵij 

(3)

where i=1,2,…n is the total number 
of events (live test and PRA Testbed 
runs), j=1,2 because there are two 
recorded IDRs per event, and β0,…,β3 
are the fixed effect model coefficients. 
The terms δi and ϵij are random 
effects and represent two sources of 
variability, where 

 y δi represents the random error 
associated with the ith test event 
and accounts for potential 
correlation between the results 
in a single test event, and 

 y ϵij represents the random error 
associated with the jth observation 
of the ith test event and plays the 
same role as ϵi in Equation 2.

Because δi and ϵij are random 
effects, they are represented by a 
distribution. It is common to assume 
that these effects are normally 
distributed (δi~N(0,σδ

2) and ϵij~N(0,σ2)) 
and that δi’s and ϵij’s are independent. 
These assumptions introduce the 
following variance-covariance matrix:

(4)

where the off-diagonal elements  
are 0 and the diagonal elements take 
the form

(5)

This variance-covariance 
structure assumes that observations 
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in different groups are independent 
and that the correlation between two 
IDRs within a single event is constant.

(6)

Notice that when there is 
little to no correlation between 
observations within a group (i.e., 
σδ

2≈0), the model and the analysis 
will simplify to the model and 
analysis presented for the complete 
independence case (see Equation 2). 

It is important that the data 
analysis reflect the true nature of 
the data. Failure to account for the 
potential correlation could lead to  
a wrong conclusion. To demonstrate 
the importance of the analysis 
reflecting the true nature of the data, 

an example dataset was simulated.3 
In the simulated dataset, Test Threat 
will be significant, but Test Type is 
not. The example considers just two 
test threats and five PRA Testbed runs 
per threat, providing 24 observations. 

Tables 1 and 2 provide  
the results of the analysis for 
the two modeling assumptions. 
Table 1 reports the fit of the linear 
regression model, which assumes 
that observations within a group 
are completely independent. Test 
Type and Test Threat are both found 
to be significant at the 95 percent 
confidence level.4 Unfortunately, 
this conclusion is wrong because 
the data were generated assuming 
that Test Type was not significant. 
Table 2 reports the fit of the linear 
mixed model, which allows for 

Table 1. Standard Linear Regression Model Results

Parameter Estimates

Term Estimate

95% Confidence 
Interval

p-value
Lower 
Limit

Upper 
Limit

Intercept (β0) 35.87 35.21 36.53 0.0001

Test Type[Live] (β1) 0.66 0.01 1.31 0.0485

Test Threat[A] (β2) -4.49 -5.14 -3.83 0.0001

Test Type[Live] x Test Threat[A] (β3) 0.33 -0.32 0.98 0.3028

3  The data set was generated using Equation 2 with the model settings 𝛽0=35, 𝛽1 = 0, 𝛽2 = 5, 𝛽3=0 

and the variance components 𝜎𝛿
2 = 3 and 𝜎2 = 0.1 (roughly 97 percent correlation).

4  P-values are used to determine the outcome of a statistical hypothesis test, and they represent 
the probability of the outcome occurring by chance alone. The smaller the p-value, the higher 
the statistical confidence in the conclusion. The p-value for Test Type is 0.0485 and for Test 
Threat it is 0.001, seen in Table 1. Both p-values are less than the cutoff value of 0.05, which 
corresponds to significance at the 95 percent confidence level.
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Table 2. Linear Mixed Regression Model Results with a Random Group Effect 
To Account for Correlation Between Observations in the Same Event

the assumption that observations 
within a group are correlated and, 
in fact, reports that the estimate of 
correlation is roughly 92 percent. The 
only factor found to be significant 
at the 95 percent confidence level 
is Test Threat.5 This conclusion is 
consistent with the assumption that 
was made when generating the data. 
This clear difference between the two 
approaches demonstrates the need for 
using the linear mixed model analysis 
to account for potential correlation 
within the data. The linear mixed 
model provides an estimate of the 
correlation using the data and does 
not require any guesswork by the 
analyst or subject matter expert.

CONCLUSION
Overall, the approach outlined 

above provides a straightforward 
method for validating a simulation 
for which a limited number of live 
test events are available. By using a 
statistical model, results from the 
PRA Testbed runs can be formally 
compared to the live test events. 
The model allows analysts to test 
for a Test Type effect, a Test Threat 
effect, and an interaction effect. If the 
Test Type effect is not statistically 
significant, then the PRA Testbed 
runs are providing meaningful data. 

The power curves help analysts 
understand how many PRA Testbed 

Parameter Estimates

Term Estimate

95% Confidence 
Interval

p-value
Lower 
Limit

Upper 
Limit

Intercept (β0) 35.87 34.76 36.98 0.0001

Test Type[Live] (β1) 0.66 -0.44 1.77 0.2072

Test Threat[A] (β2) -4.49 -5.59 -3.38 0.0001

Test Type[Live] x Test Threat[A] (β3) 0.33 -0.78 1.44 0.5092

Random Effect Variance 
Component

95% Confidence 
Interval Percent 

of TotalLower 
Limit

Upper 
Limit

Group 1.48 0.65 5.89 91.49†

Residual 0.14 0.07 0.37 8.51

Total 1.62 0.76 5.52 100

† Estimation of correlation.

5 The p-value for Test Type is 0.2072 and for Test Threat is 0.001 (also see Table 2). Only the 
p-value for Test Threat is less than the cutoff value of 0.05, which corresponds to significance 
at the 95 percent confidence level.
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runs are needed for validation. 
Because so few live test events 
are planned, only small gains in 
power after 10 PRA Testbed runs 
per scenario are observed. The AW 
SSD Enterprise effort is planning 
to execute 30 runs per scenario 
to exercise the simulation and to 
discover any bugs. Consequently, 
sufficient PRA Testbed data for the 
comparison should be available. 

The proposed validation approach 
has several limitations. Normally, one 
constructs a test to determine whether 
two items are different. The approach 
is to assume that they are the same 
(the null hypothesis) and prove that 
they are statistically different by 
rejecting the null hypothesis. However, 
this approach does the opposite, 
which provides a weaker claim. 
Furthermore, due to the fact that there 
will be just one live shot per threat 
condition, the analysis will not be able 
to adequately differentiate between 
problems with bias versus variance in 
the model. The limited live testing in 
this example limits the usefulness of 
the experimental design approach. 

More research is needed to 
determine appropriate methods for 
selecting what live points within the 
operational space should be chosen 
for an optimal ability to validate the 
model. Design of experiments is a 
potential path toward better model 
validation. A combined experimental 
design and analysis approach 
will allow for sizing the number 
of live tests to detect meaningful 
differences, strategic replication 
to address variance/bias, and a 
parametric analysis to incorporate 
sensitivity and prediction analyses. 

Despite the limitations of few 
live data, this approach illustrates 
how more rigorous statistical 
methods provide the testing and 
acquisition communities more robust 
and objective conclusions from 
both M&S and live test data.  IDA, 
in support of DOT&E, will continue 
to lead the way in advocating for 
and researching new statistical 
methods for test and evaluation 
in the Department of Defense.
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