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The current fiscal climate demands 
now, more than ever, that test and 
evaluation (T&E) provide relevant and 
credible characterization of system 
capabilities and shortfalls across all 
relevant operational conditions as 
efficiently as possible. In determining 
the answer to the question, “How 
much testing is enough?” it is 
imperative that the T&E community use 
methodologies focused on that issue.

This issue of IDA Research Notes 
showcases IDA’s response to that 
challenge, centered on the Design of 
Experiments (DOE) methods championed 
by the Director, Operational Test and 
Evaluation in the Department of Defense 
(DoD), for whom much of our work 
was undertaken. DOE methods provide 
structured, efficient, and scientific 
approaches to test planning. They 
provide objective methods for assessing 
test adequacy not only by providing a 
quantitative basis for assessing how much 
testing is enough, but also by identifying 
where in the operational space the test 
points should be placed. DOE methods 
also provide an analytical trade-space 
between test resources and risk, ensuring 
that tests are adequate to answer 
important questions. IDA has developed 
case studies, training materials, and 
publications that have been instrumental 
in shaping the T&E community’s approach 
to applying DOE to operational testing. 

DOE methods provide not only a 
scientific methodology for test planning, 
but also a roadmap for conducting 
post-test statistical analyses. Using DOE 
and corresponding statistical analysis 
methods instead of conventional 
approaches to data analysis, we have 
been able to learn more from tests 
without necessarily increasing their 

size. Statistical data-driven empirical 
models provide inferential weight to 
decision-makers about how systems 
will actually perform when deployed, 
and enable a fuller characterization of 
system performance across the variety 
of conditions in which the systems 
will operate. These methods ensure 
that robust and objective conclusions 
are drawn from test data. Statistical 
analysis techniques also help in 
“doing more with what you have” by 
providing methodologies to maximize 
information gained from test data 
through empirical statistical models, 
and by incorporating all relevant 
evidence (including previous test data 
and engineering expertise) into analyses. 

The case studies described herein 
show that advanced design and analysis 
methodologies ensure that testing is both 
statistically rigorous and operationally 
meaningful, and capable of extracting 
the most information from operational 
test data. The articles include examples 
from multiple Services, and reveal how 
these methodologies are applicable 
across a wide variety of testing 
scenarios. This issue also highlights 
other emerging areas of research 
including Bayesian analysis methods 
to leverage all available information 
and statistical methods for validating 
complex models and simulations. 

Assessing Submarine Sonar 
Performance Using Statistically Designed 
Tests shows how IDA was able to use 
advanced design techniques to develop a 
test design that incorporated operational, 
planning, and statistical objectives. It is 
an example of how advanced statistical 
analysis techniques can maximize 
information gained from very limited 
data in only a few test conditions. 
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Applying Advanced Statistical 
Analyses to Helicopter Missile Targeting 
Systems, illustrates how the combination 
of experimental design and logistic 
regression was able to extract essential 
information from test results that was 
not readily apparent by direct observation 
alone. The case study illustrates 
the importance of covering the full 
operational space and avoiding simple 
averages when analyzing test data. 

Tackling Complex Problems: 
Analysis of the AN/TPQ-53 Counterfire 
Radar illustrates how advanced statistical 
analysis techniques can be used for tests 
where, in order to preserve operational 
realism, testers are unable to control 
all of the operational factors likely to 
affect performance. In this case study, 
regression techniques were used to 
determine causes of performance 
degradations across multiple operating 
modes, even with highly unbalanced data. 

Improving Reliability Estimates 
with Bayesian Hierarchical Models, 
illustrates how Bayesian methods can 
be used to incorporate information 
from multiple phases of testing 
without biasing operational estimates 
of reliability. The results are robust 
estimates of system reliability, even in 

cases where only limited operational 
test reliability data are available. 

Managing Risks: Statistically 
Principled Approaches to Combat 
Helmet Testing, shows the evolution of 
testing protocols for helmets, and how 
essential it is to apply statistical rigor 
to testing; without such rigor, the risks 
of accepting poorly performing helmets 
for use in combat could be unknown 
or, worse, could be unacceptably high, 
thereby placing soldiers’ lives at risk.

Probability of Raid Annihilation 
(PRA) Testbed Validation, highlights an 
emerging area of emphasis for OT&E. 
Complex models and simulations, such 
as the Navy’s PRA Testbed, provide 
valuable information to operational 
evaluations, especially in cases where 
safety concerns or range limitations 
severely constrain live testing. However, 
the outcomes from these complex 
system-of-systems models must be 
validated and evaluated to determine their 
operational value. The PRA Testbed article 
provides an example of how defensible 
statistical approaches to validation 
can provide a basis for understanding 
the value of complex simulations in 
evaluations of operational tests.
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Assessing Submarine Sonar Performance 
Using Statistically Designed Tests
George M. Khoury, Justace R. Clutter, and V. Bram Lillard

THE PROBLEM
Historical at-sea methods for determining Anti-Submarine 
Warfare performance of the Navy’s submarine sonar system 
are unable to characterize performance across a range of 
operational conditions and yield statistically significant results.

The Acoustic Rapid Commercial-off-the-Shelf Insertion 
(A-RCI) is the Navy’s newest submarine sonar processing 
system. It provides hardware and software to process data 
from the submarine’s sonar arrays and display those data to 
the sonar operators. A-RCI uses a spiral development model 
to procure new, commercial off-the-shelf computing hardware 
every two years. Buying new computing hardware over time 
capitalizes on the decreasing cost of processing power and 
ensures that an acceptable balance between obsolescent and 
modern hardware is maintained. To take advantage of the ever-
improving processing power from hardware upgrades, a new 
version of A-RCI software, denoted an Advanced Processing 

Photo by Bryan Jones https://www.flickr.com/photos/bwjones/3552816442
The image carries a Creative Commons License (CC BY-NC-ND 2.0).  Information on that 
license can be found at: Creative Commons (CC BY-NC-ND 2.0)

Figure 1. Four A-RCI Sonar Consoles aboard a Submarine
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Build (APB), is developed every 
other year. Each APB incorporates 
feedback from Fleet users, fixes bugs 
discovered in previous versions, 
and adds new algorithms developed 
by industry and academia.

The primary role for A-RCI 
is to manage the large amount 
of information coming from the 
sonar arrays and display it to the 
operator so that he can make sense 
of it. To understand the scale of the 
operator’s problem, consider that 
a Virginia-class submarine uses six 
sonar arrays for submarine searches, 
each providing information on all 
bearings, multiple elevation angles, 
and a range of frequencies. The sonar 
operator must monitor this multi-
dimensional search space constantly, 
and it is impossible to display all of 
the information simultaneously. A-RCI 
provides displays and automation 
to help the operators manage this 
search space and help them detect 
contacts as quickly as possible.

The Navy’s primary metric with 
which to evaluate A-RCI performance 
in the Anti-Submarine Warfare (ASW) 
mission is denoted ΔT. It is defined 
as the median time it takes for an 
operator to detect a submarine 
contact once that submarine’s signal 
becomes available for display on 
sonar system screens. Although ΔT 
is not a measure of the submarine’s 
overall ASW capability, it does quantify 
A-RCI’s role in the detection process. 
The ongoing goal of A-RCI processing 
improvements is to minimize the time 
needed to find target signatures.

At-sea tests of A-RCI consist of 
two submarines searching for each 
other in a specified area. Although this 
technique provides an operationally 
realistic environment, it suffers from 
several drawbacks. Most notably, 
at-sea testing has never been able 
to show a statistically significant 
improvement in A-RCI performance 
over the course of a decade, during 
which time many software and 
hardware upgrades were fielded to 
the Fleet. A comparison has been 
impossible because two software 
versions are never compared in the 
same at-sea event, and the results 
of a test can depend on target and 
environmental characteristics that are 
impossible to control. Additionally, 
at-sea testing uses a single target and 
a single operational environment, 
which limits the assessment of 
performance of the new APB to only 
a small portion of the operational 
envelope. Finally, the cost and 
variability of at-sea testing have 
resulted in poor quantification of APB 
performance in the conditions tested. 

To address the shortcomings of 
A-RCI at-sea testing, IDA proposed 
augmenting the at-sea operational 
test events with so-called Operator-
In-the-Loop (OIL) laboratory tests. 
In an OIL test, a Fleet operator 
sits at a laboratory mockup of the 
A-RCI sonar system. The laboratory 
then plays back a recorded at-sea 
encounter between two submarines, 
and the operator declares when he 
has detected the threat submarine.1 
The laboratory allows the same 
encounter to be replayed on different 

1 U.S. submarines are capable of recording raw sonar data, that is, the voltage recorded  
by the individual hydrophones that make up the sonar arrays. Because these raw data are 
recorded before they are processed by A-RCI, it is possible to process the recorded data  
on any version of A-RCI.
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versions of A-RCI, which perfectly 
controls for environmental and 
target variability; the only difference 
between the two presentations is the 
software used to process the data. 
The primary limitation of the OIL 
testing is that it only allows for a 
single array to be processed at one 
time. Therefore, the sonar array to be 
processed needs to be a controlled 
test factor, whereas in real operations 
all arrays operate simultaneously.

For several years, the Navy has 
used a similar laboratory test method 
to compare new versions of A-RCI 
to old versions, but typically used 
only a few submarine encounters for 
each comparison, and published the 
results long after the software was 
fielded. As part of our support to 
DOT&E, IDA proposed expanding the 
scope of such tests to include a wider 
variety of test conditions, as shown 

in Table 1, and to employ Design 
of Experiments methodologies to 
generate a more robust test that would 
characterize performance across 
a range of operational conditions. 
The primary goal of the test was to 
compare the latest version of the 
sonar system, denoted APB-11, with 
the previous version, APB-09. To 
characterize the systems, the test 
used operators of varying proficiency 
and controlled for characteristics of 
the target and the array being used. 

FACTOR LEVELS 
HYPOTHESIZED EFFECT

IDA developed a 120-run, 
D-optimal, split-plot test design, with 
the distribution of runs as shown in 
Figure 2. A “run” consists of a single 
operator viewing a single recorded 
encounter, and a “Null” run is one 
in which no target is present. The 

Table 1. Factors and Levels Used in the OIL Testing Analysis

Factor Levels Hypothesized Effect

Target Type SSN, SSK

SSNs and SSKs exhibit different acoustic 
signatures. SSNs typically have more discrete 
tonal information because of the machinery 
associated with the nuclear reactor.

Array Type A, B
Array type A typically detects targets 
at longer ranges, which would be 
expected to generate larger ΔTs.

Target Noise Loud, Quiet

Loud targets are detected at longer ranges, 
which could lead to longer ΔTs. Conversely, 
loud targets typically have more discrete 
tonal information and are easier to identify, 
which could result in shorter ΔTs.

APB Version APB-09, APB-11
The primary goal of the test was to compare  
the latest version of the sonar system,  
APB-11, with the previous version, APB-09.

Operator 
Proficiency

1 to 20

More proficient operators will detect a submarine 
more quickly. The numeric scale was developed by 
the Naval Undersea Warfare Center and is based 
on an operator’s experience with the A-RCI system.
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split-plot structure was used to limit 
the number of changes between the 
APB versions, as each change of APB 
required approximately 12 hours. A 
considerable amount of replication 
was built into the design to account 
for the fact that operator proficiency 
was not explicitly controlled. Instead, 
operators were chosen at random, 

and their proficiency was recorded 
during the events, which ensured a 
balanced distribution of proficiencies. 
Each operator reviewed up to six 
tapes, including a blank tape to 
check for false alarm rate. Finally, 
the Navy desired to focus the testing 
on APB-11, which resulted in the 
asymmetric test design shown; while 
this was not optimal for determining 
whether a significant APB difference 
existed, it provided a more precise 
understanding of performance for 
APB-11 (tighter confidence intervals).

TEST RESULTS
Figure 3 shows the raw results 

of the test. Each panel shows the 
results for a recorded encounter, 
with APB-09 results on the left and 
APB-11 results on the right. The blue 
dots are detection times; the red dots 
indicate runs in which the operator 
never detected the target before the 

Each panel (Cut 1, Cut 2, ...) shows the results for a single recording. Blue points indicate detection times (arbitrary 
units). Red points indicate runs in which the operator did not detect the target; the time in these cases is the length 
of the recording. 

Figure 3. Raw Results from A-RCI OIL Testing 
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recording finished. The location of 
the red dot indicates how long the 
target was on tape and not detected. 

The advantage of examining the 
results by recording is that recordings 
control all aspects of the encounter; 
the environment and target are exactly 
the same for each playback, so any 
difference in performance is due to 
either operator proficiency or the 
capability of the processing system. 
Since the test was well balanced in 
terms of operator proficiency, any 
observed differences are most likely 
due to the processing system. In 
general, APB-11 exhibited improved 
performance in almost all of the 
recorded encounters; in each panel, 
the dots are generally lower for  
APB-11 than they are for APB-09, 
reflecting shorter times to detect 
threat submarines. Therefore, even 
without statistical analysis, APB-
11 appears to be an improvement 
over APB-09. Such a limited analysis 
does not, however, make use of 
all the available information; APB-
11 appears to be better, but the 
improvement varies with recording 
and it is unclear why. The test 
was designed to determine which 
of the controlled factors affect 
A-RCI performance, and for that a 
statistical analysis is necessary. 

We performed a regression 
analysis to better understand how 
the controlled factors affected A-RCI 
performance. Our analysis accounts 
for missed detections by treating 
them as censored data points; in 
these cases, we assumed that the 
operator would have detected the 
contact if given enough time, so 
the full recorded length of time 
the contact was on the display is 

used as a lower bound estimate for 
the ΔT. We assumed that the data 
followed a lognormal distribution, in 
which the probability of observing 
a detection time x is the following:

Here, μ is related to the median 
of the distribution, and σ is a measure 
of its spread. Making this assumption 
allowed us to incorporate the 
missed detections using standard 
censored data analysis techniques. 

Although there is no a priori 
reason why the data should follow 
a lognormal distribution, our initial 
assumption was well supported 
by the data. Figure 4 shows the 
empirical cumulative distribution 
function of the data, along with a 
lognormal fit in red, the confidence 
region on the lognormal fit in pink, 

1 -

Red line shows a lognormal fit. Pink region shows the 
80% confidence region on the lognormal fit. Blue lines 
indicate the 80% confidence region on a non-parametric 
fit to the distribution. The data are well described by a 
lognormal distribution.

Figure 4. Empirical Cumulative 
Distribution of the OIL Data 
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and the confidence region of a non-
parametric fit in blue lines. The 
data appear to be well described 
by a lognormal distribution.

Next, we assigned each 
recording to the factors listed 
in Table 1, and then fit the data 
according to the following model:

x ~ lognormal(μ,σ)

σ = constant

μ = β0 + β1 OP + β2 APB+ β3 Target + 
β4 Noise + β5 Array + β6 Target * Noise 
+ β7 Target * Array+ β8 Noise * Array + 

β9 Target * Noise * Array

That is, we assumed that the 
median detection time depends on the 
factors listed in Table 1, along with 
second and third order interactions, 
and that the σ parameter was constant. 
In fact, we examined many possible 
models, including those with variable 
σ, but this model resulted in the 
lowest Akaike’s Information Criterion 
(AIC), a metric of model desirability. 
Table 2 shows the results of the 
final fit and describes the qualitative 
behavior of the coefficients. All of 
the first-order effects were highly 
significant. Notably, APB-11 performed 
significantly better than APB-09, 
holding all other effects equal – and 
the magnitude of the effect was 

Table 2. Results of the Model Fit to the Data 

Term Value† Description of the Effect

β1 (Operator 
experience level)

-0.074 ± 0.041

Increased operator proficiency results 
in shorter detection times. An increase 
in proficiency of one unit reduces 
median detection time by 7 percent.

β2 (APB) 0.307 ± 0.129
Detection time is shorter for 
APB-11, by 46 percent.#

β3 (Target) 0.359 ± 0.126 Detection time is shorter for SSN targets.

β4 (Noise) -0.324 ± 0.125 Detection time is shorter for loud targets.

β5 (Array) 0.347 ± 0.125
Detection time is shorter 
for the Type B array.

β6 (Target*Noise) 0.186 ± 0.126
Additional model terms added to 
improve predictions. The third-order 
interaction is marginally significant, 
so all second order interactions nested 
within the third order interaction were 
retained to preserve model hierarchy.

β7 (Target*Array) 0.011 ± 0.125

β8 (Noise*Array) 0.021 ± 0.126

β9 (Target*Noise*Array) -0.180 ± 0.125

† Confidence interval is an 80% Wald interval 
# APB-11 Provides a Statistically Significant Improvement.
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substantial, as APB-11 detection times 
were 46 percent shorter than APB-11 
times. Also, APB had no interaction 
with the other factors, which 
means APB-11 produced the same 
improvement regardless of the other 
factors. It did not matter whether the 
target was loud or quiet, SSN or SSK; 
switching from APB-09 to APB-11 
reduced the median detection time 
by approximately 46 percent. This 
was the first time operational testing 
of A-RCI had shown a statistically 
significant improvement in an APB.

Figure 5 shows the results of 
the model fit (blue dots, with 80% 
confidence intervals shown as vertical 
lines), along with the actual median 
detection times in each group (black) 
and the raw detection times (light 
blue and red, as before). The model 
predictions generally agree with the 
median in each bin, indicating that 
our relatively simple model provides a 

good fit to the data. There is, however, 
notable disagreement between the 
data median and the model prediction 
for one bin: quiet SSK targets with 
array type B in APB-09. The difference 
is due to sparse data, rather than 
a poorly fitting model. The data 
median in this case is based on only 
three data points and is therefore 
highly variable, making it a poor 
estimator of the true performance 
in that bin. We believe the model 
estimate predicts the performance 
that would be observed if additional 
runs were conducted with APB-09.

Our analysis provides several 
benefits over the less sophisticated 
analysis based solely on individual 
recordings. First, differences in 
performance are now attributable to 
operationally relevant factors, such as 
target type or array type. In contrast 
to the naïve analysis by recording, our 
statistical analysis shows that APB-11 

9 119 119 119 119 119 119 119 11
APB Versions Missed Detection

Data Median Model Prediction

Observation

ΔT
 (

A
rb

it
ra

ry
 U

ni
ts

)

2.0

1.5

0.5

1.0

0.0

SSK
Array A

Loud

SSK
Array A
Quiet

SSK
Array B

Loud

SSK
Array B
Quiet

SSN
Array A

Loud

SSN
Array A
Quiet

SSN
Array B

Loud

SSN
Array B
Quiet

The model fits the data well and indicates that APB-11 outperforms APB-09 in all conditions.  Data medians were 
omitted when the data in the bin were inadequate to support the estimation of a median value (e.g., too few data points).   
This illustrates another advantage of using the empirical statistical model, since it can estimate median performance in 
every bin whereas traditional data analysis methods might not be able to provide a robust estimate.
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outperforms APB-09 by 46 percent on 
average across all conditions. Second, 
our analysis allows us to extrapolate 
to areas where the data are limited. A 
few of the experimental configurations 
presented in Figure 5 do not have an 
observed data median for comparison 
with the model prediction, either 
because there were few data points 
or because there was an excess of 
censored values. An analysis using a 
simpler technique would not have been 
able to estimate performance in regions 
where the data were inadequate to 
produce an estimate of performance.

CONCLUSIONS
Operator-in-the-Loop testing 

has proven to be an effective way 

to compare the performance of 
different versions of the sonar 
processing system and to discover 
how performance varies across a 
variety of operationally important 
factors. By playing back recorded 
data from real-world submarine 
encounters, OIL testing controls for 
target and environmental variability 
in a way that traditional at-sea testing 
cannot. It provides more data at a 
lower cost, which has enabled IDA 
to show a statistically significant 
improvement in A-RCI for the first 
time, and it has allowed us to quantify 
the operational factors that affect the 
improvement. Laboratory testing will 
not soon replace all at-sea testing, 
but it is a valuable complement.

Dr. Khoury is a Research Staff Member in IDA’s Operational Evaluation Division. 
He holds a Doctor of Philosophy in physics from the University of California, 
Santa Barbara.

Dr. Clutter is a Research Staff Member in IDA’s Operational Evaluation Division. 
He holds a Doctor of Philosophy in physics from the University of Kansas.

Dr. Lillard is an Assistant Director in IDA’s Operational Evaluation Division. He 
holds a Doctor of Philosophy in physics from the University of Maryland.
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Applying Advanced Statistical Analyses to 
Helicopter Missile Targeting Systems
Howard C. Keese and Steven A. Rabinowitz

THE PROBLEM
Advanced analytical methods often extract the essential 
information from test results that may not have been readily 
apparent by direct observation alone. When testing the 
effectiveness of naval helicopters to defend a carrier group from 
surface attacks, the use of sophisticated statistical methods can 
provide operators with a greater understanding of both system 
capabilities and limitations during real-world employment.

DEFENDING THE CARRIER STRIKE GROUP
The United States Navy’s Carrier Strike Groups are 

critical components of our national defense infrastructure. 
They are also prominent targets for potential U.S. 
enemies, and are subject to multidimensional threats 
from air, surface, and subsurface attacks. Consequently, 
the Navy dedicates significant resources to protecting 
the aircraft carrier and other high value units at sea. 

The end of the Cold War led to a shift in the strategic 
paradigm for the Navy. It could no longer focus on a single, 
monolithic threat. In the 21st century, the Navy must be 
able to adapt to a wide array of disparate regional threats 
and operating environments. Instead of being primarily 
concerned with blue-water, open ocean combat, the Navy now 
also must be prepared to operate in the littorals – in close 
proximity to the shoreline, which, in turn, exposes U.S. ships 
to a multitude of new threats. Also important is the radically 
different mindset of some adversaries. Instead of possessing 
at least a passing concern with “living to fight another day,” 
some enemies now attack with a suicidal determination. A 
driven enemy with no regard for personal survival poses a 
different challenge. One such asymmetric threat is the small 
boat suicide attack. The grave nature of this threat was 
dramatically illustrated by the October 2000 attack on USS 
Cole. Although this suicide bombing occurred in port, the Navy 
is equally concerned about possible small boat attacks at sea 
involving small arms, missiles, and torpedoes. To counter this 
threat, the fleet employs a layered defense, with fixed-wing 
aircraft providing longer range standoff engagements and the 
ships defending themselves close in. Between these ranges, 
embarked helicopters provide another defensive layer.

IDA analysts 

identified and 

helped construct 

the test design for 

the Multispectral 

Targeting System 

[MTS] for the 

operational 

testing conducted 

in 2014...[and] 

identified the 

dominant factors 

expected to 

affect system 

performance.
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NAVAL HELICOPTERS
The Navy deploys two  

medium-lift, tactical, rotary-wing 
aircraft aboard carriers and surface 
combatants: the MH-60R and the  
MH-60S multi-mission helicopters. 
Both of these Sikorsky aircraft are 
derived from the Army’s UH-60 
Blackhawk, but the construction of 
each is uniquely tailored to operate 
in the maritime environment in 
support of Navy missions. With both 
radar and sonar sensors, the MH-
60R is optimized for antisubmarine 
warfare. The MH-60S fills combat 
search and rescue and airborne 
logistics roles. Both aircraft contribute 
to surface warfare, providing strike 
capabilities against small surface 
targets. Recently, the Navy has been 
testing various weapons systems 
aboard these aircraft, including 
50mm machine guns, 2.75-inch 
rockets, and guided missiles.

MTS AND HELLFIRE 
WEAPON SYSTEM

Both helicopters were designed 
to employ laser-guided AGM-114 
Hellfire missiles (Figure 1). While 
the Hellfire missile originally was 

designed for anti-armor land warfare 
by the Army, the Hellfire’s size, 
range, and lethality have proven 
useful for a variety of warfare areas. 
The original plan was to use the 
MH-60R/S’s Hellfire missiles against 
enemy surface combatant ships, but 
the missiles can also be employed 
against small boat targets. Each MH-
60R/S can carry eight missiles. 

Recently the Navy upgraded 
the Forward-Looking Infrared (FLIR) 
system on both aircraft. The new 
system is known as the AN/AAS-
44C(V) Multispectral Targeting System 
(MTS) imaging system. The MTS uses  
advanced electro-optic technologies 
to support navigation, search, and 
surveillance activities. It can also 
detect, track, and range surface 
threats, and its laser designator can 
illuminate targets to guide Hellfire 
missiles. The system also has a Day 
TV capability. When combined with 
the FLIR camera, the MTS provides 
imaging from the visible through far-
infrared spectrum under all lighting 
conditions. The MTS features an 
Automatic Video Tracking (AVT) 
software algorithm designed to 
maintain a consistent track on the 
target and keep the laser designator 

Figure 1. MH-60R (left) and MH-60S (right) Helicopters Employing AGM-114 Hellfire Missiles
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beam accurately positioned on the 
target, allowing the Hellfire missile’s 
laser seeker to guide the missile all 
the way to target impact. Determining 
the MTS’s ability to enable accurate 
Hellfire employments, therefore, was 
the focus of the operational test. The 
critical issue was the MTS’s ability 
to establish a solid engagement-
quality lock on the intended target, 
maintaining laser illumination 
on the aim point throughout the 
weapon’s time of flight. Therefore, 
the testing focused on measuring 
MTS targeting effectiveness across a 
variety of operational conditions. 

TEST DESCRIPTION
In support of the Director, 

Operational Test and Evaluation, IDA 
researchers have been employing 
increasingly sophisticated statistical 
methods to plan and analyze field 
tests of critical defense systems. 
Using the Design of Experiments 
(DOE) methodology to develop the 
test plan, analysts identify specific 
factors that are expected to affect 
system performance in an operational 
setting. In the case of a weapon 
system, these might include the 
individual and relative motions of 
the launch platform and target, 
environmental factors, and weapon-
specific data such as firing mode. 
The ultimate goal is to rigorously 
characterize weapon performance 
across the entire operational envelope 
as a function of those factors, singly 
and in combinations, rather than 
simply rolling up the data into an 
aggregate result. Consequently, 
instead of reporting out a single 
overall hit percentage, analysts 
can demonstrate how particular 

circumstances and their combined 
effects may increase or decrease 
a system’s overall effectiveness. 
Design of Experiments techniques 
can generate an optimal run plan 
that provides statistically significant 
coverage of the various factors 
without requiring explicit testing 
of every possible combination. This 
allows testers to make the most 
efficient use of limited resources. 
During the planning phase, IDA 
analysts work with Service test 
personnel to determine how to 
control test scenarios in a manner 
that provides sufficient data to 
support factor analysis while 
preserving operational realism.

Working with the Navy and 
DOT&E, IDA analysts identified and 
helped construct the test design 
for the MTS for the operational 
testing conducted in 2014. Using 
both engineering judgment and 
tactical experience, IDA researchers 
identified the dominant factors 
expected to affect system 
performance. These included target 
size (large/small), the target’s 
speed (fast/slow), and whether it is 
maneuvering (yes/no), all of which 
can be controlled by the run plan. 
Additionally, target aspect, lighting 
conditions (day/night), Hellfire 
targeting mode (target lock before 
launch/target lock after launch), and 
airframe (MH-60R/S) were considered 
in the analysis. Calculating every 
possible combination of the two 
levels for each of the seven factors 
(known as a full-factorial DOE) 
generated 128 total configurations 
(27), which established the basic data 
collection requirement for the test.
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Although the Navy has not 
identified specific performance 
thresholds for the MTS, the helicopter 
requirements documents specify that 
the aircraft must be able to fire air-to-
ground missiles capable of disabling or 
destroying a small boat at a standoff 
range that is beyond the threat of 
small arms fire and man-portable  
anti-aircraft missiles that might be 
carried on the threat boat. Testing 
of the MH-60R/S with MTS was 
conducted in the Chesapeake Bay 
area from August 2012 through 
January 2013, in two parts. The first 
phase was a simulated fire period 
where the helicopters acquired and 
tracked targets but did not launch 
any actual missiles. Instead, they 
carried a Captive Air Training Missile 
(CATM), which is a specially built 
Hellfire missile body without a 
rocket motor. The CATM replicates 
all Hellfire missile activity up to the 
point of missile launch, allowing 
testers to examine the crew’s use 
of the MTS to track and lase the 
target. During the first phase of 
testing the targets were emulated 
by two different types of small fast 
manned boats: the 26-foot High-Speed 
Maneuvering Surface Target (HSMST) 
and the 50-foot Fast Attack Craft 
Trainer (FACT) (shown in Figure 2). 

During the second phase of 
testing, the helicopters launched 
five actual Hellfire missiles to 
demonstrate end-to-end functionality 
against towed surface targets.

ANALYSIS
In general, data collected from 

testing are rich with information 
despite the fact that the results are 
a simple series of successes and 

failures (1’s and 0’s). Several methods 
exist to analyze such data. One 
traditional analysis method is to 
simply tally the successes, divide by 
the number of trials, and determine 
the overall success rate. Although 
this lends itself to simplicity in 
reporting (“overall MTS is successful 
X percent of the time”), it may be 
misleading because it is dependent 
on the specific allocation of test 
conditions conducted and might 
not be representative of a global 
average of system performance 
across a variety of future combat 
conditions. Furthermore, it 
hides important information 
about system performance. 

Another methodology groups  
the 128 data points according to 
general categories of test conditions. 
Thus, based on technical experience,  
analysts might split the data 
according to threat, calculating the 

 Figure 2. The High-Speed Maneuvering 
Surface Target (HSMST) (top) and the Fast 

Attack Craft Trainer (FACT) (bottom)
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probability of a successful engagement 
using 64 observations for each of the 
two target sizes. Next, they might 
decide to divide the data sample 
further by target speed, producing 
four separate results with sample 
sizes of 32 each, or simply report the 
average success rate for all fast speed 
targets and all slow speed targets. This 
approach may continue for additional 
factors. Figure 3 plots the data as 
grouped by three different factors (to 
avoid revealing classified details the 
results are normalized and the names 
of the specific factors are aliased). 

Clearly, with each division 
of the data, we learn more 
detailed information about system 
performance, but it comes at the 
price of statistical confidence. For 
a binomial (yes/no) response, the 
confidence intervals, sometimes 

known as error bars, for small sample 
sizes can be very large and therefore 
not particularly informative. In 
addition, examining the individual 
point estimate calculations for 
selected subsets of the data could 
mask important performance 
limitations that may exist.

A more rigorous approach 
uses logistic regression analysis. 
Logistic regression is similar to the 
more common linear regression, 
which predicts performance for a 
given input values using a linear 
relationship. Logistic regression 
employs the same techniques for 
finding the best fit to the data but is 
constructed using a more complex 
function to handle the binary 
nature of the data and predict the 
probabilistic outcomes. The logistic 
regression analysis can be extended 
to any number of factors (regressors) 
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in order to produce a response 
surface. The most general form of 
the MTS logistic regression model is:

where p is the probability of success, 
and the βi’s are linear coefficients 
linking the factors varied in the test 
to the probability of success. The 
analysis estimates each βi. If βi is not 
zero (more technically, is statistically 
significantly different from zero), then 
the factor or condition is important in 
explaining the probability of interest. 
This form of the equation is used 
because it shows that the factors and 
conditions impact the “log-odds” of 
the probability (the left-hand side of 
the equation) in an additive, linear 
way. We can rewrite this expression as: 

ideal model is the simplest one that 
includes the most significant factors 
and their interactions while accurately 
predicting the system performance 
based on the data collected. In other 
words, the statistical analysis is 
formed and molded by the data alone.

Figure 4 shows the successful 
engagement predictions of the IDA 
regression model for MTS based on 
the data collected in the operational 
test. In order to mask the classified 
results, the specific factor names are 
aliased, and the probability is plotted 
on a normalized scale. The vertical 
bars on each performance estimate 
indicate the confidence intervals 
(error bars) for each combination 
of conditions. Note that while these 
bars are slightly larger than the ones 
shown in Figure 3, this is due to 
the finer binning.  In fact, by using 
a regression model, the confidence 
intervals shown in this plot are smaller 
than they would be for calculating 
simple point estimates in each bin. 
This is because the regression model 
exploits information from across the 
data set, resulting in a more precise 
estimate of the statistical confidence. 
It is immediately obvious from the 
plot that the system’s performance 
for most of the conditions is quite 
consistent. In other words, the MTS for 
some conditions is not likely to show 
much performance variation. However, 
for one particular combination of 
factors, circled in red, the probability 
of success is significantly lower. In this 
case, data exploration via regression 
modeling allowed IDA researchers 
to clearly identify a set of conditions 
that measurably degrade performance. 
Providing this information to the 
Navy might allow operators to make 
adjustments in their employment of 

exp( β0 + β1Speed + β2Size ⋯ + 
βkManuever + β12Speed*Size + ⋯ )
1 + exp(β0 + β1Speed + β2Size ⋯ + 
βkManuever + β12Speed*Size + ⋯ )

p =

which gives a direct expression 
for the probability of interest.

In the case of the MTS analysis, 
IDA researchers utilized 128 data 
points to construct a regression 
model that includes all possible 
interactions between the factors. 
This technique readily identifies the 
combinations of factors that result 
in significant degradation of system 
performance that would not be easy 
to isolate through the manual data 
parsing method discussed above. IDA 
analysts were able to iteratively build 
and evaluate different regression 
models based on various combinations 
of factors and model terms. The 

p
1 - plog(              ) = β0+β1Speed + β2Size ⋯ 

+ βk Manuever + β12 Speed * Size + ⋯ 
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the MTS while helping the program 
manager and developers to focus 
resources on improving the system.

CONCLUSIONS
Properly evaluating system 

performance is critical to providing 
effective systems to our armed 
forces. IDA recently conducted an 
analysis of a new targeting system 
for Navy helicopters, applying 
rigorous statistical methods in 
order to discern key performance 

limitations. The resulting analysis 
provided the operational user with a 
more comprehensive understanding 
of their systems and highlighted 
key characteristics of operational 
performance that otherwise would 
not have been apparent. Armed 
with this knowledge, the Navy can 
develop the appropriate capabilities-
based force structure and the most 
effective front line tactics, techniques, 
and procedures to counter the 
threat and safeguard our forces.

CAPT Keese (USN, ret.) is a Research Staff Member in IDA’s Operational 
Evaluation Division. He holds a Master of Science in national resource strategy 
from the Industrial College of the Armed Forces, National Defense University 
and a Master of Science in information systems technology from the Naval 
Postgraduate School.

Dr. Rabinowitz is a Research Staff Member in IDA’s Operational Evaluation 
Division. He holds a Doctor of Philosophy in physics from Columbia University.

 Figure 4. Logistic Regression Results
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Tackling Complex Problems:  Analysis 
of the AN/TPQ-53 Counterfire Radar
Matthew R. Avery and Michael R. Shaw

THE PROBLEM
The performance of combat systems can be affected by a wide 
variety of operating conditions, threat types, system operating 
modes, and other physical factors. The character of the 
resulting multivariate test data can preclude simple or standard 
analysis methodologies. IDA’s analysis methods rely on a 
variety of advanced statistical techniques to provide a better 
characterization of system capabilities than the techniques 
historically used to evaluate test results of combat systems.

BACKGROUND
Mortar, rocket, and artillery fire posed a significant threat 

to U.S. forces in Afghanistan and Iraq and will likely continue 
to pose a significant threat to ground troops in future conflicts. 
The AN/TPQ-53 Counterfire Radar (see Figure 1) is a ground-
based radar designed to detect incoming mortar, artillery, 
and rocket projectiles; predict impact locations; and locate 
the threat geographically. Threat location information allows 
U.S. forces to return fire on the enemy location, and impact 
location information can be used to provide warnings to U.S. 
troops. The Q-53 is the next generation of counterfire radar, 
replacing the currently fielded AN/TPQ-36 and AN/TPQ-37 
Firefinder. The Army conducted the Initial Operational Test 
and Evaluation (IOT&E) for the Q-53 in 2014, and the Army has 

Note: The command and control vehicle is not shown.

Figure 1. Soldiers Emplacing the Q-53 Radar during the IOT&E 
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since made changes to the software 
and hardware designed to address 
discovered issues. The system had 
another IOT&E in June 2015. Because 
of urgent wartime requirements, the 
Army fielded 32 systems of an earlier 
version of the Q-53 radar. The Army 
plans to purchase an additional 136 
Q-53s to allow every Army combat 
Brigade, Fires Brigade, and Divisional 
Artillery to have two Q-53 radars.

The Q-53 has a variety of 
operating modes designed to help 
optimize its search. The 360-degree 
mode searches for projectiles in all 
directions around the radar, while 
90-degree search modes can be used 
to search for threats at longer ranges 
in a specific sector. In addition, the 
90-degree mode has two sub-modes. 
In the 90-degree normal mode, the 
radar searches a 90-degree sector out 

to 60 kilometers. In the 90-degree 
Short Range Optimized Mode (SROM) 
mode, the radar focuses on short 
range threats, sacrificing some 
performance at longer ranges.

In addition to the various 
operating modes, the Q-53 radar’s 
performance can vary depending on 
characteristics of incoming projectiles’ 
trajectories and geometry relative to 
the radar’s position. Determining how 
much the radar’s performance varies 
across all these factors is essential 
to inform users of the capabilities 
and limitations of this system as well 
as to identify deficiencies in need 
of correction. Figure 2 outlines a 
standard fire mission for the Q-53. 
During a threat fire mission, the 
threat will fire projectiles at a target 
inside the search area of the Q-53. 
(Figure 2 shows a Q-53 operating 

Figure 2. Example of a Fire Mission Including Relevant Geometric Factors Impacting  
Q-53 System Performance
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in a 90-degree mode, so its search 
sector is limited to the area within 
the black bars.) The Q-53 must detect 
the projectile’s trajectory and then 
estimate the position of the threat’s 
weapon so U.S. forces can counter-
attack. The specific geometry of the 
scenario will impact the Q-53’s ability 
to track the projectile. Relevant factors 
include radar weapon range (the 
distance between the Q-53 and the 
weapon firing the projectile), quadrant 
elevation (the angle of the projectile’s 
trajectory relative to the horizon), and 
shot range (the distance between the 
weapon and its target). When operating 
in 90-degree modes, the angle between 
the center of the radar’s sector and 
the projectile’s trajectory (bore angle) 
may also impact performance.

The key questions about system 
performance are: (1) Can the Q-53 
detect shots with high probability? 
(2) Can the Q-53 locate a shot’s origin 
with sufficient accuracy to provide an 
actionable counterfire grid location?

Q-53 OPERATIONAL TESTS
The June 2014 Q-53 IOT&E 

replicated typical Q-53 combat 
missions as much as possible given 
test constraints. Four radars (two 
Battalions) observed shots fired from 
a variety of weapons. Each Battalion 
decided how to employ the radar, 
within given test parameters, based on 
intelligence reports provided by the 
test team. Test personnel fired U.S. 
and threat weapons throughout four 
72-hour test phases. During a single 
threat fire mission, test personnel 
fired projectiles (between 1 and 20, 
typically 10) from a single location 
using the same gun parameters, 
simulating a typical engagement that 

a Q-53 Battalion might encounter in 
a combat scenario. During a volley 
fire mission, test personnel fired 
projectiles from three weapons at the 
same time. Volley fire is a common 
technique used to increase the number 
of rounds hitting the target in a fire 
mission. Since the radar did not move 
during these missions, all of the 
factors in Figure 2 were held constant 
during each threat fire mission. 
Many missions were observed by two 
radars, enabling a single threat fire 
mission to be detected by two radars. 
Testers fired 2,873 projectiles, which 
resulted in 323 usable fire missions.

Figure 3 shows the raw 
probability of detection data. Each 
point represents a fire mission, with 
the size of the point determined by 
the number of shots taken in the fire 
mission, ranging from a single shot 
to as many as 20 projectiles. The 
percentage of those shots detected 
by the Q-53 counterfire radar is 
shown on the y-axis. The colors of 
the points show the munition, and 
different operating modes and fire 
rates are separated across the x-axis.

As Figure 3 shows, there is 
substantial variability in probability 
of detection across different 
combinations of operating mode, 
munition, and rate of fire. There 
are geometric differences between 
operating modes, complicating the 
definition of a shot’s geometry. For 
example, in 360-degree mode, there 
is no angular center and therefore no 
bore angle. As a result, the 90-degree 
modes must be analyzed separately 
from the 360-degree modes to 
ensure that bore angle is properly 
taken into account. Additionally, the 
data are heavily imbalanced. The 



Figure 3. Detection Probabilities for 323 Fire Missions Conducted During the Q-53 IOT&E
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choice of the 90-degree operating 
mode was left to the Brigades. They 
quickly learned that most of the 
threat missions were within SROM 
capabilities, so 90-degree Normal was 
used substantially less than 90-degree 
SROM. There are substantially fewer 
volley fire shots than single fire 
shots. (No volley fire rocket missions 
were undertaken because of test 
limitations.) Furthermore, many of 
the geometric factors described in 
Figure 2 were confounded with each 
other because of limited available 
firing points on the test range. As 
often happens in operational testing, 
the Q-53 test conditions resulted 
in imbalanced correlated data. The 
challenges in analyzing these types 
of data are best addressed with 
advanced analytical techniques.

LOGISTIC REGRESSION
When characterizing system 

performance, it is important to 
account for all factors that impact 
system performance. While Figure 
3 shows some of the major factors 
that impact Q-53’s ability to detect 
projectiles, the geometry of the 

shot (as shown in Figure 2) is not 
taken into account. Therefore, IDA 
employed a logistic regression 
analysis, a natural choice considering 
the complex nature of the problem. It 
allowed us to identify which factors 
were driving performance and to 
generate estimates of probability 
of detection for all combinations 
of factors. Most importantly, this 
approach allowed us to look at 
the impact of each factor, after 
accounting for the others, to 
determine which factors have the 
largest impact on performance. The 
general logistic regression equation is

log( 
p

1 - p )=β0+β1 x1+⋯+βNxN .

In our case, p is the probability 
of detection, and the xi and βi 
represent the factors and coefficients, 
respectively. This approach relates 
the log of the odds ratio of probability 
of detection to the various factors 
that impact the probability of 
detection. Unlike a more traditional 
approach that looks at factors one 
at a time, this method allows us 
to attribute changes in probability 
of detection to specific factors. 
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Importantly, this also allows us to 
identify which of our considered 
factors are not driving performance. 
Such factors can be eliminated from 
the statistical model, simplifying 
the final expression without 
surrendering its explanatory power.

ESTIMATING Q-53 
DETECTION PERFORMANCE

The logistic regression model, 
once determined from the data, 
showed that – in addition to projectile 
type, operating mode, and rate of 
fire – radar weapon range, quadrant 
elevation (QE), aspect angle, and 
shot range had an impact on system 
performance. Figure 4 shows how the 
probability of detection changes as 
the distance between the weapon and 
the Q-53 counterfire radar increases 
when the system is in the 360-degree 
operating mode observing single-fire 
artillery engagements. The data also 
revealed that radar-weapon range and 
quadrant elevation affected Q-53’s 

ability to detect incoming projectiles. 
These factors are linked to the time 
the projectile travels through the 
radar search sector. High arcing 
shots (larger values for quadrant 
elevation) are easier to see than shots 
with shallower trajectories that stay 
closer to the ground (low quadrant 
elevation) and are more likely to 
be masked by terrain. Longer shots 
(higher shot ranges) and shots with 
trajectories exposing larger cross-
sections of the projectile to the radar 
(smaller aspect angles) were also 
easier for the Q-53 to detect, although 
the data showed these factors to be 
less important than radar-weapon 
range and quadrant elevation.

The logistic regression approach 
we employed also allows us to 
analyze the impacts of these factors 
simultaneously and observe how 
they interact. In Figure 4, as the 
radar-weapon range increases, the 
probability of detection drops sharply 
around 12,000 meters for shots with 

QE – Quadrant Elevation

Figure 4. Probability of Detection for the Q-53 Counterfire Radar Using 
the 360-Degree Operating Mode Against Single-Fired Artillery
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shallow shot trajectories (QE=30 
degrees, shown with the blue lines). 
For the shots with more arc (QE=60 
degrees, shown with black lines), the 
Q-53 is still able to detect with high 
probability at much longer ranges. 
While these factors have significant 
effects, other factors such as aspect 
angle have relatively minor effects 
on the probability of detection. 
Comparing the left and right panels of 
Figure 4, we can see that a 30-degree 
change in aspect angle results in a 
change in the probability of detection 
no greater than 7 percent. This 
logistic regression analysis allowed 
IDA to determine the relative impact 
of each factor on the probability 
of detection. While Figure 4 shows 
results for only a single combination 
of operating mode, munition, 
and projectile, IDA estimated the 
probability of detection across all 
factor levels. The Army could use 
this analysis to inform tactics for 
employing the system effectively in 
combat as well as identifying areas for 
future improvement of the system.

ESTIMATING THE THREAT’S 
LOCATION

In addition to detecting incoming 
projectiles, the Q-53 counterfire 
radar also estimates the location 
from which the detected projectiles 
were fired. The radar tracks the 
projectile through most of its flight 
and then backtracks the trajectory 
to estimate the threat’s location (the 
point of origin of the trajectory). 
The distance between this point of 
origin and the location estimated 
by the Q-53 is referred to as target 
location error (TLE). The estimated 
location needs to be as accurate as 
possible, since it can become a target 

for counter-attack by U.S. forces. For 
this analysis, a single target location 
estimate was calculated for each fire 
mission, since all projectiles from 
a fire mission originated from the 
same location. As a result, there are 
fewer data for the TLE problem than 
the probability of detection problem. 
TLEs present an additional challenge, 
because these measurements are not 
normally distributed, which means 
standard analysis approaches will 
produce biased results. Figure 5 
shows quantile plots of TLEs for the 
360-degree operating mode, broken 
down by munition type. These quantile 
plots are arranged so data originating 
from a normal distribution will fall 
along the straight lines shown in 
the plot.  The further away the data 
points fall from the straight line, the 
more the actual data distribution 
differs from a normal distribution.  
The chart on the left plots the raw 
data and reveals that they fall far 
from the straight lines.  The plot on 
the right shows the same data on a 
log scale; the data fall much closer 
to the straight lines, which indicates 
that a lognormal distribution better 
represents the actual data distribution.

As a result, IDA analyzed 
the TLE data using a lognormal 
regression. This approach allows us 
to take the skewness of the data into 
account so that the fit has the same 
characteristics as the data. Figure 6 
shows the results, with the figure on 
the left showing TLE for mortars and 
the figure on the right showing TLE for 
artillery and rockets. The green lines 
show the system’s requirements, and 
the black lines show the estimated 
median TLE along with 80 percent 
confidence intervals. While TLE for 
mortars showed substantial variability, 
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the large number of mortar fire 
missions allows us to make precise 
estimates of median TLE. The analysis 
revealed that the estimated median 
TLE tends to increase (get worse) 
as radar-weapon range increases. 
While the Q-53 is more accurate at 
estimating a mortar’s location than 
the location of artillery and rocket 
weapons, the requirements for artillery 
and rockets were less stringent. As 
with probability of detection, IDA’s 
regression approach accounts for 
the variety of factors impacting 

system performance, resulting 
in rigorous system evaluation.

SUMMARY
IDA’s analysis of the Q-53 

Counterfire Radar illustrates the 
benefits of using more advanced data 
analysis techniques. Many factors, 
including physical factors related 
to the shot’s geometry as well as 
threat and operating mode, affect 
Q-53 performance. Understanding 
the effects of these factors helps 
commanders in the field choose the 
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If the data are normally distributed, the points should conform closely to the line. The plot for TLE shows that the largest 
observed TLEs far exceed the values expected from normally distributed data. By using the natural logarithm of the data 
(right plot), the data conform more closely to the normal distribution.

Figure 5. Quantile-quantile (QQ) Plots Used to Visually Assess Normality 



27www.ida.org

best operating mode for the system, 
allowing them the best chance of 
detecting incoming projectiles and 
locating their origins accurately for a 
counterfire response. IDA’s application 
of modern statistical techniques 
identified those factors that affected 
system performance and quantified 
their impact and practical significance 

for soldiers employing this system. 
These methods also enable testers 
to identify potential ways to improve 
system performance. Despite the 
challenges presented by complex 
data forms (e.g., right-skewed data, 
binary response data), the use of 
advanced statistical tools supports 
rigorous, defensible analyses.

Dr. Avery is a Research Staff Member in IDA’s Operational Evaluation Division. 
He holds a Doctor of Philosophy in statistics from North Carolina State University.

Dr. Shaw is a Research Staff Member in IDA’s Operational Evaluation Division. He 
holds a Doctor of Philosophy in chemical physics from the University of Maryland.
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Improving Reliability Estimates  
with Bayesian Hierarchical Models
Kassie Fronczyk, Rebecca Dickinson, and Laura Freeman

In the Department of Defense (DoD), test data are often 
collected in several phases. The two broad types of testing are 
developmental testing and operational testing. The primary 
goal of a developmental test (DT) is to verify that a system 
meets its design specifications. This testing can occur as 
contractor testing, government testing, or a mixture of both 
and is usually carried out in a controlled environment that 
often lacks the realism of combat scenarios and trained 
users. The purpose of an operational test (OT), on the other 
hand, is to determine whether the system is effective and 
suitable in a combat scenario. OT data are collected under 
test conditions that replicate, as much as possible, field use.

Reliability is one of the primary aspects of a system’s 
operational suitability. It is important that a system perform 
as intended under realistic operating conditions for a specified 
period of time without failure. Reliability requirements for 
ground vehicles are often based on the mean number of miles 
between failures. A serious equipment failure that occurs during 
mission execution and results in the abort or termination of 
a mission is scored as an Operational Mission Failure (OMF). 
A less critical failure of a mission-essential component is 
scored as an Essential Function Failure (EFF). For example, 
an engine failure would be scored as an EFF if a vehicle took 
multiple attempts to start but eventually succeeded. If the 
vehicle could not be started, it would be scored as an OMF.

Requirements are typically written in terms of OMFs. 
Verifying whether the reliability requirements of a system have 
been met by looking at only a single test phase, however, can 
be challenging. Short test periods, high reliability requirements, 
or few observed failures can result in little confidence in 
the reliability estimates. The National Academies, in three 

THE PROBLEM
The reliability of a weapon system is an essential component 
of its suitability for operational deployment. Yet, in an era of 
reduced budgets and limited testing, verifying that reliability 
requirements have been met can be challenging, particularly 
using traditional analysis methods that depend on a single set 
of data coming from a single test phase.
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separate studies (National Research 
Council 1998,1 2004,2 and 20153), 
have recommended that DoD employ 
statistical approaches to capitalize on 
all available data from multiple test 
periods and not limit the reliability 
analysis to a single test period. 
Despite these recommendations, 
nearly every published analysis of 
a major weapon system’s reliability 
limits the assessment to the last test 
phase, typically because that phase 
examined the most representative 
system configuration. In support of 
the Director, Operational Test and 
Evaluation (DOT&E), IDA has begun 
to explore improved techniques 
for estimating reliability using 
data from multiple test periods.

BAYESIAN PARADIGM
When combining information 

from multiple test periods, models 
need to be carefully selected and 
evaluated to ensure that they 
accurately reflect the data and the 
underlying physical processes. The 
Bayesian paradigm is tailor-made for 
these situations because it allows 
the combination of multiple sources 
of data and variability to obtain 
more robust reliability estimates and 
quantify properly the uncertainty 
and precision of the estimates. 
The use of Bayesian methods is 
becoming increasingly popular 
because leveraging all of the available 

information when making decisions 
under uncertainty makes practical 
sense. This article uses reliability 
data from two families of vehicles 
tracked through multiple phases 
of testing to illustrate the Bayesian 
approach of combining information. 
Applying these methods results in 
better estimates of system reliability 
and more precise inferences.

The first case study uses 
reliability data from the Stryker 
family of vehicles (FoV), which are 
armored combat vehicles built for 
the U.S. Army. The FoV includes 10 
system configurations, with two main 
versions: the Infantry Carrier Vehicle 
(ICV) (see Figure 1) and the Mobile 
Gun System (MGS). Our study focuses 
on the ICV, which provides protected 
transport and supporting fire for 
its two-man crew and squad of nine 

1   National Research Council. 1998. Statistics, Testing, and Defense Acquisition: New Approaches 
and Methodological Improvements. Washington, DC: The National Academies Press. 

2 National Research Council. 2004. Improved Operational Testing and Evaluation Methods of 
Combining Test Information for the Stryker Family of Vehicles and Related Army Systems: 
Phase II Report. Washington, DC: The National Academies Press.

3  National Research Council. 2015. Reliability Growth: Enhancing Defense System Reliability. 
Washington, DC: The National Academies Press.

Source:  M1126 Infantry Carrier Vehicle
The ICV serves as the base vehicle for eight additional 
system configurations.

Figure 1. Stryker Infantry 
Carrier Vehicle (ICV)
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infantry soldiers. The ICV serves as the 
base vehicle for the eight remaining 
system configurations.4 The vehicles 
share a common chassis and are 
outfitted with additional components 
specific to the mission of each vehicle. 
This analysis heavily leverages the 
common chassis of the vehicles to 
support combining information 
from all of the configurations. The 
reliability data, at the OMF level, 
used in this study come from two 
test phases: one DT and one OT.

The second case study is based 
on a notional future combat family 
of vehicles and data collected from 
multiple testing phases, as would 
be common for a program like 
Stryker. For this example, we will 
assume a family of vehicles similar to 
Stryker with four vehicles of various 
configurations that go through a 
series of three test phases with a 
corrective action period between 
each phase.  Unlike the Stryker case 
study, for this notional example, we 
assume more detailed failure data are 
available, specifically EFFs and OMFs, 
as opposed to only OMFs. Because all 
OMFs are, by definition, EFFs, using 
all failures in the analysis provides 
a more robust reliability estimate.

For both cases, the goal is to 
characterize the reliability of the 
entire family of vehicles. In the Stryker 
study, we have OT data, but these 
data are limited; therefore, we need 
to leverage the commonalities of the 
vehicles and the DT data. For the 

4 The Antitank Guided Missile Vehicle (ATGMV), Commander’s Vehicle (CV), Engineer Squad 
Vehicle (ESV), Fire Support Vehicle (FSV), Medical Evacuation Vehicle (MEV), Mortar Carrier 
Vehicle (MCV), Reconnaissance Vehicle (RV), and the Nuclear, Biological and Chemical 
Reconnaissance Vehicle (NBC RV). The NBC RV was excluded from the study because of its 
different acquisition timeline.

# of Failures
Total Miles DrivenMMBF =

notional future combat vehicle, we 
have assumed detailed information 
is available about failures from the 
three phases of testing and can pool 
information across the phases and 
four vehicles. A Bayesian framework 
that requires only slight modifications 
from one FoV to the other provides 
a mechanism to make the most use 
of this additional information.

STATISTICAL MODELS 
FOR COMBINING DATA: 
BAYESIAN RELIABILITY

A standard reliability analysis 
employed by the DoD test community 
considers each test phase (and each 
system configuration, such as vehicle 
type) independently and uses the 
exponential distribution to empirically 
model the miles between failures. 
Reliability is expressed in terms of 
the mean number of miles between a 
failure (MMBF), and is estimated as

Although this approach is 
standard for nearly every ground 
vehicle program in the Department, 
it ignores valuable information on 
individual vehicles in different phases 
of testing. Although frequentist 
statistical methods similar to the 
standard reliability analysis described 
previously (and illustrated in the 
Stryker analysis) could be used, a 
Bayesian approach provides a natural 
framework for combining multiple 
sources and types of information.

.
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Bayesian methods are valuable 
for their logical integration of prior 
information and their practical 
convenience for modeling and 
estimation. Before looking at the test 
data, we construct a prior distribution 
– or starting assessment – for the 
parameters in the empirical model 
that we plan to construct. We use the 
data to revise our starting assessment 
and derive the updated assessment 
(i.e., the posterior distribution) for the 
parameters in the empirical model.

The reliability of the FoV is 
defined as a function of the failure 
rate parameter, λ (i.e., the mean time 
between failure (MTBF) or MMBF is 
1/λ). The exponential distribution 
is often used as the underlying 
assumption for the data’s distribution, 
and a common choice of a prior 
distribution to describe the possible 
values of λ is the gamma distribution. 
The gamma distribution restricts the 
value of the failure rate to positive 
values and provides computational 
ease. Table 1 shows the Bayesian 
models for the Stryker and notional 
future combat vehicle FoV side by 

side to highlight the similarities and 
differences.  For the Stryker analysis, 
we construct the statistical model 
such that each vehicle variant has its 
own failure rate, which is estimated 
by the data, and a single parameter 
to capture a common downgrade 
across vehicles from DT to OT. On 
the other hand, in the future combat 
vehicle example, the statistical model 
is written to capture the fact that the 
program has the ability to fix specific 
failure modes between phases (i.e., 
the corrective action periods). The 
statistical model, therefore, includes 
a separate estimate for each failure 
mode in each of the postulated test 
phases and fix effectiveness factors 
specific to each failure mode.

STRYKER FOV:  ANALYSIS 
AND RESULTS 

The reliability requirement for 
Stryker is that each vehicle has a 
mean of at least 1,000 miles between 
OMFs. Frequentist and Bayesian 
inference techniques were both 
employed to compare and contrast 
different approaches to combining 

Table 1. Bayesian Reliability Models for Stryker and Future Combat Vehicle
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DT and OT data. Figure 2 illustrates 
the results of the traditional analysis, 
the frequentist analysis,5 and the 
Bayesian analysis. All three analyses 
use an exponential distribution to 
model the miles between failures, 
as discussed previously.

The mean miles between 
operational mission failures (MMBOMF) 
estimates reported in Figure 2 under 
the traditional analysis do not leverage 
the DT data or the relationships 
among the various types of Stryker 
vehicles. Notice that the CV vehicle 
stands out as potentially having an 
optimistically high MMBOMF of 8,494 
miles. This estimate is based on a 
single failure and a combination of 
all the individual operating distances 
for each of the six CV vehicles. None 
of the six CV vehicles, however, 
used in OT traveled more than 2,000 

miles. To claim that any one vehicle’s 
MMBOMF is greater than 8,000 miles 
when no single vehicle traveled that 
far is questionable. Furthermore, 
if we consider that the estimate of 
MMBOMF in DT for the CV was less 
than 2,200 miles, we can conclude 
that it is highly unlikely that we 
would see such large improvements 
in the reliability between late DT 
and OT since no major changes were 
made to the system configuration. 
The MMBOMF estimate based on 
the traditional analysis approach 
is therefore highly suspect.

Confidence intervals for the 
FSV and the RV are also extremely 
wide because of the limited number 
of failures observed in OT. Because 
no failures were recorded for the 
MEV in OT, only a lower confidence 
bound can be estimated.

Figure 2. Stryker FoV: Comparisons of the OT MMBOMF Vehicle Variant Estimates for the 
Traditional Analysis, Frequentist Analysis, and Bayesian Analysis Using the Exponential Distribution
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5 An exponential regression model was used. Test phase and vehicle variants were included as 
explanatory variables so that individual reliability estimates for each of the vehicles within 
each test phase could be estimated. 
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Using a statistical model to 
formally account for differences 
in performance across test phases 
and vehicle variant has a large 
practical impact on the reliability 
results. In Figure 2, the two model-
based analyses (i.e., frequentist 
analysis and Bayesian analysis) 
provide a more realistic estimate 
of CV reliability and improve the 
overall precision of the estimates 
of system reliability for the vehicles 
that exhibited a small number 
of failures in OT. The tighter 
confidence intervals are obtained by 
leveraging the failure information 
from the other variants and DT data. 
One clear advantage of using the 
Bayesian analysis in this example is 
that we can obtain a point estimate 
for the reliability of the MEV. The 
reliability estimate for the MEV is 
driven by the information that we 
have for the seven other vehicles.

The Stryker example 
demonstrates that when we combine 
the available information across two 
test phases, the reliability estimates 
are more accurate and precise 
than estimates based solely on OT 
data. We also obtain inferences for 
vehicles on which no OT data are 
available. The analysis considers 
only OMFs since this analysis allows 
for a direct comparison between 
standard DoD analysis and the 
analysis that combines information 
across the DT and OT phases. 
However, further improvements 
in reliability estimates might be 
achieved by leveraging information 
from EFFs and/or failure modes. In 
the following example, we leverage 
information from OMFs and EFFs.

FUTURE COMBAT VEHICLE:  
ILLUSTRATION OF ANALYSIS 
AND RESULTS

For the notional future combat 
vehicle example, we assume very 
detailed failure information exists for 
the four vehicles tested in three test 
phases. In other words, the data for 
EFFs are available in addition to OMFs, 
and each EFF and OMF is attributed to 
a specific failure mode (e.g., brakes, 
fuel system, and suspension). The 
Bayesian model in Table 1 allows for 
a separate reliability estimate for each 
observed failure mode that arises 
across the test phases. Also, by using 
the information learned in the analysis 
about the individual failure modes, 
we can estimate the reliability for 
each vehicle. This reliability estimate 
provides a much richer source of 
information than the estimate derived 
in the equation on page 30, which 
simply takes the total number of 
miles driven by all four vehicles in 
each phase and divides by the total 
number of failures from the phase 
to determine reliability for the FoV.

In the Department of Defense, 
reliability requirements are typically 
written at the family level for these 
types of programs and in the language 
of OMFs. However, this analysis 
focuses at the vehicle level and 
includes all EFFs. By analyzing all EFFs 
and capitalizing on the information 
that is known about each of the failure 
modes, we are more likely to identify 
a larger portion of failures that cause 
system downtime, which will lead to 
greater improvements in reliability, 
availability, and maintainability and 
reduced operating and maintenance 
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costs. Furthermore, by breaking 
out the failures by vehicle, we 
more accurately determine 
the reliability of the FoV.

Figure 3 shows the estimated 
mean miles between essential 
function failures (MMBEFF) for each 
vehicle across the three test phases. 
The statistical model links the 
reliability estimates through each 
of the three phases by estimating 
the reliability as a function of the 
successful fixes between phases. If 
a program is using the corrective 
action period to fix some fraction 
of the observed failure modes, then 
the MMBEFF across the three phases 
of test should increase. In fact, the 
model assumes that this increase 
must occur (see Table 1). As seen in 
Figure 3, for the four vehicles, the 
MMBEFF increases from around 50 
miles to around 60 miles from Phase 

1 to Phase 2 and then gains another 
30 miles from Phase 2 to Phase 3.

Similar to the Stryker example, we 
investigate the gain over a traditional 
analysis. Figure 4 shows MMBEFF 
estimates and intervals for the four 
vehicles across the three test phases 
using the Bayesian hierarchical model 
and the traditional exponential 
analysis, separated by vehicle and 
phase. The Bayesian analysis always 
provides a tighter interval estimate, 
meaning those results are more 
certain and precise, which is a direct 
result of leveraging information from 
all vehicles and all phases of test. 
The Bayesian analysis also shows 
distinct growth for each of the four 
vehicles, while the traditional analysis 
reveals growth in reliability across 
phases for only two of the four 
vehicles: vehicle 3 and vehicle 4.

Figure 3. MMBEFF Estimates and 95 Percent Credible Intervals for 
Each Future Combat Vehicle and All Three Phases of Test
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Figure 4. Comparisons of the MMBEFF for Four Vehicles Across the Three Phases of Test, 
for the Bayesian Analysis and Traditional Analysis Using the Exponential Distribution

In Figure 4, the traditional 
analysis does not show any evidence 
of growth in the first two phases of 
testing for three of the four vehicles 
(only vehicle 3 shows some marginal 
growth). The Bayesian analysis 
assumes that growth will occur 
between each phase as a result of the 
model specification, so the results 
are more definitive with respect to 
growth between periods; however, 
this assumption is not required. 
Future sensitivity analyses of the 
results on the model specification 
will be important for understanding 
the influence of the model and 

assumptions used. Nevertheless, 
these results reveal the strength of 
these methods for analyzing data and 
capitalizing on all the data available 
to provide more accurate insight 
into system reliability over time.

CONCLUSIONS
The Bayesian approach to 

reliability analysis provides a formal 
framework to combine information 
from multiple sources and attain 
appropriate uncertainty quantification. 
The two examples discussed in this 
article illustrate the advantages of 
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using data from multiple phases of 
testing and leveraging data from 
systems with common infrastructures. 
The results are better estimates of 
system reliability and more precise 
inferences. Further improvements in 

Dr. Fronczyk is a Research Staff Member in IDA’s Operational Evaluation 
Division. She holds a Doctor of Philosophy in statistics and stochastic modeling 
from the University of California, Santa Cruz.

Dr. Dickinson is a Research Staff Member in IDA’s Operational Evaluation 
Division. She holds a Doctor of Philosophy in statistics from the Virginia 
Polytechnic Institute and State University.

Dr. Freeman is an Assistant Director in IDA’s Operational Evaluation Division. 
She holds a Doctor of Philosophy in statistics from the Virginia Polytechnic 
Institute and State University.

reliability estimates are achieved by 
leveraging information from EFFs. By 
exploiting all available information 
and tools, we can obtain rich 
inferences for very complex problems.



37www.ida.org

Managing Risks: Statistically Principled 
Approaches  to Combat Helmet Testing
Janice Hester, Thomas Johnson, and Laura Freeman

BACKGROUND 
Combat helmet designs are driven by the balance 

between increasing ballistic protection and decreasing 
weight. Starting in World War I, troops wore steel helmets to 
protect against artillery rounds. In 1985, the Personnel Armor 
System for Ground Troops (PASGT) helmet was fielded. 
The PASGT helmet was made from a laminate of ballistic 
material with aramid fibers, and it improved protection 
against fragments. In 2002, the U.S. Army replaced the 
PASGT helmet with the lighter weight Advanced Combat 
Helmet (ACH). The ACH and similar helmets are currently 
the most common helmets worn by U.S. troops. Recently, 
the U.S. Marine Corps developed the Enhanced Combat 
Helmet (ECH), which has a ballistic laminate of ultra-high 
molecular weight polyethylene fibers and provides some 
limited protection against small caliber bullets. Helmet 
designs continue to evolve, and the U.S. Army is pursuing 
two new helmet types – one that provides the protection 
of the ACH but is lighter weight and another that provides 
the protection of the ECH but is lighter weight. Figure 1 
shows the evolution of combat helmets through the years.

Beginning in 2007, congressional concern about the 
accuracy and consistency of body armor testing led to 
increased involvement in personal protective equipment 
by the Director, Operational Test and Evaluation (DOT&E). 
To address the concerns of Congress, DOT&E worked 
with the Services to develop test protocols for the ballistic 
components of First Article Testing (FAT) and Lot Acceptance 
Testing (LAT) for both body armor and combat helmets. In 
2009, DOT&E asked IDA to expand its support for live fire 

IDA’s analyses 

were central to 

the development 

of the most 

recent version 

of the improved, 

statistically 

principled 

acceptance test 

protocols for 

combat helmets.

PROBLEM 
Combat helmets protect troops against artillery rounds, mines, 
and small caliber bullets. Helmet designers strive to achieve 
high ballistic protection with lightweight helmets. Modern 
combat helmets are made from dynamic materials such as 
aramid and ultra-high molecular weight polyethylene fibers, 
which show more variability in performance than simpler 
armors. The Services conduct acceptance tests to evaluate the 
ballistic performance of each helmet design and production 
lot. The challenge to testers is to construct efficient tests to 
determine whether these helmets meet performance criteria.
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test and evaluation to include personal 
protective equipment. IDA’s analyses 
were central to the development of the 
most recent version of the improved, 
statistically principled acceptance 
test protocols for combat helmets.

Helmets must protect against 
multiple ballistic threats; this article 
focuses on IDA’s work on testing 
for resistance to penetration and 
ballistic limit estimation. Our work on 
evaluating resistance to penetration 
using statistically principled 
testing has led to an improved FAT 
protocol for aramid-based helmets. 
Our related research comparing 
newer design methods for fragment 
testing suggests that additional 
improvements to the protocols 
are possible for the estimation of 
ballistic limits. The statistical work 
discussed in this article is supported 
by frequent observations of helmet 
testing and continual analysis of 
helmet test data, which together 
ensure that the statistical studies 
are relevant to helmet testing.

RESISTANCE TO 
PENETRATION

Combat helmets must 
demonstrate a high probability of 

stopping perforation from a 9mm 
handgun round, and some designs 
must also prevent perforation from 
another specified small arms round. 
Each helmet design comes in at 
least four sizes, and during FAT 
they are shot at five locations on 
the helmet and subjected to four 
separate environmental conditioning 
treatments. The FAT must provide 
confidence that all helmet sizes have 
acceptable performance under all test 
conditions. The primary statistical 
challenge for this component of 
testing is to design an efficient test 
that provides this confidence while 
still achieving a low risk of rejecting 
helmets with good performance.

The response of a combat helmet 
to a threat impact is stochastic, 
so resistance to penetration is 
characterized as the probability of 
a projectile completely penetrating 
through the helmet. This probability 
should be very low. The probability 
of penetration can be measured with 
increasing precision as the number 
of test shots increases, but helmet 
testing is expensive and destroys the 
tested helmets. Accordingly, tests 
should be efficient in the number 
of test articles they require.

Figure 1. Evolution of DoD Combat Helmets
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curves in Figure 2 all have the same 
manufacturer’s risk; increasing the 
test size results in a steeper OC curve 
and decreases the government risk.

A helmet design’s resistance 
to penetration can vary among 
the helmet sizes or across test 
conditions. A test with a single 
acceptance criterion on the helmet 
design’s performance across all sizes 
and test conditions is therefore not 
sufficient. Instead, helmets must 
demonstrate performance across 
all sizes and conditions, which 
tends to increase the probability of 
incorrectly concluding that a helmet 
does not meet performance criteria.

IDA developed an analytical 
framework for resistance to 

Acceptance test designs should 
balance the risks of wrongly accepting 
a product that performs poorly and 
of rejecting a product that performs 
well. One important statistical tool 
for comparing acceptance test design 
is an operating characteristic (OC) 
curve, which shows the probability of 
accepting a helmet (passing the test) 
as a function of the true probability 
of penetration. Figure 2 shows OC 
curves for three notional tests that 
range in size from 75 to 450 test 
shots. The numbers of shots and 
allowable penetrations determine 
the shape of the curve, including 
the government’s risk of accepting 
helmets with low performance and the 
manufacturer’s risk that helmets with 
high performance will be rejected. The 

Figure 2. Operating Characteristic Curve for Test Sizes Ranging from 75 to 450 Shots 
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penetration testing during FAT that 
captures the tradeoff between the 
risks of accepting a helmet that 
performs poorly in one condition 
and of rejecting a helmet that 
performs uniformly well across 
all conditions. This is in contrast 
to simpler tests, like those shown 
in Figure 2, for which government 
and manufacturer risks are set for 
two different performance levels 
of the same characteristic (e.g., 
a single, aggregated probability 
of a complete penetration).

Instead of selecting a single  
pass/fail criterion, we select a set 
of pass/fail criteria that specify 
a maximum acceptable number 
of complete penetrations across 
all shots taken and a maximum 
acceptable number of complete 
penetrations within the shots taken 
on each individual test condition. 
For example, in the new protocol 
for aramid-based helmets, no 
more than three penetrations 
for the 9mm round are allowed 
across all sizes, environments, 
and locations (240 shots total). 
Of those three penetrations, no 
more than two can be in any one 
size. Similar criteria exist for 
environment and shot location. 

Figure 3 shows the operating 
characteristic curves for the 
protocol for aramid-based helmets. 
The dotted blue curve shows the 
probability of passing the aggregate 
criterion (three allowed penetrations 
across all 240 shots) as a function 
of the aggregate probability of a 
complete penetration; the solid 
green curve shows the probability 
for each helmet size of passing 
the criterion on the individual size 

(two allowed on any single size) as a 
function of the probability of complete 
penetration for that helmet size; and 
the solid red curve shows the OC 
curve for passing all of the multiple 
test criteria simultaneously for the 
simple case in which the probability 
of a complete penetration does not 
vary among the helmet sizes or test 
conditions. Figure 3 illustrates how 
the statistical methodology IDA 
developed provides acceptable risk 
points both when all helmets have 
uniformly high performance and 
when one helmet size is different. 

The key element of a hierarchical 
test is that if a helmet has uniform 
performance across the conditions, 
then the risk points for the full 
hierarchical test closely match the 
risk points for the aggregate criterion 
alone. The criteria on the individual 
conditions are selected such that, for 
a helmet with uniform performance, 
simultaneously passing the aggregate 
criteria and failing an individual 
criterion through random chance are 
unlikely. The benefit of this approach 
is that the FAT results are diagnostic 
and easy to interpret. If a helmet 
design’s aggregate performance 
is low but uniform across the test 
conditions, then failing for the 
aggregate criterion is more likely 
than failing for one of the criteria 
on the individual conditions. On 
the other hand, if a helmet has high 
aggregate performance but a single 
low performing condition, then 
failing the pass/fail criterion on that 
condition is the most likely result. 
One drawback to this approach is that 
the aggregate and individual criteria 
cannot be specified independently. 
Finer control over these risk points 
is possible with more complex test 
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designs that include the possibility 
for multiple rounds of testing.

BEHIND HELMET BLUNT 
TRAUMA

The rapid deformation of a 
combat helmet following a ballistic 
impact creates a potential for blunt 
trauma injury even when the projectile 
does not completely penetrate 
the helmet; the deforming helmet 
shell can impact the wearer’s head. 
To mitigate this risk, the helmet’s 
deformation following an impact 
with the 9mm test round is measured 
during testing and compared to 
established upper limits. Figure 4 
shows the image of a head form 
filled with clay before a shot is taken 
(left) and after (right); the maximum 

deformation is measured from the 
deepest location in the clay indent. 

The FAT and LAT protocols 
include a procedure for assessing  
the measured deformations against  
the established upper limits. 
Deformation requires a different 
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Figure 3. Operating Characteristic Curves for the DOT&E Aramid Helmet Protocol

Figure 4. Clay Helmet Head Form Before the 
Shot (left) and After the Shot (right) Illustrating 
the Helmet Deformation into the Clay Channel
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analysis method than resistance to 
penetration, because deformation 
is a continuous metric (a measured 
value) rather than a binomial 
(success/failure) metric. IDA used 
simulation studies to investigate the 
best approach to writing a protocol 
for deformation that accounts for 
the multiple test conditions. We 
showed that Analysis of Variance 
(ANOVA) can be applied within a 
FAT to test individual conditions 
while controlling overall risks. 

FRAGMENT THREATS 
AND BALLISTIC LIMIT 
ESTIMATION

The Services set helmet 
performance requirements for the 
minimum ballistic limits against 
several standard fragment simulants; 
these limits are incorporated into the 
DOT&E protocols. The ballistic limit 
is the velocity at which a projectile 
completely penetrates the helmet 
50 percent of the time. While the 
velocity corresponding to a lower 
probability of penetration would be 
a better measurement of ballistic 
protection, the 50th percentile has 
been used historically because it 
is the percentile that is measured 
with the greatest precision.

The test and academic 
communities have developed several 
different procedures for determining 
the ballistic limit of armor through 
testing. IDA performed a simulation 
study to determine which of six 
published procedures would be the 
most efficient and accurate if used 
for helmet testing. Each procedure 
combines a set of rules for selecting 

shot velocities, terminating testing, 
and calculating the ballistic limit. To 
ensure that the simulation results were 
relevant, the simulation incorporated 
historical helmet performance data.

To estimate the ballistic limit, 
testers vary the velocity of the 
test fragment between shots in a 
prescribed manner with the goal of 
finding a velocity range in which there 
is a mix of penetrations (failures) 
and non-penetrations (successes). 
The orange and blue circles in 
Figure 5 are example data for a 
ballistic limit test; they illustrate the 
spread in helmet performance for 
velocities near the ballistic limit.

Under the current test 
procedures, which are known as the 
“up-down method,” testers select 
each shot velocity by increasing or 
decreasing the velocity based on the 
previous shot’s outcome. Once testers 
achieve a predetermined equal number 
of complete penetrations and helmet 
successes within a fixed velocity range, 
they stop the test and estimate the 
ballistic limit as the arithmetic mean 
of this set of shots. The up-down 
method is not statistically rigorous for 
multiple reasons, but in particular it 
frequently does not use all of the data 
to determine the ballistic limit. For 
example, if eight shots are required to 
get three successes and three failures 
in the required velocity range, the 
analysis throws away the other two 
data points. Newer test design and 
analysis methods use generalized 
empirical model fits based on all the 
data to both determine the next shot 
in the test sequence and characterize 
the probability of penetration as a 
function of the projectile’s velocity.
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The most important result of 
IDA’s simulation study was that, 
regardless of the test design method 
used to select shot velocities, using 
model fitting and maximum likelihood 
estimation along with the associated 
criteria for stopping the test resulted 
in a more efficient test than the up-
down method. Figure 5 shows a probit 
model fit to the example test data; this 
is an example of an empirical model 
fit that uses maximum likelihood 
estimation to assess the probability of 
penetration as a function of velocity. 
The measured ballistic limit is an 
estimate of the true ballistic limit, but 
also includes error due to variability 
in the helmet’s performance near the 
ballistic limit. By using maximum 
likelihood estimation, the ballistic 
limit can be estimated with fewer 
shots on average without increasing 
either the bias (the difference between 
the measured and the true value) 
or the variance in the estimate. 

Misestimating helmet 
performance prior to testing can lead 

to poor choices of fragment velocity 
during testing, which can increase 
both the dispersion of and the bias 
in the ballistic limit estimate. Our 
simulation study demonstrated that 
test designs that use generalized linear 
modeling (i.e., three-phase optimal 
design (3POD) and Neyer’s Method) 
to select the shot velocities are less 
sensitive to initial misestimates of 
helmet ballistic limit than the up-
down method. Figure 6 shows the 
median bias and interquartile range 
(25th and 75th percentiles shown as 
the lines extending from each marker) 
of the ballistic limit estimates for 
each method for a range of initial 
misestimates in the variance; the most 
desirable result is a bias of zero with 
a narrow interquartile range. Note 
that the starting assumptions about 
helmet performance were intentionally 
misestimated to show the robustness 
of each method to having limited 
knowledge of the actual performance 
variability around the ballistic limit 
for the helmet design under test. 
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CONCLUSION
The Services will continue to 

pursue lighter helmets and improved 
ballistic performance. The application 
of statistically principled test designs 
will help ensure that new combat 
helmets have acceptable ballistic 
performance. IDA has developed 
innovative design methods that have 
improved helmet testing protocols 
for resistance to penetration, while 

balancing risks to both government 
and manufacturer across multiple 
conditions. IDA’s research on ballistic 
limit design and analysis methods 
shows that further improvements can 
be made to existing protocols. Making 
these improvements will ultimately 
provide a better understanding of 
helmet ballistic performance, resulting 
in better equipment for our soldiers.

 Figure 6. Simulation Results Comparing the Maximum Likelihood Estimate from 
the Probit Model and the Arithmetic Mean Estimator for Various Test Strategies
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The test 

community has 

struggled with 

how to compare 

a few data points 

from live testing 

to the potentially 

hundreds of data 

points from the 

PRA Testbed, 

and, once that 

comparison occurs, 

how to conclude 

whether the PRA 

Testbed reasonably 

represents what 

was observed in  

live testing.

Validating the Probability of Raid Annihilation 
Testbed Using a Statistical Approach
Dean Thomas and Rebecca Dickinson

Live test events of new weapon systems are often 
expensive, and only a limited number of test events can be 
conducted. A well-designed test will intelligently distribute 
such events across the operational envelope. Nonetheless, 
when only limited data are available, there will be holes 
in our understanding of system performance. M&S can be 
used to extend the test results throughout the operational 
envelope. Validation is the process of determining the extent 
to which the M&S adequately represents the real world for 
its intended use. Thus, a question that testers often ask 
is how to best use a small number of live test results to 
validate that the M&S is providing meaningful results. 

The Navy’s Air Warfare (AW) Ship Self-Defense (SSD) 
Enterprise is an overarching test methodology that examines  
the ability of shipboard combat systems to defend a ship 
against a cruise missile attack. The primary metric is Probability 
of Raid Annihilation (PRA), which is the probability of defeating 
the entire raid of cruise missiles through a combination 
of reduced ship signature, missile and gun systems, and 
decoys and countermeasures. The AW SSD Enterprise uses a 
combination of live test results from a fleet ship, live test results 
from an unmanned, remote-controlled test ship,1 and a model, 
the PRA Testbed, to assess performance. Analysts use the PRA 
Testbed to extend the results of live testing to threats that are 

THE PROBLEM
Modeling and Simulation (M&S) often provides essential 
information in evaluations of operational effectiveness, 
suitability, and survivability, especially in cases where end-to-
end missions cannot be assessed because of safety, cost, or test 
range restrictions. Before M&S is used, analysts should validate 
the model to ensure that it reasonably represents the real 
world. Unfortunately, in operational testing it is often the case 
that only limited data are available for validation. 

1 The unmanned Self-Defense Test Ship (SDTS) conducts tests that are  
too risky on a manned ship. The test community has divided cruise  
missile threats into six categories. Safety restrictions preclude testing 
against most of these threats on a manned ship. In fact, short-range  
self-defense systems on manned ships can be tested against only one  
of the six categories, and there are restrictions even for that category.  
To understand performance against the threat, the unmanned SDTS,  
which has fewer safety restrictions, is used to test against a larger set  
of threat categories.
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not available on test ranges and 
to other environmental conditions 
that may affect ship performance.

The test community has always 
understood that only a limited 
number of live test events would 
be available for validation of the 
PRA Testbed. Many scenarios – 
for example, USS America (LHA 
6) defending itself against a 
maneuvering supersonic cruise 
missile raid – will be examined in 
only one live test event. The PRA 
Testbed, however, can simulate that 
same event tens or even hundreds 
of times. Consequently, the test 
community has struggled with how to 
compare a few data points from live 
testing to the potentially hundreds 
of data points from the PRA Testbed, 
and, once that comparison occurs, 
how to conclude whether the PRA 
Testbed reasonably represents 
what was observed in live testing. 

This article outlines an approach 
IDA developed as part of our support 
to the Director, Operational Test 
and Evaluation, who oversees and 
approves the Navy’s test strategies 
and plans.  The statistical approach 
we developed can be used to formally 
compare results from the PRA 
Testbed runs to live test shots. The 
literature describes various methods 
for validating models, including 
graphical comparisons between 
live and simulation outcomes, 
hypothesis tests to compare means, 
and Fisher’s combined probability 
test to compare distributions. 
These methods, however, do not 
address potential correlation in 
the test results, described below, 
that may occur in PRA scenarios.

PRA TESTBED OVERVIEW 
The PRA Testbed is a complex 

federation of models. The individual 
federates model elements of the 
ship’s combat system plus the 
environment and the threat. For 
example, to model USS America’s 
combat system, the PRA Testbed 
includes federates for each of the 
ship’s air defense radars (SPS-48, 
SPS-49, and SPQ-9B), each of the 
missile systems (Rolling Airframe 
Missile (RAM) and Evolved SeaSparrow 
Missile (ESSM)), the command and 
decision system (Ship Self-Defense 
System (SSDS)), and other combat 
system elements. The PRA Testbed 
also includes federates that model 
environmental conditions and 
specific incoming cruise missiles. 
The federates run simultaneously 
and interact with each other over 
a network. Consequently, the 
PRA Testbed inherently includes 
interactions between systems. For 
example, if a ship’s self-defense 
decoy or countermeasure deceives 
an incoming cruise missile, the 
threat federate will alter the missile’s 
trajectory, which is fed into the 
radar federates, which provide new 
positional updates to the tracker 
federate, which feeds a new track 
into the command and decision 
federate, which can then affect the 
scheduling of weapon launches. 

A typical PRA Testbed scenario 
includes multiple incoming cruise 
missiles and multiple decoys and self-
defense missiles. A notional scenario 
consists of two incoming threat 
cruise missiles with two RAM missiles 
launched against each cruise missile 
(four RAM total). Four scenarios, 
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examining four different threats, 
will be executed in live testing.

MODEL VALIDATION 
Validation is the process of 

determining the degree to which a 
model and its associated data provide 
an accurate representation of the 
real world from the perspective of 
the intended uses of the model. The 
intended purpose of the PRA Testbed 
is to extend live test results to other 
environmental conditions and threats 
by first showing that the model can 
replicate the results of the live test 
events with known environmental 
conditions and threats. Many of 
the individual federates within the 
PRA Testbed have been used in 
previous studies, and consequently 
have been validated separately. 
However, the overall PRA Testbed 
that brings together all of the 
federates has not been validated 
in an end-to-end manner. 

Our approach examines 
intermediate metrics to increase 
the amount of data available for 
the validation. Using PRA only 
would provide one data point per 
event – yes/no, the ship defeated 
the raid. Each of the continuous 
metrics, however, provides more 
than one response per event. For 
example, a single event (live test 
or PRA Testbed run) will yield two 
initial detection ranges (when the 
ship detects each cruise missile), 
four RAM miss distances, and 
four RAM intercept ranges. 

A statistical model is built 
for each of the continuous 
metrics. For example, using initial 

detection range (IDR), the statistical 
model can be expressed as

IDR = β0 + β1TestType + β2TestThreat 
+ β3(TestType * TestThreat) + ϵ. 

(1)

The statistical model is a function 
of two categorical factors: Test Type 
and Test Threat. Test Type has two 
levels: live test or simulation run. Test 
Threat has four levels for the four 
threat categories presented during live 
testing. The model also includes the 
interaction term. If Test Type is not 
significant, the live tests and the PRA 
Testbed runs are providing statistically 
indistinguishable data. Previous testing 
shows that the initial detection range 
can vary substantially from one threat 
to the next, so the factor Test Threat 
should be statistically significant. 
The interaction term will indicate 
whether differences between live test 
shots and PRA Testbed runs depend 
on a specific test threat (e.g., the PRA 
Testbed is providing good results 
for only three of the four threats). 

POWER CALCULATIONS
Statistical power is a useful tool 

for determining data requirements 
for validation. More data (e.g., more 
PRA Testbed runs or more live test 
events) result in higher probabilities 
of detecting differences between 
the PRA Testbed and live tests in 
the midst of variability in the data. 
In this example, the number of 
live test events is limited to one 
event per threat category, so the 
statistical power is used to select 
the number of PRA Testbed runs. 
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Because the observations within 
a single event may be correlated, 
IDA’s analysis examined power curves 
for “best-case” and “worst-case” 
scenarios. The best-case scenario 
assumes that the two detection ranges 
within a single event are completely 
independent of each other. The worst-
case scenario assumes that the two 
detection ranges within a single event 
are perfectly correlated. To illustrate 
this correlation, consider the two 
initial detection ranges from a single 
event (live event or simulation run). 
Since both threats in a scenario are 
identical and fly similar flight profiles, 
if a radar detects the lead threat at X 
nautical miles, it likely will detect the 
trail threat at about the same range. 

Figure 1 shows power curves for 
the factor Test Type for the response 
initial detection range. Statistical 
power in this case measures the 
probability to correctly conclude 
that the PRA Testbed and live testing 
are providing different results when 
they truly are different. The curves 
in Figure 1 assume a signal-to-noise 
ratio of 1.2 There were no historical 
data with which to determine an 
appropriate signal-to-noise ratio. 
Ultimately, a signal-to-noise ratio 
of 1 was selected because a smaller 
signal-to-noise ratio would imply 
that the model results and live 
results essentially overlap. If the 
two distributions completely or 
nearly completely overlap, then the 

Figure 1. The power curve, assuming a confidence level of 95 percent and using  
a signal-to-noise ratio of 1, for the factor Test Type and the response initial 
detection range. The best-case scenario assumes detection ranges within a 
single event are completely independent; the worst-case scenario assumes 

that detection ranges within a single event are perfectly correlated.

2 The signal-to-noise ratio is a ratio of the signal, which is the desired detectable change in the 

response variable, and the noise, which is the magnitude of the inherent system variability.
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 Figure 2. The separations between model and live test notional initial 
detection range distributions for signal-to-noise ratios of 0.5, 1, and 2.

PRA Testbed provides a reasonable 
representation of the real world. If 
the signal-to-noise ratio is larger 
than 1, the two distributions are 
separated enough to conclude that 
the PRA Testbed does not provide 
a reasonable representation of 
the real world. Figure 2 illustrates 
this point, showing the separation 
between normal distributions for 
three different signal-to-noise ratios. 

Figures 3 and 4 show the power 
curves for the factor Test Threat 
and the Test Type x Test Threat 
interaction for the response initial 
detection range. In Figure 3, the 
power curves are based on a larger 
signal-to-noise ratio of 2 because past 
operational testing indicates that 
combat system performance varies 
significantly between different threats. 
Consequently, large differences in 
the results should occur that are 
easy to detect. In Figure 4, the power 
curves using a signal-to-noise ratio 

of both 1 and 2 are shown to cover 
a wider range of possibilities.

The various power curves 
exhibit similar behavior, and all 
curves show only incremental gains 
in power after just 10 PRA Testbed 
runs. Similar behavior is seen with 
other continuous metrics such as 
missile miss distance. The small 
gains in power are attributable to the 
fact that there will be only one live 
test event per test threat. Overall, 
the figures show that this approach 
has reasonable power (0.61 to 0.91 
at 20 runs) to detect differences 
between threats and marginal power 
(0.49 to 0.79 at 20 runs) to detect 
differences between the model and 
live test results when aggregating over 
all threats. Unfortunately, the only 
way to improve the ability to detect 
differences between the model and live 
testing, especially for a given threat 
(Figure 4), is by adding expensive 
live tests; in the case of LHA 6, no 
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Figure 4. The power curve, assuming a confidence level of 95 percent 
and using the signal-to-noise ratios 1 and 2, for the interaction factor 

Test Type x Test Threat and the response initial detection range.
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Figure 3. The power curve, assuming a confidence level of 95 percent and using a signal-to-
noise ratio of 2, for the factor Test Threat and the response initial detection range.  The best-case 

scenario assumes that detection ranges within a single event are completely independent; the 
worst-case scenario assumes that detection ranges within a single event are perfectly correlated.
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additional live tests can be added 
to the test program at this point. 

STATISTICAL ANALYSIS
Once the data are collected, an 

analysis will need to be conducted 
to support validation. As noted 
earlier, one of the complications that 
the analysis will need to consider is 
possible correlation in the data. If 
complete independence among all of 
the data is assumed (or no correlation 
between responses from the same 
event), the statistical model is a 
standard linear model. For example, 
for initial detection range, the model is

IDRi = β0 + β1TestTypei + β2TestThreati 

+ β3(TestType * TestThreat)i +ϵi   

(2)

where i=1,2,…,N is the total number 
of observations, and ϵi~N(0,σ2) 
are the model errors. The model 
errors ϵi are assumed to follow a 
normal distribution with a mean of 
0, a constant variance σ2, and are 
independent of one another. 

To account for the possibility 
that observations from the same 
event (or group) are correlated, a 
linear mixed model is employed. 
A mixed model allows for a wide 
variety of correlation patterns (or 
variance-covariance structures) to 
be explicitly modeled through an 
additional random effect, δi. For initial 
detection range, the mixed model is 

IDRij = β0 + β1TestTypei 

+ β2TestThreati + β3 
(TestType*TestThreat)i +δi+ϵij 

(3)

where i=1,2,…n is the total number 
of events (live test and PRA Testbed 
runs), j=1,2 because there are two 
recorded IDRs per event, and β0,…,β3 
are the fixed effect model coefficients. 
The terms δi and ϵij are random 
effects and represent two sources of 
variability, where 

 y δi represents the random error 
associated with the ith test event 
and accounts for potential 
correlation between the results 
in a single test event, and 

 y ϵij represents the random error 
associated with the jth observation 
of the ith test event and plays the 
same role as ϵi in Equation 2.

Because δi and ϵij are random 
effects, they are represented by a 
distribution. It is common to assume 
that these effects are normally 
distributed (δi~N(0,σδ

2) and ϵij~N(0,σ2)) 
and that δi’s and ϵij’s are independent. 
These assumptions introduce the 
following variance-covariance matrix:

(4)

where the off-diagonal elements  
are 0 and the diagonal elements take 
the form

(5)

This variance-covariance 
structure assumes that observations 
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in different groups are independent 
and that the correlation between two 
IDRs within a single event is constant.

(6)

Notice that when there is 
little to no correlation between 
observations within a group (i.e., 
σδ

2≈0), the model and the analysis 
will simplify to the model and 
analysis presented for the complete 
independence case (see Equation 2). 

It is important that the data 
analysis reflect the true nature of 
the data. Failure to account for the 
potential correlation could lead to  
a wrong conclusion. To demonstrate 
the importance of the analysis 
reflecting the true nature of the data, 

an example dataset was simulated.3 
In the simulated dataset, Test Threat 
will be significant, but Test Type is 
not. The example considers just two 
test threats and five PRA Testbed runs 
per threat, providing 24 observations. 

Tables 1 and 2 provide  
the results of the analysis for 
the two modeling assumptions. 
Table 1 reports the fit of the linear 
regression model, which assumes 
that observations within a group 
are completely independent. Test 
Type and Test Threat are both found 
to be significant at the 95 percent 
confidence level.4 Unfortunately, 
this conclusion is wrong because 
the data were generated assuming 
that Test Type was not significant. 
Table 2 reports the fit of the linear 
mixed model, which allows for 

Table 1. Standard Linear Regression Model Results

Parameter Estimates

Term Estimate

95% Confidence 
Interval

p-value
Lower 
Limit

Upper 
Limit

Intercept (β0) 35.87 35.21 36.53 0.0001

Test Type[Live] (β1) 0.66 0.01 1.31 0.0485

Test Threat[A] (β2) -4.49 -5.14 -3.83 0.0001

Test Type[Live] x Test Threat[A] (β3) 0.33 -0.32 0.98 0.3028

3  The data set was generated using Equation 2 with the model settings 𝛽0=35, 𝛽1 = 0, 𝛽2 = 5, 𝛽3=0 

and the variance components 𝜎𝛿
2 = 3 and 𝜎2 = 0.1 (roughly 97 percent correlation).

4  P-values are used to determine the outcome of a statistical hypothesis test, and they represent 
the probability of the outcome occurring by chance alone. The smaller the p-value, the higher 
the statistical confidence in the conclusion. The p-value for Test Type is 0.0485 and for Test 
Threat it is 0.001, seen in Table 1. Both p-values are less than the cutoff value of 0.05, which 
corresponds to significance at the 95 percent confidence level.
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Table 2. Linear Mixed Regression Model Results with a Random Group Effect 
To Account for Correlation Between Observations in the Same Event

the assumption that observations 
within a group are correlated and, 
in fact, reports that the estimate of 
correlation is roughly 92 percent. The 
only factor found to be significant 
at the 95 percent confidence level 
is Test Threat.5 This conclusion is 
consistent with the assumption that 
was made when generating the data. 
This clear difference between the two 
approaches demonstrates the need for 
using the linear mixed model analysis 
to account for potential correlation 
within the data. The linear mixed 
model provides an estimate of the 
correlation using the data and does 
not require any guesswork by the 
analyst or subject matter expert.

CONCLUSION
Overall, the approach outlined 

above provides a straightforward 
method for validating a simulation 
for which a limited number of live 
test events are available. By using a 
statistical model, results from the 
PRA Testbed runs can be formally 
compared to the live test events. 
The model allows analysts to test 
for a Test Type effect, a Test Threat 
effect, and an interaction effect. If the 
Test Type effect is not statistically 
significant, then the PRA Testbed 
runs are providing meaningful data. 

The power curves help analysts 
understand how many PRA Testbed 

Parameter Estimates

Term Estimate

95% Confidence 
Interval

p-value
Lower 
Limit

Upper 
Limit

Intercept (β0) 35.87 34.76 36.98 0.0001

Test Type[Live] (β1) 0.66 -0.44 1.77 0.2072

Test Threat[A] (β2) -4.49 -5.59 -3.38 0.0001

Test Type[Live] x Test Threat[A] (β3) 0.33 -0.78 1.44 0.5092

Random Effect Variance 
Component

95% Confidence 
Interval Percent 

of TotalLower 
Limit

Upper 
Limit

Group 1.48 0.65 5.89 91.49†

Residual 0.14 0.07 0.37 8.51

Total 1.62 0.76 5.52 100

† Estimation of correlation.

5 The p-value for Test Type is 0.2072 and for Test Threat is 0.001 (also see Table 2). Only the 
p-value for Test Threat is less than the cutoff value of 0.05, which corresponds to significance 
at the 95 percent confidence level.
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runs are needed for validation. 
Because so few live test events 
are planned, only small gains in 
power after 10 PRA Testbed runs 
per scenario are observed. The AW 
SSD Enterprise effort is planning 
to execute 30 runs per scenario 
to exercise the simulation and to 
discover any bugs. Consequently, 
sufficient PRA Testbed data for the 
comparison should be available. 

The proposed validation approach 
has several limitations. Normally, one 
constructs a test to determine whether 
two items are different. The approach 
is to assume that they are the same 
(the null hypothesis) and prove that 
they are statistically different by 
rejecting the null hypothesis. However, 
this approach does the opposite, 
which provides a weaker claim. 
Furthermore, due to the fact that there 
will be just one live shot per threat 
condition, the analysis will not be able 
to adequately differentiate between 
problems with bias versus variance in 
the model. The limited live testing in 
this example limits the usefulness of 
the experimental design approach. 

More research is needed to 
determine appropriate methods for 
selecting what live points within the 
operational space should be chosen 
for an optimal ability to validate the 
model. Design of experiments is a 
potential path toward better model 
validation. A combined experimental 
design and analysis approach 
will allow for sizing the number 
of live tests to detect meaningful 
differences, strategic replication 
to address variance/bias, and a 
parametric analysis to incorporate 
sensitivity and prediction analyses. 

Despite the limitations of few 
live data, this approach illustrates 
how more rigorous statistical 
methods provide the testing and 
acquisition communities more robust 
and objective conclusions from 
both M&S and live test data.  IDA, 
in support of DOT&E, will continue 
to lead the way in advocating for 
and researching new statistical 
methods for test and evaluation 
in the Department of Defense.
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holds a Doctor of Philosophy in physics from the State University of New York 
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Dr. Dickinson is a Research Staff Member in IDA’s Operational Evaluation 
Division. She holds a Doctor of Philosophy in statistics from the Virginia 
Polytechnic Institute and State University.
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