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Abstract—We explore the problem of locating documents
pertaining to critical technologies (e.g., restricted, proprietary, or
sensitive technical information) from among a massive and highly
heterogeneous collection of largely unimportant files. We present
a system that employs the use of supervised machine learning
(i.e., pattern recognition) to detect such critical documents. To
address difficult or ambiguous instances, we supplement the text
classifier with an automated keyword search. That is, we extract,
in an automated fashion, discriminative terms (i.e., keywords)
from the training set and match them against documents during
the classification process. We demonstrate the effectiveness of
this hybrid approach through a series of validation tests and
case studies.

I. INTRODUCTION

We explore the problem of locating documents pertaining
to critical technologies from among a massive and highly
heterogeneous collection of largely unimportant files. We refer
to such sensitive documents simply as critical documents,
which may contain restricted or proprietary information. We
explore the extent to which we can detect critical documents
on user workstations, laptops, and file servers (an environ-
ment we refer to as “in the wild” given the high level
of heterogeneity among files on workstation hard drives).
Such a capability has applications to several areas including
consequence management of cyber security breaches. How
does one go about finding such “needles in haystacks” or even
determining if any “needles” exist on a particular system?
The standard approach to making such a determination is
to employ the use of keyword searches (or queries). The
documents returned by the search are then manually reviewed
by a human to determine and confirm relevancy to a given
critical topic. (Throughout this paper, documents relevant to a
critical technology of interest are referred to as positive, while
documents unrelated to the critical technology are referred
to as negative.) Such keyword searches to locate critical (or
positive) documents pose several challenges.

Keyword Search Challenges:
1) Ad hoc Nature of Queries: The keywords (or terms)

used in a search query are often chosen in an ad hoc
manner. For certain topics, it may be unclear as to which
keywords are best to efficiently hone in on the most
relevant documents. We find that this especially holds
true for documents pertaining to critical technologies.

2) Over-Constrained Queries: The keywords in a query
may not be fully representative of the topic. Thus, many
relevant documents will be missing from the search
results (i.e., false negatives).

3) Under-Constrained Queries: The keywords may ap-
pear in numerous documents in a text corpus in-
cluding many non-relevant documents (i.e., false pos-
itives). Moreover, certain words have multiple meanings
(e.g., the acronym CAT will be present in documents
referring to cats). This last point is especially pertinent
to the DoD, which engages in frequent use of acronyms.

4) Relevancy: Not all relevant documents returned by
a keyword search are equally relevant. Moreover, the
frequency of a keyword within a document may or
may not have a connection to document relevance. For
instance, a PowerPoint briefing highly pertinent to a
certain technology may, in fact, only include the name of
the technology in the title slide while discussing esoteric
aspects of the technology in the remaining slides. We
find that standard document relevancy (or ranking) mea-
sures such as TF-IDF and BM25 can prove inadequate
under such scenarios (see [9] for more information on
these measures).

Indeed, these challenges have resulted in a significant bur-
den on the staff of the organization sponsoring the present
work, which motivated the authors to investigate alternative
solutions. Here, we investigate the use of supervised machine
learning (i.e., pattern recognition) to detect and locate critical
documents. In supervised learning, given a set of both positive
examples (i.e., sample documents representing the topic of
interest) and negative examples (i.e., sample documents not
representing the topic of interest), a mathematical model
describing how words in a document affect its topic is
constructed. This model is referred to as a classifier1 and
is used to correctly categorize (or classify) documents as
either pertaining to the topic of interest or not. The example
documents used to construct the classifier are referred to as
the training set, and the process of constructing a classifier
from these examples is referred to as training or learning.
The precision of a classifier is the fraction of retrieved
documents that are relevant to the search [9]: precision =

1Note that, throughout this paper, we use the term “classify” in the general
sense of “categorize” as opposed to relating to restricted information.



|relevant documents∩retrieved documents|
|retrieved documents| . The recall of a classifier is the

fraction of all relevant documents successfully retrieved [9]:
recall = |relevant documents∩retrieved documents|

|relevant documents| . Precision and recall
can be combined into a composite score known as the F-score.

An ideal classifier can potentially address all four of
the aforementioned problems associated with standard key-
word searches. For instance, a classifier trained to achieve
both high precision and high recall minimizes both false
positives (under-constrainment) and false negatives (over-
constrainment), respectively. Moreover, under certain machine
learning approaches, confidence scores can be assigned to
documents to infer relevancy to a given topic. A machine
learning approach also has the added advantage of bypassing
the need to manually determine an optimal keyword set for
use in a query. It is the learning algorithm that implicitly
determines, in an automated fashion, the importance of words
to various topics. For all these reasons, we explore the use of
supervised machine learning to address the problem of finding
critical documents. Machine learning, however, faces its own
unique challenges that must be addressed.
Machine Learning Challenges:

1) Class Imbalance: For many realistic scenarios, the class
distribution is skewed heavily towards one category
(or class) and away from the other. More often than
not, it is of primary interest to find or detect the rare
instances compromising the minority class. For the prob-
lem domain covered in this work, documents pertaining
to critical technologies often compromise a very small
minority of all possible files on all possible hard drives.2

It is well-known that such imbalances cause problems
for machine learning algorithms and tend to deteriorate
the accuracy of trained classifiers (e.g., see [3]).

2) High Variance of Negative Class: In this particular
problem domain, the negative class is not only substan-
tially larger than the positive class but also exhibits an
extremely high degree of variance (e.g., heterogeneity).
For instance, a given file system of a workstation may
not only contain critical documents but also non-critical
work-related documents, operating system and library
files, browser cookies, and personal files such as re-
sumes, recipes, or perhaps downloaded articles. Thus,
the level of heterogeneity is significantly higher than in
typical machine learning settings (e.g., classifying news
articles on a news website). If the negative examples
used in training do not adequately reflect this hetero-
geneity, then this can significantly decrease precision.
That is, negative documents not adequately represented
by the negative training examples may be misclassified
as positive.

3) Scarcity of Examples: We find that there often exists
a scarcity of examples for use in training the classifier.
For a variety of reasons, subject matter experts typically

2We should note, however, that on particular file systems used by individ-
uals heavily involved in a critical technology area, there might be a larger
number of documents containing keywords related to the technology. Such
scenarios contribute to the inadequacy of simple keyword searches.

can supply us only with a small set of positive example
documents pertaining to a critical technology. From this,
problems can manifest in two ways. First, if supplied
positive examples are not fully representative of the pos-
itive class, the recall suffers, as positive documents may
be unrecognized by the classifier. Second, it is unclear on
how one should go about finding and selecting negative
examples for inclusion into the training set (especially
given the high variance and large size of the negative
class). Poor choices here can increase the false positives
and hurt precision.

4) Embedded Information: In some cases, given a critical
technology, a largely negative document may contain
a small bit of information pertaining to the positive
class (i.e., the critical technology). These documents
tend to be missed by the classifier, as the document, on
the whole, is more characteristic of the negative class.
However, despite the fact that these cases would not
typically be considered false negatives, we would still
like to detect such instances in large text corpora.

Overview of Approach. In this work, we present a hybrid
system that seeks to address all eight of the aforementioned
challenges. To mitigate aforementioned issues associated with
conventional keyword searches in this problem domain, we
focus primarily on supervised machine learning. To address
the machine learning challenges of class imbalance and high
negative variance, we employ a technique in which the neg-
ative training set is iteratively grown by sampling only the
most informative documents from the negative class. Finally,
we develop an intuitive term weighting measure to extract
the most discriminative keywords from the training set in
an automated fashion. For documents labeled as negative by
the classifier, in a second phase of analysis, we match these
discriminative keywords against documents labeled negative
and sort results by a function of hit count (descending order).
This supplemental automated keyword search serves to help
hone in on both false negatives arising from a scarcity of
training examples and true negative documents embedded with
a small bit of positive (and possibly critical) information. Thus,
all eight of the problems are addressed by this hybrid system.
We demonstrate its effectiveness through a series of validation
tests and case studies.

II. PROPOSED METHOD

We now present our approach for the detection of critical
documents. We begin by briefly describing the core of the
approach: machine learning.

A. The Learning Algorithm

We employ the use of Linear Support Vector Machines
(LinearSVM) as our main learning algorithm [4]. LinearSVMs
have been shown to be both scalable and well-suited to
classifying high-dimensional but sparse data such as text
documents (e.g., see [2], [4], [7]). Formally, we begin with
a set of labeled documents D = {(d1, y1), . . . , (dn, yn)} from
which we will build our document classifier, where yi is



the topic label of document di for all i.3 Each document in
the training set D is represented as a bag of words (i.e., a
multiset structure). To employ the use of machine learning,
we must transform each document di ∈ {di}ni=1 into a feature
vector ~xi for use in machine learning. Each component of the
vector represents a term (e.g., word) from the vocabulary of
D, and the component value is assigned using a well-studied
weighting scheme referred to as TF-IDF. More information on
such representations can be found in [9], [10].

A LinearSVM algorithm accepts D̂ =
{( ~x1, y1), . . . , ( ~xn, yn)} as input. A linear separator (or
hyperplane4) that best divides the positive documents
from negative documents is sought. This can be stated
mathematically as an optimization problem [2], [5]. For
brevity and focus, formal presentations and derivations of
the problem are omitted.5 However, the basic idea can be
graphically illustrated through simple example. In Figure 1,
of the four possible hyperplanes that divide the red circle
points and green square points, it is the hyperplane shown in
plot (D) that leaves the largest margin and best divides the
points. New documents supplied to the algorithm are plotted
in this space and classified as positive or negative based on
which side of the hyperplane they fall. We conclude this
section by noting that the distance of a new document from
the hyperplane can be employed by the classifier as a score
of confidence in the assignment of documents to particular
categories (positive or negative in the binary case). Next, we
discuss the extraction of discriminative terms from training
sets.

Fig. 1. SVM classifiers are essentially linear separators that best divide
existing data. In this simple 2-dimensional illustration, it is the linear separator
in (D) that best divides the points (and is, thus, chosen).

B. Extracting Discriminative Terms from Training Sets

Which terms are the most discriminative in accurately
distinguishing critical documents? Such terms have two uses
in our work (to be discussed in greater depth later): 1)

3For instance, y0 = 1 if document d0 is a critical document, and y0 = 0
otherwise.

4A linear separator, formally referred to as a hyperplane, divides an n-
dimensional space in half. For instance, in 2-dimensional space, a linear
separator is simply a line. In 3-dimensional space, it is a plane.

5For more information, the reader may refer to the original paper by Cortes
and Vapnik [2].

retrieving potentially informative negative examples for use
in training and 2) performing an automated keyword search
to “catch” critical documents missed by the classifier. We
leverage the concepts of entropy and information gain from
the field of information theory [9]. The entropy H of a
set of labeled documents D measures impurity as follows:
H(D) = −p+ log2(p

+) − p− log2(p
−), where p+ and p−

are the proportions of positive and negative documents in D,
respectively.6 For instance, if all documents are positive (or
negative), H(D) = 0, while a perfectly even split of positive
and negative documents has entropy of 1. The information
gain IG of a word w in training set D, then, is the expected
entropy reduction due to segmenting on w:

IG(w,D) = H(D)− |Dw|
|D|

H(Dw)− |Dw|
|D|

H(Dw),

where Dw is the set of documents in D containing word w.
Thus, words with the highest information gain in a training
set are expected to be the most discriminative. We also
devise a second intuitive term weighting measure to extract
discriminative terms we refer to using the somewhat oxy-
moronic phrase, “probably necessary but insufficient” or PNI.
Intuitively, the most discriminative terms will be present in the
positive class with high probability (i.e., probable necessity)
but may also occur in the negative class with lower probability
(i.e., insufficiency). Our objective, then, is to identify terms
with maximal necessity and minimal insufficiency as follows:

PNI(w,D) =
pdf(w) + 1

|D+|
· log2

|D−|
ndf(w) + 1

,

where pdf(w) is the positive document frequency of w
(i.e., the number of positive documents containing w), ndf(w)
is the negative document frequency of w, and D+ and D−

are the sets of positive and negative documents (respectively).
Due to the sensitive nature of critical technologies, we can-
not demonstrate keyword extraction on actual data from our
problem domain. Thus, we demonstrate performance on the 20
Newsgroups dataset [1], a standard benchmark dataset in text
classification. The 20 Newsgroups dataset is a collection of
documents from twenty newsgroups each covering a different
topic. We consider three randomly selected newsgroups and
use each as the positive class, while considering the remain-
ing 19 groups as the negative class. As shown in Table I,
both measures are equally effective in extracting words most
intuitively representative of each newsgroup topic. For this
work, we choose to use PNI for keyword extraction.

C. Developing Training Sets

We now turn our attention to construction of training sets,
the input to both the LinearSVM and PNI algorithms. Recall
from earlier that adequate training examples for this problem
domain are scarce. We are typically supplied with just a small
set of only positive training examples. Thus, we initially com-
plement this training set with a small selection of random DoD

6Note that log2(0) is taken to be 0.



Newsgroup Information Gain PNI
sci.electronics circuits, voltage, amp, electronics, detector circuits, voltage, electronics, amp, power
sci.space space, orbit, nasa, moon launch space, orbit, nasa, moon, launch
talk.politics.guns guns, firearms, weapons, batf, atf guns, firearms, weapons, batf, atf

TABLE I
TOP 5 DISCRIMINATIVE TERMS (i.e., KEYWORDS) EXTRACTED FOR THREE NEWSGROUPS IN THE 20-Newsgroups [1] TRAINING SET. BOTH MEASURES

ARE EQUALLY EFFECTIVE IN EXTRACTING KEYWORDS THAT BEST CAPTURE THE TOPIC OF EACH NEWSGROUP.

technical reports unrelated to the topic of interest (i.e., negative
examples). This is our initial but incomplete version of training
set D. We find that, for even mediocre performance, the
training set must be significantly augmented and transformed.
The positive examples are sensitive, supplied by subject matter
experts, and are, for all practical purposes, fixed. Thus, to
improve classifier performance, we must focus on augmenting
the negative examples. As described previously, the negative
class is characterized by significantly larger size and variance
than that of the set of critical documents in which we are
interested. Our first task is to grow the pool of negative
documents to better capture the size and variance of the
negative class. However, since our negative class consists
of almost any kind of file that could ever be present on a
computer hard drive, it is a virtually infinite set. Thus, we focus
on acquiring only the most informative negative examples.

What are informative examples? Refer to Figure 1 and note
that the placement of the hyperplane is wholly dependent on
those points (i.e., documents) that are closest to the “border”
between the positive and negative class. Such “border-line”
examples are referred to as support vectors and are used by
the LinearSVM learning algorithm to approximate the optimal
placement of the hyperplane. This fact yields a key insight:
examples not located near the border can be discarded, as
they have no effect on the learned classifier or its ultimate
performance. The retained examples near the hyperplane are
referred to as informative. This leads us to an intriguing
approach to improving the set of negative examples: using the
initial (or most recently trained classifier) to seek out negative
examples that are either near the hyperplane of a classifier
(i.e., ambiguous) or completely misclassified by a classifier. In
the process, we are able to iteratively improve the classifier by,
in effect, exploiting its own inadequacies. This process, known
as active learning [3], is realized in three distinct ways.

1) Growing the Pool with Non-Technical Informative Ex-
amples: First, we run our initial classifier on a random
workstation hard drive on which, with near perfect certainty,
no critical documents are present (e.g., the personal laptop
of the first author). In the trained classifier, the distance of
support vectors from the hyperplane is normalized to 1 (for
positive support vectors) and −1 (for negative support vectors).
Thus, we should take documents present on the hard drive with
hyperplane distance values of greater than −1 and add them
to the pool of negative examples.7 Note that this will include
documents misclassified as positive in addition to documents
correctly classified as negative but near the border. This step is

7In practice, we generally only add documents with hyperplane distance
values of greater than −0.1, as we find this is sufficient.

effective in acquiring informative system or application files
that are likely to be encountered on many hard drives. By
incorporating them into the pool of negative examples, we are
able to accurately disregard them during the text classification
process.

2) Growing the Pool with Technical Informative Examples:
Second, we take the discriminative terms extracted from the
training set using our PNI measure and use them to conduct
keyword searches on both Google Search and Google Scholar.
Our aim here is to locate documents that contain terms highly
relevant to the critical technology in question but, at the
same time, are wholly unrelated8 to the critical technology.
We find that this heuristic is reasonably effective in locating
highly informative (or “border-line”) negative examples. Such
training documents contribute significantly to the robustness
of the final classifier.

3) Balancing the Training Set: At the conclusion of the
previous two steps, we typically arrive at a pool of negative
examples that is significantly larger than the set of positive
examples. Our final step is to filter down the constructed
pool of negative examples. We correct this balance by again
leveraging hyperplane distance and the inadequacies of the
most recently trained classifier. We begin with a single positive
example and a single negative example (randomly drawn
from our pool) and train a classifier based only on these
two examples. We, then, run the resultant classifier on the
remaining examples. The example that falls closest to the
hyperplane is added to the training set, and a new classifier
is trained only on these three examples. The process repeats
until no further examples are nearer to the hyperplane than
the support vectors, which corresponds to a distance threshold
of ±1. This approach to “under-sampling” the training pool
serves to both select out the most informative (or “best-of-
the-best”) examples and also to remove redundancy from the
training set. Interestingly, in the process of these iterations, the
training set becomes balanced, as sets of examples near the
border tend to be more balanced than the dataset as a whole
[3]. Thus, by sampling only the most informative examples
and removing redundant ones, we are able to also correct the
class imbalance.

We conclude this section by noting that these three phases
of augmenting the set of negative training examples can be
repeated in an iterative fashion to arrive at the final training set.
We now turn our attention to the automated keyword search.

8Since positive examples consist of largely sensitive information, most or all
documents located through public search engines will be decidedly negative
examples. Our objective here is to find those examples that are likely confusing
to our existing classifier.



D. Automated Keyword Search

As described previously, by improving the set of negative
examples, we are better able to improve the precision of our
final classifier. However, we have not augmented the set of
positive examples in any way. Depending on the dataset, this
can potentially deteriorate the recall of our classifier. That
is, if the positive training examples do not adequately reflect
or represent all critical documents in the positive class, then
some encountered critical documents may be misclassified as
negative. As mentioned previously, sets of positive examples
for critical technology areas are typically limited, supplied by
subject matter experts, and cannot be further augmented. Thus,
we must find alternative means to assist analysts in honing
in on false negatives. We extract keywords from the training
set using the PNI measure described in Section II-B. During
the text classification process, we match the top 15 keywords
against each document analyzed. The final results, then, not
only show the assigned class of the document (e.g., positive
or negative), but show keyword matches as an aid to analysts.

E. Putting it All Together

Using the algorithms and methodologies described in the
previous sections, we combine the classifier and automated
keyword search into a single, cohesive application. On the
back end of the application, we implement a text extraction
and indexing engine that combs through documents on a file
system, extracts plain text from various document formats
(e.g., PDF, Microsoft Office), parses the text, and stores word
counts into a relational database. For the front end, we design
the graphical user interface for the system as a local Web
application, which allows users to control aspects of the
text extraction, indexing, machine learning classification, and
automated keyword search. The results of the classifier and
automated keyword search are output to an Excel spreadsheet.
Each row shows the filename of the document, whether or not
the document is categorized as pertaining to a critical technol-
ogy, the confidence score of the categorization (i.e., distance
to hyperplane), and the automated keyword matches. Finally,
we sort documents assigned to positive classes by confidence
score and sort documents assigned to the negative class by
cosine similarity [9] to the keyword matches (both sorts are
in descending order). In the next section, we will evaluate the
extent to which this Excel report allows analysts to quickly
hone in on the most critical documents on large file systems.

III. EXPERIMENTAL EVALUATION

For the purpose of this evaluation and to demonstrate
our approach, we focus on the binary classification problem
of finding documents pertaining to a very particular critical
technology. Due to the sensitive nature of our problem domain,
we will simply refer to this critical technology as Technology
X. We constructed a training set for Technology X using the
methodology discussed in Section II-C. Our final training set
consisted of 51 positive examples of Technology X and 53
negative examples for a total of 104 training examples. We
begin by discussing validations tests.

A. Validation Tests

1) 10-Fold Cross-Validation: Using our constructed train-
ing set, we first performed 10-fold cross-validation, a standard
technique used to estimate the extent to which the performance
of a trained classifier will generalize to new, independent
datasets (i.e., real-world settings) [9]. As shown in Table II,
the LinearSVM classifier performed exceedingly well overall,
especially given the relatively small number of training ex-
amples available to us.9 (For comparison purposes, we also
show results for the Naive Bayes learning algorithm [9], one
of the relatively worse performing learning algorithms.) We
also observed the precision of the classifier to be relatively
higher than the recall. We attribute this to the fact that the
set of positive examples for our problem domain is limited
and fixed. Finally, we found that, on average, the automated
keyword search ranked the false negatives within the top 3 of
those assigned to the negative class.

Algorithm Precision Recall F-Score
LinearSVM 0.98± 0.02 0.93± 0.03 0.95± 0.02
Naive Bayes 0.77± 0.03 0.92± 0.03 0.83± 0.02

TABLE II
10-FOLD CROSS-VALIDATION RESULTS. MEAN PRECISION, RECALL, AND

F-SCORE (WITH STANDARD ERRORS) FOR TECHNOLOGY X. SUCH
RESULTS VALIDATE OUR CHOICE OF LINEARSVM.

2) A “Needle in Haystack” Test: For a more realistic
setting, we design the following validation test. We took five
additional positive examples on which we did not train and
a server for which we were confident that no documents
pertaining to Technology X existed. The server consisted of
nearly half a million files in total. We inserted these five
files into the file system of the server and executed our
classifier on the machine. When sorting all files by distance
to hyperplane (i.e., confidence), we would expect the five
documents pertaining to Technology X to appear at the very
top, and this is precisely what we observed. In this test,
none of the remaining negative documents on the server were
misclassified as positive. Moreover, the automated keyword
search confirmed that no additional documents pertaining to
Technology X existed on this system.

B. Case Study: A Confirmed Positive Case

We acquired an external hard drive on which the home
directories of six users were copied. Exhaustive and time-
consuming reviews by analysts indicated that this drive con-
tained at least a few critical documents pertaining to Tech-
nology X (embedded in a plethora of work-related documents
unrelated to Technology X). In total, the drive consisted of
25,007 documents, mostly technical in nature. Upon execution
of our system, the classifier identified 15 documents as per-
taining to Technology X. A manual review by a subject matter
expert confirmed that all 15 documents did, in fact, pertain to
Technology X. That is, they were true positives. Two of the 15

9We also note that the average area under the ROC curve for LinearSVM
was 0.99.



documents were near the hyperplane and are, therefore, good
candidates for future inclusion into the training set.

Next, to develop an approximation for ground truth, we had
two analysts conduct a manual analysis of the drive using
their existing practices: manual keyword searches using ad
hoc queries. We note that the manual search took a total of
12 person hours, while the classifier (and automated keyword
search) typically complete their processing in seconds. A total
of 21 documents were manually identified by the two analysts
as being related to Technology X. This set included all 15
of the documents identified by the classifier, which left six
remaining documents requiring further examination. A review
by a subject matter expert revealed that three of the six were,
in fact, unrelated to Technology X (true negatives from the
perspective of the classifier). One of the files was determined
to be a legitimate critical document (a false negative for
the classifier). The final two were documents with embedded
information (referred to hereafter as embedded documents).
Recall from Section I that such files are true negatives (in the
sense of machine learning), since, as a whole, the documents
do not pertain solely to Technology X. For instance, one
of the documents was a PowerPoint brief describing various
success stories of different technologies. Only one of the
slides within this document discussed Technology X, while the
remaining slides discussed other technologies. Our automated
keyword search was specifically developed for detection of
such documents in addition to detecting false negatives.

When sorting documents assigned to the negative class in
descending order by cosine similarity, we found that the sole
false negative and one of the two embedded documents were
both within the top 20 (out of nearly 25,000 documents),
while the second embedded document was within the top 70.
Analysts confirmed that such a ranking allows for efficient
detection of critical information. Finally, we found that the use
of only automated keyword searches was wholly inadequate,
as some of the richest documents pertaining to Technology
X did not appear anywhere near the top and the signal-to-
noise ratio was quite low. This further motivates our use of
text classification as the primary retrieval technique in this
hybrid approach. Results are summarized in Figure 2 as a
Venn diagram.

Fig. 2. Venn diagram showing results for our case study. The inner
ellipse is the document set returned by the classifier, while the outer ellipse
is the document set returned by a tedious manual search. (True/False and
Positive/Negative assignments are from the perspective of the classifier.)

IV. RELATED WORK

To the best of our knowledge, there is very little work on
the use of text classification for the detection of sensitive
subject matter such as critical technologies. Literature that
most closely resembles our work involves the use of machine
learning to segment scientific articles by topic (e.g., see [6]).
However, our problem domain is somewhat more difficult than
those addressed in most papers, as the variance and size of the
negative class is significantly higher. Also related to our work,
as referenced earlier, is the large body of literature on scalable
machine learning techniques (e.g., [4]), the class imbalance
problem in machine learning (e.g., [3]), and document retrieval
and relevancy (e.g., [10]). Finally, since we are initially
supplied with a set of only positive examples, research on
learning from only positive and unlabeled examples (or PU
learning [8]) is very loosely related to our work. However,
PU learning methods are largely inapplicable to our domain of
study, since there is, in fact, an abundance of easily-identifiable
negative examples, and the key is really to sample from them.

V. CONCLUSION

In this paper, we have presented a hybrid system that
exploits the use of both supervised machine learning and
automated keyword searches to detect critical documents from
among a large collection of unimportant files. Through a series
of validation tests and case studies, we find that such a hybrid
approach is effective in assisting analysts in locating critical
documents on large file systems. In addition to the cases de-
scribed in Section III, we have subsequently tested the system
on several additional cases with equally successful results.
There are several additional areas we plan to investigate in the
future. These include the application of unsupervised learning
techniques to this problem (e.g., latent semantic analysis and
latent Dirichlet allocation).
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