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ABSTRACT 

Down-looking ground penetrating radar (DLGPR) has been used extensively for buried target detection. Performance of a 

DLGPR is typically measured by calculating the probability of detection (PD) and the false alarm rate (FAR) against a 

target set in a particular soil type. Variability in target sets, including target construction, size, layout, and burial depth, 

make comparing performance of a DLGPR across test sites and soil compositions a challenge. This paper describes a 

recent effort to collect data against a standardized set of target types, layouts, and depths. The goal of this effort is to have 

data sets collected in a uniform manner at various test sites in Australia and Canada for more meaningful comparisons of 

DLGPR performance in a range of soil types. The data is to be used to improve algorithms for the automatic detection of 

targets. This paper will describe test planning and execution, and discuss high-level DLGPR results and ongoing analyses 

from the Australian data collection. 
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1. INTRODUCTION

It is known that down-looking ground penetrating radar (DLGPR) detection performance depends on the soil in which 

targets are buried and on the conditions of the soil when data is collected1. When soil conditions are the same, or similar, 

it is the characteristics of the targets themselves that matter most—with size, composition, and burial depth being the 

primary variables dictating performance. Supervised learning algorithms applied to DLGPR data have been shown to 

improve upon energy-based pre-screeners2. But since targets and clutter manifest as similar-sized and similar-shaped 

hyperbolas in DLGPR data, it is anticipated that additional algorithm improvements will be marginal at best. So where do 

the challenges remain in improving a DLGPR target detection system? 

There is some debate as to whether a DLGPR algorithm should be of a one-size-fits-all variety or a more adaptive one in 

which algorithm branch points are taken based upon characteristics of the data itself. Proponents of the more rigid one-

size-fits-all approach fear that taking the more adaptive approach could result in degraded performance when the system 

finds itself in an environment that has not yet been experienced. Proponents of adaptive approaches are of course up to the 

challenge, but there is a dearth of data collected in varying soil conditions using the same DLGPR system. And when data 

is available, the targets typically differ from site to site. 

To provide datasets that can be used to explore adaptive algorithm approaches, it is best to use a standardized target set so 

that performance differences and DLGPR data characteristics can be attributed to the soil and terrain, rather than to the 

particular target types and burial depths. In this paper, we describe an ongoing effort to collect and analyze DLGPR data 

over a standardized set of targets at sites in Australia and Canada. The effort is a cooperative one between the Night Vision 

and Electronic Sensors Directorate (NVESD) of the U.S. Army, the Defence Science and Technology Group (DSTG) of 

the Australian Department of Defence, and the Defence Research and Development Canada (DRDC) of the Canadian 

Department of Defence. While the primary objective was to provide diverse data for algorithm development, preliminary 

analysis has led to other avenues of exploration, including detection probability prediction based on DLGPR data 

characteristics, which can potentially be used to alert an operator that the system is in a degraded environment, or in an 

environment that is favorable to detection. 

In section 2, we describe in detail the planning and execution of the data collections. Detection performance results are 

found in section 3, along with a primer on DLGPR data and various examples of how to view DLGPR data to understand 

detection performance. Section 4 provides a description of the dual-plate calibration target and how to calculate the real 

permittivity of the soil local to the calibration target, followed by ongoing analyses approaches in section 5.  
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2. DATA COLLECTION DESCRIPTION 

2.1 Standardized Target Matrix Description 

The standardized target set consists of relevant threats that are challenging to detect. Class 1, 2, and 3 targets are metallic, 

minimum metal, and non-metallic, respectively. Class 4 targets have little metallic content. The targets types selected were 

meant to be challenging to detect, hence only one target classified as metal was used. There are also dual plate calibration 

targets buried at the beginning, middle, and end of each lane. The calibration target consists of two circular metal plates 

that are 6 inches in diameter, non-overlapping, and are separated by exactly 4 inches in height by a plastic connector. The 

known separation in height between the two calibration plates is used to determine the velocity of the GPR wave in the 

soil, which can be used to calculate the real part of the permittivity of the soil. Figure 1a shows the target layout for each 

data collection lane and Figure 1b contains the target key. 

 

Figure 1a. Target layout utilized in Australia and Canada. 

 

Figure 1b. Target key. 

The target layout shown in Figure 1 was utilized for all data collection lanes in Australia and Canada, such that the target 

types, target depths, and target layouts are constant across sites, leaving soil, terrain, and climate as the independent 

variables. In each data collection lane, there are three instances of each target class and type buried at two or three depths. 

The depth of each target appears inside the square or circle that represents that target in the layout. Each 200-meter data 

collection lane is split into four 50-meter quadrants, where quadrants one, two, and three contain three instances of each 

target at each of two or three burial depths. Target classes 1, 2, and 3 were buried at three depths: A, C, and D, while target 

class 4 was buried at two depths: A and B. In a given quadrant, the three instances of a specific target class/type were 

buried on the left, center, and right sides of the lane. In the other two quadrants a given target type and burial depth would 

be found at the other two across-track locations, such that a given target/depth combination would ultimately be 

encountered on each side of the lane, as well as in the center. This was done to provide balance and to take into account 

lane trends as well as potential radar panel trends. Targets are buried at 5-meter intervals in each lane in different geometries 

relative to each other. The dual-plate calibration target for computing the real part of the soil permittivity is buried at three 

locations throughout the 200-meter lane. 

Proc. of SPIE Vol. 10628  106280B-2
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 29 Apr 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



In addition to the standardized target layout, the construction of all target classes and types are identical across lanes and 

sites to ensure there are no subtle differences or variations amongst targets of the same type. 

2.2 Sites and Lanes 

Thus far, the effort consists of a six-week data collection in Australia, a three-week data collection in Canada, and a two-

week data collection at the same Canadian site, but in frozen ground and snowy conditions. The Australian data collection 

was executed in fall 2016 at four sites spread across the continent. Figure 2 is a map of Australia with the data collection 

sites identified. The weather conditions and climate varied from site to site and included temperate, cold and rainy, hot and 

sunny, and wet and humid. At site 1 in Australia, two of the three lanes were comprised of specific soil types that had been 

trucked in. The third lane at site 1 consisted of the indigenous soil with a grass covering. At each of the other three sites in 

Australia, two lanes were established by utilizing either open fields or secondary roads within the sites. 

 

Figure 2. Australia Data Collection Locations. 

The first Canadian data collection was executed in fall 2017 at two sites located in New Brunswick. Figure 3 is a map of 

Canada with the data collection location identified as a red star. The two Canadian data collection sites are located about 

30 minutes apart in a temperate environment. Two data collection lanes were established at each site. At site 1, two 

somewhat sparse grassy fields were used, while at site 2, a grader was used to scrape off the indigenous tall grass and 

shrubs. In the winter of 2018, data was collected under frozen ground conditions, as well as with 4 to 6 inches of fresh 

snow on 2 days. 

 

Figure 3. Canada Data Collection Location. 

At site 1 in Australia and at both sites in Canada, soil was collected for later analyses, and some in situ measurements of 

permittivity, permeability, and moisture content were made, but the efforts were not extensive when compared to the 

collection of DLGPR sensor data. Future data collections will include a more significant effort to collect soil information 

at numerous locations in and around the lanes at each site. The real part of the permittivity in each of the lanes was 
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computed using the GPR responses from the top and bottom plates of the dual plate calibration targets that were buried in 

each lane at each site in Australia and Canada. Results are shown in section 4. 

2.3 Execution 

The data collection platform used was a small four wheeled off-road vehicle platform that was modified to accept a DLGPR 

payload and a Differential Global Positioning Satellite (DGPS) so that all GPR sensor data would be tagged with accurate 

coordinates. The platform was chosen for ease of transportation and shipping. The platform has robotic control that allows 

the operator to drive the system remotely or tethered via Bluetooth. All data collection runs were executed with the operator 

controlling the platform in tethered via Bluetooth mode. 

At three of the four sites in Australia, the data collection was executed in 5 days and generally took the following form: 

 GPR data was collected on Day 1, prior to targets being buried so that the efficacy of change detection could be 

assessed. 

 On Days 1 to 2, targets were surveyed, photographed, and buried in the lanes. 

 On Days 2 to 4, GPR data was collected over the buried targets. 

 On Days 4 and 5, targets were excavated, cleaned, stored, and then shipped to the next site. 

More than 5 days were spent at Site 1 since there were three lanes and only two complete sets of targets. At site 2, there 

was not enough time to bury all the targets, so quadrant 3 is missing from lanes 1 and 2 at this site. It typically took several 

days to drive the truck containing the system and targets from one site to the next. 

In Canada, enough targets were acquired such that lanes 1 and 2 at each of the two sites could be populated without having 

to excavate targets from one lane for use in another. Also, since the areas on the two sites could be secured at the end of 

the fall 2017 data collection, the targets were left in the ground for the early 2018 data collection, as well as for a final 

June 2018 data collection and target retrieval and forensics effort. 

Table 1 identifies the number of GPR passes executed at each data collection site. An excursion is one traversal in a given 

direction of travel on a lane. A run is defined as a pass in each direction of travel on the same lane. 

 

Table 1: GPR runs collected at each OCONUS location 

 

3. DETECTION RESULTS 

3.1 Receiver Operator Characteristic Curves 

Top-level detection performance results are given in the form of receiver operator characteristic (ROC) curves by site and 

lane. ROC curves are formed by first matching system declarations, also referred to as alarms, to surveyed target locations, 

and then computing probability of detection (PD) and false alarm rate (FAR) as a threshold is applied to all the alarms. 

Mapping out the ROC curve from low PD to high PD is achieved by rank ordering the alarms by the magnitude of the 

primary decision statistic, and then continuously lowering a threshold such that more and more alarms are considered. The 

maximum PD and maximum FAR occur when all the alarms are used. When the PD does not reach 1.0, it means the sensor 

and algorithm did not generate an alarm near some percentage of the targets. 

Figure 4 shows ROC curves for each lane at each site for the six-week Australia data collection effort. We have removed 

the labels on the x-axis since for this paper since it is the investigation into the causes of detection performance variability 

that are of more interest than the raw false alarm rates themselves. Note the significant variability in detection performance, 
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where we have divided the lanes into three regimes—good (green), average (yellow), and poor (red). In some cases, the 

two extremes were experienced at the same site. Results were good in lane 1 at site 1 (black solid line), while they were 

poor in lane 3 at site 1 (dotted black line). At site 2, results were good in lane 1 (solid red line), but poor in lane 2 (dashed 

red line). The right edge of the colored boxes intersects and separates the ROC curves into Good lanes in which the PD 

was about 0.95 to 1.0, Average lanes in which the PD was between 0.60 and 0.75, and Poor lanes where the PD was 

between 0.25 and 0.35. 

Performance can be separated by target type and depth, and even by particular instance of a target at a fixed location in 

one of the lanes. Recall that the system traversed each of the lanes several times such that the variance in sensor/algorithm 

responses for each target instance/type/depth/class can be studied. 

 

Figure 4. Detection performance ROC curves by site and lane for Australian data collection. 

The maximum PD is highest in lane 1 at site 1 and lowest in lane 2 at site 2. We can plot the GPR detection performance 

as a function of target type for each of these lanes to investigate if a particular target class or type is the driving factor in 

performance. Figure 5 shows ROC curves for each target class in lane 1 at site 1 (left plot) and in lane 2 at site 2 (right 

plot). As in Figure 4, the labels on the x-axis have been removed since the performance comparison between the two lanes 

is of more interest than the raw false alarm rate. However, the limits of the x-axis are the same in both plots so that a direct 

comparison can be made.  

 

Figure 5. ROC curves by target class for the lanes with best (left) and worst (right) PD in Australia. 

All targets in each class are detected in lane 1 at site 1, though at varying FAR values. The FAR at which the maximum 

PD is reached is lowest for Class 1 targets, which are metallic, and highest for Class 3 targets, which are non-metallic. 

Class 2 and Class 4 targets of all types are low-metallic and all are detected at a FAR between that of Class 1 and Class 3 
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targets. The performance against Class 1 metallic targets is best in lane 2 at site 2, though the PD plateaus at about 0.7. 

The PD falls off as a function of metal content in lane 2 at site 2, with the worst PD against non-metal Class 3 targets and 

the PD for low-metal Class 2 and Class 4 targets falling in-between the PD for Class 1 (metal) and Class 3 (non-metal) 

targets. 

It is worth noting that the ROC curves shown in Figure 5 are not a balanced comparison since lane 1 at site 1 contains 

targets from all four quadrants, as shown in Figure 1a, while only quadrants 1, 2 and 4 are populated in lane 2 at site 2 due 

to time restrictions. The target layout is identical in quadrants 1, 2, and 3 and thus there are fewer statistics against the 

target set found in those quadrants in lane 2 site 2, since quadrant 3 was left empty. Though the target set is the same for 

quadrants 1, 2, and 3, the performance can vary from quadrant to quadrant due to different soil conditions, which can vary 

along the length of a lane. We can examine the PD as a function of each quadrant in a lane to attain a measure of 

performance variability in a lane. Figure 6 shows the maximum PD for each quadrant for three lanes, each located at a 

different site in Australia. 

 

Figure 6. Maximum PD as a function of quadrant for select lanes in Australia. 

It is clear from Figure 6 that not all quadrants within the same lane resulted in similar detection performance. The maximum 

PD varies little in lane 1 at site 1, which is the lane with the highest PD in the Australia collection. There is more variability 

in maximum PD in lane 2 at site 2 in Australia, which is missing quadrant 3 and has the lowest PD in the Australia 

collection. The variability in detection performance as a function of quadrant is largest in lane 2 at site 3, which falls in the 

yellow or average performance range in Figure 4. It is interesting to note that quadrants 1 and 3 have similar maximum 

PDs in lane 2 at site 3, while quadrant 2 has a maximum PD similar to those found in lane 2 at site 2 where detection 

performance was the worst. The poor detection performance in quadrant 2 in lane 2 at site 3 could be due to variations in 

grass cover, which can increase subsurface clutter, or due to changing soil conditions along the lane.  

3.2 Scatter Boxplots 

To understand drivers of detection performance in the lanes of interest it is worthwhile to examine the confidence value of 

alarms that are detections of targets and false alarms. An alarm is a system declaration and the confidence value of the 

alarm is the magnitude of the primary decision statistic. Thus, the larger the confidence value of the alarm, the more likely 

the alarm is due to a target. The ideal algorithm or decision statistic would assign to all targets alarms of higher confidence 

value than all false alarms, so that a threshold could be set so that all targets would be detected with no false alarms. Poor 

detection performance could be due to target detections being assigned a low confidence value, false alarms being assigned 

a high confidence value, or both. The larger the separation of confidence value distributions for targets and false alarms, 

the better the decision statistic can identify targets versus false alarms and the better the detection performance.  

In Figure 7, the ROC curve for each target class in lane 1 at site 1 and lane 2 at site 2 is on the left and the corresponding 

scatter boxplots of the confidence values for all targets classes and false alarms are on the right. The scatter boxplot shows 

the 50 percent quartile in yellow and a green line denotes the median value. The blue boxes indicate the upper and lower 

25 percent quartile and any points outside the boxes are outliers. Each individual target detection is a black dot in the 

scatter box plot and each individual false alarm is a red dot in the scatter boxplot. 
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Figure 7. ROC curve (left) and scatter boxplot of confidence values (right) for all target classes and false alarms in lane 1 at site 1 and 

lane 2 at site 2 in Australia. 

The information plotted in the scatter boxplots in Figure 7 informs the shape of the ROC curves of detection results for 

each lane. The lower left hand corner of the ROC curve corresponds to the highest confidence value alarms, which are on 

the right of the scatter boxplots. Alarms are plotted on the ROC curve by descending confidence value, or moving from 

right to left in the confidence value distributions in the box plots. If alarms are a detection, the curve moves up the y-axis 

(PD) and if alarms are false alarms, the curve moves to the right on the x-axis (FAR).  

Lane 1 at site 1 had the maximum PD at a low FAR, as shown in the ROC curves on the left of Figure 7. From the scatter 

boxplot, we can see that the confidence value distributions for all targets are higher than the false alarms. There is little 

overlap between the confidence value distributions of target detections and false alarms, though there are some outlier 

false alarms with higher confidence values. The higher confidence value false alarms affect the shape of the ROC curve 

for all target classes in lane 1 at site 1: all targets in each class are detected, but the high confidence false alarms cause the 

ROC curve to go to the right along the x-axis (FAR) prior to reaching the maximum PD.  

The confidence value distributions for the target detections in lane 2 at site 2 are much lower than those in lane 1 at site 1. 

The median confidence value for the false alarm distribution is slightly higher in lane 2 at site 2 than in lane 1 at site 1. 

However, the poor detection performance in lane 2 at site 2 is not due to high confidence false alarms but due to low 

confidence value target detections. For example, the performance in lane 2 at site 2 was worst against Class 3 targets in 

the ROC curve on the left of Figure 7. When we examine the scatter boxplots for Class 3 targets, we see that the confidence 

value distribution overlaps nearly entirely with the confidence value distributions of the false alarms and that the median 

target detection confidence value is only slightly higher than the median false alarm confidence value. This indicates that 

the algorithm or decision statistic cannot tell the difference between a false alarm and a Class 3 target. The overall poor 

performance in lane 2 at site 2 is due to nearly all target detection confidence value distributions overlapping with the 

distribution of false alarm confidence values. 

3.3 Probability of Detection and False Alarm Rate as a Function of Confidence Value 

The scatter boxplots in Figure 7 show that PD and FAR are a function of confidence value. Figure 8 is a plot that shows 

the relationship between confidence value and PD and FAR. This plot has three axes: the left y-axis is PD, the right y-axis 
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- Lane 1, Site 1

- Lane 2, Site 2

is FAR, and the x-axis is confidence value. The thick lines correspond to plots of PD versus confidence value, and the thin 

line corresponds to FAR versus confidence value. 

 

Figure 8. PD and FAR as a function of confidence value for the same target in lane 1 at site 1 and lane 2 at site 2 in Australia. 

The plot on the right in Figure 8 is a guide for how to read the plot shown in the left. The cyan lines are used to read the 

plot for lane 1 at site 1 and the green lines are used to read the plot for lane 2 at site 2. In this example, we are interested 

in comparing performance between the two lanes at a confidence value of 3. To determine the FAR in lane 1 at site 1 at 

the confidence value of 3, we begin at 3 on the x-axis and follow the cyan line until it hits the thin black curve. We then 

map this intersection to the right y-axis, shown by the solid cyan line, to find the FAR per km for lane 1, site 1 at the 

confidence value of 3. To determine the PD in lane 1, site 1, we begin at 3 on the x-axis and follow the dashed cyan line 

until it intersects the solid black curve. We then map this intersection to the left y-axis to determine the PD in lane 1, site 

1 at a confidence value of 3. One could follow this identical process with the green lines to find the FAR (solid green line) 

and PD (dashed green line) at a confidence value of 3 in lane 2 at site 2. In the example shown in Figure 8 the PD is 1 in 

lane 1, site 1 and just over 0.6 for lane 2, site 2 at a confidence value of 3. At this same confidence value, the FAR is higher 

in lane 2 at site 2 than in lane 1 at site 1.  

For optimal detection performance the FAR and PD lines on the plot in Figure 8 would have as much separation as possible 

in the x-axis, which would indicate that the confidence values assigned to false alarms are lower than the confidence values 

assigned to targets. This behavior is shown in Figure 8 for lane 1 at site 1. If a user wanted to choose a confidence value 

to set as a threshold for system operation, 4.5 would be an ideal choice for lane 1 at site 1, since all targets would be 

detected with no false alarms.  

3.4 B-scans 

To evaluate various approaches to target detection, we study the DLGPR sensor data in its fundamental form, adopting the 

terminology used in Daniels’s book on GPR3. The fundamental response of any DLGPR system is the A-scan, which is 

the radar response of a single element, and is associated with a particular down-track location and a particular across-track 

channel. Figure 9 shows an A-scan response collected over a buried metallic target. The largest response is from the 

ground, followed by two distinct high-magnitude reflections from the target itself. Nearly all other parts of the response 

are zero, including the response before the ground bounce, the response between the ground and the buried target, and the 

response after (or deeper) than the buried target. 
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Figure 9. DLGPR A-scan for a buried target. 

If we rotate the A-scan of Figure 9 by 90 degrees so that the ground bounce is at the top and then plot neighboring A-scans 

to the left and right of it, we get the resultant waterfall plot shown in Figure 10a. All the A-scans of Figure 10a come from 

channel 40, which happens to be the channel in which the target is centered. Thus, the adjacent A-scans are from successive 

down-track scans. In Figure 10a, the x-axis is the local scan number and the y-axis is the time bin number, which can be 

thought of as depth into the ground. To create a down-track B-scan, we create grayscale image of the GPR responses found 

in Figure 10a, which is shown in Figure 10b. The peaks and valleys of the GPR responses are mapped to a color on the 

grayscale color bar, with white being a high-magnitude peak and black being a high-magnitude valley. A target manifests 

itself as a parabola in the B-scan view of the GPR data. The down-track B-scan is essentially a slice of the 3D volumetric 

DLGPR data taken from one channel of the GPR in the down-track direction. The automatic target recognition algorithms 

also analyze companion across-track B-scans. 

 

Figure 10. DLGPR waterfall plot of A-scans (a) and DLGPR Down-Track B-scan (b) for a buried metallic target. 

Examining the DLGPR sensor data in the form of B-scans is insightful for understanding detection performance. Figure 

11 shows down-track B-scan examples of the same target at various depths for lane 1 at site 1 and lane 2 at site 2. 

Proc. of SPIE Vol. 10628  106280B-9
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 29 Apr 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

Figure 11. B-scan examples of the same target in lane 1 at site 1 and lane 2 at site 2 in Australia. 

The GPR response to the ground is the nearly horizontal white/black line in the B-scan. The target responses in the B-

scans are the parabolas of varying intensity shown under the ground. The depths correspond to the burial depth to the top 

of the target. The B-scans shown in Figure 11 are Down-track B-scan examples with the target centered in the B-scan plot. 

The colored boxes in Figure 11 indicate whether the target has been detected. A green box indicates the target was detected 

and the confidence value is listed above the box. A red box indicates that the target was not detected. In lane 1 at site 1, all 

examples of the target are detected and the GPR response to the target is visible at all depths. As the burial depth increases, 

the GPR response to the target appears deeper in the B-scan. It is interesting to note that at Depth A the top of the target 

response blends into the GPR response to the ground. 

The target is detected at depth A and C in lane 2 at site 2, but not at depth D. The target response is faint in the B-scan for 

depth A, more pronounced in the B-scan for depth C and not visible in the B-scan for depth D. It is observed in the B-

scans that there is more clutter at the ground location and just below the ground in lane 2 at site 2. This subsurface clutter 

is potentially why the GPR response to the target is fainter in the B-scan at depth A than at depth C, and why the confidence 

value of the target detection is slightly higher at depth C than at depth A. The target responses in the B-scans for lane 1 at 

site 1 are more crisp and sharp than those for the same target in lane 2 at site 2, which is another observation from the B-

scans that could affect detection performance. 

4. PERMITTIVITY CALCULATION FROM DUAL-PLATE CAL TARGETS 

To understand the detection performance of a DLGPR system in different soil conditions, it is necessary to measure 

characteristics of the soil at target locations in a timeframe close to that during which the data is collected. Soil moisture, 

permittivity, conductivity, and magnetic susceptibility are all quantities that affect the strength of the radar reflection off a 

target. It is difficult to measure many of these soil attributes in situ with accuracy and precision, but the U.S. data collection 

team and NVESD are working on expanding our knowledge, expertise and data collection of soil properties. The Australian 

data collection team at certain sites measured many of the soil properties mentioned above. The U.S. and Canadian team 

collected soil moisture measurements during the Canada collect when time allowed, though it was not a comprehensive 

sampling of all lanes in all conditions. 

 

The dual-plate calibration target was emplaced in all data collection lanes in both the Australia and Canada data collection 

and serves as an opportunity to calculate the real part of the permittivity using the response of the radar, without requiring 

collection or maneuvering of soil samples. The calibration target consists of two non-overlapping metal plates that are 6 

inches in diameter and separated in height by exactly 4 inches. All calibration targets were buried such that they were 

oriented across-track. By observing the magnitude of the radar response to each of the metal plates, we can determine the 

time it takes the radar wave to travel from the top plate to the bottom plate. Since the distance between the top and bottom 

plate is fixed and known, the velocity of the radar wave as it travels through the soil can be calculated, which can in turn 

be used to estimate the real part of the permittivity of the soil at the location of the dual-plate calibration target. The setup 

for calculating the real permittivity of the soil is shown in Figure 12. 
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Figure 12. Setup for calculating the real permittivity of the soil from the dual-plate calibration target. 

Equations required for calculating the real permittivity are listed on the left of Figure 12. The real part of the permittivity 

is denoted by εr and is the result of dividing the speed of light (c) squared by the velocity of the radar wave in the soil 

squared. The velocity of the radar wave in the soil is calculated by dividing two times the distance (D) by the time it takes 

to travel the distance D. To find out the time of travel, we must calculate the number of samples between the magnitude 

of the radar response to the top plate and the bottom plate and multiply this number of samples by the A-scan point spacing 

or the time for all samples of one A-scan to travel into the ground. 

All quantities in the equations on the left of Figure 12 are known, except for the number of samples. The B-scan on the 

right of Figure 12 identifies how the number of samples is found: the sample number corresponding to the largest 

magnitude radar response to both the top and bottom plate are identified and the number of samples is the sample number 

of the top plate subtracted from the sample number of the bottom plate. This calculation can be done for every GPR pass 

on a given lane to attain a measure of permittivity as weather or other conditions may change during the data collection. 

This calculation was completed for all lanes at both the Australia and Canada data collection. The real part of the 

permittivity varied from lane to lane and site to site in Australia and Canada. The permittivity ranged from 3.0 to 12.0 in 

Australia and from 4.0 to 6.1 in Canada. 

5. CORRELATION OF DETECTION PERFORMANCE WITH DLGPR DATA 

CHARACTERISTICS 

We have seen that detection performance over the same set of targets varied significantly from site to site and lane to lane. 

But the objective of the data collection effort was not just to quantify performance, but to understand the reasons for 

good/average/poor performance and to investigate algorithmic approaches for improving performance. There are several 

ways in which the collected data could be leveraged to improve performance. One fairly straightforward approach would 

be to add the new data to sets of old data collected at other test sites, retrain features and classifiers using all the data, and 

arrive at an algorithm that works best using all the diverse data combined. This robust algorithm might be the best of all 

algorithms for all the data available, but it may underperform other algorithms when data is restricted to a particular site 

or lane or soil type. Thus, there is a choice in either developing a one-size-fits-all algorithm, or instead adopting a several-

algorithm solution in which a particular algorithm is essentially tuned to specific soil/terrain types and conditions. 

In order to determine if the several-algorithm approach has the potential for success, we will need to study the GPR data 

itself to see if there are differences that distinguish one soil/terrain type from another, or one soil condition from another. 

We begin by examining the data from one of the good lanes and one of the poor lanes. We would like to determine if there 

are characteristics of the GPR data that give rise to good performance or poor performance. Finding correlations between 

GPR data metrics and performance is the first step. 

In Figure 13, we show down-track B-scans from excursions on site 1, lane 1 and site 2, lane 2, as well as a photo of each 

lane and the ROC curve comparison. The down-track B-scans correspond to 10 meters of data, where the ground bounce 

response of each A-scan has been aligned to time bin 50. The red box is drawn around the portion of the GPR response 

prior to the ground bounce peak (the in-air response), while the green box is drawn around a portion of the GPR response 

after the ground bounce (the shallow subsurface response). The presence of greater clutter signals within the red and green 
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boxes of site 2, lane 2 manifests as lighter shades of white and darker shades of black, and in general more heterogeneity 

than the more uniform or homogeneous responses in the site 1, lane 1 boxes (i.e., more unchanging gray). 

 

Figure 13. Down-track B-scans for two lanes resulting in the extremes of detection performance. 

If for every A-scan we compute standard deviations over different time/depth regimes, we create multiple types of C-scans 

where for every scan and channel we have a positive scalar value. For the red box in-air metric, we choose our start and 

stop time bins as 25 and 40. For the green box shallow subsurface metric, we choose our start and stop time bins as 85-

150. The resultant in-air C-scans for 50-m samples of data taken from each site/lane are shown as grayscale images in 

figure 14, where the elevated levels of clutter from site 2, lane 2 are obvious. It is likely that scattering from the grass is 

the cause of the elevated clutter in the in-air response on the grass lane at site 2. And it is possible that the elevated shallow 

subsurface clutter in the grass lane is caused by root structures that are not present in the dirt lane at site 1. We do not 

suggest that correlation is necessarily causation here, but we next determine if there is a relation between in-air noise and 

PD.   
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Figure 14. C-scans of the in-air standard deviations for two lanes resulting in the extremes of detection performance. 

In figure 15a, we plot the mean value of an entire in-air C-scan corresponding to a 200 meter long excursion on a given 

lane against the maximum PD for that lane—taken from the ROC curves of figure 4, though the curves are truncated in 

that figure. We then use a linear least squares fit to the data to predict what the maximum PD would be in a given lane 

based on the in-air metric for the entire lane. In figure 13b, we compare the actual maximum PD to the predicted maximum 

PD. The results indicate that by merely computing the standard deviation of the A-scan response prior to the ground 

bounce, one can predict the PD within 10 percent or less. Expanding the analysis to include results by quadrant instead of 

lane, as well as including data collected in Canada over the same target set is necessary to ensure the correlations are rooted 

in physical causes—that elevated in-air noise/clutter is a cause of degraded detection performance. 

 

Figure 15. Linear fit of in-air noise versus maximum PD for each of the nine lanes, and predicted-actual PD. 

We explored the concept of a discrete meter that might be used by an operator to determine if detection conditions are 

degraded, or are favorable. We chose thresholds below and above in which we color each C-scan pixel green for low in-

air noise, red for high in-air noise, and yellow for in-air noise level between. It is not clear how well these thresholds will 

translate to the remainder of the data, but we simply demonstrate the possibilities here. Figure 16 shows what an operator 

might see scrolling by as the system is driven down a roadway, where green suggests favorable detection conditions and 

red warns of degraded conditions. 
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Figure 16. Mapping of in-air noise to discrete G/Y/R meter for operator notification of potential degraded detection. 

6. FUTURE WORK 

6.1 Toward Adaptive Context-Dependent Algorithms 

The ultimate objective of a DLGPR detection system/algorithm is to be so highly adaptable that it essentially senses its 

environment in real-time and adjusts thresholds and parameters in such a way that detection performance is optimized. 

There have been efforts in context dependent algorithm development using DLGPR data5, but no algorithm was ever 

adopted due in part to the limitations of the available datasets. The more diverse data collected for this effort may renew 

context dependent algorithm approaches. 

6.2 Soil Heterogeneity and Variogram Analysis 

In section 5.1, we demonstrated the potential of standard deviations of A-scans as predictors of detection performance. It 

is likely there are other physical factors that affect DL GPR detection performance but that which cannot be captured in 

the variance of A-scan responses. The C-scans of figure 9 suggest that textural differences in the DLGPR data may be of 

importance to detection performance. Some authors6-7 have found that detectability of targets in DLGPR data is correlated 

to soil heterogeneity, and that variogram analysis can be used to identify and quantify these soil differences. The diverse 

data collected for this effort is suitable for this type of analysis. 

6.3 Analysis of Canada Data 

Most work shown in this paper is the result of applying techniques and methodologies to the Australian data set. We would 

like to apply the same methodologies to the Canada data set from September 2017, collected in temperate conditions, and 

from January 2018, which was collected in frozen and snowy conditions. 
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