

I N S T I T U T E F O R D E F E N S E A N A L Y S E S

Sharing Smart Card

Authenticated Sessions
Using Proxies

Kevin E. Foltz

William R. Simpson

January 2016

Approved for public
release; distribution is

unlimited.

IDA Non-Standard
NS D-5417

Log: H 15-000067

Copy

INSTITUTE FOR DEFENSE
ANALYSES

4850 Mark Center Drive
Alexandria, Virginia 22311-1882

About This Publication

This work was conducted by the Institute for Defense Analyses (IDA) under contract
HQ0034-14-D-0001, Task BC-5-2283, “Architecture, Design of Services for Air Force
Wide Distributed Systems,” for USAF HQ USAF SAF/CIO A6. The views, opinions, and
findings should not be construed as representing the official position of either the
Department of Defense or the sponsoring organization.

Copyright Notice

© 2016 Institute for Defense Analyses
4850 Mark Center Drive, Alexandria, Virginia 22311-1882 • (703) 845-2000.

This material may be reproduced by or for the U.S. Government pursuant to the
copyright license under the clause at DFARS 252.227-7013 (a)(16) [Jun 2013].

1

Sharing Smart Card Authenticated Sessions Using

Proxies

Kevin E. Foltz and William R. Simpson

Institute for Defense Analyses, 4850 Mark Center Drive, Alexandria, VA 22311, USA

Abstract: This paper discusses an approach to share a smart card in one machine with other machines accessible on the local

network or the Internet. This allows a user at a browser to use the shared card remotely and access web applications that require

smart card authentication. This also enables users to access these applications from browsers and machines that do not have the

capability to use a smart card. The approach uses proxies and card reader code to provide this capability to the requesting device.

Previous work with remote or shared smart card use either requires continuous access to the smart card machine or specific client

software. The approach in this paper works for any device and browser that has proxy settings, creates minimal network traffic and

computation on the smart card machine, and allows the client to transfer from one network to another while maintaining connectivity

to a server. This paper describes the smart card sharing approach, implementation and validation of the approach using real systems,

and security implications for an enterprise using smart cards.

Key words: Smart card, IT security, authentication, key management, proxy, SSL, TLS, session stealing.

1. Introduction

This paper considers the smart card, a common

hardware-based certificate and key store, and looks at

ways to share access to the private key. This allows

different individuals on different machines in different

locations to access two-way authenticated TLS

secured web applications using the same smart card.

The TLS (Transport Layer Security) protocol is

used to provide authenticated, confidential

communication with integrity for higher-layer

protocols [1]. Based on the earlier SSL (Secure

Sockets Layer) protocol [6], TLS has become the

standard choice to provide these security properties on

the web. The most common use of TLS is for HTTP,

but other protocols that run over TCP can be modified

to run over TLS. A simple TLS implementation uses a

server certificate to authenticate the server’s identity

and exchange key material that is used to set up a

secure channel for communication. An additional

option involves the use of a client certificate to

 Corresponding author: Kevin Foltz, Ph.D. in Electrical

Engineering, research fields: cyber security and distributed

systems. E-mail: kfoltz@ida.org.

authenticate the requester. This two-way authenticated

TLS provides a secure method for a user to log into a

web application.

The certificates and keys used by the client can take

different forms. Software certificates and keys are

stored as files and loaded into the operating system

key store or another file-based key store. Passwords

may be used to encrypt the key store and private keys.

Although private keys have many bits of entropy, the

password protecting the key is often much shorter, so

this is essentially password-based security plus some

security by obscurity by protecting access to the

encrypted key file.

Hardware-based certificates and keys offer stronger

protection. The hardware is designed to provide only

interfaces that use the private key but to never make

the key itself available, even to the authorized user.

There are methods to physically extract the key [7],

but the hardware-based key is fundamentally stronger

in protection than software-based keys with passwords

since the private key is never exposed during use and

is harder to duplicate.

Related work includes Refs. [8]. In Ref. [8],

Sharing Smart Card Authenticated Sessions Using Proxies

2

alternatives to smartcard PKI are described which can

facilitate sharing. In this paper we assume a standard

smart card deployment.

In Ref. [9], which details the smart card proxy

variant of Sykipot, the attack tool provides remote

access to a smart card on a machine using an

ActivClient DLL. It appears from Ref. [10] that the

attack relies on collecting data at the victim and then

transmitting it to the attacker. This is different from

our paper, since we only require setting up the

connection, but not transferring data, through the

smart card machine.

In References [11, 12], a malicious USB driver

provides an interface over TCP/IP to an attacker. The

attacker can use a local copy of the smart card DLL to

access a remote smart card by sending the raw USB

commands from the attacker machine through TCP/IP

to the remote USB driver. The attacker is required to

run the same smart card software as the victim, which

does not allow the use of alternative devices or

operating systems, such as smart phones or tablets that

do not support such software. Our approach does not

require a specific DLL and works on any device with

a proxy configurable browser.

What our approach provides that others do not is a

way to share a smart card with any device running a

browser using minimal network traffic to the smart

card machine and no low-level hardware or operating

system changes. This paper discusses the approach, its

validation through real-world implementations, and

enterprise-level security considerations and

mitigations.

2. Description

This section lays some of the groundwork for our

approach. The approach is based mainly on the use of

proxies, and relies on certain technical implementation

details of the TLS protocol and session management.

2.1 Proxy Terminology

The approach of providing access to smart-card

-enabled sites described in this paper involves the use

of proxies. The types of proxies used in this paper are

the HTTPS proxy, TLS proxy, and TCP proxy,

described below. Each proxy accepts multiple

incoming connections concurrently and maintains a

mapping of incoming connections to outgoing

connections.

2.1.1 HTTP Proxy

The HTTP proxy function is defined as part of the

HTTP protocol specification [13]. The client chooses

the proxy and changes HTTP headers for use by the

proxy. For example, the Host header tells the proxy

where to forward the request. Requests are sent by the

client to the HTTP proxy instead of the intended

server. The proxy then relays client requests to the

desired server and sends the responses back to the

browser. The proxy speaks to the server on behalf of

the client, and it speaks to the client on behalf of the

server. The server may or may not know that it is

speaking to a proxy, depending on the HTTP headers

that are sent by the proxy to the server. Proxies can be

chained so that there are multiple proxies in series

between the client and server.

2.1.2 HTTPS Proxy

An HTTP proxy normally examines the HTTP

headers to know where to forward requests. When

HTTPS is used, the HTTP header and body are

encrypted using TLS, so this header inspection is not

possible. In this case a connect request is first used to

tell the proxy to connect to the desired server. The

proxy then sets up a TCP connection to the server,

notifies the requester, and awaits further messages.

When TLS traffic flows from the client to the proxy,

the proxy forwards it unmodified to the server and

sends server responses back to the client, also

unmodified. This is also part of the HTTP

specification, but it is identified separately because not

all HTTP proxies support HTTPS.

2.1.3 TLS Proxy

There is no description of proxies in the TLS

specification. For this paper, a TLS proxy is defined

Sharing Smart Card Authenticated Sessions Using Proxies

3

as an entity that receives incoming TLS traffic and

acts as the server side of the TLS connection. It sets

up a separate TLS connection with another fixed

entity and forwards content from one connection to

the other. Unlike an HTTPS proxy, which does not

view content, the TLS proxy decrypts the content it

receives and re-encrypts it before sending, so it has the

ability to read and modify the content as a MITM

(man-in-the-middle). For this paper, it is assumed that

the location to which the proxy forwards traffic is

fixed, but in general it could be dynamic and based,

for example, on the initial Client Hello message server

name extension.

2.1.4 TCP Proxy

The TCP proxy is an entity that accepts an

incoming TCP connection and sets up a new

connection to a fixed IP address and port. It then

forwards all content between these connections.

2.1.5 Chaining Proxies

Proxies can be chained in different ways. One

example is a TLS proxy followed by an HTTPS

proxy. Together these act as an entity that terminates

the TLS connection, decrypts and re-encrypts content,

and forwards requests to the appropriate web site.

Unlike an HTTPS proxy, which forwards all TLS

traffic as-is, this combination can change TLS

handshake messages and encrypted content. This

combination forms the core of the smart card access

approach in this paper by modifying a non-smart-card

connection with the client to be a smart card

connection with the server.

2.2 TLS and Application Protocols

This section discusses aspects of TLS and

application sessions relevant to this paper.

2.2.1 TLS Sessions, Connections, and Keys

A TLS session is established using a TLS

handshake, which negotiates security parameters and

performs authentication. Authentication of the client is

accomplished by the client performing a private key

operation on a hash of the handshake messages

exchanged between the client and server. The server

then uses the public key from a certificate signed by a

trusted issuer to validate the client’s identity. This

handshake process establishes a new TLS session and

opens a connection within this session. The session

has an associated “master secret,” which is used to

generate key material for each new connection within

that session. New connections can use a short

handshake sequence to reuse the existing master secret

and avoid expensive authentication and key exchange

steps.

Fig. 1 shows the full handshake sequence to set up a

client-authenticated TLS session. Fig. 2 shows the

abbreviated handshake sequence, which is used to set

up a new connection within an existing session. The

two Certificate messages, the Client Key Exchange

message, and the Certificate Verify message, which

create most of the network traffic and computation,

are skipped in the abbreviated handshake.

Fig. 3 shows the dependency graph when

computing the encryption keys and MAC secrets for

the full handshake. The random values are exchanged

between the client and server. The premaster secret is

either sent encrypted or computed in a distributed way

between the endpoints. The master secret is a

deterministic computation based on the random values

and premaster secret. The key material is a similar

deterministic computation based on the random values

and master secret.

Fig. 4 shows the dependencies for the abbreviated

handshake. The client and server random values are

exchanged as in the full handshake, but the master

secret is the value stored from the session initiation.

The computation of key material is the same

deterministic calculation as for the full handshake.

Fig. 5 shows the relationship within a session of the

key material for different connections. The initial

connection uses the full handshake to establish a new

session, and subsequent connections in the same

session use the abbreviated handshake.

Sharing Smart Card Authenticated Sessions Using Proxies

4

Fig. 1 TLS full handshake sequence.

Fig. 2 TLS abbreviated handshake sequence.

Fig. 3 Key calculation dependencies, full handshake.

The premaster secret is only shared or computed

during the first connection within the session. The

master secret is computed based on the random

values, client random #1 and server random #1,

exchanged during this first connection. The key

material for a connection is computed from the master

secret for the session and the random values for that

connection. Although the master secret is identical for

all connections, each connection has different random

values, providing different key material for each

connection.

Sharing Smart Card Authenticated Sessions Using Proxies

5

Fig. 4 Key calculation dependencies, abbreviated

handshake.

Fig. 5 Relationships between key material for different

connections within a session.

2.2.2 Using Identical Key Material

This section examines the feasibility of using the

same key material on both the client and server-side

connections of the proxy. This behavior enables the

client to use a smart card proxy to establish a TLS

connection to the server and then drop the proxy and

continue the connection directly to the server. The key

material for a connection is determined by the client

and server random values and the premaster secret.

For RSA key exchange, a TLS proxy can view and

modify all of these values. In particular, the proxy can

establish identical key material for the client-side and

server-side connections. This works even when the

client certificate is changed by the proxy.

For key exchange methods using PFS (perfect

forward secrecy), the proxy is generally unable to

create identical key material on both connections. If

the proxy modifies the Certificate or Certificate Verify

message based on the smart card certificate and

private key, then the Finished messages must also be

modified, since they include an encrypted hash of all

handshake messages, but the proxy will have no

knowledge of the keys needed to compute the new

Finished messages.

With some additional inputs, the proxy may be able

to create identical key material. For example, if the

client and server share their premaster secret inputs

with the proxy, then the proxy can establish identical

keys for both sides of the connection. However, in

general the proxy has no control over the server and

no ability to extract this information. If the client

shares the master secret or key material with the

proxy, then this can be used to compute the new

Finished messages. A “browser” such as the OpenSSL

s_client tool makes master secrets available with the

debug flag, but it is not generally used for browsing.

With Firefox and other NSS library browsers, it is

possible to extract premaster secrets or master secrets

by setting an environment variable as described in Ref.

[14]. Another option that could work with existing

software is to extract keys from memory as

demonstrated in Ref. [15]. These additional options

have different degrees of portability across devices,

and they require a method of collecting and passing

values to the proxy and using these values at the

proxy, so it is generally easier to try to negotiate RSA

or another non-PFS key exchange method with the

server if possible.

2.2.3 Application Layer Sessions

TLS session establishment is computationally

expensive, so when the first authenticated TLS

connection is established, the web application often

takes measures to avoid repeating this process. It is

possible to reuse the same session to set up new

connections with the abbreviated handshake sequence,

but if there is any fatal error on any of these

connections, such as a flipped bit between client and

server, the connection is closed and no new

connections are allowed within the same session, so a

new full handshake is required, including client

authentication. A common method to avoid client

re-authentication is to use a session cookie. This

Sharing Smart Card Authenticated Sessions Using Proxies

6

allows additional TLS sessions to be established using

the cookie in place of client authentication. This

behavior is one of many options available to the

server, which include the following:

 Use the session cookie for authentication

[intelshare.intelink.gov];

 Use the session cookie and requester IP address

for authentication (i.e., a request with an active

session cookie from a different IP address invalidates

the session and necessitates a new TLS client

authentication) [www.my.af.mil];

 Require re-authentication through TLS when

clicking on certain links [disa.deps.mil];

 Require re-authentication for all new TLS

connections;

 Require re-authentication for each request.

These choices are ordered generally by increasing

security and decreasing user convenience. The first

three have been observed on active sites. The last two

are included as high security options but not observed,

likely due to the inconvenience of frequent

re-authentication. For example, parallel requests, such

as JavaScript or image files associated with a page,

would require separate authentication, which is

impractical when many such content items must be

loaded for a single page.

It is possible to transfer a TLS session across IP

addresses. This is not common practice for clients, but

nothing in the TLS specification prevents this

behavior. This could happen, for example, when a

mobile device switches between the mobile network

and Wi-Fi during an application session. Knowledge

of the master secret and some other non-cryptographic

information is enough to establish a new connection

within an existing session, regardless of the source or

destination of the connection.

For proxies that act as TLS endpoints, the client

connects to the proxy through one TLS session and

the proxy connects to the server through a separate

TLS session. The proxy simply relays the content sent

through each TLS connection from the client or server

to the other endpoint. Although these two TLS

sessions are nominally different, we can cause them to

have nearly identical parameters by proper

implementation of the proxy. The parameters of

interest include the master secret and each

connection’s encryption keys (and IVs if appropriate)

and MAC secrets, along with the cipher suites,

compression algorithm, TLS version, and other

information about the session and connections. Other

values in the TLS exchange may be different, such as

the server certificate and “Finished” values, but the

important thing is that the master secret and

cryptographic key values are all the same.

If connections are established in this way, it is

possible that the encrypted content flowing on each

connection is identical. The encrypted data will differ

under certain conditions. First, if the content is

modified by the proxy in any way, the content will

differ starting with the modified content. This will

most likely change all future content as well. Second,

if the record boundaries are changed the MAC values

will change. Since the MAC value is appended to the

content before encryption, this will change the

encrypted value the same way a modification to

content would.

If the record boundaries are preserved and the

content is copied from one side of the proxy to the

other, then the sessions essentially have the same state

and the encrypted application data going to and from

the proxy will be identical. This allows the proxy to be

removed and the two endpoints connected directly.

Since the encrypted content is identical and the keys

are the same, the two endpoints can resume the

connection as if nothing changed.

Sharing Smart Card Authenticated Sessions Using Proxies

7

Table 1 Common HTTP and SSL/TLS proxies and their properties.

Name Smart-Card-Enabled? Identical Sessions?

Burp Suite v1.6
YES

http://portswigger.net/Burp/help/options_ssl.html

NO

different premaster secret

different record sizes

modifies HTTP headers

Paros v3.2.13
YES (Andiparos fork)

https://code.google.com/p/andiparos/

NO

different premaster secret

different record sizes

modifies HTTP headers

Zed Attack Proxy v2.4.1

YES?

https://code.google.com/p/zaproxy/wiki/SmartCar

ds

NO

different premaster secret

different record sizes

modifies HTTP headers

WebScarab

YES?

https://www.owasp.org/index.php/WebScarab_SS

L_Certificates

NO

different premaster secret

different record sizes

modifies HTTP headers

Fiddler v4.6.0.2 NO, does not appear to support smart cards.

NO

different premaster secret

different record sizes

different cipher suites

Fig. 6 Normal smart-card-based access.

A natural question is whether commonly available

proxies that can read smart cards allow this behavior.

Table 1 summarizes the behavior of some common

proxies. Four of them claim to support smart cards,

based on their documentation. However, testing them

revealed that they change the cryptographic

parameters and content from one TLS connection to

the next. A TLS proxy was developed by the author

that set up identical sessions with identical record

boundaries and also enabled smart card client

authentication. It is not known whether another proxy

exists with these properties.

2.3 Normal Access with a Local Smart Card

Fig. 6 shows a normal interaction between a

smart-card-enabled machine and a server. This is

separated into the setup phase, where the initial

authentication is established and the session cookie is

provided by the server, and the access phase, where

subsequent access is provided based on the session

cookie without TLS authentication.

During setup, the browser on the

smart-card-enabled machine establishes a TCP

connection from its IP address and port, X1:P1, to the

server IP address and port, S:443. A new TLS session

is then established with a TLS connection over this

TCP connection with the server. The initial

connection may use only the server certificate, but at

some point, such as a login screen, the server requests

a client certificate for authentication in a TLS session.

The requester uses the smart card to provide the

certificate and verify identity with the private key. A

session cookie, C, is sent by the server to the client so

that future requests need not repeat the TLS-based

client authentication.

After this initial setup stage, subsequent access to

the application is granted using the session cookie, C,

Sharing Smart Card Authenticated Sessions Using Proxies

8

over the established TCP and TLS connections. The

TCP, TLS, and application layers are separated in Fig.

6, with the IP address and port, certificates, and

cookies listed at the appropriate layers.

The switch from one-way authenticated TLS to

two-way authenticated TLS can happen in different

ways. A completely new session can be created, such

as by clicking a link to a new server. With a new

session, no data is transmitted until the client is

authenticated. Alternatively, TLS session

renegotiation can be used to establish a new session

while communicating on an existing TLS connection.

The client certificate is requested and provided as part

of this renegotiation. With renegotiation, client

certificate information is encrypted within the original

TLS connection. In either case, the smart card is

required to set up the new two-way authenticated TLS

connection.

2.4 Access with a Remote Smart Card

A number of methods of providing access to one

machine by using a smart card on another machine are

described in this section. The different architectures

have varying complexity and difficulty of

implementation, and they allow a requester to meet

different access rules and restrictions at the server.

2.4.1 Access on the Same Network

Fig. 7 shows the network architecture to share a

smart card using a single machine on the same LAN

as the victim. The smart-card-enabled machine runs a

TLS proxy and an HTTPS proxy in series. The remote

machine is on the same LAN, connected to the

Internet through a wireless router, which uses NAT

(Network Address Translation). We assume the

remote user is using a mobile device, but any device

that can connect to the LAN works equally well.

The remote user communicates with the

smart-card-enabled proxy through the local network.

A new TCP connection is established from the device,

X1:P1, to the TLS proxy, Xp1:Pp1. A TLS session

may also be established using a proxy certificate and a

client certificate. The smart-card-enabled proxy then

communicates with the server through separate TCP

and TLS connections. The TLS proxy authenticates

through the HTTPS proxy to the server using the

smart card. With the TLS connection successfully

established, the browser sends HTTPS messages to

the proxy, which forwards them to the server. The

server sends a session cookie to the proxy, which

forwards this to the requester. This completes the

setup phase.

For subsequent access, the remote user disconnects

from the proxy. New requests are sent directly to the

server using a new TCP connection, a new TLS

connection, and the same application layer session.

The server sees only the external IP address of the

wireless router, which is the same for the

smart-card-enabled machine and device. As a result,

the subsequent access simply looks like a new

connection from the same machine using the same

application layer session. If the server uses client

authentication for the initial login and server

authentication plus the session cookie for subsequent

traffic, the remote user can continue the session, since

the smart card will not be needed for further

communication.

2.4.2 Switching Networks

In the previous subsection, the remote user is

constrained to use the same network for setup and

access. If the location of the smart card machine is not

conducive for further access or if the network is not

desirable, the remote user might want to leave the

network between the setup and access phases. Fig. 8

shows the network architecture for a remote user who

performs the setup as in Fig. 7 but then disconnects

from the local network and reconnects to the server

through a mobile connection for subsequent access.

In this case, the IP address of the remote user

changes when switching networks, since it goes

through a mobile provider instead of the local router.

If the server allows new connections from a different

IP address to use existing application layer sessions,

Sharing Smart Card Authenticated Sessions Using Proxies

9

the access is similar, but now the remote user can go

anywhere with mobile coverage. If the server does not

allow changes in IP address, then steps must be taken

to comply with this server rule

Fig. 7 Mobile device connects through proxy on the same

network.

Fig. 8 Mobile device connects through local proxy, then

switches to mobile network.

2.4.3 Switching Networks, IP Check at Server

When switching networks, the changing browser IP

address provides a way for the server to detect the

change between setup and access phases. Servers can

be configured to tie a cookie to a requester IP address

and invalidate the entire session if the cookie is

presented from a different IP address. A more

aggressive approach is to tie the cookie to an IP

address and a TLS session.

If the server records and checks the client IP

address associated with an application layer session, it

can forcibly end sessions that change requester IP

addresses. This stops the remote access in Fig. 8 from

working. To work around this restriction, a second

proxy, accessible on the Internet, can be used to

provide a fixed IP address to the server. Fig. 9 shows

the network architecture for remote access that uses an

external HTTPS proxy. In this case, the server IP

check will pass and the session will not be dropped,

even though the original client’s local IP address

changes. The remote user could run the external

proxy, but any reliable Internet accessible proxy is

sufficient.

Fig. 9 Mobile device connects through local proxy and

remote proxy, then switches to mobile network and remote

proxy.

An alternative would be to host the external proxy

on the remote user’s device itself. The

smart-card-enabled proxy would use the remote

device as its proxy, and the remote device proxy

would receive requests on the LAN and forward them

to the server on the mobile link. This removes the

dependence on an external entity. Also, since the

proxy is hosted on the user’s device, the remote user

could simply remove the proxy and connect directly

through the mobile link using the same IP address.

This approach would require a proxy application for

Sharing Smart Card Authenticated Sessions Using Proxies

10

the device, which does not appear to currently exist.

2.4.4 Switching Networks, IP and TLS Checks

In all the previous scenarios, the browser

establishes new TCP and TLS sessions with the server

at the start of the access phase. It is possible that the

server not only requires the same IP address, but also

requires the same TLS session or connection. This

generally limits functionality, since each new TCP

connection requires a new TLS connection, and a

single bit error in a single TLS connection requires

setting up a new session for new connections. For

highly secure applications, this is an approach that

would stop all of the previous methods of access. To

address this challenge, a new flow must be used that

hides proxy changes from the client and server, so

both the client and server see no changes between the

access phase and the setup phase. This is where the

proxy with identical key material on both connections

is used.

Fig. 10 Client connects through client,

smart-card-enabled and server proxies, and then bypasses

smart-card-enabled proxy.

Fig. 10 shows a setup where the smart-card-enabled

proxy is shielded between two fixed proxies. This

addresses any client-side issues when changing proxy

settings, since the changes are made at the client

proxy, not the client. The client-side proxy simply

forwards incoming requests directly to either the

smart-card-enabled proxy or the server-side proxy, so

it could be implemented as a TCP proxy instead of an

HTTPS proxy. The client-side proxy must be under

the control of the remote user, since its settings must

be changed to point to the server-side proxy after

initially pointing to the smart-card-enabled proxy.

When removing the smart card proxy, the client and

server both continue using the existing connections.

The remaining proxies create a new direct connection

between them and remap incoming and outgoing

connections to preserve the end-to-end flow from

client to server.

After removing the middle proxy, the client and

server will not realize that the TLS endpoint at the

smart-card-enabled proxy has been removed. This

creates a situation where the client side of one TLS

connection is used with the server side of another TLS

connection. The browser and server will both attempt

to use sessions established with the

smart-card-enabled proxy when they talk directly to

each other. In order for this to work, the session keys

for the two original sessions must be the same, so that

when this intermediary is removed the client and

server are using the same keys. In addition, any state

information relating to block cipher initialization

vectors, sequence numbers, and record boundaries

must be matched between the two TLS connections.

The key material can be synchronized by using the

same random numbers during the TLS handshake and

the same premaster secret value during key exchange

for each TLS connection. Some care is required to

keep the other values in synch, but because there is

only a brief exchange during setup, this is reasonable

to achieve.

Instead of synchronizing all TLS connections, it

may be easier to synchronize the session data,

including the master secret. In this case existing

connections will not be functional, since keys and

other state information will be out of synch, but new

connections within the same session can be

established using the short handshake sequence based

on this shared master secret. The short handshake uses

Sharing Smart Card Authenticated Sessions Using Proxies

11

the existing master secret and avoids use of the smart

card for authentication. For this to work, all existing

connections from the browser must be left open in an

unused state. Any attempt to use them will result in an

error which could terminate the entire TLS session

and potentially require a new session with smart card

authentication.

Another approach, instead of matching master

secrets, is to compute different master secrets but then

export the server-side TLS state information,

including cryptographic keys, to the client [16]. In

general, TLS session information is well protected.

Methods exist to retrieve it, but they require low-level

access on the smart-card-enabled proxy machine [14].

With custom proxy software and a custom browser,

the remote user could provide a way to transfer TLS

session information between proxy and browser.

Whatever method is used to recombine the two TLS

sessions into a single session, the result is that the

browser and server are communicating through two

passive proxies. Similar to what was described

previously, the proxies, with proper configuration,

could both be implemented on the remote device,

eliminating the dependence on external components

during the access phase.

2.4.5 Separating Smart Card and Proxy

The TLS + HTTPS proxy combination does not

need to run on the smart card machine. All that is

needed on this machine is code to request certificates

and private key operations and a method to

communicate with an external machine. A lightweight

application could do this by receiving queries on an

open port and sending back the results of smart card

operations. This splits the functionality of the

smart-card-enabled proxy into the proxy function and

the smart card access function. Fig. 11 shows the

logical connections using the single

smart-card-enabled proxy, and Fig. 12 shows the split

functions of proxy and smart card access. The smart

card reader code is invoked only to perform smart

card specific actions, which minimizes the use of the

smart card machine.

This separation of proxy and smart card reader

functionality can be applied to any of the variants

mentioned above. It is particularly useful for the setup

in Fig. 10. In this case it removes the need to

disconnect from the TLS proxy, since only the private

key usage request is sent to the smart card machine.

However, for performance and stability reasons, it

may still be beneficial to bypass the proxy after client

authentication.

2.4.6 Potential Vulnerabilities and Attacks

The variants above would be attacks if the smart

card machine user does not know that the remote user

is using the smart card. The technical implementation

is identical.

Fig. 11 Combined smart card and proxy machine.

Sharing Smart Card Authenticated Sessions Using Proxies

12

Fig. 12 Separate smart card and proxy machines.

The keys to the attack would be running the proxy

or smart card access code on the victim’s machine,

connecting to the machine to use the proxy or smart

card access code, and hiding this activity from the

smart card user, scanners, and other detection

appliances.

One approach is for the attacker to set up the proxy

on a public machine and wait for someone to use their

smart card on it. Another is to convince someone to

use the attacker’s machine, while the attacker or

another attacker accesses the smart card remotely.

These rely on social engineering.

Another approach is to install the proxy or smart

card reader code on the victim’s machine. This could

be done using malicious email attachments, physical

access, or by leaving USB devices in places where

people with smart cards might pick them up and plug

them in. The USB device would actually be the

Rubber Ducky USB, which can use keystrokes to

configure a remote machine for smart card access by

an attacker [17].

3. Results and Discussion

Some of the variants described have been

implemented and tested. Others remain theoretical.

This section describes the scenarios that have been

implemented and tested, with a discussion of the

implications to an enterprise using smart cards for

access.

3.1 Session Cookie with No IP Check

The first scenario that was tested was the use of a

TLS and HTTPS proxy on a Windows 7 desktop with

a smart card reader. The desktop was connected by

Ethernet to a wireless router. An iPhone 5S was

connected to the wireless router through Wi-Fi, with

the desktop configured as a proxy. A web site that

uses client smart card authentication was opened on

the phone. When prompted for a certificate, a dummy

certificate was sent to the proxy, which was

configured to replace the client certificate with the

smart card certificate on the server connection. The

proxy prompted for a PIN, which was provided on the

desktop machine, and the TLS connections were

created between phone and proxy and between proxy

and server. Then the phone browser received and

displayed the smart card restricted content.

The phone Wi-Fi was then disabled, switching the

interface to a 4G LTE connection. After this change,

the site’s restricted content remained available through

continued page loads.

The site was periodically refreshed, with increasing

delay between page loads, starting at 5 minutes,

increasing to 30 minutes, and eventually to many

hours, and access was maintained. For this test, access

was maintained for a total of almost three days.

Sharing Smart Card Authenticated Sessions Using Proxies

13

However, during other tests the session was reset after

long periods of inactivity. It appears the server policy

was to use the session cookie for long periods of time

without requiring re-authentication by smart card. It is

not clear based on testing whether the session had an

expiration time or was simply removed from the

cache.

3.2 Session Cookie with IP Check

A second site was tested using the same method. It

loaded during the setup phase, but when the network

connection was switched from Wi-Fi to mobile, the

session was reset and access was lost. Repeating the

test by simply removing the Wi-Fi proxy instead of

switching networks allowed the setup phase to

continue to the access phase while maintaining the

connection. This is consistent with the IP check

hypothesis, since the IP address of the proxy machine

and phone through Wi-Fi were identical due to NAT,

while the mobile IP was different.

It was desired to choose an external proxy with a

different IP address and switch networks while going

through that proxy. However, there was no easy way

to provide a proxy configuration for a mobile

connection, so this was not tested. Instead the TLS

proxy was chained with an external HTTPS proxy

with a different IP address. The phone connected

through both of these proxies during the setup phase

and then switched to just the external HTTPS proxy

for the access phase. This provided access. However,

the remote user in this case is limited to using the

local Wi-Fi instead of the mobile network. Note that

this is not a full test, since the IP address of the phone

did not change. However, it appears that this server

implements the session cookie with an IP check, since

access fails when the server-facing IP address changes

and succeeds when it does not.

3.3 Re-Authentication Required within Site

A third site, chosen for its high security, was tested

for comparison. Access was gained as for the other

sites, but certain links on the site required

re-authentication using the smart card. Also, the

session timeouts were fairly aggressive, allowing only

a few minutes of inactivity. This prevented casual

browsing of the site, since only a small section of the

site was available after each authentication.

To gain access to this site, two additional steps

would be required, neither of which was tested. First,

the remote user would have to map out the site and its

re-authentication boundaries to send a quick sequence

of requests, one to each authentication zone. Second,

the user would repeatedly and automatically reload

each of these pages frequently enough to maintain

access to all parts of the site simultaneously. From

such a setup, the remote user could browse the site

manually for as long as the automated refreshing kept

the session open.

3.4 Separate Smart Card and Proxy

The setup where the smart card machine is separate

from the proxy was also tested. A small Java program

was written to implement PKCS11 requests to the

smart card, including a query of available certificates,

retrieval of a specific certificate, and use of the private

key to generate the Certificate Verify message

signature value. The Java program listens on a

specified port for requests and returns appropriate

responses after accessing the smart card. The TLS

proxy was modified to send requests to the smart card

machine on the appropriate port in order to perform

smart card operations.

The reason Java was chosen was due to ease of

implementation. The Net library contains built-in

smart card operations, which were initially tried due to

their integration. However, the operation required for

the Certificate Verify message is not available, which

is a raw private key operation on padded content. The

only private key operations allowed were the signature

operation, which computed a hash before performing

the padding and private key operation, and decryption,

which failed on content that was not properly padded

Sharing Smart Card Authenticated Sessions Using Proxies

14

after the private key operation.

Another option considered was directly calling the

DLL file that accesses the smart card. The list of

operations was obtained, but not enough information

was available to create valid requests without

significant effort.

Java requires some configuration to set up the

PKCS11 provider and identify the correct DLL file,

but it was the simplest way identified to provide this

functionality. [18]

The first test above was repeated with this separate

proxy and smart card setup, with successful setup and

access to the protected site.

3.5 Mock Attack

A mock attack was performed using a co-worker

with a smart card. The co-worker was told to log on to

a specific smart-card-enabled site on a computer

running a proxy, while the author connected an iPhone

to the proxy through Wi-Fi on the same LAN. The

co-worker entered his PIN to access a site, and then

the author sent requests to another site through the

proxy, using the smart card that was now unlocked by

the PIN entry. The author was able to gain access to a

different site than the one the co-worker loaded. After

showing the results to the co-worker and discussing

the attack, the author logged out and closed the

browser and the co-worker removed his smart card

from the machine. This mock attack demonstrated the

ease with which social engineering could be combined

with the use of a proxy and smart card reader code to

gain unauthorized access to a protected site.

3.6 Capabilities and Attacks

The main capability provided is using a device

without a smart card, such as a smart phone, tablet, or

laptop, to interact with web sites that require smart

card authentication for access. After the initial access

is provided through a smart card proxy, the user can

use their preferred device for continued access. This

could include logging in from work and then working

from home, working while traveling, or simply

working on a device with different applications and

capabilities than the smart-card-enabled machine has

available. With proper server configuration, these

could all be useful capabilities that would not be

difficult to execute.

Although mobile devices are popular, smart card

use for such devices is not as common. The proxy

technique is one way that access could be provided to

mobile devices. This provides a single point through

which all mobile devices receive access. For example,

when issuing mobile devices for a day of work in the

field, they could log in through a local proxy with a

smart card. The server could be configured to allow

8-hour sessions before requiring re-authentication.

This could be an accountability issue if a device is lost

or shared. However, it may enable activity that

otherwise would not be possible, so the additional

security risk might be acceptable.

The primary attack is to use someone else’s smart

card to log into a site. This is similar to a

session-stealing attack, except there is no existing

session to steal. Instead, the attacker creates the

sessions using the victim’s smart card. This is

undesirable in an enterprise, since accountability is

compromised.

For attacks using the separate smart card and proxy

machines, a separate control channel could be

established, either for the attacker to query whether a

smart card is ready for use or for the machine with the

smart card to call out when a smart card is available

for use. This would enable an automated attack on a

shared machine to which the attacker has privileged

access. The smart-card-reading code would be

pre-positioned, and when someone uses the machine

with a smart card, the attacker would initiate

connections to sites to which the victim has access,

and then transfer to a mobile network. Over time, the

attacker could potentially access many different sites

using different users’ smart cards.

Another attack would involve requesting help from

Sharing Smart Card Authenticated Sessions Using Proxies

15

an administrator who uses a smart card to perform

certain administrative functions. The attacker would

run the smart-card-reader code and proxies before

requesting help. The administrator inserts and uses a

smart card to perform privileged functions, at which

point the attacker uses a mobile device, automated

tool on another machine, or partner on another

machine to gain access to sites that the administrator

can access.

These attacks will be more effective on sites that

the victim does not access frequently. This is in

contrast to a normal session-stealing attack, which

relies on the victim accessing the site. When the user

actually logs in, the server is likely to close the

attacker session when it creates the new one, so the

attacker will have only a limited window of access.

For all attack scenarios, the attacker relies on the

victim to enter the PIN to unlock the smart card and

for this PIN entry to provide a window of access to the

attacker without the need for further PIN entries. PIN

caching is fairly complicated, relying on interactions

among policies in the application, operating system,

device driver configuration, and smart card itself. For

the system used in testing, the net result was that the

smart card was locked upon removal and reinsertion,

and after 10 minutes of idle time while remaining

inserted.

A simple script was written to periodically access a

smart card by connecting to the Java smart card

program. After a single initial PIN entry, this script

was launched with a request period set to 5 minutes,

and this provided many hours of PIN-free access

while the card remained inserted. Such a script could

be combined with the Java smart card program to

prevent the need for another PIN entry.

3.7 Mitigations, Analysis, and Extensions

For capabilities, the idea of using a proxy with a

smart card to log into a web site is not new. This is a

common test scenario [19]. However, using multiple

proxies, both local and external, to provide a seamless

transfer from a connection with a local proxy to a

connection without a local proxy appears to be new. In

particular, using a common master secret in the TLS

sessions to allow transparent proxy removal appears to

be new, since the proxies tested do not support this

function. In addition, this technique allows access on

almost any device that has a browser with proxy

settings without continued use of the smart card

machine. Other techniques to use a smart card

remotely appear to require continuous access to the

smart card machine or require installation of drivers or

other code on the device making the requests.

If existing TLS connections are used after removing

the proxy, they are likely to report fatal decryption or

other errors, since the TLS connection-specific

cryptographic information and other state information

are not likely to be identical. In this case, the existing

connection is closed and the session is not allowed to

start new connections, thus ending the attack.

To avoid this, the client must stop use of all existing

connections after proxy removal, which could be

accomplished by blocking communication to and from

the client ports used by those existing connections.

The solution is, again, adding a proxy, possibly a TCP

proxy, which gracefully closes all but one connection

and then halts communication on this connection until

a new one is established, at which point it gracefully

closes the last original connection. This could be

implemented on the local machine of the attacker.

The idea of stealing sessions to launch an attack is

not new. However, most session hijacking involves

stealing a user’s application layer session as stored in

an HTTP cookie [20]. The attacks described in this

paper create a new session instead of hijacking an

existing one. This does not rely on a user logging into

the target site but only on a user using his or her smart

card, even if for some other purpose. The end result of

most of these attacks is similar to session-hijacking

attacks, since the attacker has control over a session

with the server while logged in as the victim.

The main effect of these attacks is that smart card

Sharing Smart Card Authenticated Sessions Using Proxies

16

login security is reduced from needing the smart card

and PIN to just needing someone to use a smart card

on a machine to which the attacker has privileged

access. Typically, the smart card is considered safe

because the private key is protected, but with the

ability to read the certificate from the smart card and

use the private key to encrypt the Certificate Verify

TLS handshake message, an attacker can log in and

stay logged into a smart-card-enabled site.

Mitigation is often simple conceptually but difficult

in practice. One simple solution is to periodically

require a user to log in again. This could be done at

the TLS layer by requiring a new two-way

authenticated session for continued access after some

time period. The user would periodically see a prompt

for a PIN. This would require support by the server.

Another simple partial solution is to not cache

PINs. There is usually a time period during which the

PIN is not required to access the smart card after a

successful PIN entry. This allows an attacker to use

the smart card without the victim’s knowledge. This is

mentioned as only a partial solution, because users

often simply enter their PINs when prompted, and

timing the attack to correspond in time with another

use by the victim would probably not raise any

alarms. Also, PIN caching is complicated in real

systems. The smart card has a caching policy, the

smart card driver program has its own caching policy,

the operating system has caching policies, and

applications that use smart cards may have their own

caching policy. Interactions between these policies

can be tricky to understand and apply correctly [21].

Another simple solution is to limit application layer

session durations, which would require going through

the two-way authenticated login again. However,

without underlying TLS support, this solution would

be susceptible to TLS session re-use without requiring

smart card access.

A policy-based partial fix would be for people to

use smart cards only on trusted machines. This would

prevent the use of the proxy or smart-card-reader code

from using the smart card to set up sessions for the

attacker. However, this is only a partial solution,

because establishing trust is difficult, especially for

the end user who is responsible for smart card use.

All of these simple fixes require changes to existing

information technology infrastructure or policies.

These are difficult to implement because none of them

are centralized, so management and implementation

are difficult, complicated, and prone to errors and

inconsistencies.

One central policy that is a partial fix is to blacklist

known proxies. This is effective against attackers who

use public proxies, but an attacker who sets up his

own unpublished proxy would be difficult to detect. A

proxy is not hard to set up, so this is only a partial

mitigation.

A stronger version of this idea is to use a whitelist

of known and approved systems to allow access. It is

not always easy to know in advance which systems

should have access to a site, so this presents

significant challenges. Also, it is not easy to prove to

the server that a system is legitimate. The initial

connection is set up through a valid system, so the

system parameters can be copied and reused by the

attacker in future requests. Unless there is a

hardware-based cryptographic module, like a TPM,

this whitelist policy can be difficult to enforce. Even

then, the TPM is much like a smart card, in that the

initial connection may be the only time it is used for

security.

SSO (Single Sign On) is used to sign into one site

as a way to access others. If the SSO site uses smart

card authentication, this has the potential to expand

the scope of the initial attack. Instead of having access

to just the sites for which connections are established

while having access to the smart card, an attacker now

only needs a single connection using the smart card to

the SSO site, from which connections to many other

sites can be established through the SSO site session.

If the individual sites use two-way smart card

authentication, this attack will fail, but connections

Sharing Smart Card Authenticated Sessions Using Proxies

17

with one-way authenticated TLS through which an

SSO token is sent would allow this type of attack.

This attack is similar to stealing SSO cookies. In

the SSO cookie-stealing attack, the cookie itself is

used as authentication. In this attack, the session with

the SSO site is stolen and used to generate any

number of valid tokens. In each case the application

layer authentication token is used for access.

The examples mentioned in this paper are based on

accessing a web application. However, other uses of

smart cards include encryption and decryption of data

and digital signatures. For example, email messages

can be both signed and encrypted using smart card

keys and certificates, and some documents can be

electronically signed using a smart card. These are

offline actions, though, so the Java code that allows

remote access to smart card functions would be

sufficient to complete many of these. The web

application is challenging because it uses the TLS

protocol, which requires a rapid execution of a private

key operation, and the Certificate Verify operation is

not one of the standard operations like sign, verify

signature, encrypt, or decrypt.

4. Conclusions

Proxies can be used to share access to a smart card.

This enables people without a smart card or without a

smart-card-enabled device to access smart card

protected resources. This may be useful when one

person is using a smart card to access a resource and

another person without a smart card needs the same

access, or someone needs access from a device that

does not accept their smart card. In either case, the

standard route of issuing a new smart card or getting a

device to accept a smart card may be too

time-consuming to be practical. For remote usage and

quick turn-around, proxies may offer a practical

temporary solution.

Longer term or widespread adoption of these tactics

poses several security issues. By designing the TLS

proxy to create identical keys on incoming and

outgoing connections and adding additional proxies to

shield the client and server from the TLS proxy and

each other, different server validation checks, such as

IP address consistency, can be bypassed. This

weakens accountability, since one person is gaining

access using another person’s smart card credentials.

Because the actual entity accessing resources is not

strongly authenticated, attackers can use these

techniques to gain unauthorized access using a valid

smart card.

Acknowledgements

Special thanks to the US Air Force and DoD for

funding this and related work and providing smart

cards and smart-card-enabled servers that were used

for exploration and testing of concepts and

implementations.

References

[1] The Transport Layer Security (TLS) Protocol Version 1.3

(draft). Accessed August 28, 2015.

https://tlswg.github.io/tls13-spec/.

[2] Request for Comments: The Transport Layer Security

(TLS) Protocol Version 1.2. Accessed August 2008.

http://tools.ietf.org/html/rfc5246.

[3] Request for Comments: The Transport Layer Security

(TLS) Protocol Version 1.1. Accessed April 2006.

http://www.ietf.org/rfc/rfc4346.txt.

[4] Request for Comments: The TLS Protocol Version 1.0.

Accessed January 1999.

https://www.ietf.org/rfc/rfc2246.txt.

[5] Request for Comments: Transport Layer Security (TLS)

Extensions. Accessed April 2006.

http://tools.ietf.org/html/rfc4366.

[6] The SSL Protocol Version 3.0. Accessed November 18,

1996.

https://tools.ietf.org/html/draft-ietf-tls-ssl-version3-00.

[7] Ross, A., and Kuhn, M. 1997. “Low Cost Attacks on

Tamper Resistant Devices.” In Security Protocols, 5th

International Workshop, Paris, France, April 7-9,

Proceedings, Springer LNCS 1361, 125-36, ISBM

3-540-64040-1. Accessed September 3, 2015. Available

at http://www.cl.cam.ac.uk/~mgk25/tamper2.pdf.

[8] http://www.cs.dartmouth.edu/~pki02/Sandhu/paper.pdf.

[9] http://www.sans.org/reading-room/whitepapers/malicious

/detailed-analysis-sykipot-smartcard-proxy-variant-33919

[10] https://www.alienvault.com/open-threat-exchange/blog/s

http://www.cs.dartmouth.edu/~pki02/Sandhu/paper.pdf
http://www.sans.org/reading-room/whitepapers/malicious/detailed-analysis-sykipot-smartcard-proxy-variant-33919
http://www.sans.org/reading-room/whitepapers/malicious/detailed-analysis-sykipot-smartcard-proxy-variant-33919
https://www.alienvault.com/open-threat-exchange/blog/sykipot-variant-hijacks-dod-and-windows-smart-cards

Sharing Smart Card Authenticated Sessions Using Proxies

18

ykipot-variant-hijacks-dod-and-windows-smart-cards.

[11] http://www.computerworld.com/article/2493077/malware

-vulnerabilities/proof-of-concept-malware-can-share-usb-

smart-card-readers-with-attackers-ove.html.

[12] http://www.spamfighter.com/News-18066-POC-Malware

-Wins-Control-Over-USB-Smartcards.htm.

[13] Request for Comments: Hypertext Transfer Protocol

(HTTP/1.1): Message Syntax and Routing. Accessed

June 2014. http://tools.ietf.org/html/rfc7230.

[14] NSS Key Log Format. Available at

https://developer.mozilla.org/en-US/docs/Mozilla/Project

s/NSS/Key_Log_Format.

[15] Dolan-Gavitt, B., Leek, T., Hodosh, J., and Lee, W.

Tappan Zee (North) Bridge: Mining Memory Accesses for

Introspection. Proceedings of the ACM Conference on

Computer and Communications Security (CCS), 2013

November.

[16] Foltz, K., and Simpson, W. R. “Wide Area Network

Acceleration in a High Assurance Enterprise.” World

Congress on Engineering (WCE) 2015, London, England,

July 2015.

[17] http://hakshop.myshopify.com/products/usb-rubber-duck

y-deluxe?variant=353378649.

[18] Java™ PKCS#11 Reference Guide. Accessed September

3, 2015. Available at

http://docs.oracle.com/javase/1.5.0/docs/guide/security/p

11guide.html.

[19] http://blog.taddong.com/2012/04/owasp-zap-smartcard-pr

oject.html.

[20] OWASP. “Session Hijacking Attack.” Available at

https://www.owasp.org/index.php/Session_hijacking_atta

ck.

[21] http://stackoverflow.com/questions/1800745/cac-smartcar

d-reauthenticate.

https://www.alienvault.com/open-threat-exchange/blog/sykipot-variant-hijacks-dod-and-windows-smart-cards
http://www.computerworld.com/article/2493077/malware-vulnerabilities/proof-of-concept-malware-can-share-usb-smart-card-readers-with-attackers-ove.html
http://www.computerworld.com/article/2493077/malware-vulnerabilities/proof-of-concept-malware-can-share-usb-smart-card-readers-with-attackers-ove.html
http://www.computerworld.com/article/2493077/malware-vulnerabilities/proof-of-concept-malware-can-share-usb-smart-card-readers-with-attackers-ove.html
http://www.spamfighter.com/News-18066-POC-Malware-Wins-Control-Over-USB-Smartcards.htm
http://www.spamfighter.com/News-18066-POC-Malware-Wins-Control-Over-USB-Smartcards.htm

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std, Z39.18

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington
Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a
collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From – To)

00-01-16 Non-Standard

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Sharing Smart Card Authenticated Sessions Using Proxies HQ0034-14-D-0001

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBERS

6. AUTHOR(S) 5d. PROJECT NUMBER

Kevin E. Foltz BC-5-2283

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES 8. PERFORMING ORGANIZATION REPORT
NUMBER

NS D-5417

H 15-000067

Institute for Defense Analyses

4850 Mark Center Drive

Alexandria, VA 22311-1882

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR’S / MONITOR’S ACRONYM

SAF/CIO A6 Frank P. Konieczny

USAF HQ USAF SAF/CIO A6
11. SPONSOR’S / MONITOR’S REPORT

NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

This draft has not been approved by the sponsor for distribution and release.

13. SUPPLEMENTARY NOTES

Project Leader: William R. Simpson

14. ABSTRACT

This paper discusses an approach to share a smart card in one machine with other machines accessible on the local network or

the Internet. This allows a user at a browser to use the shared card remotely and access web applications that require smart

card authentication. This also enables users to access these applications from browsers and machines that do not have the

capability to use a smart card. The approach uses proxies and card reader code to provide this capability to the requesting

device. Previous work with remote or shared smart card use either requires continuous access to the smart card machine or

specific client software. The approach in this paper works for any device and browser that has proxy settings, creates minimal

network traffic and computation on the smart card machine, and allows the client to transfer from one network to another

while maintaining connectivity to a server. This paper describes the smart card sharing approach, implementation and

validation of the approach using real systems, and security implications for an enterprise using smart cards.

15. SUBJECT TERMS

Smart card, IT security, authentication, key management, proxy, SSL, TLS, session stealing.

16. SECURITY CLASSIFICATION OF:
17. LIMITATION OF

ABSTRACT

Unlimited

18. NUMBER
OF PAGES

18

19a. NAME OF RESPONSIBLE PERSON

Frank P. Konieczny

a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include Area
Code)

 (703) 697-1308 Unclassified Unclassified Unclassified

