Scientific Test and Analysis Techniques: Statistical Measures of Merit

Laura J. Freeman Research Staff Member Ifreeman@ida.org

> CLEARED For Open Publication

> > JAN 2 8 2014 4

Office of Security Review Department of Defense

14-5-079

- Statistics is the science of data analysis
- Design of Experiments (DOE) a structured and purposeful approach to test planning
 - Ensures adequate coverage of the operational envelope
 - Determines how much testing is enough
 - Provides an analytical basis for assessing test adequacy
 - Results:
 - » More information from constrained resources
 - » An analytical trade-space for test planning

- The purpose of testing is to provide relevant, credible evidence with some degree of inferential weight to decision makers about the operational benefits of buying a system
 - DOE provides a framework for the argument and methods to help us do that systematically
- Statistical thinking/DOE provide:
 - a scientific, structured, objective test methodology answering the key questions of test:
 - How many points?
 - Which points?
 - In what order?
 - How to analyze?

DOE changes "I think" to "I know"

Design of Experiments has a long history of application across many fields.

- Agricultural
 - Early 20th century
 - Blocked, split-plot and strip-plot designs
- Medical
 - Control versus treatment experiments
- Chemical and Process Industry
 - Mixture experiments
 - Response surface methodology
- Manufacturing and Quality Control
 - Response surface methodology
 - DOE is a key element of Lean Six-Sigma
- Psychology and Social Science Research
 - Controls for order effects (e.g., learning, fatigue, etc.)
- Software Testing
 - Combinatorial designs test for problems

- Pratt and Whitney Example
 - Design for Variation process DOE
 - Turbine Engine Development
- Key Steps
 - Define requirements (probabilistic)
 - Analyze
 - Design experiment in key factors (heat transfer coefficients, load, geometric features, etc.)
 - Run experiment through finite element model
 - Solve for optimal design solution
 - Parametric statistical models
 - Verify/Validate
 - Sustain
- Results
 - Risk Quantification
 - Cost savings
 - Improved reliability

DOT&E Guidance

Dr. Gilmore's October 19, 2010 Memo to OTAs

Statistical Measures of Merit

- The appropriate statistical tools depend on the goal of the test.
 - What conclusion does the test need to support?
 - What statistical analysis will be used?

Test Design Supports the Model (The Analysis we expect to perform)

Motivating Example: Test Plan for Mine Susceptibility

- Goal:
 - Develop an adequate test to assess the susceptibility of a cargo ship against a variety of mine types using the Advanced Mine Simulation System (AMISS).

• Responses:

- Magnetic signature, acoustic signature, pressure
- Slant range at simulated detonation
- Factors:
 - Speed, range, degaussing system status
- Other considerations:
 - Water depth
 - Ship direction

- Power and confidence are only meaningful in the context of a hypothesis test!
- Statistical hypotheses:

 H_0 : Detonation slant range is the same with and without degaussing H_1 : Detonation slant range differs when degaussing is employed

 $H_0: \mu_D = \mu_{ND}$ $H_1: \mu_D \neq \mu_{ND}$

- Power is the probability that we conclude that the degaussing system makes a difference when it truly does have an effect.
- Similarly, power can be calculated for any other factor or model term

IDA Test Design Comparison: Statistical Power

- Compared several statistical designs
 - Selected a replicated central composite design with 28 runs
 - Power calculations are for effects of one standard deviation at the 90% confidence level

• One sample hypotheses:

 Power provides little insight to the adequacy of the test in this case

IDA Factor Relationships, Prediction Capabilities

- All designs considered were orthogonal for main effects and twoway interactions
 - Small correlations for quadratic terms in Central Composite Design
- Predictive capabilities are very different for the two primary designs considered

- Statistical models support characterization of data across the operational envelope
- Power to detect factor effects also provides us with the ability to compare to the requirement across the operational envelope.
 - Some regions are more powerful than others

- Design of Experiments (DOE) a structured and purposeful approach to test planning
 - Ensures adequate coverage of the operational envelope
 - Determines how much testing is enough
 - Quantifies test risks
 - Results:
 - » More information from constrained resources
 - » An analytical trade-space for test planning
- Statistical measures of merit provide the tools needed to understand the quality of any test design to support statistical analysis
- Statistical analysis methods
 - Do more with the data you have
 - Incorporate all relevant information in evaluations
 - » Supports integrated testing

Current Efforts to Institutionalize Statistical Rigor in T&E

- DOT&E Test Science Roadmap published June 2013
- DDT&E Scientific Test and Analysis Techniques (STAT) Implementation Plan
- Scientific Test and Analysis Techniques (STAT) Center of Excellence provides support to programs
- Research Consortium
 - Navel Post Graduate School, Air Force Institute for Technology, Arizona State University, Virginia Tech
 - Research areas:
 - » Case studies applying experimental design in T&E.
 - » Experimental Design methods that account for T&E challenges.
 - » Improved reliability analysis.

• Current Training and Education Opportunities

- Air Force sponsored short courses on DOE
- Army sponsored short courses on reliability
- AFIT T&E Certificate Program
- Review of current policy & guidance
 - DOD 5000
 - Defense Acquisition Guidebook