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Abstract— This research presents a method for the automatic 
detection of a dismounted human at long range from a single, 
highly compressed image. The histogram of oriented gradients 
(HOG) method provides the feature vector, a support vector 
machine performs the classification, and the JPEG2000 standard 
compresses the image. This work presents an understanding of 
how HOG for human detection holds up as range and 
compression increases. The results indicate that HOG remains 
effective even at long distances: the average miss rate and false 
alarm rate are both kept to 5% for humans only 12 pixels tall 
and 4-5 pixels wide in uncompressed images. Next, classification 
performance for humans at close range (100 pixels tall) is 
evaluated for compressed and uncompressed versions of the same 
test images. Using a compression ratio of 32:1 (97% of each 
image’s data is discarded and the image is reconstructed from 
only the 3% retained), the miss rates for the compressed  and 
uncompressed images are equivalent at 0.5% while the 1.0% 
false alarm rate for the compressed images is only slightly higher 
than the 0.5% rate for the uncompressed images. Finally, this 
work depicts good detection performance for humans at long 
ranges in highly compressed images. Insights into important 
design issues—for example, the impact of the amount and type of 
training data needed to achieve this performance—are also 
discussed. 

Keywords—automatic human detection, histogram of oriented 
gradients, image compression 

I. INTRODUCTION 
This work addresses the specific challenge of automatically 

and efficiently detecting dismounted humans at long ranges 
from a single image. It is part of the larger, more general, 
image processing challenge of automated object detection in 
imagery. Conventional challenges in object detection include: 
different image formation processes lead to variations in 
viewpoint and scale, variations in illumination, partial 
occlusions, intra-class variation, context, background clutter, 
etc. Here, the goal is to detect members of the human object 
class (not the detection of particular humans).  

A common, two-part approach to object detection is 
employed in this study: a feature extraction algorithm 
generates a descriptive feature vector from the image and a 
trained classifier analyzes the feature vector and decides 
human or no-human present. The strategy here is to focus on 
the first part (feature extraction) and maintain a simple, fast 
classifier. Moreover, the desire is to achieve an efficient 
approach by deriving the feature vector from a highly 
compressed image. 

A fundamental problem of automated object detection in 
images is the type of feature representation or descriptors to 

employ. Histogram of oriented gradients (HOG) is a dense, 
overlapping grid of features extracted from a single image at 
one resolution [1]. HOG descriptors are a collection of 
neighboring, normalized, weighted histograms of gradient 
orientations; spatial information is implicitly encoded by its 
position in the feature vector. HOG is robust to small variations 
in contour locations and directions; HOG is also robust to large 
changes in illumination and color. A support vector machine 
(SVM) is a supervised learning technique that can be used for 
pattern recognition and classification [2]. SVMs have recently 
been recognized as a classification tool capable of superior 
performance—oftentimes with simple, fast architectures. 
JPEG2000 is the image compression standard based on a two-
dimensional discrete wavelet (biorthogonal 9/7) transform 
followed by a specialized arithmetic encoder (EBCOT). The 
standard allows the user to manipulate many variables to 
customize compression performance [3]. 

This study employs a HOG feature vector and a linear 
SVM classifier to investigate the detection of dismounted 
humans at long ranges from a single, JPEG2000 compressed 
image. HOG+SVM has been shown to be effective for 
detecting humans at close range; consequently, it is desirable to 
understand its performance at greater distances. The idea is that 
if this encoding of images into feature vectors is sufficiently 
discriminative even at long ranges and high compression 
levels, and if the training data includes the variations that the 
classifier needs to separate the two object classes (human/no-
human), then this efficient HOG+SVM system should be able 
to accurately detect humans even at long ranges. 

II. BACKGROUND 
Automatic object detection in images receives considerable 

attention in the image processing and computer vision 
literature. This brief background focuses on the state-of-the-art 
image descriptors (i.e. feature vectors) that are most germane 
to the goal of the current study. 

A. Dense Representations: Haar Wavelet 
Haar wavelet based object detection methods rely on dense 

features extracted at several scales and orientations. Dalal used 
nine first and second order, horizontal, vertical, and diagonal, 
generalized Haar wavelet filters at two scales (the over-
complete representation arises from the overlapping support of 
the wavelets). Although the wavelet based approach to feature 
vectors does not exploit the advantages of the sparse 
representations based on points, wavelets demonstrated the 
best performance of all the alternative methods compared to 
HOG [1]. 
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The alternative to dense representations is sparse 
representations based on local descriptors of identified image 
regions. These key point descriptors are assembled into feature 
vectors for classification. The primary advantage of the key 
point methods is their compact representation—offering speed 
with lower memory and power requirements. However, 
because key point detectors are designed for particular objects, 
they may be limited in their ability to generalize to object 
classes. Two key point methods that have received attention 
recently are shape contexts and scale invariant feature 
transformation (SIFT). 

B. Sparse Representations: Shape Contexts and SIFT 
Shape contexts compute local histograms of image 

gradients or edges over log-polar grids. The voting into the 
histograms is performed without regard for edge orientation; 
consequently, it compares to a histogram with one orientation 
bin. In Dalal’s comparison with HOG, both shape context 
methods performed worst among the alternative approaches 
[1]. 

SIFT also computes local histograms; however, it uses the 
local scale and dominant orientation given by the key point 
detector to vote the weighted gradient magnitudes into the 
orientation histograms. Consequently, the feature vectors are 
invariant to scale and orientation. Unlike shape contexts, SIFT 
computes histograms over rectangular grids. For comparison 
with HOG, Dalal employed a method that is a combination of 
principal components analysis (PCA) and SIFT, referred to as 
PCA-SIFT [4]. PCA-SIFT modifies the way in which the SIFT 
key point detectors are assembled into feature vectors; the 
result is a more compact representation that provides faster, 
more accurate performance. In PCA-SIFT, the computed local 
image gradient is projected onto a pre-computed eigenspace of 
image gradients—the closest match provides a more compact 
feature vector than the standard SIFT feature vector. Dalal 
implemented PCA-SIFT with 16x16 blocks and compared it to 
HOG using the same scale and overlap (the PCA eigenspace, 
or basis, was calculated using only the positive training 
images). PCA-SIFT outperformed shape contexts, but 
underperformed the wavelet approach—which did not perform 
as well as HOG [1]. 

III. EFFICIENT HUMAN DETECTION WITH HOG 

A. Image Compression 
The JPEG2000 image compression standard offers 

significantly improved performance over the previous JPEG 
standard [5]. JPEG2000 has proven capable of reconstructing 
images from compressed data that are perceptually identical to 
original, high resolution images up to lossy compression ratios 
of 20:1 (95% of the original information is discarded; the 
image is reconstructed from only the 5% retained). The 
resulting storage and transmission power savings are sizeable: 
at a 32:1 compression ratio, the compressed image size is 
3.13% that of the original image (e.g. a 1MB image 
compresses to 31K). Figure 1 depicts the inclusion of image 
compression in the automatic classification system. Removing 
the components circled in blue would result in an inefficient 
system with no savings in storage or transmission power. 

Fig. 1. Image compression for efficient human detection: the components 
circled in blue are present due to compression. The compressed image can be 
significantly smaller than the high resolution image, yet look nearly identical, 
at the expense of the computational cost of encoding and decoding.  

However, the inefficient version of the classification system 
would not incur any encoding/decoding computational costs. In 
this application, the primary issue to understand is the impact 
of compression on classification performance. 

B. Histogram of Oriented Gradients (HOG) 
Histogram of oriented gradients (HOG) is a method for 

automatically detecting people in images [1]. HOG 
incorporates the dense, overcomplete framework of the wavelet 
approach and also exploits the local image feature key points 
of the point detector approaches like shape contexts and SIFT.  

HOG builds on these previous methods by proposing a 
monolithic encoding of dense, overlapping image region 
features that are derived from the distribution of gradient 
orientations. 

The HOG feature vector of an image is computed as 
follows. 

1) Compute image gradient. For each color channel, 
convolve the gradient mask, [-1,0,1], with the image in both 
the vertical and horizontal directions, resulting in dv and dh. 
Form the gradient vector at each pixel as (dv + i⋅dh) and 
compute its gradient magnitude, r, and phase, θ (in degrees). 
Restrict the phase to only positive values by adding 180 to any 
negative phase values. For color images, keep only the 
magnitude and phase of the dominant color channel at each 
pixel (determined by the largest magnitude). 

2) Compute block histogram cubes.  
a) Here, the image is divided into cells of 

size η x η pixels; cells are grouped into blocks of size ζ x ζ 
cells (η⋅ζ x η⋅ζ pixels). 

b) For each block, apply a Gaussian window with σ = 
0.5⋅η⋅ζ to the block gradient magnitudes; this deemphasizes 
the pixels at the block edges. 

c) For each cell in the block, compute a histogram of 
gradient orientations (i.e. phases) by dividing the [0,180] 
range into β equal-sized bins. For each cell pixel’s gradient 
phase, determine its two neighboring bin centers, then 
distribute the pixel’s gradient magnitude to the two adjacent 
bins based on the phase distance from each bin center. If a 
pixel’s phase is to the left of the first bin center, to the right of 
the last bin center, or exactly equal to a bin center, then the 
pixel’s magnitude will be added to only one of the β histogram 
bins. Equations (1-3) describe how a pixel magnitude is 
distributed into two neighboring bins: 
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/180
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 (1) 

 LΒ = ( )wrLB ⋅+  (2) 

 UΒ = ( )wrUB −⋅+ 1  (3) 

where w is the distribution weight, LB is the lower neighbor 
histogram bin center, and UB is the upper neighbor histogram 
bin center. This approach differs from the original HOG 
trilinear interpolation for voting the gradient magnitudes into 
the orientation histograms. 

d) Finally, the cell histograms are collected and 
arranged into block histogram cubes. Blocks are not distinct 
from one another; instead, they overlap. The stride variable 
describes the amount of overlap in pixels. Consequently, one 
cell histogram can make an appearance in multiple block 
histogram cubes. 

3) Block normalization. For each block histogram cube, 
use the L2 norm to normalize it (independently of all the other 
blocks). Arrange all of the normalized block histogram cubes 
into one large HOG feature vector. 

C. Efficient HOG+SVM Classification 
HOG feature vectors derived from compressed, 

reconstructed images are input to a support vector machine 
(SVM) trained for classification of the images: a “positive” 
classification means that the classifier has decided that a 
human is present in the image and a “negative” classification is 
a decision that no human is present. The classifier designed for 
this study is a linear kernel, one-norm, soft margin SVM [2]; it 
was implemented in Matlab. The classifier was trained on 
1036, 128x64 pixel, positive and negative images in less than 
one second on a standalone 64-bit desktop machine with a 
quad core Intel™ Xeon (3.33GHz). 

IV. RESULTS 

A. Data and Experiments 
Image data was derived from the well-known 

Massachusetts Institute of Technology pedestrian image 
database [6]. The original 128x64 pixel images were 
downsampled by a factor of two, four and eight to simulate the 
effect of the image having twice, four times, and eight times 
the range of the original image. Figure 2 shows one example of 
an original image and its factor-2, factor-4, and factor-8 
reductions (displayed here at the same size). Table 1 depicts 
the image size (in pixels), the size of the human height, and an 
estimated ground sample distance (GSD) based on an average 
human height of 1.8m and a thigh width of 20cm. The image 
data contains little variation in: object  viewpoint, partial 
occlusions, context, and background clutter; 

Fig. 2. The positive test image at four scales (displayed at the same size): (a) 
original size; (b) factor-2 reduction; (c) factor-4 reduction; (d) factor-8 
reduction. 

TABLE I.  OVERALL IMAGE SIZE IN PIXELS; NUMBER OF PIXELS FROM 
TOP OF PERSON’S HEAD TO BOTTOM OF PERSON’S FEET; CALCULATED GROUND 
SAMPLE DISTANCE FOR PERSON HEIGHT (BASED ON AN AVERAGE PERSON 
HEIGHT OF 1.8M); CALCULATED GROUND SAMPLE DISTANCE FOR PERSON 
THIGH WIDTH (BASED ON AN AVERAGE WIDTH OF 0.2M). 

Image Image 
Size 

Person 
Height 

GSD 
(Height) 

GSD 
(Width) 

Original 128x64 
pixels 

100 
pixels 

1.8 
cm/pixel 

2.0 
cm/pixel 

Factor-2 64x32 
pixels 

50 
pixels 

3.6 
cm/pixel 

4.0 
cm/pixel 

Factor-4 32x16 
pixels 

25 
pixels 

7.2 
cm/pixel 

10.0 
cm/pixel 

Factor-8 16x8 
pixels 

12 
pixels 

15.0 
cm/pixel 

20.0 
cm/pixel 

 

however, the data includes significant variations in 
illumination, scale, and intra-class object appearance. 

A rule-of-thumb requirement for stationary target detection 
is 12 pixels across the target’s minimum dimension. If an 
average human is roughly ½m wide, then the maximum GSD 
for automatic target recognition of stationary humans is about 
4.2cm/pixel. Consequently, it is expected that this HOG+SVM 
classification system will experience difficulty detecting 
humans in the factor-4 and factor-8 test images. 

The HOG+SVM ATR was first trained with positive 
(human is present) and negative (no human is present) training 
images; next, the trained HOG+SVM ATR was tested with 
positive and negative test images. This train/test procedure was 
repeated for a variety of conditions—each of which is 
described below. In all experiments, there is no overlap 
between the training and test image sets. The positive images 
include one upright human, centered in the image, from a front 
or back view, in an urban setting. The negative images are also 
of urban settings, but no human is present. Figure 3 shows one 
example of an original negative image and its factor-2, -4, and 
-8 reductions (displayed here at the same size). 

In the computation of the HOG feature vector, β = 9 
histogram bins was used for all experiments. For the original 
and factor-2 images, the HOG variable settings were: 
η = 8, ζ = 2, and the stride was 8 pixels (i.e. 105 blocks for  

 

(a)                    (b)                      (c)                     (d) 
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Fig. 3. One negative test image (no human present) at four scales (displayed 
at the same size): (a) original size; (b) factor-2 reduction; (c) factor-4 
reduction; (d) factor-8 reduction. 

each original image, 21 blocks for each factor-2 image). For 
the factor-4 images, the HOG variable settings were: 
η = 4, ζ = 2, and the stride was 4 pixels (i.e. 21 blocks for each 
image). For factor-8, the HOG variable settings were: 
η = 2, ζ = 2, and stride = 2 pixels (21 blocks for each image). 

B. Classification as a Function of Range 
The HOG+SVM ATR (without compression) was trained 

with 518 positive and 518 negative training images at the 
original scale; next, the HOG+SVM ATR was tested with 200 
positive and 200 negative test images at the original scale. This 
train/test procedure was repeated at the factor-2, factor-4, and 
factor-8 reduced scales. Figure 4 depicts the detection error 
tradeoff plot (miss rate vs. false alarms) for the original image 
and its three scale reductions. The best performing wavelet 
result, using the original image scale, is shown for the same 
false alarm rate [1]; its correspondingly higher miss rate is 
expected. As expected, the miss rate and false alarm rate 
increase as the image scale is reduced. However, at these 
ranges, HOG+SVM performance is significantly better than 
anticipated. For example, the factor-8 image contains a person 
only 12 pixels high and yet the miss rate is only 5.5% and the 
false alarm rate is only 4.5%! Although range was not reported 
for the original images, one could estimate the original image 
range (with a person height of 100 pixels) to be about 50m. 
Consequently, the factor-8 image range would be 400m; a 
5.5% miss rate and 4.5% false alarm rate for automatic human 
detection is unprecedented at these distances. 

Fig. 4. Detection error tradeoff plot depicts increasing false alarm rate and 
miss rate as the original image size is reduced (i.e. range is increased). 
HOG+SVM achieves good performance even at the longest range: factor-8 
image (person is approximately 12 pixels high) results in a miss rate of 0.055 
and false alarms at 0.045. 

 

Fig. 5. Test image, at original scale: uncompressed (left), compressed at 16:1 
(middle), and compressed at 64:1 (right). 

C. Classification as a Function of Compression 
Next, the efficient HOG+SVM ATR (with compression) 

was trained with 518 positive and 518 negative training 
images, at the original scale, for four compression ratios: 8:1, 
16:1, 32:1, and 64:1. Then testing was performed with 200 
positive and 200 negative test images, at the original scale, 
after compression and subsequent reconstruction (refer to 
Figure 5 for the perceptual differences due to compression). 
Table 2 depicts the miss rates and false alarm rates: there is no 
significant difference in classification performance at the three 
lowest compression ratios. However, at the most highly 
compressed level (64:1, in which only 1.5% of the information 
is retained after compression), both the miss rate and false 
alarm rate are four times higher than the uncompressed case.  

This performance is based on a classifier trained with 
compressed images. However, when a classifier trained with 
uncompressed images is then applied to compressed test 
images, performance suffers even more at the higher 
compression levels. For example, the false alarm rate for test 
images compressed at 64:1 jumped to 7.5%. 

TABLE II.  CLASSIFICATION PERFORMANCE OF THE ORIGINAL SCALE 
IMAGES, UNCOMPRESSED, AND AT FOUR COMPRESSION LEVELS.  

Image Scale Miss Rate False Alarm 
Uncompressed 0.5% 0.5% 
JPEG2000 8:1 0.0% 0.5% 

JPEG2000 16:1 1.0% 0.5% 
JPEG2000 32:1 0.5% 1.0% 
JPEG2000 64:1 2.0% 2.0% 

 

D. Efficient, Long-Range Classification 
The original scale images are 128x64 pixels with a person 

approximately 100 pixels tall. Factor-2 images (64x32, 50 
pixel tall human) were compressed using the conventional 5-
levels of the discrete wavelet transform in JPEG2000. 
However, the factor-4 and factor-8 images were too small to 
compress—even at only 3-levels in JPEG2000. For these 
images in which the person is only 25 or 12 pixels tall, there 
isn’t enough data in which to isolate and exploit redundancies 
(the key to effective compression). In other words, 

         (a)                          (b)                       (c)                       (d) 
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compression is unnecessary for humans at these very far 
distances. 

Since the efficient HOG+SVM ATR performed well at the 
32:1 compression ratio for the original scale images, the factor-
2 images were examined at this same compression level. For 
518 positive and 518 negative training factor-2, compressed 
images, the miss rate increased to 6.5% and the false alarm rate 
also rose to 6.0%. Compare these with a 2.0% miss rate and a 
3.0% false alarm rate for the factor-2 uncompressed case. 
Although the classification performance is still acceptable, 
clearly the combination of range and compression is impacting 
the results. 

The type and amount of training data impacts classification 
performance; indeed, the results for a classifier trained on 
uncompressed data, but tested on compressed data, is described 
above. The more closely the training data resemble the testing 
data, the better the performance. Moreover, the amount of 
training data is also an important factor. For example, when the 
classifier was trained on only 300 positive and 300 negative 
training, factor-2, compressed images, the miss rate rose even 
higher to 10.5% and the false alarm rate also increased to 
7.0%.  

V. CONCLUSIONS AND FUTURE WORK 
This investigation revealed that humans can be efficiently 

detected in a single, highly compressed image using a HOG 

feature vector and SVM classifier. Classification performance 
degraded gradually as a function of range and compression. 
Both the amount and type of training data were demonstrated 
to impact classification performance. Adapting these methods 
to more realistic conditions—greater image variation in terms 
of size, partial occlusion, amount of context, noise, clutter, 
etc.—presents difficult challenges. However, the performance 
of these methods, in the conditions presented here, indicate that 
they are worthwhile candidates for further investigation. 
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