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Executive Summary 

The Defense Threat Reduction Agency (DTRA) provides reach-back support to 
warfighters combating threats from chemical, biological, radiological, nuclear, and 
enhanced conventional (CBRNE) weapons.  The assets accessible through DTRA’s 
reach-back capability include both technology and subject matter expertise.  As tactical 
data infrastructures are used by a greater variety of CBRNE detection systems, the 
opportunity exists to improve stand-off detection performance through remote processing 
and fusion of sensor data and modeling of the operational environment.  DTRA is 
actively developing technologies to enable and support a future mode of operations where 
tactical communication infrastructures transmit data in real time from heterogeneous 
networks of CBRN (and non-CBRN) sensors positioned in and around an area of 
operations for remote processing.  The same networks could also be used to deliver 
responses such as real-time sensor tasking and analytical products from the reach-back 
capability to warfighters. 

The integrated support approach being pursued by DTRA must be applicable to a 
wide range of operational missions including direct force protection, targeted search, 
long-term threat behavior monitoring, and wide area search.  The missions vary in spatial 
and temporal dimensions; they also vary with regard to the extent of ownership/control of 
the operational area and the deployed sensors, expertise of users, knowledge of threat 
signatures, and other factors. 

Advances in the development of a number of technologies may enable the 
realization of such an interconnected mode of operations.  The enabling technologies 
being addressed by DTRA include CBRNE sensor development and improvement, 
communications and bandwidth improvement, and the development of interfaces and 
protocols that allow the necessary connections between system components.  In addition, 
DTRA leverages physics-based models for phenomena such as background radiation, 
neutron transport, and atmospheric transport and dispersion that are relevant to the 
CBRNE mission.  The sensor data received through the tactical infrastructure will need to 
be integrated with the appropriate physics models in order to provide reach-back support.  
This integration of sensors and models will require the development of automated 
methods (algorithms) for combining sensor information with physics models to perform 
critical functions such as anomaly detection, classification, and sensor management.  
Development of algorithms to perform supporting functions such as data triage, data 
fusion, and dimension reduction will also be required.  Algorithm development is 
required to ensure that the analytic tools available to the DTRA reach-back capability 
keep pace with developments in network, sensor, and computation capabilities. 
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This report provides a broad literature review of the methods available to support 
real-time data fusion of sensor measurements with physics-based simulation models.  At 
DTRA’s request, this effort is not focused on any particular sensing technologies, physics 
models, or technology development time horizons.  This document provides instead an 
overview, organization, and high-level assessment of recent methods for sensor fusion, 
anomaly detection, data assimilation, classification, sensor management, and supporting 
functions.  The purpose of this review is to provide background material useful to an 
algorithm development program and to support the identification of promising directions 
for DTRA’s ongoing field demonstration program. 

The review starts by discussing several taxonomies that provide frameworks for 
organizing classes of algorithms.  Next follows a discussion of data fusion for raw sensor 
data.  Following this, the review considers data triage and compressive sensing, which are 
methods that selectively reduce the amount of data that needs to be processed.  
Discussion follows on data assimilation, anomaly detection, dimension reduction, 
classification, sensor management, and decision fusion. 

Following the algorithm overview and discussion, we provide several case studies 
that focus on diverse applications.  At DTRA’s request, these are non-CBRNE case 
studies that illustrate one or more of the algorithms discussed in the first part of the report 
and point to challenges and lessons learned in the implementation of sensor fusion in real 
problems.  The case studies include examples such as implantable cardioverter 
defibrillators, autonomous ground vehicles, and hurricane forecasting.  The following 
table details the algorithms discussed, the illustrative examples for each, and potential 
CBRNE applications. 

The report also includes a description of two other DTRA-sponsored programs that 
involve algorithm development for CBRNE applications.  The Algorithms for Threat 
Detection (ATD) program is jointly sponsored by DTRA, the National Science 
Foundation, and National Geospatial Intelligence Agency and seeks to build a research 
community around the development of algorithms for CBRNE threat detection.  We 
provide a detailed review of the research sponsored by this program, as some of the work 
has direct relevance to the reach-back mission.  In addition, the ATD program provides a 
structure that could be used to drive future reach-back relevant research. 

Sensor data-fusion algorithm development has also been supported by DTRA and 
the Joint Science and Technology Office for Chem-Bio Defense as part of the Joint 
Effects Model (JEM) development effort.  The JEM-related efforts have been significant 
and have produced data and tools that may be leveraged by a program for real-time 
sensor and model data fusion algorithm development.  Taken together, the ATD and JEM 
programs provide some guidance for proceeding with such a development program. 

The report concludes by suggesting research topics for algorithm development and 
by suggesting methods for providing analytical support to a research and development 
program for real-time sensor and model data fusion algorithms.  Research areas of 
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potential interest for ongoing field demonstrations are anomaly detection, data 
assimilation, and sensor management.  Experimental data sets will be necessary for 
algorithm development and evaluation of results.  Carefully designed field experiments 
can be used in conjunction with models designed to produce realistic synthetic data to 
generate the needed data sets.  Model validation efforts will be critical to the success of 
an analytical toolset that integrates data from sensor networks with physics-based models. 

 
Algorithms, Example Applications, Possible CBRNE Uses 

Algorithms Example Application Discussed Possible CBRNE Application 

Data Fusion Tracking, UAV sense and avoid Combine data from multiple sensors 

Data Triage Experimental particle physics data 
collection, routine Internet operations 

Improve data collection given limited 
computing power on future low-cost 
sensor 

Compressive 
Sensing Data collection along a perimeter Reduce data acquisition time or 

number of samples 
Data 
Assimilation 

Numerical weather prediction, CO2 flux 
models 

Combine observed data with modeling 
and simulation to improve estimation 

Dimension 
Reduction 

Hyperspectral imaging, gene sequenc-
ing 

Extract features to improve CBRNE 
threat classification 

Anomaly 
Detection 

Detection of cheating in high school 
test taking, biosurveillance for disease 
outbreaks, detection of abnormal and 
dangerous fast heart rhythm 

Earlier initial threat detection/alert, 
detection in the presence of complex 
background 

Classification 

Required operating characteristic 
curve for radar, decision about 
whether heart rhythm is lethal or non-
lethal 

Reduce CBRNE sensor false alarms, 
mission/situation-dependent tradeoffs 
between probability of detection and 
false alarm rate 

Sensor 
Management 

Improving near-real-time storm fore-
casting 

Determine where best to point sensor 
for next observation 

Decision 
Fusion  

Control logic, CEC air defense tactical 
network 

Combine information from sensors 
with minimal computational power 
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1. Background 

The Defense Threat Reduction Agency (DTRA) provides reach-back support to 
warfighters combating threats from chemical, biological, radiological, nuclear, and 
enhanced conventional (CBRNE) weapons.  The assets accessible through DTRA’s 
reach-back capability include both technology and subject matter expertise.  As tactical 
data infrastructures are used by a greater variety of CBRNE detection systems, the 
opportunity exists to improve stand-off detection performance through remote processing 
and fusion of sensor data and modeling of the operational environment. 

Advances in the development of a number of technologies may enable the 
realization of such an interconnected mode of operations.  The enabling technologies 
being addressed by DTRA include CBRNE sensor development and improvement, 
communications and bandwidth improvement, and the development of interfaces and 
protocols that allow the necessary connections between system components.  In addition, 
DTRA leverages physics-based models for phenomena such as background radiation, 
neutron transport, and atmospheric transport and dispersion that are relevant to the 
CBRNE mission.  The sensor data received through the tactical infrastructure will need to 
be integrated with the appropriate physics models in order to provide reach-back support.  
This integration of sensors and models will require the development of automated 
methods (algorithms) for combining sensor information with physics models. 

This report has three primary objectives.  The first is to provide a literature review 
of methods available to support real-time data fusion of sensor measurements with 
physics-based simulation models.  At DTRA’s request, this review is not focused on any 
particular sensing technologies, physics models, or technology development time 
horizons.  We first consider classes of algorithms typically used with sensor data, and 
then expand the discussion to algorithms used with both sensor measurements and 
simulation models.  We give special focus to the role of physics-based models, the 
feasibility of developing real-time algorithms, and the utility of methods for developing 
adaptive strategies for sensor management. 

The second purpose is to describe several case studies that demonstrate the 
integrated use of data and models outside CBRNE.  These case studies both illustrate the 
methods discussed in the literature review and point out successes and challenges in 
integrating sensor measurements and simulations in a broad set of applications. 

The third purpose is to summarize two DTRA-sponsored research programs that 
have supported algorithm development.  The Algorithms for Threat Detection (ATD) 
program is jointly sponsored by the National Science Foundation (NSF), DTRA, and the 
National Geospatial Intelligence Agency (NGA).  ATD was started in 2009 “to develop 
the next generation of mathematical and statistical algorithms for the detection of 
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chemical agents, biological threats, and threats inferred from geospatial information.”  
The research performed by ATD is itself of interest in developing CBRNE reach-back 
capabilities, and the program offers opportunities to leverage its existing structure to 
drive additional reach-back relevant research.  The Joint Effects Model (JEM) is 
supported by DTRA and the Joint Science and Technology Office for Chem-Bio Defense 
(JSTO-CBD).  It is designed to provide a single Department of Defense (DoD)-approved 
tool to predict hazard areas and effects resulting from the use of CBRNE weapons and 
releases of toxic industrial materials.  Requirements for JEM have driven science and 
technology development efforts to incorporate sensor data-fusion algorithms into 
CBRNE hazard prediction models. 

For this report, we consider four DTRA-defined operational missions: direct force 
protection, targeted search, long-term threat-behavior monitoring, and wide-area search.  
These missions differ in two aspects: scale (both spatial and temporal) and operational 
purpose.  Direct force protection and targeted search focus on local, immediate threats.  
Long-term threat-behavior monitoring and wide-area search occur over a relatively wider 
geographical area and over a longer period of time.  Direct force protection and long-term 
threat-behavior monitoring are watchful activities that may produce a cue requiring a 
response; targeted and wide area searches are response activities. 

In direct force protection and targeted search, expert users operate sensors in 
relatively controlled settings in order to test a known hypothesis.  The sensors are 
deployed over geographical areas that are relatively small.  In direct force protection, 
these small settings might be an embassy compound, a port, or a forward operating base.  
These settings can be fully controlled, since they are owned by friendly forces; users can 
deploy the sensors non-covertly and access the sensors directly for calibrating and 
downloading data.  In targeted search, the setting might be a ship or a truck.  These 
settings may only be partially controlled since they may not be owned by friendly forces; 
users may have slightly less freedom in the operation of the sensors, compared to direct 
force protection.  In these missions though, the hypothesis to be tested is well known, 
since it relates directly to the physical phenomena upon which the sensors are based (e.g., 
the hypothesis, “Gamma radiation is not present,” requires the use of gamma radiation 
sensors).  Thus direct force protection is the most straightforward of DTRA’s operational 
missions, followed by targeted search. 

In contrast, long-term threat-behavior monitoring and wide-area search are characterized 
by users operating sensors in large, uncontrolled settings.  The sensors may be used to 
test a known hypothesis or, more often, to support generation of new hypotheses.  The 
individuals who operate the sensors may not be fully trained in their use for DTRA-
specific missions.  The sensors may collect data over very large areas (e.g., a city) and 
very long periods of time (e.g., weeks), leading to settings that cannot be controlled due 
to their very large size.  Technologies for long-term threat-behavior monitoring and wide-
area search are less mature than those for direct force protection and targeted search.  
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2. Taxonomies 

Three formal taxonomies/models are useful in discussing the algorithms covered in 
this report.  These are the Joint Directors of Laboratories (JDL) Data Fusion Model 
(Steinberg, Bowman, and White 1999; Steinberg and Bowman 2009), the Dasarathy 
Model (Dasarathy 1997), and the Omnibus Model (Bedworth and O’Brien 2000).  None 
of these taxonomies provide exactly what is needed to organize the algorithms we 
consider, but each illustrates important facets of the problem. 

The JDL model is primarily of historical interest for this report.  An overview is 
given in Figure 2-1.  It was proposed first in 1985 and is the de facto standard for U.S. 
defense data-fusion applications.  The JDL model takes a process view of data fusion and 
does not have a completely natural mapping to algorithm functionality, but we include 
definitions of the five key JDL sub-processes for reference: 

• Level 0 (sub-object data assessment) – Combine pixel or signal-level data to 
obtain initial information about an observed target’s characteristics.  Includes 
sensing and signal processing. 

• Level 1 (object assessment) – Combine sensor data to obtain more reliable and 
accurate estimates of an entity’s position, velocity, attributes, and identity 
(perhaps to support prediction).  Includes feature extraction and pattern 
processing. 

• Level 2 (situation assessment) – Dynamically develop a description of current 
relationships among entities and events in the context of the environment.  
Includes object clustering, relational analysis, and situation assessment. 

• Level 3 (impact assessment) – Project the current situation into the future to 
make inferences.  Includes decision making, consequence prediction, and 
vulnerability assessment. 

• Level 4 (process refinement) – Using a meta-process, monitor overall data 
fusion and improve real-time system performance. 

An additional level is included in some versions of the model: 

• Level 5 (cognitive refinement) – Improve the interaction between the fusion 
system and one or more users/analysts.  Includes visualization, cognitive 
assistance, bias remediation, and team-based decision-making. 
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Figure from Steinberg and Bowman (2009).   

Figure 2-1.  JDL Data Fusion Model 
 

The second taxonomy that we discuss is the Dasarathy Model (Dasarathy 1997), 
which focuses on the level of abstraction (specifically of inputs and outputs) during 
fusion processes.  In particular, processing can occur at the level of raw sensor data, 
features, or decisions.  Dasarathy (1997) discusses the five combinations that are shaded 
in Table 2-1; other references [for example, Steinberg and Bowman (2009)] discuss 
algorithm classes in additional cells.  The Dasarathy model provides a flexible framework 
for categorizing algorithms. 

 

Table 2-1.  Dasarathy Model with Examples 

Input 

Output 

Data (DAO = 
DAta Output) Features (FEO) Decisions (DEO) 

Data (DAI = 
DAta Input) 

Fusion of multi-
spectral data  
(DAI-DAO) 

Feature selection and 
feature extraction 
(DAI-FEO) 

Anomaly detection, 
Sensor management 
(DAI-DEO) 

Features (FEI) 
 Fusion of image and 

non-image data 
(FEI-FEO) 

Classification 
(FEI-DEO) 

Decisions 
(DEI) 

  Decision-level fusion 
(DEI-DEO) 

 
The Omnibus Model (Figure 2-2) is a hybrid of several other multi-sensor data 

fusion models, with an emphasis on the feedback cycles within fusion.  Within this 
model, we see the Boyd (or OODA) loop (Boyd 1995) and the Waterfall Model 
(Bedworth and O’Brien 2000).  The OODA loop (“observe, orient, decide, act”) was 



 

2-3 

originally proposed as a model for the military command process but is now widely used 
to describe data fusion.  The Waterfall Model (Figure 2-3) is a more fine-grained 
description of the lower levels of the JDL model, with sensing and signal processing 
corresponding to JDL level 0, feature extraction and pattern processing to JDL level 1, 
situation assessment to JDL level 2, and decision making to JDL level 3.  The Waterfall 
Model is widely used in the UK defense data fusion community but has not been widely 
adopted elsewhere (Bedworth and O’Brien 2000).   

 

 
Figure from Bedworth and O'Brien (2000).   

Figure 2-2.  Omnibus Data Fusion Model 
 
 

 
Figure from Bedworth and O'Brien (2000).   

Figure 2-3.  Waterfall Model 
 

There is a reason for the multiple fusion taxonomies in use today – none of them 
maps naturally onto all possible fusion algorithms.  We can organize our discussion of 
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algorithms (Chapter 3) using both the Omnibus Model and the Dasarathy Model.  In 
addition, we have also adopted the categories of data fusion, feature fusion, and decision 
fusion (Elmenreich 2002). 

Consider first organizing the algorithms using the Omnibus Model.  Within the 
Observe box, we discuss data triage and compressive sensing, which are algorithms that 
reduce the amount of raw data that needs to be processed.  Data triage is a principled 
post-acquisition decision about what data to process.  Compressive sensing makes a prior 
decision about what data to acquire.  From Donoho (2006): 

As our modern technology-driven civilization acquires and exploits ever-
increasing amounts of data, “everyone” now knows that most of the data 
we acquire “can be thrown away” with almost no perceptual loss – witness 
the broad success of lossy compression formats for sounds, images, and 
specialized technical data.  The phenomenon of ubiquitous compressibility 
raises very natural questions: why go to so much effort to acquire all the 
data when most of what we get will be thrown away?  Can we not just 
directly measure the part that will not end up being thrown away? 
(p. 1289) 

We also consider data assimilation algorithms, which are built to use all available sensor 
data in combination with a physical model to reconstruct, as accurately as possible, the 
properties of the environment of interest.  In data assimilation, a forecast step is usually 
implied, in which observations and the physical model are used to predict the future 
evolution of the environment of interest. 

Within the Orient box, we consider dimension-reduction algorithms, focusing on 
feature selection and feature extraction.  We also discuss anomaly detection, or the 
detection of patterns in a given data set that do not conform to established “normal” 
behavior (Chandola, Banerjee, and Kumar 2009).  Within the Decide box, we discuss 
algorithms for classification and tracking, and within the Act box, we focus on resource 
tasking for sensor planning and real-time sensor allocation.   

Moving to the Dasarathy Model and Elmenreich (2002) categories, we think more 
specifically about the three fundamental types of fusion: data fusion, feature fusion, and 
decision fusion (Elmenreich 2002).  Data fusion combines measurements from multiple 
detectors.  Typically, the objective of the fusion is to combine multiple independent 
measurements of the same object or area to improve detection.  When similar detectors 
are spatially separate, the measurements can be used to localize the source (more accurate 
position) or estimate the magnitude of the source. 

The fusion of measurements from detectors of different modalities can increase the 
amount of information available and improve the ability of a system of detectors to 
identify the source.  Of course, one does not simply add raw measurements together if 
they are measuring different things.  However, if the target of interest can be 
distinguished by a characteristic set of measurements, then the occurrence of that set of 
measurements from multiple detectors may be used a discriminant.  This is called feature 
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fusion.  A simple architecture for this would employ multiple detectors of different 
modalities at the same location.  Each set of detectors provides a multidimensional 
measurement of the source, and the right set of detectors may provide a much more 
reliable identification of the source than would be achievable from a single modality 
network. 

Another way to fuse the information from multiple detectors of different modalities 
is to allow each instrument to independently form a decision about the source and then 
combine the decisions of all instruments to reach a final assessment.  This is called 
decision fusion.  Decision fusion depends critically on understanding the uncertainties 
contributing to the decision, and these are often difficult to quantify.  Unlike a detector 
measurement, where the physical process and the sensor characteristics define the 
measurement accuracy, decisions may arise from estimates based on human experience, 
and each decision may be very different in its uncertainties.  On the other hand, the 
advantage of decision fusion is it greatly reduces the amount of data that has to be 
exchanged on the network and may be the only way to take advantage of information 
sources such as human observations. 

The type of fusion employed in a tactical network depends on the purpose of the 
network and the challenges imposed by constructing the network.  For example, if raw 
measurements from the detectors are too voluminous to disseminate to the fusion 
processor, then reducing the data to a feature or to a decision may be required.  In 
general, the challenges to be considered include accommodating the data exchange and 
dissemination requirements of the architecture, and the latencies in classification, 
decision, and response components of the architecture. 

In Chapter 3, we describe methods for implementing these three types of fusion.  
We provide an overview section on data fusion, and then we also discuss the Data-Data 
(DAI-DAO) algorithms for data triage, compressive sensing, and data assimilation.  We 
consider feature selection and extraction, which cross Data-Feature (DAI-FEO) and 
Feature-Feature (FEI-FEO) methods. 

As a note, DAI-FEO methods are often problem specific.  From Dasarathy (1997): 

Fusion in this mode, depending on one’s viewpoint, input-fusion of data 
or output-fusion resulting in features, has been looked upon either as data 
fusion or feature fusion.  The manner in which depth perception is 
achieved in humans, by combining the visual information acquired from 
the two eyes, can be looked upon as a classical paradigm of this feature or 
information fusion.  The traditional approach to the computation of object 
surface temperatures using the intensities from two infrared (IR) bands of 
a multispectral scanner is another good example of data in-feature out 
mode of fusion processing.  (p. 29) 

Examples of Data-Feature methods can be found in Sections 4.B (Implantable 
Cardioverter Defibrillators), 4.C (Autonomous Ground Vehicles), and 4.E (Syndromic 
Surveillance).   
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We also discuss anomaly detection and sensor management [both Data-Decision 
(DAI-DEO) methods], classification [a Feature-Decision (FEI-DEO) method], and 
provide an overview of decision fusion methods [Decision-Decision (DEI-DEO) 
methods]. 
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3. Algorithms 

A. Data Fusion 
Data fusion is the direct combination of raw sensor data.  This is a broad area of 

research in which the methods and algorithms typically address one or more of the 
following concerns (Khaleghi et al. 2013): 

• Data imperfection – Sensor data will typically have bias, imprecision, and 
uncertainty. 

• Outliers and spurious data – Algorithms should be robust to ambiguous and 
inconsistent measurements. 

• Conflicting data – Algorithms should produce sensible answers even when the 
data conflict. 

• Data modality – Sensor networks may collect qualitatively similar (homogene-
ous) or different (heterogeneous) data. 

• Data correlation – In distributed networks, some sensor nodes are likely to be 
exposed to the same external noise sources. 

• Data alignment/registration – Sensor data must be transformed from each sen-
sor’s local frame into a common frame before fusion.  Measurements from each 
sensor (potentially measured at different times from different viewpoints with 
different calibration errors) must be transformed into a common coordinate 
system. 

• Data association – Data association can either refer to associating particular 
measurements to a track (identifying from which target, if any, each measure-
ment originated) or track-to-track association (distinguishing and combining 
tracks). 

• Processing framework – Is the fusion processing performed in a centralized or 
distributed manner? 

• Operational timing – The sensors may collect data at different rates or frequen-
cies, and fusion methods should incorporate multiple time scales and be able to 
address the issue of out-of-sequence arrival of data. 

• Static vs. dynamic phenomena –The phenomenon under observation may be 
time-varying (requiring attention to data freshness) or time-invariant. 
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• Data dimensionality – High-dimensional data may be processed into lower-
dimensional data or features.  This may save communication bandwidth and 
computational load at a central fusion load. 

Specific algorithms for data fusion are typically sensor-dependent.  However, there 
has recently been some novel work reframing many of the data fusion issues, including 
data imperfection, outliers, conflicting data, data modality, and data correlation, into a 
common statistical framework (Rodriguez 2012).  This research was funded through the 
NSF/DTRA/NGA Algorithms for Threat Detection Program1 (Chapter 5). 

Rodriguez (2012) proposes the following framework.  Suppose that we observe a 
vector of sensor data yt = (yt,1, yt,2, …, yt,q).  We are interested in estimating the 
unobserved (fused) signal xt.  The current state of the practice is to apply some linear 
filter or logical gates to the observed sensor data to estimate the unobserved signal: for 
example, 𝑥𝑡� = 𝑦𝑡� = 1

𝑞
∑ 𝑦𝑡,𝑗
𝑞
𝑗=1  or 𝑥�𝑡 = min�𝑦𝑡,1,𝑦𝑡,2,⋯ ,𝑦𝑡,𝑞�).  These choices of fusion 

functions are arbitrary.  A more statistical perspective can provide a unifying framework 
for different approaches that makes assumptions explicit, suggests generalizations, 
supports metrics for assessing optimality, and provides uncertainty measures. 

Consider the “common source” paradigm where xt is the unobserved signal, and we 
observe Yt,j = fj(xt) + εt,j (Figure 3-1).  Note that this allows a very general formulation, 
where what we observe are noisy transformations of a common latent signal. 

 

 
Figure from Rodriguez (2012).   

Figure 3-1.  “Common Source” Paradigm for Data Fusion 
 

A simple example might have 𝑦𝑡,𝑗 = 𝛼 + 𝛽𝑥𝑡 + 𝜀𝑡,𝑗, with the elements of εt 
normally distributed with variances ψj

2.  The current standard approach is to fit the 
parameters (α, β, ψ) based on training data and then to hardwire these estimates into the 

                                                 
1 The program announcement can be found at http://www.nsf.gov/funding/pgm_summ.jsp?pims_id= 

503427&org=DMS.   
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filter.  This assumes linearity and an additive Gaussian error structure, ignores the 
uncertainty in the parameter estimates (which is important for small training sets and 
complex models), and assumes that lab conditions are the same as field conditions.  
However, by noticing that this is a one-factor linear factor model, one can estimate (α, β, 
ψ) and x1, …, xq without training data.  If training data are available, they can be 
incorporated and used to perform model assessment. 

A slight generalization, assuming structure on the underlying signal so that 𝑥𝑡 =
𝑥𝑡−1 + 𝜔𝑡, with ωt normally distributed, results in a Kalman-filter-based approach with 
strong links to Bayesian dynamic linear models (Prado and West 2010).  Further 
generalizations consider non-linear functions fj(xt) with additive noise, which are 
typically estimated using basis representations (Vidakovic 1999) or Gaussian processes 
(Rasmussen and Williams 2006).  Rodriguez (2012) points to upcoming research, 
considering 𝑦𝑡,𝑗~𝑝𝑗(∙ |𝑥𝑡), that will allow the xt to evolve temporally or spatially.  
Reframing the data fusion problem as a statistical estimation problem allows the 
application of considerable estimation and computational machinery, as well as explicitly 
acknowledging the effect of uncertainty and assumptions on the fused output. 

B. Data Triage 
At its most basic level, data triage is a method of reducing the data rate coming 

from a sensor (or set of sensors) that would otherwise swamp the system that is expected 
to process and disseminate those data.  This could be due to limited bandwidth, limited 
processing capability, limited storage, or any other limitation on the capability of the 
processing and dissemination system.  The intent of data triage is to allow the system to 
continue to function at a reduced data rate in situations where the system would otherwise 
fail completely.  In some cases, this is a graceful degradation in performance; in other 
cases, it is possible to maintain full performance well beyond the point where data triage 
is necessary. 

1. When Is Data Triage Needed? 
In general, data triage is necessary when the data rate exceeds the speed at which it 

can be processed.  For continuous systems, the rate does not vary significantly, so the 
mean rate is all that matters.  For bursty systems, this consideration is nominally applied 
at peak data rate.  However, appropriately located and sized buffers can be designed into 
the system to smooth the effective data rate.  If these buffers are effective, then the 
system can be treated as continuous.  Part-time systems can be treated as bursty if the 
latency generated by spreading out the data in time is not problematic.  Otherwise, one 
must pay attention to the peak data rate. 

Let us consider an example from the realm of experimental particle physics.  There 
are numerous colliding-beam experiments where a large accelerator generates two 
counter-rotating beams of particles and steers them into collision at specific locations.  
Detectors are placed at these locations to observe interesting particle reactions that occur 
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in these collisions.  For many years the Tevatron2 accelerator at the Fermi National 
Accelerator Laboratory3 (FermiLab) was the highest energy particle accelerator in the 
world.  The rate of beam crossing was 7.6 million times per second (7.6 MHz, or 132 ns 
between bunches).4  As is typical in colliding-beam experiments, there are particle 
interactions in each beam crossing, generating data that could be read out.  However, the 
interesting physics5 is rare and occurs only every millionth (or billionth or trillionth) 
beam crossing. 

The Collider Detector at FermiLab (CDF)6 was one of the detectors at the Tevatron.  
The other, D0,7 is substantially the same, as are most large detectors at other accelerators.  
In this section, we will concentrate on CDF.  The CDF average event size (potentially 
interesting physics) is 150 kB, and the data had to be assembled from 16 different readout 
locations (Anikeev et al. 2000).  This would have led to a data rate of ~1.1 TB/s when, in 
reality, their tape system could only handle about 30 events per second (4.5 MB/s).8  To 
do this data triage, CDF chose to set up a multi-level trigger system, which is a common 
solution in experimental particle physics. 

The Level 1 trigger is implemented entirely in hardware.  It receives data on each 
bunch crossing (up to 7.6 MHz) and downselects to events of interest whose rate is 
capped at 50 kHz.  It can do this in about 4 µs and is sized to repeat this on each bunch 
crossing (132 ns).  All the readout electronics are pipelined for 42 bunch crossings (5.5 
µs) to allow the Level 1 trigger to complete.  If an event fails the Level 1 trigger, then 
data from the readout electronics is discarded and can never be recovered.  For events 
that pass the Level 1 trigger, the Level 2 trigger collects data from the readout electronics 
into one of four asynchronous local buffers.  Using these data it further downselects the 
events of interest to 300 Hz, taking about 20 µs to make its decision.  The Level 3 trigger 
does a full readout of the detector and sends the data to one node in a processor farm to 
further reduce the accept rate to 10 Hz. 

For this discussion, there is no need to get into the detailed physics of what the 
triggers were looking for or how they were balanced against each other in an attempt to 
satisfy all the scientists who were working on CDF.  At Level 1, measurements of 
quantities, such as total transverse energy and missing transverse energy, point toward 
physics of interest.  CDF was ultimately able to implement a tracking algorithm that 

                                                 
2 http://www.fnal.gov/pub/science/accelerator/. 
3 http://wwwfnal.gov/. 
4 This was the design specification for Run II.  The other primary mode used in run II was 396 ns bunch 

crossing time, or 2.5 MHz (Fermilab 1996).   
5 There is some debate over what is truly interesting.  Here “interesting” means new, undiscovered, or 

unexplained physics as distinguished from well-understood and well-measured physics.   
6 http://www-cdf.fnal.gov/. 
7 http://www-d0.fnal.gov/. 
8 This appears small by 2012 standards, but in 1996 this was a very high data rate.   

http://www.fnal.gov/pub/science/accelerator/
http://wwwfnal.gov/
http://www-cdf.fnal.gov/
http://www-d0.fnal.gov/
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could operate fast enough to be used by the Level 1 trigger.  This algorithm, the 
eXtremely Fast Tracker (XFT), takes information from the 30,000 readout channels of 
the central outer tracker, segments the data, and processes it in a highly parallel manner.  
XFT compares the measured data to a set of all possible masks for high-momentum 
tracks within each segment.  Segments with valid tracklets are then linked together to 
find tracks.  By operating in parallel and doing fairly crude tracking, the XFT can find 
high-momentum tracks within the 4 µs time limit for the Level 1 trigger. 

Data triage is required throughout the network fabric of the Internet, although it is 
often implemented as a non-discriminating cutoff rather than intelligent triage.  For 
example, consider congestion in Internet routers (Welzl 2005).  Routers pass packets of 
data across different circuits to get the packets to their intended destinations.  Routers 
have a finite capacity to do this packet transfer.  They also have finite buffers where 
packets are queued if the inflow temporarily exceeds routing capacity.  However, if the 
buffer fills up, then packets are summarily dropped (deleted).  This is permissible 
because in Internet Protocol (IP), packet delivery is done on a best effort basis; delivery is 
not guaranteed.  The deletion is generally done regardless of packet content, even though 
IP packet headers include a “Type of Service” field, which describes priority.  A standard 
data triage scheme, called Random Early Detection (RED), prevents the buffer from 
filling up (Floyd and Jacobson 1993).  With RED, a small fraction of packets are dropped 
randomly once the queue length exceeds a threshold.  As the queue length continues to 
grow, the fraction of dropped packets is increased and, at some higher threshold, all 
incoming packets are dropped.  The expectation is that a higher-level protocol (such as 
TCP) will detect the packet loss in their stream due to RED and take preventative action 
such as reducing their data rate or choosing a different path.  This can lead to reduced 
congestion at the router before the buffer becomes full. 

2. Taxonomy of Data Triage 
The examples above are instructive about what types of data triage exist.  We 

propose a taxonomy of data triage techniques: 

1. Fully central – All data are sent to a central location and processed concurrently.  
This is equivalent to no data triage.  Full bandwidth and full computing 
capability are required, but the computing can be maintained at a single site, and 
all computations have access to all data. 

2. Layered central – All data are buffered (pipelined) and a portion of it is sent to 
the central site for processing.  Any data not requested by the end of the buffer 
are discarded and cannot be recovered. 

3. Sectorized – A set of local processors are used to make calculations that deter-
mine if the full data should be sent to the central site.  These local processors 
only receive data from one sector, but they get all the data from that sector.  
Sectors are almost always defined spatially, but they can be defined by angle, 
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range, “checkerboard,” or anything else that would be useful.  The number of 
sectors can be anywhere from a few to hundreds. 

4. Layered sectorized – Layering can be done within the sector or between the 
sector and the central site.  This is closest to the CDF trigger. 

5. Local – The logical endpoint of sectorization is to have each detector make their 
own decision with their own data.  This decision is sent to the central site and 
fused with other detectors’ decisions to make an overall decision. 

6. Nearest neighbor – Local decision making can also be done with each detector 
sharing raw data with nearby detectors.  The decision is still local, but the de-
tectors have additional data to draw on. 

3. Tradespace 
In data triage, one must trade several quantities, including timeliness, accuracy, 

bandwidth, compute power, and maintainability.  For the experimental particle physics 
example, timeliness is critical, and the trigger system must be designed first and foremost 
to fit within the time constraints of the accelerator and the readout system.  Some 
intelligence, surveillance, and reconnaissance (ISR) collections are also time-critical, and 
data will be lost if they are not requested before the end of the buffer.  As algorithms are 
optimized for speed, it may be necessary to make assumptions and/or approximations that 
reduce accuracy.  In many cases, this is an acceptable trade, but it should be tracked 
carefully, especially when systems are put into new environments or against new threats 
where the assumptions/approximations may no longer be acceptable. 

For many systems, the available bandwidth (either point-to-point or a system 
aggregate) will limit performance.  Although it is convenient to assume away bandwidth 
issues, deployed systems often must operate in non-ideal conditions, including obstructed 
line-of-sight or significant interference.  The resulting loss of bandwidth must be planned 
for ahead of time.  In addition, deployed systems often need to minimize their local 
computing power due to size, weight, power, or cooling considerations.  From a 
maintenance standpoint having all the processing power at one location where it can be 
serviced together and failover options can be installed once is a great advantage. 

As sensors proliferate, data triage algorithms will become increasingly useful in 
CBRNE reach-back.  For example, deploying large numbers of sensors with small 
processing capability will require the development of local data triage combined with 
decision fusion (Section 3.H).  Even with more processing or higher bandwidth, it is 
likely that fully central processing will not be feasible and that layered central algorithms 
will be necessary. 

C. Compressive Sensing 
Compressive sensing was introduced in Donoho (2006).  Since then, it has received 

a high degree of interest in applied mathematics.  This is because it is based on proofs 
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that can seem counter-intuitive.  Furthermore, under certain conditions, it can be used to 
reduce sensor costs and/or data acquisition time.  In this section, we will explain what 
compressive sensing is and how it differs from traditional sampling.  We will also outline 
its main advantages and disadvantages and describe remaining challenges. 

1. Example 
Figure 3-2 illustrates a simple example for compressive sensing.  Data are desired at 

N points along a perimeter.  These data could be any signal of interest, such as the 
intensity of gamma rays emanating from a radiation source, the level of vibrations on the 
ground as a person walks past, etc.  The N data points can be acquired in two ways: (1) N 
sensors can be distributed along the perimeter to collect data simultaneously.  However, 
this method could be cost-prohibitive if each sensor is expensive; (2) One sensor can 
travel along the perimeter, collecting data at each of the N points, one at a time.  That is, 
the single sensor can raster the N points.  However, this can be slow if the data 
acquisition at each point takes a long time. 

 

 
Figure 3-2.  Data Are Desired at N Points (Black Dots)  

along a Perimeter (Dashed Line) 
Samples can be taken at M points (red dots), where M << N.  Prior knowledge 
can be used to reconstruct the N desired data points from the M samples. 

 

Sampling techniques could be used to reduce sensor costs and/or data acquisition 
time.  As shown in Figure 3-3, data could be sampled from only M of the N points along 
the perimeter, where M is less than N.  The M samples could be used to reconstruct the 
data at all N points.  This could reduce sensor costs, as M, rather N, sensors would be 
needed to simultaneously collect the samples.  This could also reduce data acquisition 
time, as a single sensor would have to raster M points, rather than N. 

 

 
Figure 3-3.  Sensing Matrix A Describes Relation between  

M Samples in y and N Desired Data Points in x 
There are infinitely many solutions for x, since M is less than N.  Under certain 
conditions, prior knowledge can be used to select the correct solution. 
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Matrix algebra can be used to describe how the N desired data points can be 
reconstructed from the M samples.  First, the N desired points can be arranged into x, an 
Nx1 column vector.  This is the signal that must be reconstructed from the samples.  
Similarly, the M samples can be arranged into y, an Mx1 column vector.  The samples, y, 
can be written in terms of x, the desired data points: 

 𝒚 = Ax (1) 

where A is the M×N sampling matrix.  The rows of A describe how, during data 
acquisition, the data at the N desired points are combined to form each of the M samples.  
Figure 3-3 illustrates Equation (1) in graphical form. 

Equation (1) must be solved for x.  However, this problem is ill posed: there are 
fewer samples (M) than there are unknowns (N).  As a result, there are infinitely many 
solutions to Equation (1).  Under certain conditions, prior knowledge about x can be used 
to select the correct solution. 

2. Traditional Sampling 
Traditional sampling theory describes how to select the correct solution to Equation 

(1) based on prior knowledge of the bandwidth of x (Karu 1995).  The bandwidth of x is 
specified by its highest frequency, B cycles per meter.  The Nyquist-Shannon Theorem 
states that in order to perfectly reconstruct x (the N desired data points along the 
perimeter), the maximum distance between samples must be no larger than 1

2𝐵 meters.  
(2B is often referred to as the Nyquist rate.)  This maximum spacing between samples, 
along with the total length of the perimeter P, can be used to determine M, the minimum 
number of required samples: 

 𝑀 = 𝑃
( 1
2𝐵)� = 2𝑃𝐵 (2) 

For a band-limited signal, if at least M = 2PB samples are collected, spaced no 
farther than 1

2𝐵 meters apart, then we can select the correct solution to Equation (1).  An 
M much less than N can significantly lower sensor costs and/or data acquisition time. 

Traditional sampling theory requires that x is band-limited (Karu 1995).  That is, x 
can have no frequencies higher than B cycles per meter, for some value of B.  Not all 
signals meet this criterion, however.  Fortunately, one can impose this constraint 
artificially.  That is, one may first apply a low-pass, anti-aliasing filter to the signal 
before it is sampled.  A low-pass filter with a cut-off frequency of B cycles per meter will 
remove all frequencies in the signal higher than B cycles per meter, thereby ensuring that 
the data do indeed have a bandwidth of B cycles per meter.  Of course, this can only be 
done if the high frequencies filtered out of x are not important for further processing.  
Thus the anti-aliasing filter must be designed with a specific application in mind. 
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The number of required samples specified by traditional sampling theory, M = 2PB, 
can still be quite high.  A large bandwidth, B, and/or a long perimeter, P, can lead to a 
large number of required samples, M.  As a result, the sensor costs and/or data acquisition 
time may still be high.  Under certain conditions, the number of required samples M may 
be reduced even further.  Compressive sensing theory deals with one particular set of 
conditions. 

3. Compressive Sensing 
Compressive sensing can also be used to select the correct solution to Equation (1), 

sometimes using fewer samples, M, than traditional sampling theory (Candes and Wakin 
2008).  This is accomplished by using prior knowledge about the sparsity of x, rather than 
its bandwidth.  The sparsity of x refers to how many values of x (how many of the N 
desired data points along the perimeter) are non-zero.  For example, a ground vibration 
sensor may record non-zero data only if a person walks by; sensors positioned farther 
away will all record zero. 

Provided that we have prior knowledge that x is sparse, compressive sensing theory 
states that, with high probability, the correct solution to Equation (1) is the one with the 
fewest non-zero elements (the smallest “L0 norm”) (Baraniuk 2007).  Therefore, we can 
reconstruct x by minimizing the L0 norm, subject to Equation (1).  Minimizing the L0 
norm is difficult, however, as it is an “NP-hard problem” and can only be solved exactly 
using computationally intensive, brute-force techniques.  Alternatively, compressive 
sensing theory also states that, with high probability, the correct solution to Equation (1) 
can also be found by minimizing the L1 norm, rather than the L0 norm, of x.  The L1 norm 
is the sum of the absolute values of the elements of x (the sum of the absolute values of 
the N desired data points).  At first glance, this result may appear counter-intuitive, since 
traditional methods are often based on minimizing the L2 norm, the sum of the squares of 
the elements in x.  Minimizing the L1 norm is relatively easy to compute, requiring 
straightforward methods in linear algebra. 

Compressive sensing requires that x is sparse (Baraniuk 2007).  That is, only S of 
the N unknown data points can be non-zero.  If this condition is not met, then minimizing 
the L1 norm will not be an adequate method for choosing the correct solution to Equation 
(1).  Not all signals are sparse.  However, this criterion can still be met if there is prior 
knowledge that the signal is, in fact, sparse in some other domain.  In our perimeter 
example, the signal x may not be sparse in the space domain, since it may not be zero at 
any point along the perimeter.  However, the signal may be sparse in the frequency 
domain, since it may be composed of only one or two pure sine waves, with the energy in 
all other frequencies equal to zero.  This constraint can be imposed artificially through 
use of an N×N sparsifying matrix; the columns of the matrix represent the basis functions 
of the domain in which the signal is known to be sparse.  Thus the sparsifying matrix in 
compressive sensing performs a similar function to the anti-aliasing filter in traditional 
sampling.  Here, though, the signal is first sampled, then the signal is reconstructed in the 
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domain in which is it known to be sparse, and finally, the reconstructed, sparse signal is 
transformed back into its original domain, through use of the sparsifying matrix.  Of 
course, this can only be done if it is known in what domain the signal is sparse. 

Compressive sensing theory can be used to determine the minimum number of 
samples required to reconstruct x with high probability: 

 𝑀 = 2𝑢2𝑆log(𝑁) (3) 

where S is the sparsity of x (the number of desired data points that are non-zero) and u is 
the incoherence between the sampling and sparsifying matrices (the amount of additional 
information that each new sample provides about the N desired data points).  As 
illustrated by Figure 3-3, the ith row of sensing matrix A governs how the N desired data 
points in x are combined to form the ith element of y.  At first glance, it may appear that 
sensing matrix A must therefore be carefully designed using prior knowledge of x; 
however, randomly choosing the values of A has been shown to work just as well 
(Candes and Wakin 2008).  This is because a random matrix A will, with high 
probability, have rows that are different from each other.  Therefore, each sample will be 
based on a different combination of the N desired data points, providing new information 
about them.  For the most part, then, the sampling matrix A can be designed with little to 
no prior knowledge of x.  This result may seem counter-intuitive – with traditional 
sampling, one must know the bandwidth of x in order to determine the maximum spacing 
between samples. 

4. Advantages and Disadvantages to Compressive Sensing 
Compressive sensing has many advantages over traditional sampling: 

• Under some conditions, compressive sensing can result in fewer required sam-
ples.  For example, a signal may be very sparse (requiring few samples with 
compressive sensing) even though it has a very large bandwidth (requiring many 
samples with traditional sampling).  As a result, compressive sensing can lead to 
lower sensor costs and/or data acquisition time. 

• Designing the sensing matrix A is relatively simple – a random matrix can be 
used regardless of the signal x (and can therefore be used for other signals in the 
future).  Thus the sensing, which is performed in the field, is decoupled from the 
reconstruction, which can be done back at headquarters. 

• Compressive sensing can ease encryption.  Samples can be collected in the field 
and then sent back to headquarters for reconstruction.  Reconstruction requires 
knowledge of the sensing matrix A or, at the very least, the seed of the random 
number generator that was used to create A.  Even if an adversary were to tap 
into the samples as they were sent back to headquarters, the adversary would not 
be able to reconstruct the desired signal without knowing A (or its seed).  This 
seed is therefore all that needs to be encrypted; the samples themselves do not. 
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• Compressive sensing can be used for compression.  The M samples can be used 
to represent the N desired data points, just as the JPEG compression scheme is 
used to compress traditionally acquired images for easier storage.  In traditional 
compression, all N desired data points are acquired; these N points are then pro-
cessed to extract M representative features.  Compressive sensing, on the other 
hand, acquires only the M representative features (the M samples) without first 
having to acquire the N desired data points.  This is where compressive sensing 
gets its name: sensing the compressed signal. 

Compressive sensing has one large disadvantage: the data must be sparse in some 
domain.  Otherwise, minimizing the L1 norm will not be adequate for choosing the 
correct solution to Equation (1).  In many situations, a sparsifying matrix can be used to 
transform the signal into another domain in which it is indeed sparse, thereby satisfying 
this criterion.  However, there are other situations in which a sparsifying matrix simply 
cannot be found.  This often occurs when the data have a very low signal-to-noise ratio.  
In such cases, compressive sensing cannot be used to reduce the number of required 
samples enough to make a significant dent in either sensor costs or data acquisition time.  
In these situations, it may be better to perform traditional sampling or no sampling at all. 

5. Remaining Challenges in Compressive Sensing 
The theory of compressive sensing has been refined over the past several years, and 

many peer-reviewed journal articles have been written by applied mathematicians.  
However, few articles describe how compressive sensing has been used in real-life 
applications.  As a result, few lessons learned have been shared about the “art” of 
compressing sensing.  Therefore, this field could benefit greatly from published research 
in compressive sensing applications, particularly in the following areas: 

• What considerations should be taken when designing a sparsifying matrix for a 
particular application? 

• What conditions make the algorithm particularly sensitive?  Robust? 

• How can one determine M, the minimum number of required samples, if S, the 
sparsity of x, is not explicitly known? 

• How can one relate the signal-to-noise ratio of x to its sparsity S, in order to pre-
dict how successful compressive sensing will be for a particular application? 

• How can a particular application exploit the analog processing inherent to com-
pressive sensing?  By its nature, compressive sensing performs part of its analy-
sis in the analog domain, as each new sample is a sum of the N desired data 
points, randomly weighted.  This summation could occur in the digital domain; 
however, performing this summation in the analog domain saves computational 
power.  Magnetic Resonance Imaging and the Rice Single Pixel camera are ex-
amples of applications that exploit this analog processing (Baraniuk 2007; 
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Lustig et al. 2008).  Further work should explore what other types of applica-
tions could exploit this analog processing as well. 

D. Data Assimilation 
Data assimilation, in the most general sense, is the use of all available sensor data to 

reconstruct, as accurately as possible, the properties of the environment of interest.  In the 
most frequently encountered usage, data assimilation is more specifically the use of all 
available sensor data in combination with a physical model to reconstruct, as accurately 
as possible, the properties of the environment of interest.  In addition, a forecast step is 
usually implied, in which observations and the physical model are used to predict the 
future evolution of the environment of interest. 

Data assimilation techniques are generally applicable to problems in which (1) one 
wants to determine the properties of the environment of interest, (2) the spatial and 
temporal variation of those properties is governed by a physical model, and (3) the 
observational data points are fewer in number than the grid points in the physical model 
and in different locations.  A simple example for which data assimilation is applicable is 
the following.  Imagine an urban environment where one is performing a field experiment 
for which he needs to know the wind velocity accurately at all spatial locations up to 
some height above ground level and needs to be able to make forecast predictions of the 
wind velocity over the same domain.  Further imagine a few dozen sensors that measure 
wind velocity and pressure are placed at several different locations in the environment.  
In this case, the model governing the properties of interest is fluid dynamics – the physics 
of fluid flow.  In particular, a detailed numerical computational fluid dynamics (CFD) 
model is used since fluid flow in urban environments is complex.  The number of data 
values (multiple variables at each grid point) needed to run the CFD model forward in 
time may be 106 (a million) or more, yet there are only tens of sensor data points.  Data 
assimilation techniques allow one to combine the sensor data and the physical model to 
reconstruct as accurately as statistically possible the wind velocity throughout the whole 
urban environment, even in locations far from sensors. 

The primary reason this is possible is because locations in space (and time) are 
coupled via the physical model.  For example, if one knows the wind profile on the 
windward side of a building, one can reconstruct the wind profile on the leeward side 
since fluid dynamics tells us how air flows around obstacles.  In addition, sensors 
measuring data that are not of direct interest, such as the pressure measurements in this 
example, are used in the data assimilation process to increase the accuracy of the 
reconstructed wind field, since pressure is a key part of fluid dynamics.  Data assimilation 
could further be used in this example to make forecasts for how the wind field will 
change with time.  In such uses, the accuracy typically improves with time.  Finally, very 
recent work has shown that it is possible to localize in space and time the source of the 
uncertainty of a reconstruction or forecast.  In some cases, it is possible to reposition 
sensors to those locations to improve the accuracy of the reconstruction or forecast.  For 
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our urban wind example, one can imagine small, sensor-equipped unmanned aerial 
vehicles (UAVs) or soldiers with sensor backpacks that could be repositioned. 

Data assimilation is most mature in the field of numerical weather prediction.  Many 
climate centers across the globe perform data assimilation on a continuous basis.  They 
assimilate observations from weather stations and other sensors to reconstruct current 
weather conditions, track storms, and make weather forecasts.  This data assimilation is 
performed with the aid of fairly detailed weather models, which include the physics of 
fluid flow, evaporation, radiative transfer, and a host of other physics.  Data assimilation 
is also used extensively in the field of ocean modeling, for which the physics is similar.  
For example, the Naval Oceanographic Office (NAVOCEANO) uses data assimilation in 
the production of its many oceanographic data products.  Data assimilation techniques 
have recently been applied to the CO2 inversion problem, in which CO2 flux between the 
earth’s surface and the atmosphere is reconstructed.  The CO2 flux physics model is 
essentially atmospheric transport. 

In discussing data assimilation, we have in mind the four operational missions 
identified as relevant to DTRA’s mission, as described in Chapter 1: direct force 
protection, targeted search, wide-area search, and long-term threat-behavior monitoring.  
In direct force protection, one might be interested in detecting and tracking the flow of 
hazardous chemicals in the air in a region encompassing a forward operating base.  This 
flow is governed by the physics of atmospheric transport and dispersion.  Data 
assimilation could be used to obtain the most accurate quantitative reconstruction of the 
concentration of a hazardous chemical and forecasts of that concentration.  These could 
be used to calculate the locations of hazard areas in which forces should take protective 
measures or evacuate.  Higher-level sensor fusion algorithms could be used to detect a 
threat condition from the reconstructed concentration field or forecasts, and even issue 
warnings. 

Data assimilation could be used in targeted search, an example of which is the 
determination of the spatial origin for a radiological attack in a city-sized geographical 
area.  Gamma ray detectors could be employed, in combination with weather and 
chemical sensors.  The physics governing the spread of a radiological threat such as a 
dirty bomb is atmospheric transport and dispersion, radiative transfer, and light-matter 
interaction.  Data assimilation could be used to combine the observations and the physical 
model to determine the spatial origin of the threat (which, in the case of a dirty bomb, 
would be an extended area), and forecast radiation levels throughout the environment.  
As described below, the 4D-Var (four-dimensional variational) data assimilation 
technique is particularly well suited to the problem of determining the origin of a threat. 

An example of wide-area search that data assimilation could benefit is the search for 
a moving hazard.  Imagine a weapon has been stolen and is being transported in a 
vehicle, and the weapon emits a radiological signal that can be detected by a network of 
sensors scattered throughout a large road network.  In this case, the most relevant model 
is a road network model, which constrains the possible locations of the vehicle, followed 
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by a physical model of radiation propagation.  This model can be combined with the 
sparse sensor observations via data assimilation to obtain a vehicle location estimate that 
is as accurate as statistically possible.  Forecasts of the vehicle’s location could also be 
made. 

Finally, data assimilation techniques could also be used for long-term threat-
behavior monitoring.  Say one is interested in detecting behavior that is out of the 
ordinary for the purposes of hypothesis generation.  One example of this might be traffic 
patterns in a city.  Data assimilation techniques could be used to combine sensor data 
(e.g., loop detectors and mobile phone signals) with a physical model to determine 
current traffic flow and forecast future traffic.  These products could then be used by 
higher-level sensor-fusion algorithms to detect changes or generate hypotheses. 

Below we describe the landscape of data assimilation techniques.  The discussion is 
more descriptive than formal, although we note that these techniques fit within a formal 
probabilistic framework.  The start of the discussion below follows the development in 
Kalnay (2003).  Note that all the algorithms described are sensor-agnostic. 

1. The Successive Corrections Method and Nudging 
The successive corrections method (SCM) and nudging are perhaps the most 

primitive data assimilation techniques.  SCM is an empirical technique in which 
corrections are successively applied iteratively to an initial guess of the background field 
on a grid.  (Here we are using standard terminology.  The background field is one 
component of what we have called the “properties of the environment” above.  An 
example is the temperature at all points in space.)  The corrections are composed of the 
difference between the value of the field at a grid point and the values of the observations 
nearby, weighted by coefficients that are chosen empirically.  SCM is simple and fast and 
can provide reasonable estimates of the field. 

Nudging, or Newtonian relaxation, is a technique that incorporates a physical 
model.  In the equations governing the physical model, a term is added that is a function 
of the difference between the field estimate and the observations.  This term is a forcing 
term that drives the solution of the model equations toward the observations.  This 
method is empirical and has shown mixed success. 

2. Least Squares Methods 
Many of the most popular data assimilation techniques are least squares methods, in 

which some quantity is minimized to provide the optimal estimate of the field of interest.  
We describe these below, but first we must define a few terms.  What we have been 
calling the optimal estimate of the field, specified as values at grid points, is called the 
“analysis” and is denoted by the vector xa.  The initial guess of the field is called the 
“background” and is denoted by the vector xb.  The observations are denoted by the 
vector yo.  Since the background may be a different physical quantity from what is 
observed (e.g., pressure vs. displacement of a piston), one needs a method to convert 
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between model grid values and observation values.  This tool is called the “forward 
observational operator” and is denoted by H.  The master equation that generally 
describes all least squares methods is 

  (4) 

where W is the weight matrix (also called the gain matrix K), which optimally adds the 
differences between the background and observations to the background to obtain an 
analysis that is as accurate as possible.  This equation can be used to understand optimal 
interpolation, extended and ensemble Kalman filtering, 3D- and 4D-Var, and techniques 
based on these algorithms. 

The analysis is equivalent to what we called “field reconstruction” above.  In 
forecasting, the analysis is input into a forecast model (typically a physics evolution 
model), which outputs the properties of the field at some specified future time. 

In addition to obtaining the best analysis possible, the uncertainties in the analysis 
are extremely important for most applications.  We will describe uncertainty propagation 
below.  Note that uncertainties are typically presented in what are known as “error 
covariance matrices.”  They specify the covariance between each pair of variables 
represented in the matrix and essentially represent all we know about our uncertainties, to 
first order. 

a. Multivariate Optimal Interpolation 
In multivariate optimal interpolation (MVOI), the weight matrix W is obtained by 

minimizing the sum of the squared errors (sum of the variances) of the analysis variables 
at each grid point with respect to the elements of W.  To be explicit, if we define the 
analysis error as ε = xa - x, where x is the unknown true field, then we obtain wij, the 
elements of W, by solving 

  (5) 

where the sum is over n field grid point variables, i refers to those same n field variables, 
and j refers to p<n observational grid point variables.  In practical implementations of 
MVOI, the forward observational operator H is linearized so that W can be expressed in 
a simple matrix algebraic expression involving H, the linearized version of H, and the 
error covariance matrices for the background and the observations. 

As of 2005, MVOI was used at the Fleet Numerical Meteorology and Oceanography 
Center (FNMOC) and NAVOCEANO as their standard data assimilation technique 
(Cummings 2005).  MVOI was used at weather forecast centers as recently as the mid-
1990s. 
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b. 3D-Var 
In 3D-Var, a cost function is minimized over the analysis variables (the elements of 

xa).  If the cost function is chosen appropriately, the value of xa at minimum is the 
optimal analysis.  In particular, a cost function like the following is often used: 

  (6) 

where B is the error covariance matrix for the background, R is the error covariance 
matrix for the observations, and the minimization is performed with respect to xa.  In 
practice, this minimization is performed numerically with efficient multi-dimensional 
minimization algorithms (such as the conjugate gradient method).  Since xa typically has 
many fewer elements than W, it is usually much less computationally expensive than 
MVOI and therefore preferred.  Note that since the minimization is performed with 
respect to xa the master equation is never used, although for the value of xa obtained the 
solution of W would be the same as in MVOI.  In fact, it has been proven that MVOI and 
3D-Var are solving the same problem (Lorenc 1986).  An additional benefit of 3D-Var is 
its smoothness, since one does not have to choose which observations correspond to 
which grid points as in MVOI (Kalnay 2003). 

c. Extended Kalman Filtering 
The Kalman filter is perhaps the most well-known of the techniques we have 

discussed up to this point.  The essence of the Kalman filter is the combination of a 
physical model with observations to make a better estimate of a system’s state than could 
be made via observations alone.  In particular, the standard Kalman filter assumes the 
system is a discrete, linear, stochastic process, and estimates the system’s state in such a 
way as to minimize the covariance of that estimate.  The Kalman filter is typically used in 
forecast-update cycles in which the best estimate of the current state of the system (the 
“analysis”) is advanced to a future time via a physical model to create the forecast.  When 
that time arrives, another observation of the system is made and combined with the 
forecast to create a new analysis.  That analysis is then propagated forward in time to 
create a new forecast, etc. 

The Kalman filter differs from MVOI in that, in a forecast-update cycle, the error 
estimate (covariance) of the forecast is updated at each step using the physical model.  
For linear systems, updating the forecast error covariance is easy, since the physical 
model is simple and there are typically only a few degrees of freedom.  The physical 
model is then represented by a modestly sized matrix, and the forecast error covariance is 
given by a simple linear algebraic expression involving that matrix. 

The extended Kalman filter allows the physical model to be nonlinear.  The forecast 
step is performed with the full non-linear model.  The forecast error covariance, however, 
is estimated using a linearized version of the physical model, known as the tangent linear 
model (TLM), and its transpose, known as the adjoint.  Physical models such as weather 
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models or atmospheric transport and dispersion models typically have N=106 or more 
degrees of freedom, meaning their TLM is a matrix with N2=(106)2=1012 elements!  
Matrices of this size are extremely unwieldy and fit in memory only on the largest 
supercomputers.  In addition, generating them requires running the non-linear model 
roughly N=106 times, which is impossible without significant computing capabilities.  
Needless to say, the extended Kalman filter does not find widespread use for systems 
with complex non-linear models.  However, it does find use for smaller, simpler systems – 
it is the standard for GPS and navigation systems generally.  Additional applications of 
the extended Kalman filter are discussed in the case studies on autonomous ground 
vehicles (Section 4.C), sense-and-avoid for unmanned aerial vehicles (Section 4.D), and 
hurricane/storm track forecasting (Section 4.G). 

d. Ensemble Kalman Filtering 
Ensemble Kalman filtering solves the major problem of extended Kalman filtering 

by estimating the forecast error covariance in a different way.  In ensemble Kalman 
filtering, an ensemble of models in which random perturbations have been added to the 
assimilated observations is run forward in time (Evensen 1994).  The forecast error 
covariance is then estimated using the variability in the ensemble.  In particular, the 
forecast error covariance is usually taken as something approximating the average of the 
forecast error covariances (with respect to the ensemble mean) for each model in the 
ensemble.  The great benefit of the ensemble Kalman filter is that an ensemble may 
contain only a few tens to hundreds of members, requiring many fewer model 
integrations than the 106 or more that would be required in extended Kalman filtering.  
Ensemble Kalman filtering is thus one of the most practical data assimilation techniques, 
and finds widespread use. 

e. 4D-Var 
4D-Var is an extension of 3D-Var in which the cost function includes forecasts and 

observations distributed throughout a time interval.  In this way it measures differences 
between the model and observations over several time slices.  The cost function is 
typically minimized with respect to the state of the system at the start of the time interval 
(since most physical models cannot be run backward), with the analysis being the initial 
system propagated forward to some future time via the physical model.  For certain 
assumptions (e.g., a perfect physical model, correct initial background error covariance), 
it can be shown that 4D-Var is equivalent to the extended Kalman filter.  As of 2007, 
several weather forecasting centers, including the European Centre for Medium-Range 
Weather Forecasts (ECMWF), France, the United Kingdom, Japan, and Canada had 
switched to 4D-Var. 

f. Ensemble Kalman Filter Variants 
Because the ensemble Kalman filter is so capable, several variants of it are in use.  

Due to space constraints, we simply list some of them briefly. 
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In the local ensemble transform Kalman filter (LETKF), instead of running an 
ensemble of global models, ensembles of localized models are run.  This allows for much 
greater computational speed and efficient parallelization. 

4D-LETKF, because it operates on multiple time slices, has some of the same 
smoothing properties as 4D-Var.  In particular, it allows for faster spin-up.  Spin-up is the 
period after starting a series of data assimilation cycles in which the forecast error is 
decreasing before reaching a roughly steady-state value. 

“Running in place” (RIP) is a technique used when starting a LETKF to shorten its 
spin-up time (Kalnay and Yang 2010).  Kalnay (2010) demonstrates a LETKF-RIP 
spinning up in half the number of cycles required for 4D-Var.  Quick spin-up data 
assimilation techniques such as LETKF-RIP are particularly useful in cases where a new 
phenomenon of interest (e.g., a hurricane or a chemical threat) is detected, and forecast 
accuracy is desired early in the data assimilation series.  LETKF-RIP is also one of the 
best-performing techniques for sparse observations. 

E. Anomaly Detection 
Anomaly (or outlier) detection is the problem of finding observations or patterns in 

data that exhibit unexpected behavior (Chandola, Banerjee, and Kumar 2009).  Detecting 
anomalies is important because for a variety of applications, “unusual” observations 
correspond to significant, actionable information.  Heuristically, anomaly detection 
corresponds to finding patterns in data that do not correspond to a well-defined 
description of “normal” behavior.  Consider Figure 3-4, which illustrates this heuristic 
definition.  N1 and N2 are considered normal, since most of the data are in these regions.  
Points o1 and o2 and the points in region O3 are anomalies because they are “sufficiently 
far away” from the bulk of the data. 

 

 
Figure from Chandola, Banerjee, and Kumar (2009).   

Figure 3-4.  Example of Anomalies in a Two-Dimensional Space 
 

Given the heuristic definition of an anomaly as something that does not exhibit 
“normal” behavior, a seemingly straightforward approach to anomaly detection is to 
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define a normal region (in terms of some set of variables) and label anything outside the 
region as an anomaly.  However, a number of challenges face this approach: 

• Describing normal behavior may be extremely complex. 

• Defining a region that encompasses all possible normal behavior is difficult.  
Furthermore, the boundary between normal and anomaly may not be precise. 

• The definition of normal may evolve over time. 

• The definition of anomaly may be different from application to application (e.g., 
small fluctuations may be important in one domain and negligible in another). 

• The availability of labeled training data for developing and validating models is 
frequently limited. 

These challenges have led to a number of approaches to anomaly detection.  The 
approaches can be roughly categorized by the type of anomaly to be detected and the 
approach to building a model of “normal.” 

Broadly, anomalies can be categorized into three groups: point anomalies, 
contextual anomalies, and collective anomalies (Chandola, Banerjee, and Kumar 2009, 
2007).  A point anomaly is an individual data point that is exhibiting abnormal behavior 
(e.g., points o1 and o2 in Figure 3-4).  These are the simplest kinds of anomalies, and 
much research effort has focused here. 

A contextual anomaly is a point anomaly that is anomalous in one context but not 
another.  This is easily illustrated by example.  A temperature of 32 °F in Washington, 
DC, is normal in February but anomalous in July.  When contextual anomalies need to be 
identified in data, identified attributes must define both the context (contextual attributes) 
and the noncontextual characteristics (behavioral attributes).  In the example, the month 
and location are contextual attributes, and the temperature is the behavioral attribute.  
Contextual anomalies have been studied primarily in time series and spatial data. 

A collective anomaly is a collection of related data instances that are anomalous 
with respect to the entire data set.  The individual data points may not be anomalous on 
their own.  An example of a collective anomaly is a cyber attack: a specific sequence of 
commands must occur that, on their own, would not be unusual.  Collective anomalies 
make sense only when the data are related in some way – for example, in time or in 
space.  Consequently, collective anomalies have been most studied in sequence data, 
spatial data, and graph data (which are useful for modeling very general relationships 
among entities). 

There are three primary approaches to building a model of “normal” behavior.  The 
first is to learn what is normal directly from the data.  This leads to the classification and 
clustering algorithms discussed in Section 3.G.  These algorithms can take three different 
approaches.  (1) Supervised learning uses a training set to learn the optimal mapping 
from features to categories.  (2) Unsupervised learning does not use a training set.  
Instead, the features are organized into discrete clusters.  Then, an expert human is 
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needed to determine which clusters represent which categories.  (3) Semi-supervised 
learning borrows methods from both supervised and unsupervised learning.  For 
example, one could use a clustering algorithm to develop clusters, choose a few points 
from these clusters and develop ground truth category labels, and then use the labels to 
map clusters to categories. 

As an example of a classification approach applied to detecting a collective 
anomaly, Lee and Stolfo (1998) discuss anomaly detection in the context of intrusion 
detection.  Particularly, they are interested in distinguishing between “normal” or 
“legitimate” behavior from “misuse” or anomaly actions, where the misuse is an intrusion 
on network-based computer systems.  Determining when a system is under attack can be 
crucial for preventing intrusion.  To differentiate between these behaviors, the authors use 
a classification tree-based model.  This method relies on supervised learning, so the 
training data set must contain some examples of the abnormal behavior it is attempting to 
detect.  In many ways, this is a straightforward application of data mining.  If the 
necessary data are available, the challenge lies in finding sensible ways to identify 
relevant sequences in the data.  This method is most applicable for situations where a 
substantial amount of data, both “normal” and “abnormal,” are available. 

The second two categories of anomaly detection methods are statistical techniques.  
In the first, an empirical model of “normal” is built using “current” data.  Detecting an 
anomaly is then framed as changepoint detection.  Applications of these methods to 
syndromic surveillance are discussed in Section 4.E.  For example, Hagen et al. (2011) 
discuss two methods for detecting the outbreak of H1N1 in California in 2009.  One 
approach uses a straightforward moving average for a univariate response (e.g., new 
mentions of flu-like symptoms in medical records) as a baseline.  Comparisons are made 
using daily records against the baseline, and “signals” are counted when the daily value 
exceeds the moving average by some threshold.  A second approach adapts methodology 
from the quality/statistical process control (SPC) literature, such as cumulative sum 
(CUSUM) charts.  An important difference between standard SPC methods and 
biosurveillance is that, while SPC methods sample and consequently work with 
independent sequences of data, biosurveillance data are always highly autocorrelated 
(Fricker 2013). 

In the second statistical approach, “normal” is explicitly modeled.  This may occur 
through use of a parametric or nonparametric empirical model, or it may be through a 
combination of physics-based and empirical models.  Anomaly detection is then a 
hypothesis testing problem.  For example, Jacob and Levitt (2003) discuss detecting 
cheating in Chicago public schools.  Because of performance incentives, teachers may 
cheat on behalf of their students in a variety of ways in order to improve students’ test 
scores.  The authors hypothesized some methods teachers might use to cheat and, based 
on those, developed a model for what “cheating” would look like on tests.  For example, 
if a teacher were systematically improving his class’s scores through cheating, his 
students would be expected to show an increase in their year-to-year scores while in his 
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class, but those gains would disappear the following year.  Thus, they examined year-to-
year data, estimating a “baseline” for each student and determining when large deviations 
from those baselines were associated with particular teachers.  It was also possible to 
look for examples of cheating by examining classroom-level data.  If the correlation in 
answers to some questions were much higher than the correlations for other questions on 
the same exam, this could indicate that the teacher for that class was either feeding 
students answers to those questions or changing the answers to those particular questions 
after the test.  By establishing norms using data from the entire school district and across 
many years, it was possible to establish a baseline for the expected variability in 
question-to-question correlation within a single classroom.  Large deviations from this 
were taken to be instances of cheating. 

F. Dimension Reduction 
Once an anomaly is detected, it can then be classified.  However, an interim step is 

frequently needed: the data collected for the anomaly must often be preprocessed before 
they can be input into a classification algorithm.  This is because a large amount of data 
can be collected for each anomaly.  For example, an anomaly can be detected in a frame 
of the video feed from a camera.  A 256×256-pixel frame contains 65,536 different 
values of data.  One could arrange these 65,536 values into a 65,536-dimensional vector 
and then input that vector into a classification algorithm.  Training an algorithm to 
properly classify such high-dimensional vectors is difficult, however.  As Duda, Hart, and 
Stork (2001) explain, “high-dimensional [classification] functions have the potential to be 
much more complicated than low-dimensional ones, and…those complications are harder 
to discern” (p. 170).  As a result, exponentially more vectors are needed to train a 
classification algorithm in high-dimensional space.  Furthermore, the iterative processes 
used to optimize the parameters of a high-dimensional classification algorithm can take 
much longer to converge.  This phenomenon is called “the Curse of Dimensionality” 
(Duda, Hart, and Stork 2001; Bishop 1995). 

Dimensionality reduction is the pre-processing step that is required between 
anomaly detection and classification.  The data collected for the anomaly are summarized 
by fewer variables.  These summary variables are called features.  There are three main 
approaches to dimensionality reduction: 

1. Heuristics can be used to measure characteristics of the data collected for an 
anomaly.  Each measured characteristic is a feature.  The heuristics are formu-
lated based upon prior knowledge of the expected characteristics of the detected 
anomaly, gained from an understanding of the physical phenomena that is ex-
pected to have produced the anomaly in the first place. 

2. Feature selection techniques can rank each collected datum according to its 
measured or estimated ability to enable classification.  Only those data with high 
ranks are then retained as features.  All other data are discarded. 
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3. Feature extraction techniques can find linear or non-linear combinations of the 
data that can best enable classification. 

1. Heuristics 
Heuristics can be used to measure characteristics of the data collected for an 

anomaly.  These heuristics must be based upon prior knowledge of the anomaly’s 
expected characteristics.  This prior knowledge comes from an understanding of the 
physical phenomena explaining how the anomaly was produced. 

Consider the video camera example discussed above.  If it is known that the 
detected anomaly is likely to be a person’s face, then image-processing techniques can be 
used to identify the edges surrounding the person’s head, as well as the their eyes, nose, 
and mouth.  The cross-sectional area of the person’s face, as well as the distance between 
his or her eyes, nose, and mouth, can then be measured.  These measurements serve as 
the features summarizing the detected anomaly (the person).  The 65,536 data values 
collected for the anomaly have now been reduced to only four features.  The four-
dimensional feature vector can now be input into an algorithm to classify the person as 
either a known suspect (threat) or not a known suspect (clutter).  Training a classification 
algorithm in four-dimensional space is a much easier task than in a 65,536-dimensional 
space.  Fewer vectors are needed to train the classifier, and the training process can 
converge much more quickly. 

Similarly, in the medical exemplar discussed in Section 4.B, an implantable cardiac 
device monitors the signals recorded from a patient’s heart.  Fast heart rhythms are 
detected as anomalies.  The signals recorded during a fast heart rhythm can be hundreds 
of samples long – too many samples to classify without pre-processing them first.  
Therefore, the “onset,” “stability,” and/or “morphology” of the fast heart rhythm are 
measured.  These features are based on a physiological model of the origin of electrical 
depolarization in the beating heart.  Only then can the features be input into an algorithm 
to classify the fast heart rhythm as either lethal (threat) or non-lethal (clutter). 

Heuristics for dimensionality reduction have both pros and cons.  One advantage is 
that the features measured from the data are easy to interpret since they are based on a 
physical model of the phenomena that was likely to have produced the anomaly.  One 
disadvantage of this approach is that the heuristics can only be set if one has an 
understanding of the physical phenomena governing the application. 

2. Feature Selection 
Feature selection does not require prior knowledge of the physical phenomena 

governing a particular application.  Instead, dimensionality reduction is performed by 
retaining only a subset of the data collected for the anomaly.  Each datum is ranked 
according to its measured or estimated ability to enable classification.  Only those data 
with the highest ranks are retained as features and input into the classification algorithm.  
All other data are discarded.  Feature selection can be wrapper-based or filter-based. 
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a. Wrapper-Based Techniques 
Wrapper-based techniques rank the data based on how well they enable the 

classification algorithm to perform correctly on new previously unseen anomalies (Guyon 
and Elisseeff 2003).  First, the classification algorithm is trained on a set of anomalies, 
using all available data.  Then, the trained classifier is applied to new previously unseen 
anomalies, again using all available data.  (Cross-validation, or the “leave-N-out train-
and-test” method, can be used here.)  The classification performance of the algorithm, 
when operating on all available data, is assessed and quantified.  This is the baseline 
performance.  Next, the classification algorithm is retrained, this time using all but one of 
the available data.  The retrained classifier is then applied to new, previously unseen 
anomalies and its classification performance is reassessed.  The rank of the datum that 
was not used for classification is then estimated based upon the difference between the 
retrained and baseline classification performances.  This process iterates until each datum 
has been assigned a rank.  Only those data with the highest ranks are retained as features 
for further analysis.  All other data are discarded. 

Wrapper-based techniques for feature selection have both pros and cons.  One 
advantage is that the data are selected based upon direct measurements of their ability to 
enable classification.  The disadvantage is that wrapper-based techniques are 
computationally intensive.  The classification algorithm must be trained and retrained in 
order to assign a rank to every datum.  This can take a significant amount of time and 
computational power. 

b. Filter-Based Techniques 
Filter-based techniques are often used to avoid the time and computational power 

required by wrapper-based techniques (Guyon and Elisseeff 2003).  While wrapper-based 
techniques rank the data based on the algorithm’s measured classification performance, 
filter-based techniques rank the data based on some surrogate for classification 
performance.  The Fisher score is the most well-known technique for filter-based feature 
selection.  The Fisher score is the rank assigned to each datum, one by one, based upon 
its ability to minimize the difference between anomalies from the same class while 
maximizing the difference between anomalies from different classes (Gu, Li, and Han 
2011).  Only those data with the highest ranks are retained as features; all other data are 
discarded. 

Although the Fisher score is quick to compute and easy to interpret, it does not lead 
to the optimal subset of features.  This is due to the fact that the rank of each datum is 
calculated independently.  That is to say, two data may each have a high rank.  In such a 
case, both data will be retained as features.  However, these two features may be highly 
correlated with each other, introducing an unnecessary redundancy into the classification 
scheme.  On the other hand, two data may each have a low rank and, therefore, will both 
be discarded.  Such a data discard would be unfortunate since together, the two data 
could have provided strong classification ability.  To avoid this pitfall, the Fisher score 
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has been generalized such that a subset of features can be found that, together, maximize 
the lower bound of the traditional Fisher score.  It can be shown that this subset of 
features is optimal (Gu, Li, and Han 2012). 

Note that both the traditional and generalized Fisher scores are examples of 
supervised learning.  As will be discussed in Section 3.G for classification, supervised 
learning requires a training set of data collected from several anomalies.  Each anomaly is 
represented in the training set by two pieces of information: (1) the collected data and (2) 
the label of the class to which the anomaly truly belongs.  These ground truth class labels 
are needed to differentiate between anomalies in the same class versus anomalies in 
different classes. 

3. Feature Extraction 
Feature extraction is another method for dimensionality reduction.  Unlike feature 

selection, feature extraction does not simply find a subset of the original data.  Instead, it 
finds a linear or non-linear combination of data that best summarizes the characteristics 
of the detected anomaly.  Feature extraction can be supervised or unsupervised, linear or 
non-linear, and based on local or global properties of the collected data. 

a. Supervised 
The Fisher criterion is the most well-known technique for supervised feature 

extraction.  For a problem in which there are N possible classes, the high-dimensional 
vectors of data collected for each anomaly in the training set are projected down onto an 
N-1-dimensional subspace.  The features retained for further analysis are the coordinates 
of the high-dimensional data vectors projected down onto the N-1-dimensional subspace.  
The subspace is found to minimize the covariance between feature vectors in the same 
class and maximize the covariance between feature vectors in different classes.  
Hyperplanes can then be found that optimally separate the projected, N-1-dimensional 
feature vectors into N different classes.  This is the basis of Linear Discriminant Analysis, 
a classification technique discussed later in Section 3.G (Duda, Hart, and Stork 2001). 

The Fisher criterion has pros and cons.  Its main advantage is its simplicity and 
computational efficiency.  One disadvantage of the Fisher criterion is that it, and the 
resulting Linear Discriminant Analysis algorithm for classification, works well only 
when the means of each class are far apart from each other, with respect to the covariance 
of each class on its own.  In cases where the classes significantly overlap, other 
techniques may work better (Duda, Hart, and Stork 2001).  Another disadvantage is that 
only N-1 features can be retained for each anomaly.  If N, the number of classes, is small, 
then N-1 features may be too few to adequately summarize the characteristics of the 
anomaly.  A third disadvantage to the Fisher criterion is that it is a supervised technique – 
a training set of class-labeled anomalies is required. 
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b. Unsupervised 
Many techniques for feature extraction are unsupervised.  A training set of class-

labeled anomalies is not needed.  Instead, these methods find a linear or non-linear 
combination of data that preserve the “structure” of the unlabeled data.  The “structure” 
of the data can be defined either globally (considering all anomalies at once) or locally 
(considering each anomaly on its own, along with its most similar anomalies). 

1) Global 
Principal Component Analysis (PCA) is the most well-known technique for 

unsupervised, global feature extraction.  It finds the linear combination of data that best 
preserves the variance in the data over all anomalies.9  To accomplish this, the high-
dimensional data collected from all anomalies are projected down onto a low-
dimensional subspace.  First, the data collected from each anomaly are grouped into a 
high-dimensional vector.  The data vectors for all anomalies are gathered together into a 
high-dimensional data matrix.  The data matrix is decomposed into its eigenvalues and 
eigenvectors.  The K leading eigenvectors (the eigenvectors associated with the K largest 
eigenvalues) span the low-dimensional subspace onto which the original data are 
projected.  The features extracted from each anomaly are the projected coordinates of the 
anomaly’s data in this low-dimensional subspace. 

PCA is attractive for its simplicity and computational efficiency.  However, there 
are some drawbacks: 

• PCA is a linear technique.  Therefore, it cannot preserve the structure of any 
non-linear relationships between data (Bishop 1995; Duda, Hart, and Stork 
2001).  In such a case, PCA may over-estimate the inherent dimensionality of 
the data (Bishop 1995).  Several non-linear techniques for feature extraction 
have been introduced to address this issue, as will be discussed below. 

• PCA is an unsupervised technique.  A training set of class-labeled anomalies is 
not used to find the optimal low-dimensional subspace onto which the data can 
be projected.  Therefore, once the data has been projected onto the low-dimen-
sional subspace, it may no longer contain the information needed for classifica-
tion.  This is a deficiency shared by all unsupervised techniques for feature ex-
traction (Duda, Hart, and Stork 2001).  However, depending on the application, 
some unsupervised techniques deal with this issue more effectively than others.  
For example, Independent Component Analysis (ICA), a.k.a. Blind Source Sepa-
ration, is an unsupervised feature extraction technique that, under certain condi-

                                                 
9 Note that the data must first be normalized so that each datum spans a similar range of values.  Other-

wise, a datum with large values will overpower the eigenanalysis.  Prior knowledge can be used to de-
termine how the normalization should take place.  For example, if it is known that a datum is Gaussian 
distributed, then one can normalize the datum for each anomaly by subtracting the mean (calculated 
over all anomalies) and dividing by the standard deviation (again, calculated over all anomalies.)  
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tions, can better preserve the classification ability of the data.  While PCA maps 
the high-dimensional data onto its K directions of maximum variance, ICA maps 
the data to the K directions that are most independent of each other.  If one can 
assume that the data were produced by one of K different, independent sources, 
then mapping the data onto the directions of maximum independence can pre-
serve the ability to classify the data into the correct class (Duda, Hart, and Stork 
2001). 

• Finally, PCA is a not a generative method – it cannot be used to build a model of 
the probability distribution of the data.  Fortunately, several extensions to PCA 
have been proposed.  Sensible PCA (SPCA), Probabilistic PCA (PPCA), and 
Combinatorial Probabilistic PCA (CPPCA) are generative models that can be 
used to accomplish the same effect as PCA (Roweis and Ghahramani 1999).  
These techniques can be generalized even further, so that the observation noise 
explicit in the generative model is no longer constrained to be isotropic.  Such a 
method is identical to Factor Analysis, a well-known technique for feature ex-
traction in the statistics community (Roweis and Ghahramani 1999). 

Non-linear extensions can be made to PCA (Bishop 1995; Duda, Hart, and Stork 
2001).  Kernel PCA uses the “kernel trick,” the effect of which is similar to first mapping 
data onto an even higher-dimensional subspace, one in which linear combinations of the 
mapped data can be found that preserve the variance in the data.  An Autoencoder Neural 
Network, one with at least five layers, can also be used to perform a non-linear version of 
PCA. 

Other non-linear techniques can be used to perform feature extraction by preserving 
the global structure in the data (van der Maaten, Postma, and van den Herik 2009).  As 
discussed above, PCA, Kernal PCA, and Autoencoder Neural Networks preserve the 
variance in the data, calculated over all anomalies.  In contrast, Multidimensional Scaling 
(MDS), a.k.a. Sammon Mapping, preserves the Euclidean distances between the data 
collected for all pairs of anomalies.  (Under some constraints, MDS is identical to PCA.)  
While MDS preserves the inter-anomaly Euclidean distances, Isomap preserves the inter-
anomaly geodesic distances.  The geodesic distance is measured along the low-
dimensional manifold on which it is assumed that the high-dimensional data resides.  
Therefore Isomap can be useful in applications where it is known that the data resides on 
a curved or folded manifold.  Other non-linear techniques also assume a manifold with 
specific characteristics (e.g., degree of smoothness, existence of holes, etc).  Two 
examples are maximum variance unfolding (MVU) and diffusion maps. 

2) Local 
The feature extraction techniques discussed above attempt to preserve the structure 

of the data, as measured across all anomalies.  Those are “global” techniques.  “Local” 
techniques also attempt to preserve the structure of the data, as measured with respect to 
each anomaly and the other anomalies most similar to it (its “nearest neighbors”). 
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Local linear embedding (LLE) is one of the most well-known techniques for local, 
unsupervised feature extraction (Roweis and Saul 2000).  First, the data collected from 
each anomaly are grouped into a high-dimensional vector.  Then, a graph is drawn to 
connect each anomaly to its K most similar anomalies, where “similar” is defined by the 
Euclidean distance between high-dimensional vectors.  Next, each anomaly is represented 
as a linear combination of its K nearest neighbors.  The weights of this linear 
combination are the features extracted for the anomaly.  Although this technique is not 
linear in a global sense, it is indeed linear in a local sense, hence its name.  The local 
linearity means that the weights can be solved using an optimization process that does not 
risk getting stuck in a local minimum (a risk shared by most other non-linear techniques).  
LLE is a very popular local feature extraction technique due to its simplicity and relative 
ease of computation.  However, it has been shown that LLE does not always perform 
well when there are holes in the low-dimensional manifold in which the original data 
resides (van der Maaten, Postma, and van den Herik 2009).  Other techniques can be used 
to perform local feature extraction, including Laplacian Eigenmaps, Hessian LLE, and 
Local Tangent Space Analysis (van der Maaten, Postma, and van den Herik 2009). 

4. Visualization 
Dimensionality reduction can be useful even after classification, as a post-

processing step.  This is particularly true for data mining, a technique for unsupervised 
classification discussed later in this document.  In unsupervised classification schemes, 
the features extracted from anomalies are first organized into discrete clusters in the low-
dimensional feature space.  An expert human is then needed to determine which clusters 
are important, as well as which clusters correspond to which classes.  Although the space 
in which the features are clustered has a lower dimensionality than the original data, its 
dimensionality is still often higher than two or three.  Therefore, it can be difficult for a 
human to examine the clustered features, since it is difficult for humans to perceive 
information in more than two or three dimensions.  Therefore, the dimensionality of the 
features can be reduced even further, after clustering has already been completed, solely 
to make it easier for a human to interpret.  This process is referred to as visualization 
(Duda, Hart, and Stork 2001). 

Often the best techniques for visualization are those that preserve the Euclidean 
distance between the clustered features (Duda, Hart, and Stork 2001; Bishop 1995).  This 
is because humans can intuitively understand that features are similar to each other if they 
are separated by a short Euclidean distance.  As discussed above, MDS is a global feature 
extraction technique that preserves the Euclidean distance across all anomalies.  
Therefore, MDS is often used for visualization.  Self-organizing maps (SOMs), a.k.a. 
Kohonen Maps, are often used for visualization as well.  SOMs can be implemented 
using a two-layer Artificial Neural Network.  The neural network maps each feature 
vector onto squares of a two-dimensional grid.  The grayscale value of a grid square is 
correlated to the number of feature vectors that have been mapped into it.  Feature vectors 
that cluster together in feature space will map onto the same or nearby grid square.  The 
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human expert can look at the grid to determine how many clusters there are, how tightly 
the clustering occurs, etc. 

5. Current Status 
Dimensionality reduction, either as a pre- or post-processing step to classification, 

has been acknowledged as an important part of machine learning for several decades.  A 
flurry of activity has been seen in this area over the most recent decade however.  This is 
due to the fact that in the past 10 years new sensors have been developed that can 
produce an extremely large amount of data for each sample.  Hyperspectral imaging and 
gene sequencing microarrays are two examples.  Data collected from these new sensors 
suffer from the Curse of Dimensionality.  Too many samples would be required to learn 
the parameters of a classification algorithm operating on the original high-dimensional 
data.  Furthermore, the iterative learning process would take too long to converge.  
Therefore, dimensionality reduction is more important now than ever.  In the last 3 years 
at the Algorithms for Threat Detection Workshop (Chapter 5), more than 30 submitted 
papers have focused on dimensionality reduction.  Although dimensionality reduction is 
not a new field, is it definitely back in vogue. 

G. Classification 
Classification is the process of assigning an observation to a category.  In a binary 

classification problem, there are only two possible categories, such as “threat” vs. 
“clutter.”  Other classification problems may have several different possible categories, 
such as “threat A,” “threat B,” “threat Z.” 

Two steps must be accomplished before classification can even begin.  First, the 
observation must be detected and determined to be of interest.  In what follows, we will 
refer to these observations as anomalies.  Next, representative features must be 
extracted10 from the anomaly.  Once these two steps are complete, classification 
algorithms can be constructed to assign the features extracted from the detected anomaly 
into a particular category.  That is to say, the classification algorithm can perform a type 
of feature fusion – fusing the features together in order to output a category label. 

Classification can take three different approaches: 

1. Supervised learning uses a training set to learn the optimal mapping from fea-
tures to categories. 

                                                 
10  Throughout this section, we refer to “extracting” features from the detected anomaly.  This can mean 

(1) using heuristics to take measurements of the collected data to use as features, (2) selecting a subset 
of the collected data to use as features, and/or (3) extracting linear or non-linear combinations of the 
collected data to use as features.  All three of these methods were discussed in Section 3.F on 
dimensionality reduction.   
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2. Unsupervised learning does not use a training set.  Instead, the features are orga-
nized into discrete clusters.  Then, an expert human is needed to determine 
which clusters represent which categories.  Data mining falls into this approach. 

3. Semi-supervised learning borrows methods from both supervised and unsuper-
vised learning. 

This section describes the philosophy behind each of these three approaches.  It 
briefly explains the most common techniques for implementing each approach and 
discusses the pros and cons of each technique.  Finally, this section concludes with an 
explanation of metrics that can be used to assess the performance of a binary 
classification algorithm. 

1. Supervised Learning 
Supervised learning uses a training set to learn the optimal mapping from features 

to categories (Bishop 1995; Duda, Hart, and Stork 2001).  The training set consists of a 
set of anomalies that have already been detected.  Each anomaly in the training set comes 
with two pieces of information: features and a category label.  The features have already 
been extracted from each anomaly.  They can be organized into a column vector x, where 
each element of x represents one feature.  The category label has also already been set for 
each anomaly, using ground truth.  The category label can be represented by a scalar y, 
where the value of y represents the category.  For example, y=1 can represent a true 
threat, while y=0 can represent true clutter.  In supervised learning, a model is 
constructed to map the feature vectors x to category labels y.  There are several 
approaches to building these models that will be discussed in this section.  The two main 
methods are (1) generative and (2) discriminant. 

a. Generative Methods 
Generative methods are used to estimate the joint probability distribution P(x,y) of 

the feature vectors x and category labels y.  Generative methods are often used for two 
purposes:  

1. The joint probability distribution P(x,y) can be used to generate synthetic data 
that mimics the data collected from the field – this is how “generative methods” 
got its name.  Synthetic data can be useful for modeling and simulation, as well 
as for training new users. 

2. P(x,y) can also be used to classify an anomaly’s feature vectors x into category 
y, the topic of this section. 

Bayes’ Rule can be used to formally state how generative methods classify an 
anomaly into a category: 

 P(y|𝒙) =  P(𝐱,y)
P(𝐱)

= P(𝐱|y)P(y)
P(𝐱)

 (7) 
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First, the posterior probability P(y|x) is estimated for each possible category (each 
possible value of y).  This can be done by dividing P(x,y) by the evidence P(x).  P(x) is 
measured directly from the feature vectors; it does not vary based upon y and is therefore 
used only to ensure that the posterior probabilities P(y|x) range from zero to one.  Once 
the posterior probabilities P(y|x) have been calculated for all possible categories, a 
decision rule must then be used to assign the anomaly into one particular category.  Often 
the maximum a posteriori (MAP) rule is used, which assigns the anomaly into the 
category y with the maximum posterior probability P(y|x).  For example, if P(y=threat | 
x) = 0.7 and P(y=clutter | x) = 0.3, then the anomaly is assigned to the category y=threat, 
since 0.7 > 0.3. 

Bayes’ Rule describes how the joint probability P(x,y), and therefore the posterior 
probabilities P(y|x), can be estimated from two other metrics.  P(x|y) is the likelihood that 
the feature vector x is extracted from the anomaly, given that the anomaly belongs to 
category y.  P(y) is the prior probability that the anomaly belongs to category y, set even 
before any feature vectors are extracted and examined.  P(y), for each category y, can 
often be estimated based upon the prevalence of anomalies from each category in the 
training set, or in similar experiments that took place in the past.  The training set can 
also be used to estimate the likelihoods P(x|y), for all possible categories y.  Both 
parametric and non-parametric techniques can be used to estimate the likelihoods. 

b. Parametric Techniques 
Parametric techniques assume a particular distribution for the likelihoods P(x|y).  

Each distribution can then be fully characterized by a small number of parameters.  For 
example, a Gaussian distribution can be fully characterized by its mean µ and variance 
σ2.  The training set can be used to learn the appropriate values for these parameters.  
Both Maximum Likelihood and Bayesian techniques can be used. 

Maximum Likelihood techniques assume that each parameter is a deterministic, but 
unknown, value.  This technique searches for the values of the parameters that would 
have most likely generated the feature vectors extracted from the training set anomalies 
in a particular category.  For example, linear discriminant analysis is a Maximum 
Likelihood technique that builds a model in which the likelihoods P(x|y) for the different 
possible categories are pushed as far apart as possible in feature space.  These likelihoods 
are used to define hyperplanes in feature space that separate, as well as possible, the 
training set feature vectors according to their ground truth category labels.  A new 
previously unseen feature vector can later be assigned to a category based upon where it 
falls in feature space with respect to the hyperplanes.  Note that linear discriminant 
analysis is actually a misnomer, as it is actually a generative technique, as opposed to a 
discriminant technique. 

In contrast to Maximum Likelihood techniques, Bayesian techniques assume that 
each parameter is a random variable defined by a probability distribution function, which 
itself can be characterized by a set of parameters.  Prior knowledge can be used to give a 
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rough estimate of these parameters, before any data are collected.  These estimates can 
then be updated once feature vectors are extracted from the training set anomalies. 

Maximum Likelihood and Bayesian techniques produce identical results when the 
training set is infinitely large.  In real-world applications, however, the training set must 
be of limited size.  One must then choose which technique should be used to estimate the 
likelihoods P(x|y).  Maximum Likelihood techniques are often very popular because they 
are less computationally intensive and easier to interpret than Bayesian techniques.  
However, Bayesian techniques can be very attractive when there is sound prior 
knowledge about the parameters characterizing P(x|y) and P(y). 

Finally, template matching, also known as library matching or “fingerprinting” is 
an approximate technique for parametric, generative, supervised learning.  Here, the 
training set is treated as a library of templates.  A template is a feature vector extracted 
from a labeled anomaly.  A feature vector extracted from a new previously unseen 
anomaly is compared to each template in turn.  A similarity metric is used to determine 
how well the new feature vector “matches” each template – often, the Euclidean or 
Mahalanobis distance is used as the “match” metric.  The new feature vector is then 
assigned to the same category as the template it matches best (i.e., the template that is the 
shortest distance away). 

Regardless of which approach is used, parametric methods often require a smaller 
training set than non-parametric methods, since only a small number of parameters must 
be learned.  That is one major advantage of parametric methods.  The main disadvantage 
is that one must have prior knowledge about what type of distribution should be used for 
the likelihoods P(x|y), and the classification results may be sensitive to misspecifications. 

c. Non-Parametric Methods 
Non-parametric methods do not assume a particular distribution for the likelihoods 

P(x|y).  Instead, the entire distribution is estimated from the training data.  For example, 
Parzen windows is one technique for accomplishing this task.  Gaussian distributions of 
equal variance are centered upon every feature vector in the training set (a rule is used to 
set that variance across all training set feature vectors).  P(x|y) is then estimated as the 
sum of these Gaussians. 

Non-parametric methods have both pros and cons.  One large advantage is that they 
can be used in cases where the distribution type for the likelihoods P(x|y) is not known or 
is known to be very complex (multi-modal, highly skewed, etc).  One disadvantage is that 
they typically require very large training sets to estimate the distributions. 

d. Discriminant Methods 
In contrast to generative methods, discriminant methods do not attempt to model the 

joint probability distribution P(x,y) that generated the features and category labels.  
Instead, these methods seek to find a function that directly maps the feature vectors x 
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onto the appropriate category labels y.  The mapping functions are defined by parameters; 
the training set is used to estimate the optimum values of these parameters.  The mapping 
functions can be simple or complex. 

K nearest neighbors is one of the simplest mapping functions.  A new previously 
unseen feature vector x is classified based on its K nearest neighbors, the K feature 
vectors in the training set that are “closest” to the new feature vector x in feature space.  
Often the Euclidean distance is the metric used to define “closest.”  A “majority vote” is 
then taken among the K nearest neighbors.  That is, the new feature vector x is classified 
into the category to which a majority of its K nearest neighbors belong.  Although K 
nearest neighbors is a very simple algorithm, it can be fairly robust when the training set 
is large.  Therefore it is often used as a baseline against which all other classification 
algorithms are compared. 

Artificial neural networks (ANN) implement complex (typically non-linear) 
mappings between feature vectors and category labels (Bishop 1995).  ANNs were 
developed to model the behavior of biological neural networks found inside the body.  
An ANN is composed of multiple layers of nodes.  The feature vector x is input into the 
first layer of the ANN.  The output of every node in the ith layer feeds into the input of 
every node in the i+1st layer.  The node multiplies each input by a weight, sums the 
weighted inputs, applies a non-linear function to the sum, and then returns the output of 
the non-linear function.  The training set can be used to set optimal values for the weights 
used by each node.  For example, the back propagation algorithm uses gradient descent to 
minimize the mean squared error between the output of the ANN and the ground truth 
category labels in the training set. 

ANNs have a bad reputation.  This is fair in some cases and unfair in others.  ANNs 
were introduced in the 1970s with much fanfare.  In theory, an infinitely large ANN, 
trained on an infinitely large training set over an infinitely long time, can learn the 
mapping between any set of feature vectors x and any set of category labels y (Bishop 
1995).  In real-world applications, however, the size of ANNs, their training set, and the 
time over which they are trained must be finite.  Therefore, the theory of ANNs did not 
pan out in real-world applications, and ANNs fell out of favor in the 1980s.  ANNs 
experienced a resurgence in the 1990s, however, once the machine-learning community 
recognized their limitations and began applying them only to those applications for which 
they were well-suited (Tarassenko 1998): applications for which large training sets can be 
compiled and for which dimensionality reduction has already been performed (i.e., 
feature vectors have already been whittled down to a size that requires only a manageable 
number of nodes in the input layer of the ANN).  One disadvantage to ANNs still 
remains, however: they are black boxes.  That is to say, it is very difficult to understand 
why an ANN outputs a particular category label.  The weights of the nodes give very 
little insight into how the classification decision was made. 

Since the early 2000s, the most popular discriminant technique for supervised 
learning is the support vector machine (SVM) (Meyer, Leisch, and Hornik 2003).  Like 
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linear discriminant analysis, an SVM finds a hyperplane that best separates the feature 
vectors in the training set according to their ground truth category labels.  New 
previously unseen feature vectors are assigned to a category based on which side of the 
hyperplane they fall.  Unlike linear discriminant analysis, an SVM does not attempt to 
first learn a generative model as means to learning the optimal hyperplane.  Instead, 
SVMs learn the optimal hyperplane directly.  This is done by first identifying the feature 
vectors in the training set that are on the edges of each category; these are called the 
support vectors.  The hyperplane is then specified by maximizing its distance on one side 
to the support vectors from one category while maximizing its distance on the other side 
to the support vectors from the other category.  If a hyperplane cannot be found (i.e., if 
the feature vectors cannot be linearly classified), then SVMs can use the “kernel trick” to 
perform non-linear classification.  The “kernel trick” has the same effect as using a non-
linear mapping function to project the feature vectors onto a higher-dimensional space in 
which a hyperplane can indeed be found (i.e., the feature vectors can indeed be linearly 
classified in the higher-dimensional space). 

SVMs have become popular over the last 10 years because the specification of the 
optimum hyperplane depends only upon the support vectors – those few feature vectors 
on the edges of the categories – which allow smaller training sets to be used.  Like 
ANNs, however, SVMs can be difficult to interpret, especially when the data are 
transformed into a high-dimensional space before linear classification. 

2. Unsupervised Learning 
Unsupervised learning does not use a training set (Bishop 1995; Duda, Hart, and 

Stork 2001).  Instead, features are extracted from a set of new, previously unseen 
anomalies, and then any underlying structure in those features is looked for and 
exploited.  Sometimes the underlying structure can be used for dimensionality reduction 
(i.e., whittling down the features to a smaller number that can be more easily managed in 
feature space).  Other times, the structure can be used for clustering (i.e., assigning the 
features into one of N groups in feature space, even though one does not know in advance 
what each group represents).  A human expert is then needed to determine which group 
cluster corresponds to which category – this is called Data Mining.  Unsupervised 
learning for dimensionality reduction was discussed earlier in Section 3.F.  Unsupervised 
learning for clustering, as a means to classification, is the topic of this section. 

Clustering requires the estimation of the distribution of feature vectors in feature 
space, P(x).  Both parametric and non-parametric techniques can be used to estimate this 
distribution, as was done to estimate the likelihoods P(x|y) in supervised learning.  Also, 
as in supervised learning, both Maximum Likelihood and Bayesian techniques can be 
used.  Unlike supervised learning, estimating the distribution with unsupervised learning 
is more computationally intensive and a solution is less likely to converge.  The 
contribution of each feature vector has less effect on learning the distribution, since one 
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does not know in advance to what category each feature vector belongs.  Therefore, 
approximate solutions are often sought, rather than exact solutions. 

K means clustering is one of the most common clustering techniques.  It is an 
approximate solution for a parametric technique.  First, it is assumed that there are K 
clusters of feature vectors in feature space.  Each cluster is assumed to be well-modeled 
by a Gaussian distribution.  Then, the means of these K Gaussian distributions are 
initialized to some values – often, random values are used.  Next, each new, previously 
unseen feature vector is classified into one of the K clusters, based on which cluster’s 
mean is the “closest.”  Often the Euclidean distance is the metric used to define “closest.”  
Then, the means of the K clusters are updated, based on the feature vectors that were 
classified into them in the previous step.  This process then iterates until a criterion is 
optimized – often this criterion is the mean squared error between each cluster mean and 
all feature vectors currently classified into that cluster.  One seeks to minimize this mean 
squared error.  Once the minimum mean squared error is found, the cluster means are 
held constant.  All future feature vectors are then assigned to the cluster with the 
“closest” mean, based on the same metric that was used above.  Of course, a human 
expert is then needed to determine which clusters correspond to which categories. 

K means clustering has pros and cons.  The main advantage is that it is simple and 
often works well in practical applications.  One disadvantage is that is requires prior 
knowledge of K, the number of clusters.  Another disadvantage is that the iterative 
process used to set the means of the K clusters can become stuck in local minima.  One 
can mitigate this risk, in part, by making wiser choices about the initial values of the K 
cluster means.  This often requires prior knowledge about the particular application. 

Hierarchical clustering is another common clustering technique.  With this 
technique, clusters can have sub-clusters, and sub-clusters can have sub-sub-clusters.  
Agglomerative techniques first assign each feature vector to one of N clusters.  Then, 
clusters are merged together based on whether the feature vectors assigned to them are 
“similar” – often the Euclidean distance is the metric used to define “similar.”  The 
process iterates until a criterion is optimized.  Divisive techniques are the opposite.  All 
feature vectors are first assigned to one single cluster.  Then, the cluster is split based on 
which feature vectors are “dissimilar.”  The process iterates until a criterion is optimized. 

Hierarchical clustering also has both pros and cons.  Its main advantage is that the 
sub-clusters and sub-sub-clusters give insight into the structure of the data – these 
different levels of clusters can be visualized as a dendrogram.  Also, hierarchical 
clustering does not require prior knowledge about the number of clusters – sub-clusters 
can be agglomerated or divided until they “look about right” to a human expert.  
However, one large disadvantage to hierarchical clustering is that it can be 
computationally intensive to perform.  Also, the overall performance of the technique 
depends heavily on whether the first level of agglomeration/division is “correct”; a 
mistake in the first level can lead to catastrophic consequences further up/down the 
hierarchy. 
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Finally, anomaly detection can also be thought of as a type of unsupervised 
learning.  Although some forms of anomaly detection are based on a model of what is 
considered “normal” (a.k.a. background) clutter, there is no model for threat.  Therefore, 
one simply looks for a departure from “normal clutter,” without any further information 
about whether this anomaly is a threat.  A higher form of intelligence – either a human 
expert or a supervised learning classification algorithm – can then be used to assign the 
detected anomaly into a labeled category. 

Unsupervised learning for clustering/classification has advantages over supervised 
learning.  The main advantage is that a training set does not have to be compiled.  This 
can significantly cut down on time and cost.  Resources do not have to be spent collecting 
data and extracting features from any training set anomalies.  What is even more 
important, resources do not have to be spent acquiring the ground truth needed to assign 
category labels to any training set anomalies; collecting this ground truth is often one of 
the most expensive parts of establishing a training set for supervised learning. 

Nothing is free however.  With unsupervised learning, resources must be spent on 
displaying to a human expert the features that are extracted from the anomalies and 
organized into clusters.  (This was discussed in Section 3.F for dimensionality reduction 
for visualization.)  Only then can the human expert use his or her training, experience, 
and intuition to determine which clusters are important, as well as which clusters 
represent which categories.  That is to say, the human expert is the source of ground truth 
in unsupervised learning.  This ground truth comes into play at the end of the process, 
once the clusters have been formed, rather than at the beginning of the process, as is done 
in supervised learning when the training set is compiled.  Still, unsupervised learning can 
be helpful in the following situations: (1) when one wants to first organize the data in a 
meaningful way before presenting it to a human expert, (2) when the category labels 
change over time more quickly than a training set can be compiled for supervised 
learning, and (3) when one wants to find out, first and foremost, whether there is in fact 
any underlying structure to the data (i.e., whether the data even cluster at all).  This is all 
part of hypothesis generation. 

A disadvantage to unsupervised learning is that there must be an underlying 
structure in the data.  For example, features extracted from a true threat anomaly must 
occupy a different part of feature space than features extracted from a true clutter 
anomaly.  If the wrong features are extracted, or if the signal-to-noise ratio is low (the 
threat signal vs. the background clutter noise), then the features may not cluster in feature 
space, and even the most expert of humans will not be able to understand which area of 
feature space represents which categories. 

3. Semi-Supervised Learning 
Semi-supervised learning borrows from both supervised and unsupervised learning 

(Zhu and Goldberg 2009).  As discussed earlier in this section, supervised learning uses a 
training set of labeled data (feature vectors with ground truth category labels) in order to 
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learn how to classify new feature vectors into categories.  Although supervised learning 
techniques can be computationally efficient, assembling the training set can be expensive 
and time-consuming.  Unsupervised learning does not use a training set.  Instead, 
unlabeled feature vectors are assigned to clusters.  A human expert is then needed to 
determine which clusters represent which categories.  Unsupervised learning can be 
attractive in situations where resources cannot be spent up-front in assembling a training 
set.  However, techniques for unsupervised learning can be computationally intensive and 
it can be difficult to converge to a correct solution.  Semi-supervised learning seeks the 
best of both worlds. 

Semi-supervised learning operates on both labeled and unlabeled feature vectors.  
One can approach semi-supervised learning from two different perspectives: 

1. One can use a small training set of labeled feature vectors to learn the parame-
ters of a classifier using supervised learning techniques (either generative or 
discriminative, parametric or non-parametric).  The parameters of the classifier 
are subject to constraints imposed by the unlabeled feature vectors. 

2. One can use the unlabeled feature vectors to learn the parameters of a clustering 
algorithm using unsupervised learning techniques.  Then, one can sample a sub-
set of the feature vectors, such as those on the edges of clusters, and collect 
ground truth category labels for them.  These labels can then be used to deter-
mine which clusters represent which categories.  This second approach is often 
termed Active Learning (Zhang, Liao, and Carin 2004). 

There are several different techniques for semi-supervised learning (Zhu and 
Goldberg 2009).  The “correct” technique depends on the particular application.  For 
example, Expectation-Maximization with Generative Mixture Models can be an excellent 
technique when there is prior knowledge that the feature vectors form well-defined 
clusters in feature space.  Transductive Support Vector Machines is a discriminant 
technique that is a natural extension of more traditional SVM techniques.  If a related 
application already uses a traditional SVM, it can make sense to use a transductive SVM 
for the new application.  Transductive SVMs are based on the assumption that the 
decision boundary – the hyperplane in higher-dimensional space – does not exist in a 
region of high density.  Thus transductive SVMs should only be used in applications for 
which there is prior knowledge that the categories overlap very little.  Regardless of the 
technique used, one must make sure that the assumptions underlying the chosen 
technique do indeed hold for the particular application in mind.  Otherwise, the unlabeled 
data are likely to degrade performance, rather than improve it. 

4. Metrics for Performance Assessment 
Regardless of what method is used for classification, suitable metrics must be 

chosen to assess the performance of the classification algorithm.  The confusion matrix in 
Figure 3-5 illustrates the binary classification problem.  The algorithm classifies each 
detected anomaly as either “threat” or “clutter” (rows).  To score the algorithm’s 



 

3-37 

classifications, ground truth can be used to label each detected anomaly as true threat or 
true clutter (columns).  Then, each detected anomaly can be counted as a True Positive 
(TP), False Positive (FP), False Negative (FN), or True Negative (TN).  These four 
counts sum to the total number of detected anomalies.  The counts are often recast into 
summary metrics, which are easily interpretable fractions ranging from zero (poor 
performance) to one (good performance). 

 

 
Figure 3-5.  A Binary Confusion Matrix 

Columns refer to ground truth and rows refer to algorithm output.  Counts of True Positive (TP), 
False Positive (FP), False Negative (FN), and True Negative (TN) are tallied and summarized in 
metrics.  Black metrics apply to both detection and classification problems, while gray metrics 
apply to classification only. 

 
Accuracy is the most common summary metric.  It measures the number of detected 

anomalies that were correctly classified.  Accuracy does not tell the whole story, 
however, as it lumps together both threats and clutter.  Therefore other metrics must also 
be used. 

Sensitivity and specificity are the next most common metrics.  Sensitivity is often 
referred to as True Positive Rate, Recall, or Probability of Detection (Pd).  (Pd is a 
misnomer because it is classification performance, not detection performance, which is 
being assessed.)  All of these terms refer to the same quantity: the fraction of true threats 
that were correctly classified as threats.  Specificity is the inverse: the fraction of true 
clutter that was correctly classified as clutter.  Specificity is also often referred to by 
different names, such as True Negative Rate or Inverse Recall.  It can also be calculated 
as one minus the False Positive Rate or one minus the Probability of False Alarm (Pfa).  
Regardless of the names that are used, sensitivity and specificity are calculated along the 
ground truth columns of the confusion matrix.  They reflect the “scientist’s perspective” – 
how much of the truth was correctly classified? 

Positive and Negative Predictive Value (PPV and NPV) are two other metrics.  They 
reflect the “user’s perspective” – how many of the classifications were true?  PPV 
measures the fraction of threat classifications that were truly threats; NPV measures the 
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fraction of clutter classifications that were truly clutter.  PPV has many other names, such 
as True Discovery Rate or Precision.  It can also be calculated as one minus the False 
Discovery Rate.  NPV is sometimes called Inverse Precision. 

Unlike sensitivity and specificity, PPV and NPV are affected by the prevalence of 
threats in the collected data.  Prevalence is defined by ground truth.  In classification 
problems, it is calculated as the fraction of detected anomalies that were true threats: 

 𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 =  𝑇𝑃+𝐹𝑁
𝑇𝑃+𝐹𝑁+𝐹𝑃+𝐹𝑁

 (8) 

Figure 3-6 shows three different confusion matrices, each giving simulated numbers 
for the performance of the same classification algorithm applied to the same type of data.  
The only difference is the prevalence of the threat in the data: low, moderate, and high.  
This difference in prevalence causes differences in PPV and NPV: as prevalence 
increases, PPV increases and NPV decreases.  Sensitivity and specificity are left 
unchanged.  Thus the “user’s perspective” of an algorithm will differ based upon the 
prevalence of threat.  If the threat is rare (low prevalence), then it will be difficult for the 
algorithm to fulfill the needs of the user.  That is, even though the algorithm may be able 
to correctly classify a large fraction of both true threat and true clutter (leading to high 
sensitivity and specificity), it may appear to the user as though the algorithm is 
performing poorly, since most threat classifications will be incorrect (leading to low 
PPV).  In situations like this, the user may tire of the algorithm and simply turn it off.  
This is particularly true when false positives bear a high cost.   

Four metrics are needed to fully assess the performance of a binary classification 
algorithm.  However, often only sensitivity and specificity are provided to encapsulate 
the “scientist’s perspective.”  As a result, the “user’s perspective” is ignored.  PPV and 
NPV can be calculated from sensitivity and specificity, provided that the prevalence is 
known as well as the total number of detected anomalies (the sample size).  Preferably, 
though, the four counts of TP, FN, FP, and TN are provided in a confusion matrix, from 
which all summary metrics are directly calculated. 
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(a)  

Low Prevalence = 

 

(b)  

Moderate Prevalence = 

 

(c)  

High Prevalence =  

 

Figure 3-6.  Simulated Performance of the Same Classification Algorithm Applied to the 
Same Type of Data but with (a) Low, (b) Moderate, and (c) High Prevalence of Threat 

As prevalence increases, PPV increases and NPV decreases.  Sensitivity and specificity remain 
unchanged. 

 
It should be noted that only two of these four metrics can be calculated for detection 

algorithms, such as those that perform anomaly detection.  This is due to the fact that it 
does not make sense to count TNs for a detection problem.  The purpose of a 
classification algorithm is to determine in which class an anomaly belongs.  In contrast, 



 

3-40 

the purpose of a detection algorithm is to identify those anomalies in the first place.  
Thus, a classification algorithm will provide an output for each detected anomaly, but a 
detection algorithm will provide an output (sound an alarm, flash a light) only when an 
anomaly is identified.  One can certainly count the number of times a detection algorithm 
sounds an alarm when a true threat is present (TP).  One can also count the number of 
times an alarm is sounded when a true threat is not present (FP), as well as the number of 
times a true threat is present but an alarm is not sounded (FN).  However, it does not 
make sense to count the number of times a true threat is not present and an alarm is not 
sounded (TN).  As a result, one cannot calculate any metric that is defined in terms of 
TN, such as specificity, NPV, or accuracy.  Instead, only sensitivity and PPV can be 
calculated, since these metrics are not based on TN.  Additional metrics are often 
calculated for detection algorithms; these metrics involve the passage of time, such as the 
number of FPs per hour.  This metric is often referred to as False Positive Rate or False 
Alarm Rate.  One must be careful that this metric is not confused with the quantity 𝐹𝑃

𝑇𝑁+𝐹𝑃
, 

otherwise known as one minus specificity. 

The performance of both classification and detection systems can be illustrated in 
graphical form (See Figure 3-7 for examples.).  Receiver-Operating Characteristic (ROC) 
and Precision-Recall (PR) curves are two of the most common methods (Davis and 
Goadrich 2006): 

• Traditionally, ROC curves plot Pd (i.e., Sensitivity or Recall) versus Pfa (i.e., 
one minus specificity) for each possible set of parameters on which the classifi-
cation algorithm is based.  In detection problems, where TNs cannot be counted 
and therefore Pfa cannot be calculated, the horizontal axis is often replaced with 
the False Alarm Rate (the number of FPs per unit of time).  A “perfect” ROC 
curve will shoot straight up from the origin, touch the upper left corner of the 
plot, and then shoot straight across to the upper right corner of the plot.  This in-
dicates a perfect ability to classify threat vs. clutter.  ROC curves are rarely per-
fect in real-world applications however.  The shape of a “good” ROC curve de-
pends on the particular application at hand.  The “Area Under the Curve (AUC)” 
is often used to summarize the shape of a ROC curve, since a “perfect” ROC 
curve (plotting Pd vs. Pfa) will exhibit an AUC of 1, but a coin flip will exhibit a 
ROC curve that follows the chance diagonal and has an AUC of 0.5.  One must 
bear in mind that the AUC is useful as a summary metric only when the cost of 
FNs is similar to the cost of FPs.  When FNs and FPs bear very different costs, 
then the shape of the entire ROC curve must be taken into consideration. 

• Precision-Recall (PR) curves plot Precision (a.k.a. Positive Predictive Value) 
versus Recall (a.k.a. Pd or Sensitivity) for each possible set of algorithm param-
eters.  PR curves can be drawn for both classification and detection problems, as 
neither Precision nor Recall require a TN count.  Unlike ROC curves, a “per-
fect” PR curve will start in the upper left corner, shoot straight across to the up-
per right corner, and then shoot straight down to the lower left corner.  One must 
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bear in mind that PR curves are heavily influenced by the prevalence of the 
threat in the collected data, since Precision is heavily influenced by prevalence. 

 

  
Figure 3-7.  Sample ROC (left) and PR Curves (right) 

The curves are derived from a real example with a “moderately good” classifier.  Approximately 
2,300 samples were classified with a prevalence of about 7 percent. 

H. Decision Fusion 
Decision fusion is the process of combining sensor information at the decision level.  

In other words, the information being fused is a decision each sensor has made about the 
presence or absence of a signal.  The term “decision” may be slightly confusing, since it 
often implies an action as the result of a decision.  “Decision” in our context might be 
better expressed as a declaration or an identification.  More formally, it is the result of a 
hypothesis test that each sensor performs individually.  We discuss both hard and soft 
decision fusion (Waltz and Waltz 2009).  Hard decision fusion results in a single, 
optimum choice; soft decision fusion accounts for decision uncertainty in each sensor 
chain by maintaining a composite measure of uncertainty. 

There are several reasons why one might fuse sensor data at the decision level.  In 
some cases, the communications links between sensors or between sensors and the 
central processing facility may not provide sufficient bandwidth to transmit lower-level 
data.  In these cases, each sensor may only transmit decision information, perhaps with 
additional bits specifying a quantitative measure of the quality of the decision.  In other 
cases, the lower-level information may not be available.  This is true for some off-the-
shelf “black box” sensors whose internals are not accessible to the customer.  This may 
be the case when decision information is passed between authorities or agencies; it may 
also happen when there are security classification constraints.  One can easily envision 
cases in which the raw or feature data are at a higher-level of classification than the 
resulting decision based on these data, and the communications network only supports 
the lower level of classification. 

For our canonical example of decision fusion, let us take the following.  Assume 
one would like to determine if a radiation source is present in some environment of 



 

3-42 

interest.  Further assume that several sensors are trained on this environment and 
individually make determinations of whether a radiation source is present.  The sensors 
may all be of different designs or made by different manufacturers – what is common 
among them is that we have access only to their determination of whether a source is 
present.  For the purposes of later discussion, let us label the hypothesis that no source is 
present as the null hypothesis, H0, and the hypothesis that a source is present as the 
alternative hypothesis, H1. 

In practice, decision fusion tends to be done in an ad hoc manner.  Typically some 
measure(s) of performance of the fused decision (e.g., detection rate and false positive 
rate) are optimized with respect to the manner in which sensor decisions are combined.  
This approach is amenable to scenarios in which one has access to ground truth data, or 
can create high-fidelity synthetic ground truth data from a model, either of which can be 
used to exercise the decision fusion algorithm.  A common ad hoc decision fusion 
algorithm is voting.  In our canonical example above, we treat the sensor’s decisions as 
votes and take the majority decision as the fused decision.  Refinements of voting are 
possible, of course.  We may learn that some sensors are less accurate than others and 
weight their votes less heavily than more accurate sensors.  We may also tune the number 
of votes required to reject the null hypothesis. 

1. Pure Decision Fusion 
As one might expect, the problem of optimally fusing hypothesis test decisions from 

individual sensors has been treated in the research literature.  By adopting a likelihood 
ratio approach, Chair and Varshney (1986) showed that for n sensors, each with false 
positive probability PFi and miss probability PMi, and each sending ui=-1 if deciding H0 
and ui=1 if deciding H1, the optimal decision fusion rule is given by the simple 
expression 

  (9) 

where the optimum coefficients are given by 

  (10) 

with P0 the prior probability of H0, and the P1 the prior probability of H1.  The advantage 
of this fusion rule is that it is simple, can be performed with minimal computational 
power, and could therefore be implemented on very small hardware.  However, it 
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requires knowledge of the performance characteristics of each sensor (false positive and 
miss rates).  In addition, it is not clear if this fusion rule represents an improvement in 
performance over each sensor’s individual performance. 

Thomopoulos, Viswanathan, and Bougoulias (1987) looked at the decision fusion 
problem more generally, including the case in which the prior probabilities of H0 and H1 
are not known.  In particular, they considered optimality of the decision fusion algorithm 
in the Neyman-Pearson11 sense and looked at the performance of the fusion relative to the 
performance of each sensor.  They showed that a Neyman-Pearson (N-P) optimal 
decision fusion scheme can perform better than the best performing sensor for a system 
of three or more sensors.  If each sensor additionally sends quality information about its 
decision, Thomopoulos, Viswanathan, and Bougoulias (1987) showed that the 
performance of the decision fusion algorithm can be comparable to that of a centralized 
N-P test – i.e., a single N-P hypothesis test performed with the raw data from all sensors.  
Quality information might be, for example, a simple flag that specifies whether the sensor 
has confidence in the result of its hypothesis test. 

Although the N-P optimal decision fusion algorithm described above is fairly 
straightforward, this class of algorithm is still used as the basis for some decision fusion 
techniques today, including, for example, those that fuse human sensor12 and physical 
sensor data (Liu, Chu, and Tsai 2012).  However, when we go beyond the simple binary 
hypothesis test, say to consider sensors that sense dependent variables or when we allow 
sensors to send arbitrary amounts of data in addition to decision information, we enter a 
vastly more complex sensor fusion landscape.  In fact, in this landscape, the line between 
decision fusion and feature fusion is blurry, in part because real sensor fusion systems 
confront a reality that is more complex than any simple taxonomy, and in part because 
many of the algorithms work for both feature and decision fusion. 

2. Hybrid Decision Fusion 
In a widely cited paper, Tsitsiklis (1993) treated the decision fusion problem more 

generally than Thomopoulos, Viswanathan, and Bougoulias (1987), relaxing some of the 
assumptions above.  In particular, he provided a Bayesian formulation of the problem, 
allowing for M-ary hypotheses (as opposed to binary hypotheses in the N-P case).  He 
also allowed the decision rule used by each sensor to be a (dependent or independent) 
random variable, considered sensor configurations more complex than a simple star 
topology (central node with all others nodes connected), and allowed sensors to send 

                                                 
11 The Neyman-Pearson lemma prescribes how to construct the most powerful likelihood ratio test be-

tween two point hypotheses for a given significance.  Here we use the terms power and significance in 
the formal sense.  Power is the probability a test will reject the null hypothesis when the null hypothesis 
is false.  Significance is the probability a test will accept the null hypothesis when the null hypothesis is 
true.  See, e.g., http://en.wikipedia.org/wiki/Neyman-Pearson_lemma.   

12 A human sensor is a person armed with one or more smart mobile devices and social networking 
services.   

http://en.wikipedia.org/wiki/Neyman-Pearson_lemma
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messages from a finite alphabet.  Although team decision problems (of which the 
Tsitsiklis (1993) formulation is a special case) are in general very difficult to solve 
computationally, he showed how to construct the optimal fusion rule under certain 
simplifying assumptions.  He also considered the limit where the number of sensors 
approaches infinity and showed that parallel configurations (those in which information 
travels in parallel from each sensor to the fusion center) are in general superior to serial 
configurations (those in which information travels along a line of sensors to the fusion 
center).  For a comprehensive treatment, see Viswanathan and Varshney (1997).   

Arbitrary sensor configurations lead naturally to the use of belief networks, and 
graphical tools generally, from the field of belief propagation.  Most prominent among 
these tools are Bayesian networks and Markov random fields.  Bayesian networks are a 
means of graphically encoding the independence assumptions among variables in a joint 
probability distribution.  Probability operations such as marginalization and conditioning 
are then simple graph operations, and inference is computationally tractable.13  One of 
the features of Bayes networks is that the graph produced is always a directed acyclic 
graph (DAG).  To represent cyclic dependencies (also known as “loopy” belief 
propagation), one may resort to Markov random fields, which allow for arbitrary 
connections between nodes.  However, dependencies are non-directional in Markov 
random fields.  Thus, a Markov network can represent certain dependencies that a 
Bayesian network cannot (such as cyclic dependencies); on the other hand, it cannot 
represent certain dependencies that a Bayesian network can (such as induced 
dependencies).  A Markov construction might be applied when learning takes place, and 
this causes the system to change how the detectors are used or how detector data and or 
features are combined. 

It should be noted that the nodes in the graphs used in graphical methods represent 
different random variables, all of which are part of some joint probability distribution.  
This is in contrast to the decision fusion techniques described above, where all sensors 
are deciding among a common set of hypotheses.  As such, graphical methods might 
more accurately fit under the heading of “feature fusion” in our taxonomy.  However, 
they are sometimes referred to as decision fusion techniques in the literature. 

One of the major benefits of graphical methods is that they typically do not require 
knowledge of (or assumptions about) underlying distributions.  This feature is especially 
useful for fields like computer vision and artificial intelligence, where underlying 
distributions are highly non-Gaussian.  (Consider the eye, which has a strongly bimodal 
distribution – open or closed.)  In a well-known paper, Sudderth et al. (2002) presents a 
novel nonparametric belief propagation algorithm and demonstrates its superior 
performance in estimating occluded features (for example, a prediction of whether a 
person is smiling based only on imagery of their eyes and nose). 

                                                 
13 See http://en.wikipedia.org/wiki/Bayesian_network for the standard “wet grass” Bayes network 

example.   

http://en.wikipedia.org/wiki/Bayesian_network


 

3-45 

Nonparametric fusion methods are strongly data-driven.  As such they are 
sometimes the basis for machine learning techniques.   

3. Non-Probabilistic Methods 
It is widely held that a probabilistic approach to decision fusion (examples of which 

we have just described) is the most fruitful one (Carl 2001).  However, alternative 
approaches warrant at least brief mention here.  The two most useful are fuzzy logic (or 
possibility theory) and Dempster-Shafer theory (or belief theory). 

Fuzzy logic, as the name implies, extends Boolean set theory and logic, allowing 
truth to take on values between 0 and 1.  It does this through the use of membership 
functions, which define a set of classes (e.g., “hot,” “warm,” “cold”) as a function of a 
random variable.  This is in contrast to probabilistic methods, which specify quantitative 
knowledge about the distribution of a random variable (e.g., mean and standard deviation 
of the temperature).  Fuzzy logic differs from probabilistic logic primarily in conceptual 
interpretation.  This difference, although it may seem minor, often allows for a more 
natural specification of actions to take in response to inputs in the case of vagueness in 
input data.  For further reading, see Stover, Hall, and Gibson (1996), who describe a 
generalized fuzzy logic decision fusion architecture with an emphasis on DoD 
applications, and Singpurwalla and Booker (2004), who explicitly draw links between 
probabilistic and fuzzy specifications. 

Dempster-Shafer (D-S) theory is a generalization of Bayesian probability.  The most 
striking feature of D-S theory is that belief in a proposition is represented as an interval, 
bounded on the low side by the “belief” and on the high side by the “plausibility.”  The 
power of D-S theory lies in its “rule of combination” (a generalization of Bayes’ rule), 
which prescribes how to combine belief constraints.  Although D-S theory can yield 
counter-intuitive results (including some that contradict probability theory), the 
framework is quite natural for belief propagation, and so it sometimes finds use in 
decision fusion problems.  For further reading, see Wu et al. (2002) and Koks and Challa 
(2003).   

I. Sensor Management 
Sensor management is the determination of an optimal sensor configuration at each 

time, within constraints, as a function of information available from prior measurements 
and possibly other sources (Hero and Cochran 2011; Hero et al. 2008).  Many parameters 
of the sensor configuration may be controllable (for example, location, bandwidth, or 
sampling rate).  The selection of the optimal configuration depends on the selection of an 
appropriate metric of performance. 

Figure 3-8 depicts the basic elements of a sensor management system.  Within the 
figure, the blue text below each box gives examples of each element.  A sensor (S1, S2, 
S3) is selected, and a measurement is made.  Given the measurement, information 
relevant to the sensing objective is distilled from the raw sensor data (typically using 
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various fusion algorithms).  This processing will typically produce both information for 
the sensing objective (estimates, tracks, decisions) and information about the 
merit/relative importance of each potential observation in the next time period.  Using 
this information, the sensor manager makes an (optimal) decision about which sensor 
measurement to acquire in the next time period. 

 

 
Figure from Hero and Cochran (2011).   

Figure 3-8.  Conceptual Block Diagram of a Sensor Management System 
 

Given this framework, it is perhaps not surprising that the unifying research 
framework for sensor management is the theory of decision processes.  From Hero and 
Cochran (2011), a decision process is a “time sequence of measurements and control 
actions in which each action in the sequence is followed by a measurement acquired as a 
result of the previous action” (p. 3069).  From this perspective, designing a sensor 
manager is equivalent to specifying a decision rule that generates realizations of the 
decision process that, on average, maximize an expected reward. 

Sensor management algorithms fall into three categories.  Each makes specific 
simplifying assumptions about the nature of the decision process.  The first category is 
the theory of Markov decision processes (MDP) and partially observable Markov 
decision processes (POMDP).  These methods make the assumption that the current state 
of the system given the entire history of observations and actions depends only on the 
state and action in the previous time period.  (The state of the system describes the 
current environment.  The reward function to be maximized depends on the system state 
and the actions.)  MDPs and POMDPs can be solved in general as a backward induction 
problem using Bellman’s equation (Hero et al. 2008).  For certain special cases (e.g., the 
linear Gaussian models used in the Kalman filter), they can be solved quickly, and the 
solution to the restricted (Markov assumption) problem is equal to the overall optimal 
solution. 
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Multi-armed bandit (MAB) problems are another approach to sequential resource 
allocation.  The MAB takes its name from the idea of pulling the “arms” of multiple slot-
machines (“bandits”) to achieve rewards.  From Scott (2010): 

A multi-armed bandit is a sequential experiment with the goal of 
achieving the largest possible reward from a payoff distribution with 
unknown parameters.  At each stage, the experimenter must decide which 
arm of the experiment to observe next.  The choice involves a fundamental 
trade-off between the utility gain from exploiting arms that appear to be 
doing well (based on limited sample information) vs. exploring arms that 
might potentially be optimal, but which appear to be inferior because of 
sampling variability.  The trade-off has also been referred to as “earn vs. 
learn.”  (p. 639) 

MABs have been used for search problems for several decades but have only recently 
been applied to sensor management.  In certain special cases, they offer significant 
computational simplifications over the MDP and POMDP formulations.  

Both MDP/POMDP and MAB approaches involve searching over multi-stage, look-
ahead policies, which requires evaluating each available action in terms of its effect on 
the potential rewards for all future actions.  Myopic sensor management approaches only 
look ahead to the next stage.  These “greedy” policies are computationally simpler, but 
lose the guarantee of optimality.  However, in some special cases, myopic approaches are 
close to optimal.  

The most obvious way to develop a myopic policy is to consider the effect of the 
control action only on the immediate reward (the one-step, look-ahead policy).  
Empirically, one-step, look-ahead approaches that maximize rewards based on 
information gain, rather than a task-specific reward, often achieve better overall 
performance.  This approach has a long history in sensor management and has been 
developed extensively as optimal experimental design (Lu, Anderson-Cook, and 
Robinson 2011; Myers, Montgomery, and Anderson-Cook 2009).  Recent work has 
focused on making choices when faced with competing objectives. 

As an example, consider the real-time allocation of sensors for numerical weather 
prediction.  These approaches use ensemble Kalman filters with a metric of minimizing 
prediction error and build on the data assimilation techniques described in Section 3.D.  
The data assimilation techniques make it possible to determine from where in space and 
time the uncertainty in an analysis originates.  This allows one to determine the optimal 
allocation of sensors.  For example, if there is a critical spatial location where one needs 
to know the wind speed with more accuracy than the rest of the field, it is possible to 
determine the optimal placement of sensors to reduce the uncertainty in the analysis at 
that location.  For forecasting, it is possible to determine where to best place sensors so 
that uncertainty in the forecast is reduced at a specific location at a specific future time. 
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Techniques to optimize sensor allocation are fairly advanced in the field of 
numerical weather prediction, where they fall under the heading of targeted observing or 
adaptive observing.  In practice, they may involve the selection of optimal sensor 
locations before observing begins, the repositioning of sensors during observing, the 
addition of sensors to specific locations during observing, or the removal of sensors with 
adverse error properties.  Several field trials have demonstrated the effectiveness of 
targeted observing [e.g., Toth et al. (2011)].  The Fronts and Atlantic Storm-Track 
Experiments (FASTEX), which studied the life cycle of cyclonic waves, was the first to 
demonstrate targeted observing in 1997.  The North-Pacific Experiment (NORPEX) 
tested and compared two different targeted observing strategies in 1998.  Later in 1998, 
the California Land-falling Jets Experiment (CALJET) demonstrated targeted observing 
for the first time on mesoscale events with 12- to 24-hour forecast windows. 

In 1999 the Winter Storm Reconnaissance program (WSR99) was the first 
experiment in which targeted observation locations were chosen in real time.  WSR99 
demonstrated that targeted observing could improve the accuracy of real-time operational 
forecasts for significant weather events (Szunyogh et al. 2000).  In 2003, the Atlantic 
THORPEX Regional Campaign further demonstrated the use of real-time control of a 
wide variety of sensor platforms for improving short-range forecasts (Truscott 2004). 

Liu and Kalnay (2007) applied targeted observing to the problem of determining 
when sensors with limited duty cycles should be turned on and where they should be 
looking.  An example sensor is a satellite with a limited energy budget, which may have 
power to operate, say, only 10 percent of the time.  Liu and Kalnay (2007) showed that, 
for their particular problem, the addition of 10-percent duty cycle Doppler wind lidar 
(DWL) sensors to the standard weather observing network could reduce the forecast root 
mean square (RMS) error by a factor of about 3.  This is to be compared with the same 
sensors at a 100-percent duty cycle, which would reduce the RMS error by a factor of 
about 6. 

Kalnay, Ota, et al. (2012) and Kalnay, Yang, et al. (2012) present a simplified 
framework for what they call forecast sensitivity to observations (FSO).  With FSO, one 
can determine which observations contribute the most uncertainty in the forecast and 
perform “proactive quality control” by removing those observations from the data 
assimilation cycle.  They demonstrate a slight improvement in the forecast track of 
typhoon Sinlaku with FSO. 

J. Methods, Algorithms, and Operational Missions 
In the previous sections, we introduced a number of methods and algorithms.  Many 

of these cut across the operational missions.  For example, data fusion methods will be 
useful whenever multiple sensors are employed.  Data triage and compressive sensing 
methods are helpful whenever the volume of data exceeds the local storage and/or 
processing capabilities.  Other algorithms are relatively more useful for some of the 
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operational missions.  These include anomaly detection, data assimilation, sensor 
management, and classification. 

A detection algorithm sounds (or otherwise flags) an alarm if the setting contains a 
potential threat.  Detection is often thought of as a screening tool with low specificity and 
high sensitivity: for example, a detection algorithm might have high negative predictive 
value (if it does not alarm, no threat is present), although it may be subject to false 
positives.  However, different operational missions may require working at different 
locations on the ROC curve.  Note that some detector hardware does not actually provide 
detection as defined here, but instead provides classification. 

Data assimilation algorithms are used to reconstruct properties of the environment 
of interest and to predict the future evolution of the environment of interest.  Resource 
tasking and sensor allocation algorithms rely on reconstruction of the environment of 
interest to determine where the next piece of data should be collected. 

Classification algorithms are used to estimate the membership of the potential threat 
in a class (e.g., “threat” vs. “not a threat,” or “threat A” vs. “threat B” vs. “threat C”).  
Clustering can be thought of as a type of classification in which the number and labels of 
classes are not known in advance.  In addition, the dimension-reduction algorithms 
discussed in Section 3.F can be thought of as data preprocessing before applying 
classification techniques. 

Note that each of these algorithms can be used for prediction or retrodiction.  
Prediction is the estimation of a variable at a future point in time.  For example, a 
detection algorithm can predict the existence of a potential threat at a future time.  
Similarly, a classification algorithm can predict the class to which a potential threat will 
belong at a future time.  Conversely, retrodiction is the estimation of a variable at a time 
point in the past.  An algorithm can detect the existence of a potential threat at a time 
point in the past, as well as determine its class membership.  The algorithms may also be 
used to estimate current conditions in locations where data have not been collected. 

While data assimilation and resource allocation depend explicitly on (physics-
based) models, these models can be incorporated into the other algorithms.  Detection 
algorithms often calculate a metric based on the collected data and then compare that 
metric to a threshold; if the metric surpasses threshold, then an alarm is sounded to 
indicate the existence of a potential threat.  Models can be used to set this threshold in the 
first place.  For example, a statistical model can be built of background radiation; any 
radiation found to be greater than 95 percent of all modeled background can be evidence 
of a potential threat.  Classification algorithms can make use of models in several ways, 
as well.  For example, the parameters of a model can be optimized by fitting them to the 
collected data; these parameters can then be used as features to input into a classification 
algorithm such as K-nearest neighbors, a support vector machine, or a neural network. 
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Finally, each of these three types of algorithms can also be thought of in terms of 
hypothesis testing and hypothesis generation.  In hypothesis testing, a null hypothesis is 
declared (e.g., “Gamma radiation is not present”).  The collected data are then analyzed 
to determine if there is enough evidence to reject the null hypothesis (e.g., “There is 
evidence to reject the null hypothesis that radiation is not present”).  This is often called 
confirmatory data analysis.  However, when a hypothesis is not yet known, exploratory 
data analysis must be used instead.  Here, the collected data are analyzed to determine if 
they cluster or can otherwise be organized in a particular way.  The structure of that 
organization may then suggest a hypothesis.  For example, the features extracted from the 
collected data may cluster in high-dimensional space.  The label of the cluster may be 
unknown.  However, the region of space in which it resides may indicate that the label 
should be “gamma radiation,” indicating that the collected data should be classified as 
gamma radiation – a human in the loop is often required to make this hypothesis.  The 
hypothesis must then be tested statistically using confirmatory data analysis. 

A functional taxonomy used to bin algorithms into different types can be applied to 
DTRA’s operational missions.  Direct force protection relies heavily on detection 
algorithms for hypothesis testing.  Detection algorithms are used to alert users to the 
existence of a potential threat, possibly cueing a targeted search.  Depending on sensor 
density, additional resource tasking in support of localization may be needed to cue 
targeted search.  The challenge with direct force protection is fidelity/certainty – 
detection algorithms must be able to accurately determine the existence of a potential 
threat even when only a small sample is available.  In addition, the algorithms must also 
be able to function quickly, so that a quick response can be made.  This leads us to the 
second operational mission: targeted search. 

Targeted search makes use of localization and classification algorithms for 
hypothesis testing.  Localization algorithms, supported by resource tasking, are needed to 
home in on the exact location of the potential threat.  Classification algorithms are needed 
to distinguish threat from non-threat objects or materials or to distinguish between 
different types of threats.  Once again, the challenge with targeted search is fidelity/ 
certainty – the algorithms must be able to determine the location and class membership of 
the potential threat based on a small sample in a short span of time, so that quick 
decisions can be made about the fate of the area searched. 

Long-term threat behavior monitoring relies heavily on detection for hypothesis 
generation.  As in direct force protection, detection algorithms are used to determine the 
existence of a potential threat.  Localization algorithms are needed to specify at least a 
rough area in which the threat-related activity may be found.  Data assimilation 
algorithms help to develop an understanding of “normal” background.  In contrast with 
direct force protection, however, long-term threat behavior monitoring is often used for 
hypothesis generation, rather than hypothesis testing.  Hypotheses are rarely known in 
advance because the set of possible threat-related behaviors contains unknown and 
possible infinitely many members – and because the sensors employed are not specific to 
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what the system is attempting to monitor or detect (threat behavior vice threat material 
properties).  These features of the long-term threat behavior-monitoring use case lead to a 
situation where a particular threat behavior (e.g., construction of an improvised nuclear 
device) may not have a threat signature that is known a priori and that can be looked for 
in the sensor data.  As a result, these systems often require a human in the loop to 
generate hypotheses. 

Once a hypothesis is generated, then responses can be made to acquire the data 
necessary to test the hypothesis.  For example, if the coordinates of the potential threat 
are fairly well known in both time and space, then the response can include a targeted 
search.  If, however, the spatial location of the potential threat is fairly well known but 
the time at which it may occur is not, then the response can include the deployment of 
sensors similar to those used in direct force protection – the choice of sensors is based on 
the hypothesis that must be tested (e.g., if the hypothesis is “Gamma radiation is not 
present,” then gamma radiation sensors must be deployed).  Finally, if the time at which a 
potential threat may occur is relatively well known but its location is not, then the 
response can include a wide area search. 

A wide area search relies upon localization and classification algorithms for 
hypothesis testing and/or generation.  In contrast to a targeted search, the location of the 
potential threat is not known.  Therefore, a wide area search is heavily dependent on 
localization algorithms.  Classification algorithms are then required to distinguish threat 
from non-threat objects and materials.  A wide area search often results in a clustering 
exercise (a form of exploratory data analysis), rather than a full classification.  Humans 
are required to determine what the label of a particular cluster might be, based on where 
it resides in high-dimensional space.  A further response (e.g., targeted search or 
deployment of detectors similar to those used in direct force protection) can then be done 
to test any generated hypotheses. 

The algorithms used by each operational mission are challenged in different ways.  
Those used in direct force protection and targeted search are challenged by fidelity/ 
certainty – they must be able to quickly determine the existence of a potential threat, as 
well as its location and class membership, all with a high degree of certainty, so that 
appropriate responses can be taken.  The algorithms used in long-term threat behavior 
monitoring and wide area search are challenged by the need for exploratory data analysis 
for hypothesis generation.  Follow-on responses are then needed to test the hypotheses.  
In all cases, careful consideration must be made for how each type of algorithm can be 
designed and operated in order to meet the challenge posed by each operational mission. 

One can imagine missions where each of these use cases is supported by either a 
homogeneous or a heterogeneous sensor network.  A homogeneous sensor network is a 
network composed of a set of identical sensors that are operated in a uniform manner 
(i.e., each sensor in the network responds to the same phenomena and collects and reports 
data in the same manner).  One example of a homogeneous sensor network would be a 
set of identical cameras distributed throughout an area of interest in order to monitor 
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activity.  A heterogeneous sensor network is composed of sensors that respond to more 
than one phenomenon and may collect and report the data in different manners, such as 
different collection frequencies and data formats.  One example of a simple 
heterogeneous sensor network is a direct force protection system that integrates a 
perimeter laser trip line with a camera.  A heterogeneous sensor network can pose the 
additional challenges to fusion algorithms of properly handling issues such as uneven 
sampling and missing data. 
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4. Case Studies 

In this chapter, we discuss several case studies.  Our goal is to illustrate how the 
algorithms and levels of fusion that we have discussed come together in real-world 
applications.  We selected these examples to illustrate choices, challenges, and lessons 
learned that we believe are relevant to the CBRNE mission. 

A. Fusion in Tactical Detector Networks 
Most operational tactical networks of detectors employ more than one type of 

fusion, and they may even employ multiple algorithmic methods of fusion within each 
type.  The communication network that enables the data exchange may also be 
heterogeneous, and various links may operate on different time scales, with some 
information being reported frequently and other information intermittently.  The data may 
come from different phenomena.  Even when data are derived from a single 
phenomenology, the detectors may be of different manufacture, different sensitivity, and 
different resolution.  For all of these reasons, a tactical data network has to accommodate 
the complexities of the individual sources and make use of the most appropriate fusion 
methods to achieve its objectives.  To illustrate, we describe the problem space and the 
solution for a current tactical air defense network. 

A network of detectors can operate on various time scales simultaneously: from 
immediate real-time data exchange, to a slower schedule of periodic exchanges, or even 
event-driven, unscheduled data exchanges.  The data exchange architecture is shaped by 
the objectives of the system and the practicalities of constructing the communication 
architecture.  The use of detector networks is common and ubiquitous, but that does not 
mean all networks are easy to implement.  The military, for instance, has to address the 
challenge posed by mobile detectors and hierarchies of communication networks.  The 
military needs communication systems that work reliably, securely, rapidly, and operate 
in threatening environment anywhere in the world. 

A good example of a military detector fusion system is the J3.2 Air Track message 
set of the Link-16 message system.  Link-16 is designed for maritime, land, and space 
surveillance and engagement coordination.  We discuss the J3.2 Air Track message, 
which is a subset of Link-16 that is designed to provide situational awareness to Air 
Force aircraft and Navy aircraft and ships.  The goal is to provide participants and 
commanders with a common understanding of the location and classification of all air 
vehicles in the theater. 

A detector platform (such as an aircraft or ship) with Link-16 broadcasts J3.2 air 
target track reports from its local radar to the other network participants.  Each track 



 

4-2 

report is created by combining multiple individual radar measurements according to a 
physical model of nominal aircraft movement.  For example, although they may be 
detected, it is not desirable to broadcast reports on the movement of birds.  Therefore, the 
tracker tries to discriminate bird detections based on characteristics of bird flight, 
although a perfect separation of the class of birds from the class of aircraft is not always 
possible.  Similarly, low-flying aircraft (such as helicopters) have to be modeled to 
distinguish them from ground vehicles, a distinction that is not always cleanly made. 

The formation of a track from the measurements of a single detector is an example 
of single-detector data fusion.  Other network participants compare this track with their 
own radar tracks, and, if they do not already have a track “like” it, they add it to their 
track database.  On the other hand, if one or more participants find they are tracking the 
same target, they will negotiate over the network with the original reporter of the track to 
determine who should have reporting responsibility for that track.  Link-16 attempts to 
provide an adjudication system such that one and only one Link-16 participant has 
reporting responsibility for each tracked target in the theater.  Within the J3.2 message 
there is a Track Quality field that is scaled from each platform’s estimate of error.  This 
field is the key factor in determining which platform has reporting responsibility.  The 
Track Quality field does not report a full covariance matrix for uncertainty, but is instead 
a combined metric. 

In practice, the adjudication system is never perfect.  Measurement uncertainty is 
inherent in the radar, and the translation of a track from one frame of reference to another 
contributes additional errors.  Because the detectors (radars) and the feature processors 
(trackers) are not necessarily the same for each platform, a slightly different physical 
model may be used by each platform to form its track.  As a consequence, situational 
awareness provided by Link-16 includes many errors, including unreported targets, the 
same target reported in multiple locations, and tracks with the same location but confused 
identifications. 

Link-16 falls short of the definition of a feature-fusion system.  It does combine the 
tracks (features) from multiple platforms to create a representation of the air picture for 
each participant.  But it lacks a process for combining individual tracks to achieve a more 
accurate track.  It is better described as a combination of tracks rather than a fusion of 
tracks.  In addition, each participant maintains a different combination of tracks (its own 
plus the network track).  If all of the tracks from all of the participants were fused, then 
the network could provide each participant with the same fused picture.  (It would be 
difficult for Link-16 to achieve this because it has limited bandwidth.)  To perform fusion 
on this network, two things would have to change: first, all of the tracks from all of the 
participants would have to be reported, and each participant would have to also transmit 
the measurement error (full covariance matrix) associated with each track.  (As a note, 
the J3.6 Space Track message set does convey the full uncertainty matrix.)  Feature 
fusion cannot take place without an understanding of the uncertainty associated with each 
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feature.  Without taking the uncertainties into account, the fusion of the tracks would 
produce a degraded picture, not an improved one. 

The air picture as it has been just described is a single phenomenology network 
(radar only).  In fact, the air picture does incorporate other modalities.  Most platforms in 
the network also have detectors to measure IFF (identification friend or foe), and some 
have detectors that can measure emissions from air vehicles that may be used to classify 
them.  For example, detection of radar or radio emission might be sufficient to classify 
the type of aircraft, or at least determine a feature of the aircraft, such as what type of 
radio or weapon it is using. 

Another form of evidence that can contribute to the classification of the target is the 
target’s behavior.  For example, a target that takes off from an airfield inside enemy 
territory or one that fails to fly inside designated return-to-force corridors might suggest 
that the target be identified as hostile.  Typically no single decision is regarded as 
sufficient to declare a target to be hostile.  A voting procedure is used to arrive at a fused 
decision. 

The Link-16 operator who has met the rules for level of evidence to classify a target 
will attach his classification decision to the track that is broadcast to all network 
participants.  Meanwhile, other operators are forming their own decisions.  Because of 
the distributed nature of the decision making and the inherent differences in the local air 
picture, disputes about the classification of a target on the network are not infrequent. 

Thus, within the current air defense tactical data network, we see implementations 
of all three categories of fusion algorithms: data fusion, feature fusion, and decision 
fusion.  The methods employed have evolved over time, and newer and better techniques 
are not always economically feasible.  The network requires the constant attention of 
human operators who work to remove errors and negotiate the resolution of conflicting 
evidence.  The result is not as optimal as a design from the ground up might achieve, but 
it reflects the exigencies of the military situation.  The example of the air defense network 
provides an illustration of how complex it can be when seeking to develop a tactical data 
network.  Different levels of implementation and even selections within the message 
standard itself lead to different capabilities for data and information fusion. 

B. Implantable Cardioverter Defibrillators 
Many systems for threat detection involve a three-step process:  

1. Anomaly detection, in which algorithms are used to detect a change from the 
normal state, cueing the system to take further notice. 

2. Classification, in which algorithms are used to classify the detected anomaly as 
“threat” or “clutter.” 

3. Response, in which algorithms are used to determine what type of action should 
be taken to respond to a “threat” classification. 
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Physical models can be used in each of these three steps. 

Many medical devices also involve this three-step process.  Detection and 
classification algorithms are used to diagnose disease.  Response algorithms are used to 
determine how to treat disease.  All three of these algorithms are often based on 
physiological models that predict signals recorded from patients.  One example of a 
medical device that uses the three-step process is the Implantable Cardioverter 
Defibrillator (ICD).  This section describes the algorithms used in ICDs and discusses 
their pros and cons. 

An ICD is a small electronic device that diagnoses and treats fast, lethal heart 
rhythms.  As shown in Figure 4-1, an ICD is implanted under the skin in the upper chest.  
Electrodes extend from the ICD, insert into veins leading to the heart, and lodge in the 
interior walls of the heart.  The electrodes continuously record electrical signals from the 
heart tissue.  Algorithms running in the ICD process the signals to detect fast heart 
rhythms (anomalies) and classify them as lethal (threat) or non-lethal (clutter).  
Electrodes also deliver electrical energy to the heart in order to treat lethal rhythms 
(respond to threats) (National Heart Lung and Blood Institute 2013). 

 

 
Figure 4-1.  Implantable Cardioverter Defibrillators (ICDs) 

ICDs are small electronic devices implanted in the upper chest wall to diagnose (detect and 
classify) and treat (respond to) fast, lethal heart rhythms (threats).  The atria are the two upper 
chambers of the heart and the ventricles are the two lower chambers (National Heart Lung and 
Blood Institute 2013). 

1. Physiological Models 
Many threat detection systems use physical models to predict signals that should be 

recorded during normal conditions (when no threat is present) and emergency conditions 
(when a threat is present).  ICDs do the same.  Specifically, ICDs use physiological 
models to anticipate the signals recorded in patients during three different states: (1) 
Normal Sinus Rhythm (NSR), (2) Supra Ventricular Tachycardia (SVT), and (3) 
Ventricular Tachycardia (VT). 

NSR refers to a patient’s normal heart rhythm at rest – the normal state, when no 
threat is present.  The heart beats due to repeated electrical depolarization of its tissues.  
In a healthy person, this depolarization originates in the two upper chambers of the heart, 
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the atria, and then conducts down into the two lower chambers of the heart, the 
ventricles.  As a result, the heart beats in a coordinated fashion – first the atria, then the 
ventricles – at a rate sufficient to deliver an appropriate amount of oxygen to the body’s 
tissues.  The top diagram in Figure 4-2 shows the direction in which the electrical 
depolarization conducts during NSR (National Heart Lung and Blood Institute 2013). 

 

 
Figure 4-2.  ICD during Three States 

Top: Normal Sinus Rhythm (NSR) is the normal condition, when no threat is present.  The 
electrical depolarization (black arrow) originates in the atria and conducts down into the ventricles 
for each heartbeat.  The near-field (black) and far-field (grey) signals can be recorded by an 
Implantable Cardioverter Defibrillator (ICD).  Middle: Although Supra Ventricular Tachycardia 
(SVT) is not the normal condition, no threat is present.  The electrical depolarization conducts in a 
similar direction as NSR, but at a faster rate.  The near- and far-field signals are similar to NSR.  
Bottom: Ventricular Tachycardia (VT) is the emergency condition, when a threat is present.  The 
electrical depolarization originates in the ventricles and conducts “backwards” through the heart, 
in a different direction to NSR.  As a result, the near- and far-field signals are different to NSR. 

 
SVT is a non-lethal, fast heart rhythm – although this is not the normal condition, no 

threat is present.  When a person exercises or becomes excited, the tissues of the body 
require more oxygen.  Therefore, the heart must pump more blood.  One way the heart 
does this is by increasing the rate at which it beats.  The electrical depolarization still 
originates in the atria and conducts down into the ventricles, however, just like NSR.  The 
middle diagram of Figure 4-2 shows the direction of depolarization conduction during 
SVT.  SVTs are clutter – they are non-lethal and do not require treatment.  No response is 
necessary (Shome et al. 2010). 

VT is a lethal, fast heart rhythm – this is the emergency condition, in which the 
threat is present.  For some people with cardiac disease, the electrical depolarization can 
become disturbed, originating in the ventricles and traveling “backwards” through the 
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heart, as shown in the bottom diagram of Figure 4-2.  This results in fast and erratic 
beating of the ventricles.  Insufficient blood is delivered to the body.  If left untreated, the 
person can die within a few minutes (Shome et al. 2010). 

2. Sensors 
Some threat detection systems use a single sensor to collect only one type of data, 

but other systems use multiple sensors to collect multiple types of data.  Alternatively, 
some systems may use a single sensor configured in multiple ways.  As a result, the 
single sensor can provide more than one type of data.  ICDs are an example of such a 
system. 

An ICD electrode can be configured in two different, yet complementary, ways: (1) 
a near-field configuration for local measurements and (2) a far-field configuration for 
global measurements.  Figure 4-2 shows near- and far-field signals recorded during one 
heartbeat of NSR, SVT, and VT.  A near-field electrode records the voltage difference 
across the small section of heart tissue surrounding the tip of the electrode.  As a result, a 
near-field electrode measures the sharp change in voltage as the electrical depolarization 
sweeps past its tip; these data are useful for assigning a fiducial timestamp to an 
individual beat.  In contrast, a far-field electrode records the voltage difference across the 
entire heart, from the electrode tip to the ICD.  Far-field electrodes measure the 
superposition of voltage changes as the electrical depolarization conducts throughout the 
entire heart over the course of an entire beat.  As a result, far-field signals exhibit richer 
texture, useful in determining the origin and direction of the depolarization conduction 
(Shome et al. 2010). 

The use of a single sensor configured in multiple ways has pros and cons.  One 
advantage is that fewer sensors must be used.  This can be particularly advantageous if 
the sensors must be placed in a location that is difficult to reach, such as the inside of the 
heart.  In the case of ICDs, only one electrode must be inserted into the heart; this can 
reduce implantation time and the risk of infection.  One disadvantage is the extra research 
and development required to create sensors that can be configured in multiple ways.  
Another disadvantage is the complexity involved with calibrating the sensor in its 
multiple configurations and keeping track of which data were recorded under which 
configuration. 

3. Algorithms 
Threat detection systems must process the data recorded by sensors.  As discussed 

above, ICDs are an example of a system that arranges its algorithms into a three-step 
process: (1) detection of anomalies (fast heart rhythms), (2) classification of a detected 
anomaly as a threat (lethal VT) or clutter (non-lethal SVT), and (3) response to a threat 
classification (lethal VT).  This section describes the algorithms used by ICDs to perform 
each of these three steps and discusses the advantages and disadvantages of the 
algorithms. 
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a. Anomaly Detection 
ICDs use simple algorithms to detect anomalies, cueing the system to take further 

notice.  An anomaly is any change from the normal condition.  In the case of ICDs, this is 
any change from NSR.  Anomaly detection in ICDs is based on the premise that the rate 
at which the heart beats is a useful indicator of whether the heart is in its normal state; a 
change in heart rate indicates a change from NSR.  First, ICDs use a series of rules to 
identify the large, sharp deflections in the near-field signal indicating individual 
heartbeats.  Because the near-field signal measures quick, local changes in heart tissue, 
the timestamps of these deflections can be measured with high certainty and can therefore 
be used as fiducial points for the heartbeats.  Next, the heart rate is estimated based on the 
time intervals between successive fiducial points.  This heart rate is then compared to a 
physician-programmable threshold.  If the heart rate surpasses threshold, then an anomaly 
(a fast heart rhythm) is detected.  Thus the cue (detection of a fast heart rhythm) is based 
on a single feature (heart rate) extracted from a local measurement (the near-field signal) 
and compared to threshold. 

Anomaly detection has pros and cons.  One advantage is that a model must be 
constructed for the normal condition only.  One does not have to build a model of the 
abnormal condition; in fact, there may be so many different ways of being abnormal that 
it may be impossible to construct models of all of them.  Instead, one can simply monitor 
the signal for a change from normal; this can often be accomplished using rather simple 
methods.  In the case of ICDs, one must only know the range of heart rates expected 
during NSR; all other heart rates are considered anomalies.  The disadvantage of anomaly 
detection is that one cannot determine why or how the signal is abnormal.  The signal 
may be abnormal because a threat is present or simply because of noise or other 
background clutter.  In the case of ICDs, a heart rhythm may be fast because it is a lethal 
VT (a threat) or simply a non-lethal SVT (clutter).  Thus anomaly detection on its own is 
not sufficient to guide response.  An interim step is needed: classification. 

b. Classification of Threat vs. Clutter 
Once an anomaly has been detected, it must be classified as either threat or clutter.  

ICDs classify a fast heart rhythm (an anomaly) as either lethal VT (threat) or non-lethal 
SVT (clutter).  Two types of classification algorithms are used in ICDs: (1) interval 
classification and (2) morphology classification.  Some ICDs integrate both types of 
algorithms. 

1) Interval Classification 
Interval classification algorithms in ICDs extract features related to the time 

intervals between heartbeat fiducial points.  As discussed above, these fiducial points are 
local measurements extracted from the near-field signal.  Some ICDs extract two new 
features from these time intervals, stability and onset, and compare each to a threshold.  
Stability measures the variance in the time intervals; onset measures how quickly 
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successive time intervals shorten (how quickly the heart rate speeds up).  A physiological 
model is created for both lethal VT (threat) and non-lethal SVT (clutter); classification 
uses these models to determine whether stability and onset features indicate VT or SVT.  
Specifically, a fast heart rhythm that is stable (stability greater than threshold) with a 
slow onset (onset less than threshold) is classified as SVT.  Other fast rhythms are 
classified as VT.  A physician can program the thresholds (Boston Scientific 2013). 

There are pros and cons to interval classification.  One large advantage is that it is 
simple.  The simple calculation of features (stability and onset) and comparisons to 
threshold can be reviewed quickly to understand why a classification decision was made.  
However, one large disadvantage to interval classification is that physicians must 
remember what each feature is meant to represent physiologically so that appropriate 
threshold values can be selected for a particular patient. 

2) Morphology Classification 
Morphology classification uses more complex algorithms to process the far-field 

signal.  Since the far-field signal is a global measurement, it can be used to determine the 
origin and direction in which the electrical depolarization conducts throughout the entire 
heart over the course of an entire beat.  This type of classification is based on the 
physiological model illustrated in Figure 4-2 (Shome et al. 2010): signals recorded during 
SVT are similar to NSR, since, in both cases, the electrical depolarization originates in 
the atria and conducts down into the ventricles.  In contrast, signals recorded during VT 
are different from NSR, since depolarization conducts in the opposite direction. 

Morphology classification requires an additional calibration step: recording the 
signal during the normal state.  In the case of ICDs, this step must be performed 
immediately after the ICD is implanted in the patient’s chest.  Signals are recorded while 
the patient is in NSR, the normal state.  Features are extracted from these signals and 
stored as the NSR template for later use.  As soon as a fast heart rhythm is detected, the 
same features are extracted from the fast rhythm’s signals and compared to the NSR 
template.  Fast rhythms that “match” the NSR template are classified as non-lethal SVT 
and left untreated.  All other fast rhythms are classified as lethal VT and treated (Shome 
et al. 2010; Swerdlow et al. 2002). 

Morphology-based algorithms also have both pros and cons.  The main advantage is 
that the classification decision is based on the richer far-field signal representing global 
measurements.  One always wants to use as much information as possible to make a 
decision.  There are two main disadvantages.  First, creation of the normal template 
requires an additional calibration step, which can be burdensome, particularly if the 
normal state changes frequently, requiring a frequent update to the normal template.  
Second, the algorithms are complex and can be difficult to understand.  Many physicians 
regard these ICDs as “black boxes,” making them more difficult to trust. 
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3) Combined Classification 
Some ICDs use multi-tier decision trees to combine interval and morphology 

classification.  An early tier uses interval techniques to classify a fast rhythm as SVT 
(clutter) or Unknown.  If the rhythm is classified as SVT, the analysis ends, and no 
treatment is given.  If the rhythm is classified as Unknown, the analysis continues.  In a 
later tier, morphology techniques classify the Unknown rhythm as SVT (clutter) or VT 
(threat).  Thus the early tier screens out clutter, but the later tier performs a full 
classification (Medtronic 2012).  This is an example of decision fusion, in which 
decisions output from multiple algorithms are combined to arrive at a final decision. 

Multi-tiered, “screen-then-classify” decision trees have pros and cons.  One large 
advantage is that they take into consideration the different perspectives of the constituent 
algorithms.  A large disadvantage is the nuance of combining multiple constituent 
decisions into one.  The early tier’s algorithm must rarely output a false negative – an 
anomaly classified as clutter when it was truly a threat.  Otherwise, the anomaly will not 
have the opportunity to be classified correctly by a later tier.  No response will be made 
for what is truly a threat, leading to potentially tragic consequences.  In the case of ICDs, 
the patient will die.  On the other hand, the early tier may often output a false positive – 
an anomaly classified as Unknown when it was truly clutter.  All Unknown rhythms will 
have the opportunity to be classified correctly by the later tier.  Thus one must carefully 
consider the tested performance of an algorithm on its own before determining how it can 
best complement other algorithms. 

c. Response to Threat 
Detected anomalies that are classified as threats require a response.  In the case of 

ICDs, lethal VTs must be treated immediately or the patient will die.  Preprogrammed 
instructions dictate how ICDs respond to VTs.  Physicians must program these 
instructions as part of the calibration process immediately after implantation. 

Many physicians use an approach similar to the military’s “escalation of force” 
philosophy.  The ICD is programmed to first respond to a VT classification by delivering 
a series of short, low-energy bursts, similar to the output of a pacemaker.  In many cases, 
the low-energy pacing can halt VT and return the patient back to NSR, the normal 
condition.  If the low-energy pacing does not succeed, then the ICD is programmed to 
respond more aggressively.  A different pacing waveform may be used, or the pacing 
may occur at a faster rate.  If unsuccessful, then the ICD escalates to the third tier of 
therapy, a high-energy shock.  These shocks are similar to those that physicians deliver 
through paddles applied externally to the patient’s chest.  If the shock does not succeed, 
then the ICD escalates to its final tier: another shock delivered with the maximum energy 
possible (National Heart Lung and Blood Institute 2013).   

Preprogrammed instructions for threat response have pros and cons.  For ICDs, the 
main advantage is that physicians can specify in advance exactly how the ICD will 
respond to a VT for a particular patient.  Some patients are so unhealthy that no time 
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should be wasted on lower tiers of response.  A high-energy shock is required 
immediately upon VT classification.  Other patients may be healthy enough to tolerate 
the time spent on lower (and less painful) tiers of therapy; low-energy pacing (which does 
not cause pain) can sometimes terminate VT without the need for high-energy shocks 
(which do cause pain).  Disadvantages also exist with preprogrammed instructions.  In 
the case of ICDs, physicians must anticipate all possibilities when programming the 
instructions, because the ICD cannot adapt automatically to unanticipated heart rhythms. 

4. Remaining Challenges 
ICDs have been in use for 30 years.  Most challenges have been addressed.  

Randomized control trials have shown that ICDs can reduce mortality by 31 percent 
compared to pharmaceuticals (Moss et al. 2002).  Some challenges do remain, however. 

One challenge is the cost of false positives.  Classification algorithms must always 
trade off the costs of false positives (true clutter misclassified as threat) and false 
negatives (true threats misclassified as clutter).  The costs associated with false negatives 
are usually quite high; if a threat is not correctly classified, no response will be made, 
potentially leading to tragic consequences.  In the case of ICDs, a true VT misclassified 
as SVT would lead to death within minutes.  Therefore, the classification algorithms in 
ICDs are tuned to err on the side of caution; false negatives are minimized, resulting in 
higher false positives.  False positives can come at a cost, too, however.  If clutter is 
misclassified as a threat, then a response will be made unnecessarily.  In the case of 
ICDs, some responses, such as high-energy shocks, can be quite painful.  A false positive 
precipitating a shock comes at a great cost to the patient.  Other responses, such as low-
energy pacing, are not painful and can sometimes go unnoticed.  As a result, a false 
positive leading to pacing comes at a very low cost.  Therefore, further research is 
currently being done in the ICD industry to (1) lower false positives and (2) reduce the 
cost of response. 

Regulation is another challenge.  ICDs are subject to some of the strictest 
regulations in the health care industry.  This is due to the fact that an ICD has only a 
minute or two to detect, classify, and respond to a VT before the patient dies.  There is 
simply no time for a physician to intervene if the ICD malfunctions.  Testing new sensors 
and algorithms is therefore very risky.  Clinical studies must be designed to mitigate 
those risks.  Mitigations can be expensive and time-consuming, however.  Therefore, ICD 
technology evolves very slowly. 

C. Autonomous Ground Vehicles 
Development of autonomous ground vehicles involves the collection and analysis of 

heterogeneous data from multiple sources, the fusion of these data, and the use of the 
fused data in an intelligent, real-time, decision-making process.  Autonomous ground 
vehicles are made possible by the combination of several complicated processes; 
however, the generic strategy can be described as “sense-think-act.”  Data collection and 
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data analysis from a distributed network of sensors is typically the first step, followed by 
processing to develop a model of the vehicle’s surroundings and determine possible 
actions.  In the final step of the process, the model is converted to a decision-making tool 
and an action is decided upon and executed. 

The Defense Advanced Research Projects Agency (DARPA) has sponsored a series 
of Grand Challenges that focused on autonomous vehicle development.  The first 
DARPA Grand Challenge was a vehicle race in the Mojave Desert.  Vehicles were 
required to be entirely autonomous and to complete the 143-mile course in less than 10 
hours.  Successful completion of the task required use of multiple sensors, fusion of 
collected data, development of an accurate model of the vehicle’s surroundings and of 
vehicle movement, utilization of decision-making algorithms, and ability to execute the 
decided-upon action (Thrun et al. 2007).  When Carnegie Mellon University’s vehicle 
Sandstorm traveled the farthest at 7.3 miles, the competition was held again the following 
year and the prize was doubled to $2 million.  Five vehicles successfully completed the 
course.  Stanford University’s vehicle, Stanley, won the race with a time of 6 hours 54 
minutes. 

DARPA pushed the envelope of autonomous vehicle development again in 2007 
with its Urban Challenge.  This time the course was 60 miles through an urban 
environment and was to be completed in 6 hours.  The urban environment added a new 
component to autonomous vehicle development: it was now necessary for the vehicle to 
obey all traffic laws, detect and avoid other vehicles, and make decisions in real time 
based on the actions of other vehicles.  A collaborative team of Carnegie Mellon 
University and General Motors Corporation claimed the $2 million prize with their 
vehicle Boss. 

The development of autonomous ground vehicles is characterized by several 
attributes.  The general strategy of DARPA Challenge entries was a sense-think-act 
framework.  Each vehicle had more than a dozen sensors of different modalities, 
incorporating optical, radar, and GPS data collection.  These data were combined and 
were incorporated into physics-based models.  Multiple models were used to develop a 
coherent picture of a vehicle’s environment, and a cost map was developed to evaluate 
potential actions.  Use of terrain evaluation and navigation algorithms enabled a vehicle 
to decide upon and execute a path. 

Because no single sensor could provide the range of wavelengths and field-of-view 
required to navigate the Challenge courses, vehicles were equipped with a suite of 
sensors.  Sensor data were used to fulfill two primary goals: evaluation of the 
surrounding terrain and detection and characterization of obstacles.  Most vehicles had at 
least the following sensors: multiple lidar line scanners, a radar scanner, a stereo video 
camera, and an inertial and a differential GPS sensor.  Long-range lidar line scanners 
were used by many vehicle teams to provide data for terrain topology mapping and 
obstacle detection and characterization.  Lidar line scanners, radar scanners, and stereo 
video cameras provided information used for obstacle detection (Urmson et al. 2004).  As 
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discussed in Darms et al. (2009), the combination of lidar and radar data was necessary to 
provide the proper blend of long-range detection with short-range shape or obstacle 
estimation, and although the performance of both stereo cameras and lidar can be 
hindered by the presence of dust, radar operates at a wavelength that penetrates through 
dust.  Multiple sensors with overlapping fields-of-view and complementary utilities 
increased robustness against false readings and sensor failures.  In addition to the ability 
to provide accurate and complementary data, sensors were selected based on reliability, 
availability, and ability to provide timely information. 

The use of a suite of sensors was accompanied by several challenges.  Large data 
sets were produced, and the issue of data processing and transfer had to be resolved.  For 
example, Stanley (the 2005 winning vehicle) received data from sensors at frequencies 
ranging from 10 to 100 Hz and control of vehicle steering, throttle, and braking occurred 
at frequencies up to 20 Hz (Thrun et al. 2007).  To facilitate the collection, analysis, and 
transfer of high-frequency data, many successful vehicles employed high-performance 
file servers and computing power.  As described in Urmson et al. (2004), Carnegie 
Mellon’s 2004 vehicle included a 2 terabyte (TB) RAID5 array and a dual Xeon 
processor-based server.  With a well-designed architecture, it was possible to ensure that 
computational power would not limit vehicle performance. 

A common design feature among DARPA Challenge vehicles was the development 
of a “Sensor Layer” that was kept separate from the other components of the vehicle 
architecture such as the “Thinking Layer” and the “Decision-Making Layer.”  Data 
collection and processing occurred in the Sensor Layer before being sent to other parts of 
the system.  A strategic decision made by many vehicle teams was to timestamp, rather 
than synchronize, the data (Thrun et al. 2007; Effertz 2008; Darms et al. 2009).  This 
reduced the risk of deadlocks and processing delays (Thrun et al. 2007).  Typically, after 
the timestamp was added, sensor data were analyzed and prepared to be sent to the 
Thinking Layer.  For example, as discussed in Effertz (2008), lidar signals, obtained from 
illuminating a target with laser light and collecting the backscattered light, were 
processed and converted into object-oriented data that included obstacle distance, width, 
and relative velocity. 

Successful vehicle entries also used a publish-subscribe paradigm (Thrun et al. 
2007) to manage information.  Data flowed in one-direction and were analyzed and 
published in a database.  Only necessary data were sent to the appropriate users.  By 
isolating the collection and analysis of sensor data and submitting processed data to the 
Thinking Layer, the subsequent model, cost map, and decision-making remained sensor 
agnostic (Urmson et al. 2004).  Sensors and other hardware could be added and removed 
from the vehicle without revamping the entire navigation and decision-making 
architecture. 

During the “think” stage of the process, features and objects extracted from sensor 
data were interpreted and incorporated into physics-based models.  Feature extraction and 
object interpretation require assumptions such as vehicle size, surface reflectivity, and 
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color (Darms et al. 2009).  One potential pitfall during this stage is misinterpretation of 
sensor data.  This possibility is addressed by combining output of several complementary 
sensors and weighing the expected accuracy of individual sources.  This accuracy may 
depend upon factors such as amount of ambient light, distance between the sensor and the 
object, and angle between the sensor and the object. 

These processed data were used as inputs for models of the vehicle and its 
surroundings.  Many successful Challenge teams used a variation of the Kalman filter 
(Kalman and Bucy 1961) for state estimation in their models.  Most vehicles developed 
and managed several separate models.  For example, a model was developed for the 
vehicle itself, as well a model for each obstacle, moving or stationary, encountered by the 
vehicle.  These models were maintained and updated as needed.  For example, after a 
vehicle passed a stationary obstacle, the model of that obstacle became irrelevant.  These 
individual models were combined to develop an overall model of the vehicle’s 
environment.  According to Darms et al. (2009), a traditional mechanism for combining 
multiple-state models for object tracking is the interacting multiple model (IMM) (Mazor 
et al. 1998).  IMM uses two or more Kalman filters in parallel.  Each filter uses a 
different model for target movement.  IMM determines an optimal weighted sum of all 
the outputs of the filters.  Advantages of IMM include its recursive nature, which enables 
it to rapidly adjust to target movement.  Another common approach is the use of the 
switching Kalman filter model (Veeraraghavan, Schrater, and Papanikolopoulos 2005).  
Like IMM, the switching Kalman filter utilizes multiple models to describe motion.  The 
modeled motion is a weighted combination of multiple models, providing flexibility in 
describing and predicting vehicle motion.  One disadvantage of the switching Kalman 
filter is the possibility of a high computational requirement, partially due to the 
requirement of data association.  These and similar algorithms are useful in various 
tracking problems such as radar and GPS tracking. 

The final stage in this generic framework is the “act” phase.  DARPA Challenge 
teams used cost functions to transform the vehicle’s world model, generated during the 
“think” stage, into a form that could be used for decision-making.  The course was 
divided into a grid and, based on the developed model, the traversability of each grid cell 
was determined.  The three metrics used by Carnegie Mellon University to determine 
traversability were slope, roughness, and step height, which is the change in elevation 
compared to the vehicle’s current position.  This traversability map was translated into a 
cost map by calculating cost as the inverse of the traversability score multiplied by the 
certainty of the data in the grid cell (Urmson, Simmons, and Nesnas 2003).  A cost map 
was the decision-making tool for most Challenge vehicles.  A vehicle’s next action, stop, 
turn left, turn right, slow down, etc., was determined by the cost associated with 
occupying adjacent grid cells and the overall cost of the path.  As described in Thrun et 
al. (2007), the overall path was planned, subjected to updating, as an implementation of a 
search algorithm that minimizes a linear combination of cost functions. 
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An important attribute of cost models used by successful Challenge vehicles was 
that only relevant parts of the map were updated as new data became available.  Carnegie 
Mellon University employed the algorithm Dynamic A* (D*) to plan the vehicle’s path 
(Urmson, Simmons, and Nesnas 2003).  D* generated an initial cost map of the course 
from available a priori information.  The map was then updated as new sensor data 
became available.  An advantage of D*, and similar algorithms used by other Challenge 
teams, is that only regions of the course affected by the new information are replanned, 
not the entire course, avoiding excess memory storage and computational time.  This 
algorithm enabled path planning in unknown, partially known, and changing 
environments (Stentz 1994) and resulted in computational efficiency and timely course 
adjustments. 

The development of autonomous ground vehicles involves fusion of data from 
multiple sources and of multiple types, use of physics-based models to predict future 
events, and real-time analysis, decision-making, and action-taking.  Autonomous ground 
vehicle development has been enabled by high-fidelity vehicle models, availability of 
high-resolution data of surroundings and objects of interest, and adequate computational 
power.  These DARPA Grand Challenge vehicles were also well-served by a well-
defined problem: traverse this course as quickly as possible.  Impediments to 
development include determining how to weigh data from various data sources under 
different conditions and to develop accurate cost models.  In a simplified form, the 
framework for autonomous ground vehicle development is a “sense-think-act” paradigm.  
The ability to execute autonomous motion is driven by combining data from multiple, 
complementary sensors, developing an overall model of the vehicle and its surroundings, 
and effectively transforming this model into a decision-making tool.  In the case of 
autonomous ground vehicles, traversability converted into cost functions was a driving 
force in the ability to succeed in the DARPA Grand Challenges. 

D. Sense and Avoid for Unmanned Aerial Vehicles 
To fulfill mission objectives, UAVs must navigate while avoiding terrain and static 

obstacles as well as moving obstacles such as other UAVs, airplanes, and balloons, or 
areas with bad weather conditions.  One basic problem still hinders the use of military or 
civil UAVs in commercially controlled airspace: flight safety in terms of collision risk 
with respect to other aircraft.  In the absence of a human pilot on board the aircraft, a 
UAV must have a sense and avoid (SAA) capability to detect and resolve potential 
conflicts.  A conflict is defined as the event in which the Euclidean distance between two 
aircraft is less than the minimum desired separation distance. 

A SAA system has five basic functions: sensing, trajectory prediction, conflict 
detection, conflict resolution, and evasion maneuver generation.  Figure 4-3 shows the 
approaches for accomplishing each of these five functions. 
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Adapted from Kopriva, Sislak, and Pechoucek (2012) 

Figure 4-3.  Sense and Avoid Taxonomy 

1. Sensing 
The SAA system monitors the surrounding environment for static and dynamic 

obstacles.  Determining the types of sensors appropriate for a UAV and its environment 
is a challenging multidimensional problem (Lacher, Maroney, and Zeitlin 2007).  The 
fundamental information that a sensor or group of sensors needs to acquire is the range, 
azimuth, and elevation of all targets of interest.  Sensors deployed aboard aircraft to 
perform surveillance for collision avoidance can be divided into two main categories: 
cooperative and non-cooperative sensors. 

Cooperative sensors receive radio signals from another aircraft’s onboard 
equipment.  Many aircraft carry a transponder that may be interrogated by other aircraft 
in a determined range to broadcast range, altitude, and bearing.  The Traffic Alert and 
Collision Avoidance System (TCAS) for manned aircraft relies on this method to 
discover other aircraft.1  By 2020, aircraft are required to be equipped with Automatic 
Dependent Surveillance–Broadcast (ADS-B), which utilizes GPS and broadcasts aircraft 
position, velocity, and other data without needing to be interrogated.  Non-cooperative 
sensors are required to sense non-transponding targets or stationary obstacles and may do 
so actively or passively.  Available passive sensing technologies include electro-optic 
cameras, infrared cameras, and acoustic sensors.  These sensors tend to be smaller and 
lighter weight, but a high-resolution field of view might drive a high processing 
requirement.  Active sensors include radar and laser range finding.  Since these sensors 
require more energy to interrogate the target, they tend to be bigger and heavier and can 
thus be mounted only on larger platforms.  For the smallest UAVs without the capacity to 
carry multiple sensors, receiving information from ground-based sensors might be an 
attractive option. 

                                                 
1 http://en.wikipedia.org/wiki/Traffic_collision_avoidance_system. 
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To detect a potential conflict, the trajectory of a sensed target must be compared to 
the trajectory of the UAV.  Four fundamental methods for trajectory prediction are cited 
in literature (Kuchar and Yang 2000; Albaker and Rahim 2011).  In the nominal method, 
the trajectory is predicted directly from sensor data without consideration of 
uncertainties.  The worst-case method assumes an aircraft might perform any range of 
maneuvers physically possible.  The probabilistic method weighs each maneuver by a 
probability of occurring.  Finally, the flight plan sharing method requires cooperative 
sensors to exchange parts of their flight plans giving an exact knowledge of the future 
trajectory. 

2. Avoiding 
Once the target trajectory has been predicted, this is compared to the flight plan of 

the UAV to check if the safety zone has been violated and, if so, a conflict is declared.  
This conflict is resolved using one of the collision avoidance methods, which include 
rule-based methods where the UAV avoids the conflict by acting from a prescribed set of 
rules; game theory methods where the conflict is modeled as a two-player differential 
game; field methods, which treat each object as a charged particle; geometric approaches, 
which find an optimal solution based on the geometric relationship between the UAV and 
the threat; numerical optimization methods, which use a cost metrics and a kinematic 
model together with a set of constraints to find a solution; and multi-agent methods in 
which each aircraft is controlled by an agent who communicates to negotiate a solution.  
The outcome of these methods will be a command for the UAV to perform an evasion 
maneuver or a combination of maneuvers such as speed up, slow down, maintain speed, 
turn left, turn right, climb, or descend.  For a comprehensive review and categorization of 
recently published conflict detection and resolution approaches, see Kopriva, Sislak, and 
Pechoucek (2012). 

3. Multi-Sensor Fusion in a SAA Context 
Although the sense and avoid functions are independent, they deeply influence each 

other.  For the best possible outcome (maneuver realization), conflict resolution 
algorithms need the best possible trajectory prediction, which results from the best 
possible information from the awareness sensors.  The remainder of this discussion will 
focus on the sensing end of SAA, since this can be used to illustrate the utility of multi-
sensor fusion to provide the best picture of a UAV’s surrounding environment in a timely 
manner. 

According to published performance standards, a UAV must be able to detect and 
avoid another airborne object within a range of ±15º in elevation and ±110º in azimuth 
and be able to respond so that a collision is avoided by at least 500 feet (Table 4-1).  The 
500-foot safety bubble is derived from the commonly accepted definition of what 
constitutes a near mid-air collision (Federal Aviation Administration 2012).  Additional 
requirements are derived from these basic requirements and characteristics of a particular 
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UAV.  For example, Geyer, Singh, and Chamberlain (2008) determine the minimum time 
to perform a basic maneuver, which determines the distance at which the threat must be 
detected.  This time is a function of the maximum banking angle of the UAV.  Given a 
maximum banking angle of 45°, a UAV would have approximately 6 seconds to avert 
any threat.  This also suggests that every target must be detected at least 6 seconds in 
advance.  For sensors whose field of view does not meet the required field of regard, it 
would then be necessary to scan such that the revisit rate meets the minimum detection 
time to perform the evasive maneuver.  Finally, sensors must be capable of performing to 
these requirements at all times, day or night, in all weather. 

 
Table 4-1.  Field of Regard Requirements for Collision Avoidance 

Field of Regard 

Source Azimuth Elevation 

International Standards, Rules of the Air, Section 3.2.2.4 (ICAO) ±110° No guidance 
ACC/DR-UAV SMO Sense and Avoid Requirement for Remotely 
Operated Aircraft (ROA), 25 June 2004 

±110° ±15° 

American Standards Testing and Materials (ASTM) 2411.04 ±110° ±15° 
DoD Standardization Program Office ±110° ±15° 

Source: McCalmont 2007 

 
A key point to consider in the selection of sensors for SAA is that no single sensor 

would be capable of fulfilling all requirements discussed in the above paragraph.  This is 
evident in the trade space for SAA sensor types and attributes laid out in Table 4-2 
(Lacher, Maroney, and Zeitlin 2007).  For example, radar is reliable in all weather and is 
able to accurately measure range, but the data rate is only about 1 Hz.  Electro-
optical/infrared (EO/IR) sensors, on the other hand, are best for angular measurement and 
have a very high measurement rate.  Equipping a UAV with multiple fused sensors serves 
to combine the strengths of each to provide a complete solution.  Having non-cooperative 
sensors as part of the multiple sensor architecture is mandatory since a threat might be 
intentionally non-cooperative or may not be equipped with cooperative sensors. 
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Table 4-2.  Attributes of SAA Sensors 

Sensor Modality Range 
Bearing 

(Azimuth) 
Bearing 

(Elevation) Trajectory 

Mode A/C 
Transponder Cooperative 

Accurate: 
10s of miles Calculated 

Calculated based 
on pressure altitude Derived 

ADS-B Cooperative 
Accurate: 

10s of miles 
Calculated 

based on GPS 
Calculated based 

on pressure altitude 
Provided 

Optical 
Non-Cooperative, 

Passive 
Not sensed Accurate Accurate Derived 

Thermal 
Non-Cooperative, 

Passive Not sensed Accurate Accurate Derived 

Laser/Lidar 
Non-Cooperative, 

Active 
Accurate; 
1,000 ft 

Narrow Narrow Derived 

Radar 
Non-Cooperative, 

Active 
Accurate;  

1 mile 360º 
360º  

(Depends on 
antenna mounting 

Derived 

Acoustic 
Non-Cooperative, 

Active 
Accurate; 

100 ft 
360º 360º Derived 

Note: Table adapted from Lacher et al. (2007).  Accuracies reflect a sensor’s useful detection range for SAA. 

4. Example: A Multiple Model Algorithm for Multiple Sensor Tracking 
Rousseau, Ratton, and Fournet (2010) and Cornic et al. (2011) highlight why a 

multiple sensor system with a data fusion algorithm is helpful for situational awareness.  
Their study considers the UAV to have both radar and EO/IR sensors onboard, and both 
the UAV and the threat platform are equipped with an IFF transponder and ADS-B.  
They propose a hybrid hierarchical process for the fusion of the heterogeneous data from 
this suite of sensors.  Here, each sensor does its own tracking by providing a detection-to-
track association based on geometrical data as well as the specific signature of the target 
in the sensor’s measurement domain.  The sensor provides the fusion with its own tracks 
and the last data associated with these tracks.  Then, data association is from individual 
tracks coming from each sensor.  The multiple sensor fusion is obtained by integrating 
the associated sensor measurement data in a kinematics estimator.  Note also that sensor 
management to reach the avoid goals may be influenced by the feedback of the fusion 
output. 

The study chooses two models from civil aviation to represent the dynamics 
behavior of the targets the UAV will encounter: the constant velocity model and the 
coordinated turn model.  For civilian aircraft, the coordinated turn model considers left 
and right turns and a typical (2°/s) and a maximum (6°/s) value for the turn rate.  Since 
the UAV may also encounter maneuvering targets, such as combat systems, this is 
modeled using the constant turn model and increasing the rate of turn (9°/s). 

The objective of the tracking algorithm is to detect a potential collision between the 
UAV and any surrounding targets.  A target on a collision course will have a close to zero 
relative angular velocity; thus the tracking algorithm must estimate the target velocity 
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vector as accurately as possible.  The major challenges of target tracking arise from two 
discrete-valued uncertainties: the measurement origin uncertainty (a measurement may 
have arrived from an extraneous source) and the target motion uncertainty.  In the 
presence of target motion uncertainty, the IMM is considered to be the state-of-the-art 
tracking algorithm (Blom and Bar-Shalom 1988; Li and Jilkov 2005).  It is considered the 
best compromise currently available between computational complexity and 
performance.  IMM uses a set of multiple models that represent the possible behavior 
patterns of the targets the UAV might encounter.  A bank of filters is run in parallel, each 
based on a unique model in the set.  Target state estimation is then based on a weighted 
average of estimates from the different models. 

The many different possible maneuvers for a target may not be covered accurately 
enough by only a small set of models.  It has been well established, however, that the 
IMM performance will not improve, but will get worse as the number of competing 
models increases, aside from an increase in computational complexity (Li and Bar-
Shalom 1996).  Information from the sensors will become diffused across the entire set of 
multiple models instead of being limited to the most appropriate models.  The authors 
thus propose using a Variable Structure IMM (VS-IMM) (Li 2000) for their application, 
which would be capable managing the set of IMM models and dynamically selecting the 
most appropriate models and parameters at a given time according to the current 
situation, i.e., the model set is not fixed over time.  The dynamic selection of models is 
based on target classification (such as that provided by ADS-B) and the current state 
vector estimate combined with prior knowledge of target dynamics. 

The VS-IMM approach used is Kalman filter-based.  Specifically, the Extended 
Kalman Filter (EKF) is applied since the relationships between the target state and most 
of the sensor measurements is nonlinear.  The steps of the EKF are shown in Table 4-3.  
The structure of their multi-sensor fusion algorithm is diagramed in Figure 4-4.  The 
authors use this algorithm to simulate improvement in tracking using multiple sensors 
over tracking data from a single sensor. 

 

Table 4-3.  Extended Kalman Filter 
Initialization 𝑋𝑜,𝑃𝑜 
Prediction 𝑋�𝑘+1|𝑘 = 𝑓𝑘�𝑋�𝑘|𝑘� 

𝑃𝑘+1|𝑘 = 𝐹𝑘𝑃𝑘|𝑘𝐹𝑘𝑇 + 𝑄𝑘 
𝑌�𝑘+1|𝑘 = ℎ𝑘+1�𝑋�𝑘|𝑘 , 0� 

Innovation 𝐼𝑘+1 = 𝑌𝑘+1 − 𝑌�𝑘+1|𝑘 
𝑆𝑘+1 = 𝐻𝑘+1𝑃𝑘+1|𝑘𝐻𝑘+1𝑇 + 𝑅𝑘+1 

with 𝐻𝑘+1 = 𝜕ℎ𝑘+1(𝑋)
𝜕𝑋

�
𝑋=𝑋�𝑘+1|𝑘

 

EKF Gain 𝐺𝑘+1 = 𝑃𝑘+1|𝑘𝐻𝑘+1𝑇 𝑆𝑘+1−1  
Filtering 𝑋�𝑘+1|𝑘+1 = 𝑋𝑘+1|𝑘𝐺𝑘+1𝐼𝑘+1 

𝑃𝑘+1|𝑘+1 = 𝑃𝑘+1|𝑘 − 𝐺𝑘+1𝑆𝑘+1𝐺𝑘+1𝑇  
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Figure 4-4.  VS-IMM Algorithm for Fusion 

5. Discussion 
The multiple model approach is a state-of-the-art solution to many target tracking 

problems.  The VS-IMM version is most useful in complex situations where a large 
number of models must be used to describe the target and where the state of the target is 
highly time variant.  An approach to improving solutions is to design a better set of 
models to describe the target states: The better the motion model, the better the tracker is 
able to follow the target.  This, however, is highly dependent on the specific problem 
being solved.  Another breakthrough would be to produce new filters in a general setting 
rather than relying on ad hoc designs for each application.  For an extensive discussion of 
VS-IMM and the design and evaluation of algorithms for target tracking applications, see 
Li (2000). 

Note that SAA for UAVs is not a mature technology in the DoD.  AFRL’s SAA 
architecture contains an algorithm called MuSICA (Multi-Sensor Integrated Conflict 
Avoidance), which is in the demonstration phase and claims to have achieved TRL 6 
(Graham and Kay 2012; Smith 2012).  The Air Force posted a sources-sought notice this 
past summer in anticipation of releasing an RFP for the Airborne Sense and Avoid 
program, which seeks to develop a sensor agnostic, platform agnostic sensor fusion and 
avoidance maneuver product.2 

                                                 
2 https://www.fbo.gov/index?s=opportunity&mode=form&id=db4546a08dd439f93510efccbf6632ff& 

tab=core&_cview=0. 
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The example presented in the previous section is somewhat analogous to CBRNE 
problems: the sensing and tracking problem involves a suite of heterogeneous sensors, 
and the best possible solution results from the fusion of sensor data in real time with a 
fusion algorithm based on not just one, but multiple physics-based models.  There may 
also be cases where similar sensors are used for CBRNE as they are for tracking airborne 
threats, such as radar and EO/IR.  Lundberg, Paffenroth, and Yosinski (2010) compare 
metrics for assessing target-tracking algorithms to CBRNE detection and tracking.  For 
example, track completeness is an estimate of how many targets in a scenario have a 
track assigned to them and is also a desirable metric for determining how many plumes 
have been tracked.  Spurious track ratio evaluates the ratio of spurious tracks to the target 
count and would again be important in CBRNE to determine a ratio of spurious clouds.  
The authors focus most heavily on covariance consistency and its application to CBRNE, 
which provides a measure how much uncertainty an algorithm thinks it has in its 
estimate. 

E. Syndromic Surveillance 
Biosurveillance is the ongoing monitoring of public health trends with the primary 

goal of informing the response of health authorities to the outbreak or possible outbreak 
of disease (Fricker 2013; Lawson and Kleinman 2005; Bravata et al. 2004).  
Biosurveillance objectives include situational awareness (SA) and early event detection 
(EED).  Clinical surveillance is focused on situational awareness, which in this context is 
the monitoring of health indicators and environmental conditions to track the spread 
through the population of confirmed cases of an identified outbreak or biological attack.  
Syndromic surveillance, on the other hand, is predictive rather than descriptive and seeks 
early detection of an outbreak by the monitoring of environmental data and “syndromes.” 

A syndrome is intentionally defined non-specifically as a set of conditions 
associated with a disease and present prior to a medical diagnosis.  The definition is kept 
broad to capture as many indicators of an outbreak as possible.  Historically, designated 
sentinel physicians have notified the public health authorities of the incidence of highly 
communicable disease (today all physicians are required to do so), and health officials 
have used this information to map the outbreak and direct the response.  As data 
collection and analysis have improved, syndromic surveillance has expanded this idea to 
disease precursors. 

The monitoring of influenza-like illness (ILI) provides an example of distinctions 
between syndromic surveillance and clinical surveillance.  Influenza-like illness is 
broadly defined to include influenza, colds, gastroenteritis, and such potentially lethal 
conditions as meningitis and the early stages of anthrax (MacIntosh 2004).  In the clinical 
surveillance context, the Centers for Disease Control define ILI symptomatology as 
consisting of a fever greater than 100 °F, accompanied by cough and/or sore throat, with 
no known cause other than influenza.  Physicians are instructed to report patients meeting 
the strict ILI case definition, unless another diagnosis is confirmed by laboratory testing.  
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For example, a patient with no cough or sore throat is not to be reported.3  On the other 
hand, a syndromic surveillance system detecting ILI may target a wide range of 
indicators, any of which will be noted at low levels.  Because ILI is seasonal, properly 
designed syndromic surveillance must account for the cyclical background activity.  If an 
outbreak of ILI is in progress, the elevated syndrome activity becomes the background in 
monitoring for an attack with a biological agent associated with ILI symptoms. 

Biosurveillance is an instance of anomaly detection, in which steady-state, 
historical, or cyclical trends in the background data of interest are monitored for 
departures from the normal state, which may be signals of concern.  In syndromic 
surveillance, we are interested not simply in outliers in the data, but in anomalous 
patterns with a profile possibly indicative of an outbreak.  Among numerous inputs to 
syndromic surveillance systems, those most frequently incorporated are: “chief 
complaints” from hospital emergency room visits, emergency medical service (EMS) 
calls, sales of over-the-counter (OTC) medicines, and absentee records, primarily from 
schools.  The data are collected automatically under networks operated by local and 
national health authorities. 

1. Methodology 
There are a variety of approaches to syndromic surveillance.  One is to think of 

syndromic surveillance as an instance of statistical process control, a quality control 
methodology initially designed to detect industrial process aberrations in early stages 
(Shmueli and Fienberg 2006).  This analogy only goes so far: in contrast to typical 
industrial applications, syndromic surveillance data collection typically involves non-
specialized sensors, the processing of the data is near real-time, high false-positive rates 
are tolerated, and extensive human analysis is involved when the system generates a 
signal. 

Following quality control thinking, one method for univariate syndromic 
surveillance is to set an alarm when an indicator variable crosses a threshold.  The sample 
mean and sample standard deviation have both been used to set alarm levels (Shmueli 
and Fienberg 2006; Fricker 2013).  If the distribution of the indicator is assumed normal, 
the level for detecting a change in mean might be initially set at three standard deviations 
from the mean, µ ± 3σ.  The level is fine-tuned to optimize timeliness (the speed of 
identification of a true positive), specificity (the rate of false positive identification), and 
sensitivity (the probability of successful detection of an outbreak).  The frequently used 
approaches to univariate analyses include time-series methods (e.g., weighted moving 
averages) that explicitly acknowledge the correlation and seasonality in the data and 
regression method. 

Although syndromic surveillance tracks multiple indicators, there is not a great deal 
of work on how to analyze the indicators jointly.  A straightforward multivariate 

                                                 
3 http://www.acha.org/ILI_Project/ILI_case_definition_CDC.pdf. 

http://www.acha.org/ILI_Project/ILI_case_definition_CDC.pdf
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approach is to weigh the counts of different variables, yielding an effectively univariate 
system for which an appropriate alarm level can be determined (Wong et al. 2005).  
However, this approach is not particularly well-suited to discovering predictive groupings 
of factors. 

Wong et al. (2005) develop an approach (What’s Strange about Recent Events, 
WSARE) that is applicable to discrete variables.  Quoting, “The basic question asked by 
all detection systems is whether anything strange has occurred in recent events.  This 
question requires defining what it means to be recent and what it means to be strange” 
(Wong et al. 2005, p. 1964).  Using their terminology, define a rule as a specification of a 
particular subset of observations.  An example of a rule might be the count of emergency 
room admissions for a particular gender and a particular age group with a particular 
complaint.  Rules are calculated for a baseline time period and then again for recent (here 
today’s) data.  The method systematically searches all one-variable rules to find those 
that have the most significant differences between baseline and current.  Greedy searches 
identify two-variable through k-variable rules. 

Different versions of WSARE have used different methods to characterize the 
baseline.  The first method to build a baseline used records from the same day of the 
week from 5, 6, 7, and 8 weeks previous.  A second method chose all previous records 
with the same values of environmental conditions as today’s data.  A third method 
learned a Bayesian network using environmental variables as predictors.  The network 
was then used to predict what was expected as baseline given today’s conditions. 

2. Discussion 
Current research in syndromic surveillance is directed toward expanding the 

monitored geographical regions, networking localized surveillance systems, improving 
the probability of true positive detection, and dealing with the inevitable false positives.  
One challenge is detection of a biological attack in the midst of an outbreak.  For 
example, influenza contagion is cyclical, and flu outbreaks common.  Numerous potential 
bioweapons, including anthrax and Ebola, exhibit some subset of ILI symptoms at some 
stage of infection (MacIntosh 2004).  Broadly, the research agenda is to discover methods 
to use multiple heterogeneous data streams to identify patterns that are temporally, 
spatially, demographically, or symptomatically anomalous.  Note that the Algorithms for 
Threat Detection Program (Chapter 5) funds a small amount of work in syndromic 
surveillance that focuses on identifying spatial-temporal anomalies (Zou et al. 2011). 

F. Tracking 
Tracking is ubiquitous.  Our eyes track moving objects constantly, and automated 

tracking systems are becoming more prevalent.  Three reasons are important to consider 
tracking: 

1. Tracking applications cover the full range of a number of interesting di-
mensions – Algorithms exist for tracking objects moving faster than the speed 
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of sound and at speeds barely noticeable over a century.  [For example, see 
Vicente et al. (2010).]  There are tracking algorithms that must incorporate a 
tremendous amount of data in a fraction of a second, and algorithms that have 
days to process a handful of bytes.  Some algorithms are optimized for easy 
problems, such as tracking a single, high-contrast object, and other algorithms 
are optimized for difficult problems where multiple objects need to be tracked 
concurrently while they fade in and out of detectability. 

2. Tracking is applicable to a very broad range of sensor modalities – EO (visi-
ble light) cameras are analogous to human eyes, so one can easily conceptualize 
tracking with them.  IR and ultraviolet (UV) cameras can be used to do tracking 
in a very similar way, as can more exotic devices such as X-ray and gamma-ray 
imagers.  But it is also common to do tracking with radar, both the pulse-Dop-
pler and moving target indicator (MTI) types.  It is uncommon, but possible, to 
track with synthetic aperture radar (SAR).  Sonar and other acoustic sensors do 
tracking, as do seismic sensors.  A variety of electronic intelligence (ELINT) 
and signals intelligence (SIGINT) sensors can be used for tracking as well.  
Many fields have also developed tracking sensors specifically for their applica-
tion, ranging from bee radar [radar for tracking bees, Osborne et al. (1999)] to 
wire chambers for particle physics.4 

3. Tracking is an excellent testbed for multi-sensor fusion – Many varieties of 
fusion can be examined and tested on a well-defined problem; for example, con-
sider tracking vehicles with multiple EO/IR sensors at different view angles.  Is 
it better to fuse at the data level and fit a combined track or to do tracking for 
each sensor individually and fuse at the track level?  How detailed do the models 
need to be in order for the tracking and fusion to be effective? 

Tracking is directly relevant to the CBRNE mission.  The proactive hunt for threats 
involves following suspect individuals, precursor material, suspected transport vehicles, 
etc.  All of this requires tracking, done either by human analysts or by automated 
systems.  The data can be as sparse as border-crossing information or as dense as high-
resolution, video-rate motion imagery.  The timescale for processing the data and making 
a decision can range from seconds to years.  Once a threat is known to exist, its location 
must be tracked, although the optimization of the tracking algorithm is likely to be quite 
different from proactive data gathering.  The core of plume modeling is – in essence – 
tracking, and, in situations when low resolution is acceptable, complicated plume 
modeling can be replaced with simple trackers.  For DTRA’s mission of feeding 
information back to troops in the field, it is essential to know where the troops are 
located.  If reporting latencies are small compared to an individual’s motion, then 
“current” location data are sufficient.  However, when latencies are not small, it is 

                                                 
4  Georges Charpak won the Nobel Prize in 1992 for his invention of the multi-wire proportional chamber.  

See http://www.nobelprize.org/nobel_prizes/physics/laureates/1992/charpak.html.   

http://www.nobelprize.org/nobel_prizes/physics/laureates/1992/charpak.html
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necessary to track individuals and predict where they will be when the information 
reaches them.  This requires not only quality tracking, but also a good predictive model.  
In general, any predictive task will require tracking, unless it can be done on a purely 
statistical basis. 

In the following sections, we consider tracking through the lens of differing 
requirements.  To do this, we develop two contrasting examples: experimental particle 
physics and observational astronomy.  Although these areas have a number of 
similarities, they also have significant differences and will display some sharp contrasts.  
It should be noted, however, that these are broad fields and are not always amenable to 
generalizations. 

1. Tracking in Experimental Particle Physics 
Modern experimental particle physics experiments use a variety of detectors to try 

and elucidate all information about all the particles that participate in an event.  Each 
detector provides some information, and the information is combined to determine what 
actually happened in the event.  A critical portion of this information for many 
experiments is tracking of charged particles in a magnetic field.  Not only does the track 
give the particle’s position, but also the curvature in the magnetic field gives the 
particle’s charge and momentum.5  For large experiments, this is typically done with a 
multi-wire proportional chamber or a similar drift chamber.  In recent years, silicon-based 
vertex detectors (both pixel and strip based) have become common and are fused with the 
wire chamber data to do precision tracking. 

a. Track Initialization (a.k.a. Detection) 
The first stage of tracking is called track initialization.  This is analogous to the 

detection stage in an ISR collection and requires a cluster of data that has a very high 
probability of being part of a track and a very low probability of being simply noise.  In 
experimental particle physics, this is generally done in a wire chamber [for example, 
Charpak (1978)], where the ionization created by a charged particle’s motion is collected 
on a set of parallel wires (held at high voltage) and read out.  The location of the wire 
gives two dimensions of the particle’s position, and, by reading out both sides of each 
wire, the third dimension can be calculated.  In some types of wire chambers, the wires 
are grouped together into cells that can be processed together and easily clustered to 
initiate tracks. 

b. Track Fitting Within a Detector (a.k.a. Modeling) 
After the initializing cluster is found, more data are added to it in an attempt to 

assemble a coherent track.  In general this is done within a single detector, so the 
modality of the data is the same and uncertainties in the data are identical (or at least 

                                                 
5 Technically, it gives the sign of the charge and the product of the momentum and the magnitude of the 

charge.  Since most particles are singly charged, this is usually a moot point.   
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similar).  The process of track fitting requires the use of some kind of model, in other 
words, an estimate of how a track should behave given a set of initial conditions.  Many 
of the models used for wire chambers are quite simple: a charged particle moving through 
a vacuum in a constant magnetic field will follow a helical path.  Wire chambers are 
designed – sometimes at great effort – to approach these ideal conditions of negligible 
material and constant magnetic field.  Given an initial cluster from a cell of wires, the 
helical path can be predicted forward and backward from the cell, assuming a particular 
charge and transverse momentum.  If another cluster is found at the predicted position, it 
can be added to the track.  This entails both the bookkeeping that prevents it from being 
assigned to multiple tracks and the re-fitting of the helical path to better estimate the 
charge and transverse momentum of the particle.  This process is repeated until the track 
exits the detector.  Then another (unused) cluster initializes a new track and that track is 
fit.  This continues until all the high-quality clusters are assigned to tracks.  Low-quality 
clusters can be called noise and subsequently ignored.  The dividing line between high- 
and low-quality is a compromise between tracking efficiency (finding all the true tracks) 
and tracking quality (avoiding assigning noise or spurious hits to true tracks or generating 
false tracks). 

c. Track Fitting Across Detectors (a.k.a. Multi-Sensor Data Fusion) 
The initial track fitting has an advantage because each hit not only represents the 

same physical phenomenon, but also the uncertainties with that hit are identical or very 
similar to other hits that may be assigned to that track.  Once other detectors become 
involved, the physical phenomena may be different and the uncertainties are likely to be 
different.  For example, in the wire chamber discussed above, the position of the wire (r 
and ϕ in cylindrical coordinates) usually has a small uncertainty (millimeters) but the 
distance along the wire (z) usually has a much larger uncertainty (centimeters).  A 
silicon-based vertex detector often has all three dimensions with much smaller 
uncertainties (10s or 100s of microns).  This is often obtained by trading off against 
higher noise or clutter. 

In addition, the model used almost always becomes more complex.  For a simple 
wire chamber, the gas and wires are low enough in density to be ignored and the 
magnetic field can be treated as constant in the interior of the detector.  However, most 
wire chambers are inside strong metal cans,6 so both approximations are invalid at the 
transitions from the wire chamber to another detector.  In order to perform multi-sensor 
data fusion, the model must incorporate what happens to the particles at these transition 
points.  Other than the difference in model and uncertainties, the process of track fitting 

                                                 
6 The outside container needs to be air-tight so that the gas mixture used to generate ionization does not 

become corrupted by oxygen or other contaminants.  Also, the wires are strung at high tension to pre-
vent sagging.  This creates a tremendous force on the endplates, and the containment vessel needs to be 
engineered to support this without significant deformation.  Aluminum cylinders are quite effective and 
are also inexpensive.  Carbon-fiber-based cylinders have less interaction with the particles that traverse 
them, but they are significantly more expensive and require a higher level of engineering expertise.   
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across detectors is not much different than within one detector.  Tracks are projected 
(using the model) to the next detector.  If hits near the expected location are found, they 
are added to the track and the track is refit.  This continues for all tracks and all tracking 
detectors. 

The above description is an example of data fusion, where the data from the 
detectors are fused with minimal pre-processing.  Another option would be decision 
fusion, where each detector finds tracks on their own, and then the tracks are fused 
together without further reference to the hit data.7  In general this is not done in particle 
physics detectors, since the silicon vertex detectors cannot make sufficiently high quality 
tracks on their own, but the wire chamber tracks are sufficiently high quality to project 
into the vertex detectors and locate the associated hits. 

d. Model Corrections (a.k.a. JDL Level 4 Fusion) 
As is always the case, models need validation and verification (V&V), which 

generally leads to corrections.  In the JDL fusion model (Chapter 2), this falls under 
Level 4 fusion (process refinement).  For a large particle physics experiment, this 
includes several different types of tests.  One is to have a very detailed model of the 
entire detector and all relevant physics within a Monte Carlo event generator and 
simulator (MC).  By running millions of events in the MC, it is possible to compare 
statistical quantities (such as the number of hits per track for a specific type of track) 
between the MC results and the real results.  Agreement between the sets of results 
validates the understanding of the detector, fusion, and processing.  Another method is to 
use high-energy particles (such as cosmic rays) where the tracking uncertainties due to 
multiple scattering are known to be small.  These can be used to verify estimates – for 
example, estimates of the z uncertainty for each wire in the wire chamber. 

2. Tracking in Observational Astronomy 
Observational astronomy studies bodies outside our planet using a variety of 

telescopes and detectors attached to these telescopes.  While the objects can range from 
our moon and neighboring planets to other stars in our galaxy to the most distant galaxies 
known, the techniques tend to be similar. 

Optical astronomy generally uses silicon-based pixel sensors (normally charge-
coupled devices, CCDs) that are similar to those now used in consumer electronics.  
Ultraviolet astronomy generally also uses CCDs, although the optics are quite different 
and the CCDs are prepared differently.  Infrared astronomy generally uses different solid-
state pixel detectors (such as those based on HgCdTe), but the data look quite similar 
once read.  In particle physics, emphasis is on maintaining the detector in a constant state 

                                                 
7  More properly this is a hybrid system where the underlying detectors in each system (e.g., wires within 

a wire chamber) are fused together with data-level fusion, and the systems (e.g., wire chamber and 
vertex detector) are fused together using decision-level fusion.   
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so that valid statistics can be kept over long periods of time (in some cases, years).  Thus 
individual sensors are not put into different collection modes on demand.  Instead, any 
changes to the configuration are discussed and vetted carefully to understand the long-
term effect of those changes.  In contrast, astronomy has relatively few large-scale 
surveys where the configuration must be kept constant.  Instead, most data are taken over 
the period of a few hours (at most), and the next night’s configuration may be very 
different.  In part this is because the atmosphere is constantly changing, and the 
corrections made to compensate for atmospheric changes can generally compensate for 
detector configuration changes as well. 

The detection process is nearly identical to the process used for tracking in particle 
physics, although typically only two dimensions are used since range is so difficult to 
measure.  Peak finding and clustering algorithms are typical for detection and many are 
available freely in the community.8  In astronomy, everything is moving relative to each 
other at all timescales, so defining a reference frame and calibrating to it is a constant 
battle.  There are a few standard frames, and there are standard tools in the community to 
do the astrometric calibration once objects are detected. 

The models used for tracking in astronomy tend to be simple.  Common 
astronomical tracking models are straight line (free body) and elliptical (orbit around one 
massive body).  There are also models for perturbations around an ellipse (e.g., planetary 
motion in the vicinity of massive planets) and orbits around multiple bodies of 
comparable mass. 

A typical tracking problem would be searching for asteroids in a series of 
astronomical images.  If the images are taken days apart and the orbital periods are 
expected to be many years, then the free body approximation is valid.  There are two 
primary methods used in asteroid searches: 

1. The objects in each image are detected and bright objects are used to calibrate 
the location of the image.  Objects whose position does not change are ignored, 
and the “movers” are searched for reasonable velocities and directions.  When 
movers in two images appear to fit the model, the track is projected to another 
image and that image is checked for the mover.  Any mover that fits the model 
in three distinct images is a strong candidate for follow up.  This method can be 
entirely automated so it is useful for large surveys. 

2. Each mover has a relatively small local image (a “chip”) created from each orig-
inal image, and each is aligned and scaled so a person can flip between these 
chips.  Asteroids will tend to move in a straight line while maintaining constant 
brightness.  Asteroid 38628 Huya (2000 EB173) was discovered this way (Ferrin 
et al. 2001). 

                                                 
8 For example, daofind in the IRAF package at http://iraf.noao.edu/ 
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In astronomy, the timescales are much longer and the data rates are much smaller so 
there is much less emphasis on processing speed and volume.  In the asteroid-finding 
example, the data are taken over several days to weeks and comprise megabytes to a few 
gigabytes of images.  If the processing takes a few more days, it is of little concern.  
Other astronomical applications can have timescales of centuries (Vicente et al. 2010).  
As discussed previously, typical particle physics events are spaces fractions of a 
microsecond apart, and decisions need to be made at those rates.  Therefore data triage is 
critical and processing speed can be the limiting factor. 

3. Evaluation Dimensions 

a. Decision Speed 
For any deployed system, the speed at which decisions need to be made is a critical 

requirement.  In experimental particle physics, it is not unusual that decisions must be 
made in millionths of a second (µs).  For example, the CDF level 1 trigger (Section 3.B) 
must make decisions with 4 µs after each beam crossing to determine if that event should 
be processed further and potentially recorded, or if it should be discarded immediately to 
make room for more interesting events.  The decision speed requirement drives other 
requirements since certain types of data taking and processing simply take too long to be 
used for these decisions.  In the case of CDF, the readout electronics closest to each 
detector was required to have a built-in pipeline that could handle the 4-µs decision time.  
If the decision time could be made shorter, these electronics could be smaller and 
cheaper. 

b. Precision 
Another critical dimension is the precision or accuracy that the decision must have 

when it is made.9  Often speed and precision are related.  In experimental particle 
physics, it is common to do imprecise (“quick and dirty”) tracking fast enough that it is 
available to the trigger system.  Later, events that are saved will have the tracking rerun 
to get precision results when more time is available. 

As discussed in the previous section, trigger logic must be done quickly and cannot 
always wait for a full tracking reconstruction.  Hence, there are algorithms that do rapid 
tracking (generally with a subset of the data) and accept lower precision.  These rapid 
algorithms stand in contrast to precision tracking algorithms, which use all the data to 
fully determine the track at the highest precision possible and accept the length of time 
and computing power that it takes to do this.  If many tracks are present in the detector, it 
may be necessary to use a multi-hypothesis tracker and prune the hypothesis after the 
tracks have been built. 

                                                 
9  Although they are treated the same in common usage, precision is a measure of repeatability and 

accuracy is a measure of agreement with a standard.   
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c. Signal-to-Noise Ratio (SNR) 
Another dimension has to do with how strong the target’s signal is and how easily that 
target’s signal can be distinguished from everything else.  The “everything else” includes 
pure noise, clutter (real objects, but not targets) and confusers (real targets, but not the 
target of interest).  (Sometimes this is referred to as signal-to-noise even when the clutter 
or confusers dominate.)  Experimental particle physics usually operates at high SNR so 
targets (particles) are easy to detect above the noise.  The clutter is usually low, but there 
are many confusers (see Figure 4-5).  In astronomy, not only are there (nearly) always 
targets at low SNR, but usually the density of targets increases exponentially as the signal 
strength decreases.  As such, astronomers are constantly fighting to lower their detection 
threshold and work with fainter targets. 

 

 
Figure 4-5.  Typical Set of Tracks from the CMS Detector at CERN (Simulated) 

There are four straight tracks from a Higgs decay.  Can you find them?10 

d. Data Volume 
How much data needs to be processed is an important quantity, and it can be related 

closely to decision speed.  In the discussion of data triage (Section 3.B), we pointed out 
that the data must be processed as fast as they are received or else the system will begin 
                                                 
10 https://cms-docdb.cern.ch/cgi-bin/PublicDocDB/ShowDocument?docid=6236. 

https://cms-docdb.cern.ch/cgi-bin/PublicDocDB/ShowDocument?docid=6236
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to fail.  This is a critical point that we have discussed under the decision speed dimension.  
Additional considerations only have to do with the volume of data.  Despite vast 
increases in the density and reliability of data storage, it is still possible to take data so 
quickly that the physical data storage is a problem.  In some cases, data are taken and sent 
directly to an archive with no processing, no assessment of the value of the data, and no 
attempt to find metadata that would enable automated search.  As a result, one winds up 
with rooms filled to the ceiling with hard drives and tapes – with no idea what is on any 
of them and no reasonable way to find out.  This kind of data overload is not amenable to 
human filtering either (Shanker and Richtel 2011).   

In observational astronomy, it has historically been the case that scientists are data 
limited, so they can save all of their data forever without causing storage problems.  
Recently astronomy experiments have entered the realm where saving all the data 
becomes a serious drain on the budget.  Experimental particle physics passed this 
milestone long ago, and the field resigned itself to discarding uninteresting data and 
limiting the amount of data saved to disk or tape.  The design of new particle physics 
experiments contains a significant amount of effort to budget the amount of data storage 
needed and plan on how to appropriately split the measured data in keep and discard 
streams. 

G. Hurricane/Storm Track Forecasting 
Hurricane track prediction is used to determine what people and property are at risk 

from the effects of a hurricane, so property may be secured, supplies may be better 
positioned, and people may be evacuated before the storm hits.11  New forecast 
predictions are issued every 3 hours and are based on the statistics of past storms and 
physics-based simulation models (most of which take longer than 3 hours to run).  The 
physics-based simulation models generally use the predictions from the last forecast step 
as the initial conditions for the next forecast step, because they simulate a large area that 
is difficult to measure directly.   

Hurricane track prediction methods use data from multiple sources to constrain the 
model predictions.  The National Oceanic and Atmospheric Administration (NOAA) 
Hurricane Hunter aircraft fly through hurricanes and collect pressure, wind speed, 
humidity, temperature and radar data from the inside of the storms.  They also use 
dropsondes and collect environmental data at several altitudes after the dropsondes are 
deployed.  Ground-based radars indicate the amount of water contained by the oncoming 
storm.  Since the data collected are not comprehensive enough to provide the entire set of 
initial conditions for the track prediction models, the models are run in such a way to 
infer what set of initial conditions for the model would be most consistent with the few 
observations that were available. 

                                                 
11 http://www.nhc.noaa.gov/aboutintro.shtml. 

http://www.nhc.noaa.gov/aboutintro.shtml
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1. Models 
The National Hurricane Center (NHC) publishes a table12 that shows some of the 

models used for hurricane forecasting.  It is interesting to note that some of the models 
are based on the statistics of past hurricanes’ behavior; some use physical parameters 
inferred from real-time physical modeling to help improve their predictions (“statistical-
dynamical”); and some simulate dynamics in only one layer in the atmosphere (“single-
layer”).  The table also shows which models allow a new forecast within the 3-hour 
window between hurricane forecasts (“E” for in-time vs. “L” for later) and which predict 
both the hurricane track and hurricane intensity.  “Interpolated” models adjust a forecast 
that was based on earlier data from a slow, dynamic model so its track and intensity are 
consistent with the observations of the hurricane at the last forecast time, and 
“consensus” models combine the predictions from other models (sometimes removing 
biases in those models) to produce a composite prediction.13  In addition, much research 
is also performed with the newer Hurricane Weather Research and Forecasting models 
(HWRF) and experimental Advanced Research WRF model (ARW-WRF). 

Several groups are interested in the forecasting of hurricanes, including NOAA’s 
National Centers for Environmental Prediction (NCEP), Atlantic Oceanographic and 
Meteorological Laboratory (AOML), Geophysical Fluid Dynamics Laboratory 
(GFDL),14 and Environmental Modeling Center15; the National Center for Atmospheric 
Research (NCAR); the Air Force Weather Agency (AFWA); Naval Research Laboratory 
(NRL) Monterey16; the Central Pacific Hurricane Center17; and the Fleet Numerical 
Meteorology and Oceanography Center.18  

2. Data 
Some examples of observations that could be assimilated into forecast predictions 

are “upper sounding data from radiosondes and dropsondes, surface stations, ships and 
buoys, aircraft, wind profilers, velocity azimuth display winds, and satellite-based winds” 
(Kunii, Miyoshi, and Kalnay 2012); “Automated Surface Observing System (ASOS) 
stations, ships, buoys, and rawinsondes; the Aircraft Communications Addressing and 
Reporting System (ACARS); and cloud motion vectors” (Weng and Zhang 2012).  
Radiance measurements of storms by satellites have been assimilated using the technique 
4D-Var (Lorenc 2003; Simmons and Hollingsworth 2002).  GPS Radio Occultation 
(Montgomery et al. 2012) and wind speed data from wind farms are newer sources of 

                                                 
12  http://www.nhc.noaa.gov/verification/verify6.shtml#TABLE4. 
13  http://www.nhc.noaa.gov/modelsummary.shtml. 
14 http://www.gfdl.noaa.gov/operational-hurricane-forecasting. 
15  http://www.emc.ncep.noaa.gov/. 
16  http://www.nrlmry.navy.mil. 
17  http://www.prh.noaa.gov/hnl/cphc/. 
18  http://www.usno.navy.mil/FNMOC/. 

http://www.nhc.noaa.gov/verification/verify6.shtml#TABLE4
http://www.gfdl.noaa.gov/operational-hurricane-forecasting
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data.  An example of the data available from aircraft (in this case, from an NSF/NCAR 
Gulfstream V) is available in Table 1 of Montgomery et al. (2012). 

In addition, we note the GFDL forecast model is a coupled atmosphere-ocean model 
(that includes the Princeton Ocean Model), and its initialization involves assimilation of 
ocean temperature vs. depth data from Airborne eXpendable BathyThermographs 
(AXBTs) (Bender et al. 2007), near-real-time satellite altimetry data, and satellite-derived 
daily sea surface temperatures (SSTs) (Yablonsky and Ginis 2008). 

3. Assimilation Algorithms 
Several assimilation methods used for general numerical weather prediction 

(Bouttier and Courtier 1999; Kalnay 2003; Lahoz, Khattatov, and Menard 2010; Lorenc 
1986; Evensen 2009) are also used for hurricane track prediction: variational methods 
(e.g., 3D-Var), Ensemble Kalman Filter (EnKF) methods, and hybrids of variational 
methods and Kalman filter methods.  Variational methods and ensemble Kalman filter 
methods can be 3D, where the observations from the field are incorporated using 
parameters from the time of the last model prediction, or 4D, where the observations are 
incorporated using parameters that are updated for the time of each observation.  There 
have been several comparisons between the various methods with different weather 
prediction models (Kalnay et al. 2007; Zhang et al. 2009; Weng, Zhang, and Zhang 
2011), with the results being that 4D is usually better than 3D and Kalman filters have 
gotten better than variational methods.  However, most operational weather prediction 
centers still use variational methods (Raeder et al. 2012). 

NOAA, National Weather Service (NWS), and NCAR use a data-assimilation 
framework called Gridpoint Statistical Interpolation (GSI) for their forecasting,19 which 
can assimilate many different kinds of data and be configured to perform 3D-Var, 4D-
Var, or a hybrid variational-EnKF scheme.20  NCEP’s Global Data Assimilation System 
(GDAS) is an operational system that uses a hybrid scheme through GSI.  A free 
community version of GSI is available.21  Recently, the Hurricane Ensemble Data 
Assimilation System (HEDAS) using a square root EnKF was developed by AOML’s 
Hurricane Research Division (HWD) for the model HWRF.  HEDAS has shown promise 
(Aksoy et al. 2012) in assimilating simulated airborne Doppler radar observations in the 
initialization of the modeled hurricane vortex, rather than using an artificial vortex for 
initialization as most models do (Weng and Zhang 2012).  NCAR has a flexible, 
ensemble-based data assimilation system called the Data Assimilation Research Testbed 
(DART)22 (Raeder et al. 2012; Anderson et al. 2009). 

                                                 
19 http://www.emc.ncep.noaa.gov/gmb/gdas/. 
20 http://www.dtcenter.org/com-GSI/users/and http://www.emc.ncep.noaa.gov/gmb/gdas/history.html. 
21 http://www.dtcenter.org/com-GSI/users/. 
22 http://www.image.ucar.edu/DAReS/DART/. 

http://www.emc.ncep.noaa.gov/gmb/gdas/
http://www.dtcenter.org/com-GSI/users/
http://www.emc.ncep.noaa.gov/gmb/gdas/history.html
http://www.dtcenter.org/com-GSI/users/
http://www.image.ucar.edu/DAReS/DART/
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Successive correction, splines, and optimal interpolation with limited data selection 
are mostly useful in numerical weather prediction situations where the current 
observations are much more important than consistency with past observations (Lorenc 
1986) and are therefore not very useful for hurricane track prediction.  It has been 
reported (Nerger et al. 2012) that the SEIK filter (Nerger, Hiller, and Schroter 2005) 
family (singular “evolutive” interpolated Kalman filter, a type of ensemble square root 
Kalman filter) is similarly efficient to the ETKF (Ensemble Transform Kalman Filter), 
and that particle filter methods (van Leeuwen 2009) might be adapted to geophysical 
problems to handle strongly nonlinear systems that Kalman filters cannot. 

4. Assimilation Algorithm Comparison 
The most successful variant of these techniques is the 4D Local Ensemble 

Transform Kalman Filter (4D-LETKF).  It limits the range of Kalman filtering (either by 
artificially reducing the weights or error terms themselves as a function of distance from 
each gridpoint), which allows reduced computation time and easier parallelization of the 
algorithm than similar variational techniques.  In fact, in recent testing by Kalnay’s 
group,23 they ran the main NCEP weather model on a 32-node network with individual 
LETKF computations running on each node.  They found that the 4D-LETKF used 
approximately two-thirds of the total processor time, and the weather model used one-
third of the processor time. 

So many details are required to obtain the best results from these general 
assimilation schemes that we will not be able to catalog them here.  It has been observed 
that, as a result of the similarity of the variational methods and the EnKF methods, 
several of the computational tricks developed for the variational methods (e.g., 4D, 
variance inflation) are readily implemented in EnKF methods.  EnKF methods, however, 
must also ensure that the choice of the number and distribution of ensemble members is 
sufficient to model the problem at hand.  LEKF (Local Ensemble Kalman Filter) methods 
require the choice of how the ensemble Kalman filter will be localized and what 
parameters to use (e.g., the distance over which the Kalman filter should operate), but 
LETKF uses only the ensemble data from the local gridpoint and its neighbors. 

EnKF methods can also benefit greatly from techniques that discount the initial 
guess for the weather system state by iteratively applying the ensemble weights from the 
end of the first forecast step to the initial guess and rerunning the first forecast step.  One 
such procedure is named Running in Place (e.g., LETKF-RIP) and ensures that the 
prediction at the end of the first forecast step is as consistent as possible with the actual 
observations during the first forecast step instead of the arbitrary initial guess.  For 
comparison, it can take 2 weeks of simulated time for a global circulation (weather) 
model and 3 forecast steps for a regional weather model using regular LETKF to start 
reflecting observations properly, but a regional weather model using LETKF-RIP can 

                                                 
23 E. Kalnay, personal communication, 2013. 
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reflect the observations rather well after just the first forecast step.  The quick spin-up of 
the model is very important for cases where there is not much time to wait for the model 
to start making realistic predictions, such as in the case of hurricane tracking (Lahoz, 
Khattatov, and Menard 2010).  Additional precision can be had by using the same 
procedure for LETKF-RIP but instead iteratively varying the ensemble mean at the 
beginning of the forecast step period.  This can be combined with the regular LETKF-
RIP procedure for a much better performance than 4D-Var (Lahoz, Khattatov, and 
Menard 2010), which uses a similar technique. 

It is important to note that one must match the accuracy of the assimilation 
technique and the model to the problem that is being solved.  Simple test weather codes 
such as SPEEDY can mimic realistic weather and run quickly on a cluster of regular 
computers, but they are not as accurate as the more sophisticated codes the National 
Weather Service and the National Hurricane Center run operationally on large 
supercomputers/clusters for several hours.  Assimilation codes used for weather 
prediction are not designed to be fast, just flexible and accurate.  However, tricks are 
discussed in the literature for increasing the speed of these algorithms.  LETKF can be 
sped up by computing the weights used to make predictions on a coarser grid than the 
predictions themselves, without degradation to the predictions (Lahoz, Khattatov, and 
Menard 2010; Yang et al. 2009).  In situations where historical model errors can be 
compiled (perhaps using test releases of chemicals in the case of a chemical release in a 
city), a “dressed” ensemble Kalman filter (DrEnKF) scheme can make realistic 
predictions with a much smaller ensemble than regular LETKF (Wan et al. 2009).  Data 
thinning (Weng and Zhang 2012) of radar and satellite data to reduce computational time 
and variance inflation (Anderson 2009; Li, Kalnay, and Miyoshi 2009) to account for a 
variety of uncharacterized errors are also important procedures used in EnKF schemes.  
Systematic Error Correction and a non-uniform localization (Anderson 2012) may also be 
useful to reduce the number of necessary ensemble members (or improve the forecast 
quality). 

In Kalnay et al. (2007), a table illustrates several reasons why ensemble Kalman 
filter methods are preferable to variational methods, the most important of which is that 
they do not require an adjoint of the weather model to be created.  Creating adjoint 
weather models (basically, an inverse that runs the weather model backwards) is 
extremely difficult (it is basically an art), requires intimate knowledge of the weather 
model, and is not possible for weather models that have any irreversible processes in 
them (such as precipitation or diffusion).24  In contrast, ensemble Kalman filters are 
relatively straightforward to implement and work well with any model (linear or 
nonlinear) where the parameters defining the states being predicted have Gaussian errors 
(or can be transformed approximately into a parameter with a Gaussian distribution 
function). 

                                                 
24 E. Kalnay, personal communication, 2013. 
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The observations assimilated using these techniques are often isolated (e.g., 
dropsondes) and none of the comparisons we have seen between assimilation techniques 
employed radiance data from satellites (which includes a lot of data).  Generally 
speaking, it appears that only a relatively moderate number of observations can be 
practically assimilated using these computation-heavy techniques. 

5. Important Algorithm Characteristics 
The assimilation techniques for numerical weather prediction are slow because the 

forecasted state vector (list of parameters describing the weather system) they try to fit to 
the observations is huge.  To describe an amorphous, extended object like a storm front, 
hurricane, or plume of hazardous chemicals from a release, the technique for variational 
methods and EnKF is to use the values of important quantities at every grid point as the 
parameters vary by the assimilation technique.  (For example, Kunii, Miyoshi, and 
Kalnay (2012) used the LETKF to analyze “all prognostic variables: three-dimensional 
wind components (u, v, w), temperature (T), pressure (p), geopotential height (gh), 
humidity (qv), and water/ice microphysics variables.”)  Assimilating sensor data into a 
model describing the propagation of a hazardous chemical from a release might require 
far more grid points in order to give the desired resolution for the courses of action being 
considered, but may require fewer important quantities at each grid point (local winds, 
temperature, and pressure could be approximated as fairly uniform, depending on the 
topography).  Depending on how quickly one wants algorithms to predict where the 
hazardous chemical went and the sensor coverage, it may be important to investigate 

• How readily the EnKF algorithm could be applied in a context where the 
dynamical model uses some pre-computed dynamics or the state tracked by the 
EnKF is some small subset of the grid modeled in the high-resolution 
propagation code 

• Whether EnKF or a better scheme could be adapted for situations where there is 
a lot of observational data  

• What assimilation scheme is best for a very small amount of observational data 
for the problem at hand.   
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5. NSF/DTRA/NGA Algorithms for Threat 
Detection Program 

A. Program Background  
The Algorithms for Threat Detection (ATD) Program1 is a partnership of DTRA, 

NGA, and NSF’s Division of Mathematical Sciences.  It was started in 2009 with the 
mission “to develop the next generation of mathematical and statistical algorithms for the 
detection of chemical agents, biological threats, and threats inferred from geospatial 
information.”  The program seeks to build a research community around this mission by 
fostering interaction between academic researchers and members of the sensor research 
and development community. 

The ATD program solicits and funds proposals from the mathematical sciences 
community in two main thrust areas: mathematical and statistical techniques for 
genomics and mathematical and statistical techniques for the analysis of data from sensor 
systems.  We restrict our discussion to the latter, with focus on algorithms for physical 
sensors and sensor networks. 

The ATD program currently funds 66 awards, with 7 already completed.  It also 
hosts annual workshops that provide a forum for scientific exchange among members of 
the ATD program.  Three workshops have been conducted so far, and the associated 
briefings, data sets, and other supporting materials are available through the Algorithms 
for Threat Detection Data Repository.2 

B. Community Data Sets 
One of the primary methods for promoting the growth of the ATD research 

community has been to make datasets available to algorithmic researchers.  Currently, 
seven of these data sets have been prepared by the sensor research and development 
community.  Progress in the developing algorithms for working with these data sets 
addresses important CBRNE capability needs such as threat detection, feature extraction, 

                                                 
1 The program announcement can be found at 

http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503427&org=DMS. 
2 The repository is located at Colorado State University, 

https://grassmann.math.colostate.edu/ATD/home.html.  Contact Michael Kirby 
(kirby@math.coloradostate.edu, 970-491-6850) for the userid and password.   

https://grassmann.math.colostate.edu/ATD/home.html
mailto:kirby@math.coloradostate.edu


 

5-2 

imaging, and multi-sensor fusion.  For this reason, ATD program management 
encourages (but does not mandate) that algorithm researchers use the data. 

Six of the seven ATD data sets are listed below.  These data are derived from 
sensors relevant to chemical or radiological threats.  The seventh data set is an Illumina 
gene sequencing data set. 

1. Frequency Agile Lidar (FAL) Bio Detection Standoff 
2. Ambient Aerosol Background Data Set 
3. Fabry-Pèrot Interferometer Sensor Data Set 
4. Johns Hopkins Applied Physics Lab Data [long-wave infrared (LWIR) 

Hyperspectral Data] 
5. Swept Wavelength Optical Resonant Raman Detector 
6. Ion Mobility Spectrometer Data. 

The FAL data set comes from a Research, Development and Engineering Command 
(RDECOM) testing program (Vanderbeek and Warren 2010).  The FAL data was taken at 
Joint Ambient Breeze Tunnel (Vanderbeek 2013) and involves lidar scattering off of a 
variety of biological simulants for spores, toxins, and viruses, as well as dust, smoke, and 
diesel exhaust at a standoff range of 1.2 km.  The FAL data has been made available in 
order to promote the development of algorithms that can extract range-dependent 
biological (or chemical) concentration profiles and aerosols of interest at standoff range.  
The algorithms being developed are typically applicable (or readily generalizable) to 
chemical clouds provided that the chemicals are not fully dissolved into the atmosphere, 
but have a significant aerosol of suspended chemical droplets. 

The second data set is the Ambient Aerosol Background data set (Sivaprakasam, 
Tucker, and Eversole 2013).  This data set provides spectral data taken by a dual 
wavelength UV fluorescence spectrometer.  The system concept is to detect biological 
agent aerosols in the presence of interference from aromatic hydrocarbons from internal 
combustion engine exhaust, industrial chemicals, as well as indigenous biological 
aerosols, such as fungi, pollens, dander, and bacteria that may be normally present in the 
environment. 

The dual wavelength UV fluorescence spectrometer ingests a continuous air stream 
at the sensor location.  The air stream is interrogated by three lasers beams at distinct 
wavelengths that stimulate UV fluorescence.  The scattered and fluoresced radiation 
intensities are reported in 16 separate wavelength and polarization channels.  Currently, 
the system has difficulty in discriminating between potential threats and non-threats when 
applied to aerosols that fluoresce significantly.  However, this lack of capability might be 
mitigated by improved data processing algorithms. 

The third data set is Fabry-Pèrot Interferometer Sensor Data Set (2013).  This is a 
LWIR (8-11 meters) hyperspectral imaging (HSI) data used in field testing.  A simulant 
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is disbursed by explosive into the troposphere.  The explosion partially transforms the 
simulant vapor phase and condensed aerosols.  The goal is to detect and image the 
resulting cloud against a natural background.  During a single scan of the Fabry-Pèrot 
interferometer, sensor mirrors scan the image scene such that the sensor collects a data 
cube.  Each of these hyperspectral data cubes consists of 256×256 pixel image for each of 
20 wavelengths.  The Fabry-Pèrot interferometer data cube represents a snapshot of the 
plume evolution.  The system collects successive data cubes in order to record the release 
event in its entirety.  In Figure 5-1(a), we present a fixed-wavelength slice of a data cube.  
This image nicely illustrates that, in spite of the presence of an aerosol plume, no plume 
image may be detected by simple inspection of the unprocessed HSI data. 

The fourth dataset is the Johns Hopkins Applied Physics Lab (JHAPL) Data Set 
(2013).  The JHAPL data are also hyperspectral imaging data (Carr, Broadwater, and 
Limsui 2011).  In this case, it is LWIR data collected from three identical sensors that 
have been placed a separate observation points to observe a chemical plume from 
different viewpoints.  The system concept of this network is to enable chemical detection 
and identification, to determine the release location, to characterize plume transport, and 
to provide advisories recommending the movement of personnel.  Each sensor in the 
network is a field-portable imaging radiological sensor [Fourier transform infrared 
(FTIR)].  The sensors capture 129 spectral bands at a frame rate of 0.2 Hz.  In the field 
test, three sensors are located at separate viewpoints at standoff distances which ranged 
from 2.15-2.82 km from the release point.  The released chemicals included three known 
chemicals in a gaseous or liquid and gaseous state and were to be compared against a 
library of five signatures. 

The fifth data set is the Swept Wavelength Optical Resonant Raman Detector 
(SWOrRD) data set (Gillis, Grun, and Bowles 2013).  These data are produced by a 
Raman spectrometer that illuminates a collected sample by a swept wavelength laser.  
Each illumination wavelength stimulates the re-emission of a resonant Raman spectrum, 
which is detected and recorded.  As a result, the sample creates a 2-D spectral signature 
characterized by two wavelengths.  The first is the wavelength of the illumination, and 
the second is the wavelength of the re-emitted photons.  The interest in this system results 
from its demonstrated ability (Grun 2011) to identify biological materials, explosives, 
and dangerous chemical agents. 

The sixth data set is the Ion Mobility Spectrometer (IMS) data (Eiceman 2013): An 
Ion Mobility Spectrometer is a handheld device useful for chemical and biological agent 
identification in the field.  Currently this device has been deployed by the Army for 
chemical-agent monitoring.  IMS works by ionizing a sample and deriving a distribution 
of drift times produced by the ionic fragments generated from the sample.  The 
distribution is a signature that can be compared against known agents in order to detect 
and identify chemical and biological agents. 
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C. Algorithm Categorization 
In Chapter 2, several taxonomies were described.  The ATD program does not work 

broadly across the algorithm landscape.  For example, there is no research on resource 
tasking and sensor management.  In Table 5-1, we have categorized the award into 
several areas, which include fusion, detection, feature extraction, classification, 
environmental models, and image reconstruction (they use low-dimensional scans or data 
to build 2D or 3D images).  We do not specifically call out image segmentation (dividing 
the image into regions) as an algorithm category.  This omission was intentional.  A 
majority of the hyperspectral imaging research presented at the ATD program workshops 
could be understood as segmenting (i.e., colorizing) hyperspectral imagery.  Moreover, 
even some lidar research on reconstructing plume surfaces could be viewed as being a 
type of segmentation.  So in this sense, much of the ATD research involves advanced 
segmentation methods.  However, classification or dimensional reduction tends to be the 
goal of most of these algorithms.  Consequently segmentation has significant overlap 
with classification and dimension reduction.  To avoid overlapping categories and to 
provide more informative categorizations, segmentation was excluded from the typology. 

The vast majority of ATD research projects that have been presented at the three 
workshops attempt to develop algorithms that support a specific ISR capability in an 
identifiable operational context.  A small number of research studies do not allow 
identification of a capability and an operational context, and we will refer to these as 
“Theoretical Studies.”  Our survey of ATD workshop presentations has identified three 
operational contexts/vignettes: (1) chemical release/attack (2) attempted smuggling of a 
radiological device into secured area, and (3) targeted search for an emplaced 
radiological device.  The first two of the events can be classified as force protection 
missions; the third is a targeted search mission.  Wide-area search and long-term threat 
monitoring are not addressed by the current ATD awards. 

Each of the three vignettes is associated with a set of capabilities.  For instance, an 
examination of the “chemical release/attack” vignette identifies research supporting 
plume tracking, release detection, standoff chemical identification, and non-standoff 
chemical identification.  Using algorithm classes and vignettes, one can grid the ATD 
study projects as shown in Table 5-1.  The table provides some insights into overall 
structure of the ATD program.  For instance, research falls into three broad categories: 
Detector Network algorithms, Detector Algorithms for Plume Tracking, and Detector 
Algorithms for chemical identification.  In contrast, only a few projects support portal 
detection, targeted search, environmental models, or detector network optimization. 
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Table 5-1.  ATD Portfolio by Vignette and Algorithm Type 
The table is based on the oral presentations at the 2010-2012 algorithms for threat reduction 
workshops, excluding those on genomics.  The presentations are coded in the table using the first 
six characters of the author’s last name followed by the two-digit year. 

 

D. Overview and a Sampling of Recent ATD Research 
We now present a brief tour of the ATD research topics.  We begin with plume 

tracking.  The plume-tracking process involves imaging the cloud, tracking its movement, 
and modeling its evolution using convection diffusion or other hydrodynamic models.  
Typically most of these activities require data from standoff sensors such as lidar and 
HSIs. 

Hyperspectral sensors require processing to reduce the data cubes to 2-D image 
frames in a manner that reveals a plume image.  This is an active research area in 
algorithm development (Manolakis 2010).  Plume imaging has been a challenging 
problem, as is the more general problem of automated real-time automated processing of 
HSI data.  There are a variety of approaches to processing HSI data (Plaza et al. 2004), 
many involving spectral demixing, and end-member extraction concepts.  Often these 
algorithmic concepts are based on convex optimization techniques (Bertozzi 2010).  
However, alternative approaches to HSI processing and image segmentation have been 
discussed at ATD workshops and are based on clustering and manifold learning 
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algorithms.  Work in this area by Ziegelmeier, Kirby, and Peterson (2011) and 
Ziegelmeier, Kirby, and Peterson (2012) has explored clustering and the Local Linear 
Embedding algorithm.  Figure 5-1 displays some of the progress in HSI imaging of 
plumes that the group has achieved.  In this figure, spectral clusters are displayed using 
distinct color with yellow pixels being the chemical of interest.  The group has been 
investigating approaches to reduce the computational complexity of this problem that are 
based on algorithms that combine their earlier methods with L1 regularization and split 
Bregman algorithms. 

 

 
Figure 5-1.  Hyperspectral Imaging Plumes 

(a) One sheet of a sample 20 dimensional hyperspectral images from the FPIDS data set.  (b) 
After preprocessing and background removal, display of each individual sheet when a chemical 
plume is present.  (c) Image of clusters detected using BLOSSM algorithm. 

 
Regardless of the progress that is being made with HSI imaging of plumes, the data 

from a single HSI sensor can still only provide a 2-D image.  No 3-D depth profile of 
aerosol concentration levels can be constructed from a single HSI sensor.  Typically, to 
obtain 3-D profiles, one must work with lidar data or fuse HSI data from a network of 
hyperspectral sensors.  An example of the latter, Strohmer (2011) has been attempting to 
fuse the data streams from a network of LWIR hyperspectral sensors.  To do this, he 
represents the plumes density profile in terms of a dictionary of Gaussians.  With this 
assumption, he has studied the recovery of the density profile can from the line 
measurements using an “analysis L1 minimization” algorithm. 

The alternative to 3-D plume profiling is based on lidar.  Significant progress has 
been made with plume visualization (using reconstructed iso-concentration surfaces) by 
DeVore and coworkers (DeVore et al. 2013; Binev et al. 2010; Binev 2011).  This 
represents a new area in lidar data processing, as older algorithms have primarily focused 
on terrain processing and reconstruction.  Those older algorithms had flaws that degraded 
the faithfulness of their terrain reconstructions and prevented plume-imaging 
applications.  Among the cited flaws were the failure to discriminate occlusions from 
non-returns, sampling limitations, and the failure to take into account geometric and 
topological structure in the data.  New algorithms based on “reliable sets” enable the 
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imaging plumes obtained from synthetic lidar and terrain data from Air Force Research 
Laboratory Munitions Group (AFRL/MNG) Vision-Enabled Autonomous Agents 
(VEAA) Data Set from Eglin AFB (Figure 5-2).  These algorithms are intended to 
provide capability data for both natural and man-made (e.g., urban) environments from 
one or more mobile lidar sensors.  However, it is unknown whether there have been any 
“third party” validation studies.  It is also not known how much further development 
would be required to turn these methods into an automated real-time capability. 

 

 
Figure 5-2.  Isolevel Reconstruction from Synthetic Lidar Data (Binev 2011) 

 
In addition to visualization processes such as isolevel reconstruction, the plume-

tracking process also involves modeling the plume’s evolution using convection diffusion 
or other hydrodynamic models.  This requires a determination of wind velocities or 
diffusion rates and has been a focus of a couple of the ATD research projects.  For 
instance, Xun et al. (2011) and Xun (2011) have been developing a Bayesian method to 
estimate these environmental parameters from lidar data. 

The next set of ISR capabilities addressed by the ATD program is chemical 
identification.  This capability comes in two categories: standoff and non-standoff 
chemical identification.  The sensors involving standoff (e.g., HSI) are rather different 
than the non-standoff sensors (e.g., Raman, IMS, UV fluorescence), but, in either case, 
one may wish to match against a signature library of chemical agents.  If that is the 
objective, and if the sample being studied is a mixture, then one must be able de-mix 
observed spectra. 

Demixing (Keshava and Mustard 2002) refers to taking an spectra xb where b=1, K 
index set of spectra bands (or data channels) and solving the Linear Mixing Model 
(LMM) for the concentrations ci of the unknown chemical constituents: 
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The columns of [Ebi] are the spectra of the unknown chemical constituents, called 
endmembers.  The matrix E is referred to as the endmember matrix.  The concentrations 
ci define linear combinations of the constituent spectra to produce the observed spectra xb, 
b=1, …, K.   

The simplest case of a demixing problem might specify a small set of chemical 
agent spectra as endmembers.  This is called the non-blind demixing problem.  It is a 
simple problem, and a variety of elementary methods are available such as regression 
analysis, least squares fitting, or Bayesian methods.  An example of the latter is given in 
Landon (2011).  More commonly, the case of a set of constituent spectral signatures is 
not available.  In this case, one has the blind demixing or the blind source separation 
(BSS) problem (Xin 2010).  BSS is a highly under-determined problem.  It requires 
additional assumptions and must be attacked with advanced algorithmic methods such as 
L1 demixing algorithms (Greer 2010). 

Demixing (blind or non-blind) is a central problem in the world of CBRNE 
detection and identification algorithms.  Demixing algorithms can be used to identify 
relative concentrations of mixtures that include biological or chemical agents.  In 
addition, they have the potential to improve the sensitivity of detection algorithms by 
avoiding the overlap of multiple signatures.  Demixing algorithms are commonly used to 
process HSI imagery.  More complex versions of the demixing problem (either LLM 
model or NMF model, defined below) can include noise, background terms that vary 
slowly with wavelength, mixtures where dominant constituents may tend to mask 
dangerous trace agents of interest, or even multidimensional spectral problem (e.g., 
Raman spectrum) where the band index is a two-dimensional parameter. 

As mentioned above, the demixing problem (particularly blind demixing) is highly 
under-determined and requires additional assumptions to make it a well-defined problem.  
For instance, one might assume a modification of the demixing problem in which large 
number of observations are available and use the same endmembers.  When analyzing 
multiple pixels in a HSI data cube, the demixing problem becomes the non-negative 
matrix factorization (NMF) problem: 

 ECX =  (2) 

where each observation corresponds to a row of X and a column of C.  In this problem, 
further assumptions are still required.  Typically one often assumes that all columns of 
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the endmember matrix can be found as spectral of individual “pure” pixels, and that [C] 
is very sparse. 

One of the many ATD program examples of research on demixing algorithms is the 
work of Guo et al. (2011).  The study involved the processing of frequency agile lidar 
data taken at the Joint Ambient Breeze Tunnel Facility at the Dugway Proving Ground.  
The problem addressed there slightly generalizes the LLM since the concentration is 
range resolved.  The authors approach used the split Bregman algorithm to reconstruct 
the concentrations given the wavelength-dependent laser backscatter coefficients, then 
reconstructed the backscatter coefficients using the concentrations, and repeated these 
two steps until convergence to a self-consistent solution was achieved. 

A last example of algorithms for chemical identification, is the work by Esser 
(2011) on demixing data obtained from Differential Optical Absorption Spectroscopy 
(DOAS).  His investigations deal with issues in DOAS associated with processing the 
background.  His approach uses the convex optimization algorithms developed by Zhang, 
Burger, and Osher (2011). 

In addition to plume-tracking and chemical-identification algorithms, there is a third 
area of significant ATD research on network algorithms.  Most of this research is devoted 
to detection of chemical or biological releases, although a few algorithms are devoted to 
the targeted search of radiological devices.  For example, Grelaud (2011) has developed 
an algorithm that supports the detection by a mobile network of inexpensive radiological 
sensors.  The operation context assumed in his research involves a network of radiation 
sensors mounted on taxi cabs.  His approach is based on a sequential Monte Carlo 
particle filtering approach that uses network sensor data to constantly update the 
probability distribution describing the likelihood of finding one (or more) radioactive 
source as a function of location throughout the network coverage area. 

Another area of research is the development of change point detection methods.  
The quickest change point detection algorithms monitor one or more sensor data streams 
to determine if a change in the statistics of the sensor readings has occurred.  These 
algorithms are important in a number of fields including computer network security 
monitoring, chemical and biological warfare agent detection, and syndromic surveillance.  
As part of the ATD program, Tartakovsky (2012) has developed near-optimal change 
detection procedures that assume an unknown change state.  His algorithms do this in a 
manner that optimizes the tradeoff in detection delay and the frequency of false alarms.  
In the latest version of his work, he has included adaptive sampling techniques intended 
to conserve power in a remotely deployed battery-operated sensor network. 

There are other examples of change point detection research in the ATD portfolio.  
For example, Craparo et al. (2011) considered graph-theoretic methods to find change 
points in general distributions.  Siegmund et al. (2012) and Xie and Siegmund (2012) 
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have developed a mixture procedure for monitoring parallel streams of data for a change-
point that affects only a subset of them, without assuming a spatial structure relating the 
data streams to one another.  Arias-Castro (2012) develops methods for identifying 
anomalies that are identified by unusually large sequential correlations instead of the 
more typical unusually large amplitudes.   

A final example of fusion algorithm research supported by the ATD program is the 
work by on the detection of low intensity radiation source in the presence of large 
background noise.  Xun et al. (2011) considers how data fusion of the data stream from a 
network of radiation sensors, say installed at a security portal, would greatly improve 
detection thresholds.  This work is one of a handful of sensor fusion research projects in 
the ATD program. 
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6. Joint Effects Model Sensor Data Fusion 
Science and Technology Efforts 

The Joint Effects Model (JEM) is a system designed to provide a single Department 
of Defense (DoD) approved tool to predict hazard areas and effects resulting from the use 
of CBRNE weapons and releases of toxic industrial materials.  Requirements for the Joint 
Effects Model have driven science and technology development efforts to incorporate 
sensor data fusion algorithms into CBRNE hazard prediction models.  One requirement 
in particular, a threshold performance requirement for JEM Block II, directly requires 
sensor data fusion capabilities: 

JEM shall provide the ability to estimate the locations of sources based on 
sensor data, and to make refined dispersion calculations by incorporating 
sensor data with initial dispersion estimates.1 

DTRA and the Joint Science and Technology Office for Chem-Bio Defense (JSTO-CBD) 
have been sponsoring science and technology (S&T) efforts and development and 
integration of sensor data fusion tools into a CBRNE hazard prediction model in order to 
provide a capability that can meet the JEM requirement. 

These efforts have produced an experimental data set designed to be used in the 
development and evaluation of algorithms that combine sensor data and transport models 
to estimate the location of a source of an airborne threat.  The DTRA/JSTO efforts have 
also resulted in development of a tool for generating synthetic data useful in the 
algorithm development and evaluation process and have resulted in some capability in 
this area. 

A. FUSION Field Trial 2007 
The Fusing Sensor Information from Observing Networks (FUSION) Field Trial 

2007 (FFT-07) was a short-range atmospheric-dispersion field experiment designed to 
provide an experimental data set to support development of prototype source term 
estimation (STE) algorithms (Platt and DeRiggi 2012).  The STE algorithms must fuse 
data from meteorological sensors with data from chemical-agent sensors to estimate the 
location of the source of a past or in-progress release of chemical agent into the 
atmosphere.  The experiment consisted of a series of releases of a chemical tracer gas 
slightly upwind of a dense grid of concentration samplers.  Detailed meteorological data 
were also collected using a large number of instruments deployed during the experiment. 

                                                 
1 Operational Requirements Document for Joint Effects Model (JEM) ACAT III Prepared for Milestone 

B, 2004. 
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A total of 82 trials, involving a mix of instantaneous and continuous releases from 
up to four sources, were conducted over a period of 2½ weeks at the U.S. Army’s 
Dugway Proving Ground.  Releases were executed both during the day and at night.  One 
hundred digital photoionization detectors (digiPIDs) were arranged in a dense regular 
grid in a square area approximately 450 meters on a side (Storwald 2007).  Twenty 
ultraviolet ion collectors (UVICs) were also deployed in that area.  In addition to the 
chemical sensors, a large number of meteorological sensors, including 40 Portable 
Weather Instrumentation Data Systems (PWIDS), were used during the experiment. 

Although the data set was developed experimentally, the experiment was carefully 
designed to produce a near-ideal set of data, unlike any that would be obtained in an 
operational setting.  For example, releases were arranged and timed so that the released 
material would encounter a large number of the deployed sensors.  In addition, sensors 
collected concentration data at high frequency under near-ideal conditions.  However, the 
data from FFT-07 can be processed to simulate more relevant scenarios, for example by 
using only data from a subset of the samplers and/or by processing the concentration 
measurements into threshold exceedance (alarm/no alarm) indicators.  IDA was tasked by 
DTRA to compare the prototype STE algorithms and, as a major part of that effort, 
developed the plans and protocols for the comparison, including processing the FFT-07 
experimental data set into sets more likely to be obtainable under operational conditions.  
Those prior efforts (Platt, Warner, and Nunes 2008) could serve as a starting point for 
evaluating sensor fusion algorithms (other than just STE) using the FFT-07 data set.  The 
FFT-07 data set is maintained and distributed by Dugway Proving Ground and is readily 
available by request. 

For the STE algorithm comparison, IDA constructed a total of 104 cases of sensor 
data from a subset of the available digiPID data and made those cases available to STE 
algorithm developers.  The source location, number of sources, and size of the sources 
was withheld from the developers.  A total of 8 different developers participated in the 
STE algorithm comparison, submitting a total of 14 full and partial sets of predictions to 
IDA for comparison to truth and to each other.  The developers utilized a variety of 
algorithms, with some developers submitting more than one set of predictions to try more 
than one approach.  The developers also submitted brief descriptions of their algorithms, 
which can be found in Platt and DeRiggi (2012).  The IDA researchers concluded that 
STE for chemical and biological weapon attacks remains a challenge, noting that the 
exercise revealed shortcomings with respect to the ability to estimate the location and 
mass of a release even under highly idealized conditions. 

B. VTHREAT 
NCAR developed STE algorithms as one of the participating performers in the FFT-

07 algorithm comparison exercise.  During that effort, NCAR developed and made use of 
a testbed for chemical and biological releases.  That tool, the Virtual Threat Response 
Emulation and Analysis Testbed (VTHREAT), is a virtual simulation environment that 
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enables the simulation of physically realistic hazardous-release scenarios.  It allows 
placement of chemical, biological, and meteorological sensors in the simulated 
environment and allows extraction of the resulting synthetic sensor data streams 
(University Corporation for Atmospheric Research 2011).  VTHREAT was specifically 
developed for DTRA, and the development effort has been sponsored by the JSTO-CBD.  
VTHREAT enables testing in a broad range of simulated geographic locations and 
environmental conditions. 

Instead of being a fixed system of software components and models, VTHREAT is 
a toolbox containing modeling and simulation capabilities.  It is a modular framework 
that allows the use of a variety of atmospheric transport and dispersion (AT&D) models, 
sensor emulators, data fusion algorithms, and response models selected for the specific 
needs of the end application. 

Typically, the VTHREAT system uses the EUlarian semi-LAGrangian (EULAG) 
model for geophysical flows to simulate atmospheric turbulence in the planetary 
boundary layer at micro beta (100 m) and gamma (10 m) scales (Bierberbach et al. 2010).  
This type of model is also known as a Large Eddy Simulation (LES).  A Lagrangian 
particle dispersion model has been developed to utilize the resolved velocities and 
variances from the LES to simulate the atmospheric transport and dispersion of passive 
particles, generating physically realistic single realizations of chemical or biological 
releases (in contrast to the ensemble averaged plumes typically generated by AT&D 
models).  Those realizations are then converted to observations through models that 
emulate the characteristics of sensors.  The sensor models include detailed information on 
sensor performance characteristics obtained during developmental or operational testing 
of the sensors.  The sensor output is produced in the same format created by the sensor 
being modeled and with comparable fidelity. 

The sensor models currently available in VTHREAT include both point and 
standoff sensors.  The point sensors include a basic point chemical sensor that emulates 
the bar levels of the automatic chemical agent detector alarm (ACADA); the Joint 
Biological Point Detection System (JBPDS); raw point concentration readings that can be 
used with knowledge of detection limits to emulate sensors such as the digiPIDs and 
UVICs used during the FFT-07 releases; point meteorological sensors for winds, 
temperature, and humidity; and several testing assets used by Dugway Proving Ground.  
The standoff sensors available in VTHREAT include the Joint Lightweight Standoff 
Chemical Agent Detector (JLSCAD); the Raman-shifted eye-safe aerosol lidar (REAL); 
and raw path integrated concentration values that can be used as an input to an infrared 
camera type detector.2 

                                                 
2 Bieringer, P., 2013.  Personal Communication (email) with K. Papadantonakis. 



 

6-4 

In addition to its use in support of STE algorithm development, VTHREAT has 
been used to assist field experiment design.  It has been enhanced to support operational 
test and evaluation of sensor systems and to provide inputs to toxic load effects models.   
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7. Looking Forward 

In this report, we have described data-fusion algorithms and identified the common 
approaches for each.  In addition to providing a range of illustrative case studies, we have 
provided an overview of two current DoD programs (Algorithms for Threat Detection 
and Joint Effects Model) that have been supporting algorithm development. 

In this final section of the report, we identify potentially impactful research topics 
and suggest approaches for providing further analytical support to a research and 
development program for real-time sensor and model data fusion algorithms. 

A. Opportunities for Research and Development 
Three areas of algorithm research appear to be potentially useful next steps for the 

DTRA reach-back capability goals.  The first two are closely interrelated and are 
anomaly detection (Section 3.E) and data assimilation (Section 3.D).  Anomaly detection 
algorithms are classified in two ways: by anomaly type (point, contextual, or collective) 
and by the approach to defining “normal” behavior (data-based with classification 
algorithms, data-based with change-point algorithms, explicitly modeled).  Most anomaly 
detection research has focused on point anomalies, but the CBRNE problems will require 
methods for detecting contextual and collective anomalies.  Currently fielded CBRNE 
systems use a data-based definition of “normal” and change-point detection to find point 
anomalies; the systems of the future will use physics-based models and data assimilation 
methods to explicitly define “normal” behavior and then detect contextual and collective 
anomalies.  These approaches – particularly in the CBRNE context – still require 
development.  In particular, there are challenges in (1) understanding the statistical 
properties (average behavior and variation) of complex models of “normal,” (2) 
developing appropriate data assimilation methods to integrate observational data into 
these models of “normal” and update the current state, and (3) developing appropriate 
statistical hypothesis tests to detect collective and contextual anomalies using the 
“normal” models as the null hypothesis.   

The third key algorithmic area is sensor management.  For specific problems, real-
time algorithms that integrate data and models are becoming available (for example, in 
numerical weather forecasting).  This suggests that, for well-understood CBRNE 
problems with clearly stated objectives and metrics, progress could be made on 
developing similar real-time algorithms. 

B. Exemplar Data Set Development  
There are at least two approaches to developing data sets for algorithm development 

and testing purposes.  In one approach, the data sets are derived directly from data 
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collected during field experiments.  This approach was used for the FFT-07 algorithm 
development and comparison exercise.  In the second approach, systems that integrate 
environmental, transport, and sensor models can be used to generate synthetic data sets.  
Each approach has its own set of advantages (and of course, disadvantages). 

Experimental data sets have the advantage of being firmly rooted in truth.  
However, experiments can be expensive to perform and difficult to plan and execute 
successfully.  The “truth” of the experimental data set may reflect a scenario that has 
been designed to provide an ideal, rather than operationally realistic, data set.  For 
example, consider the case of the FFT-07 experiment.  The experiment was designed so 
that the chemical released could be readily detected in a relatively pristine environment 
offering no challenge of background or clutter.  The releases were sized, located, and 
timed so that winds were constant at the time of release and would transport the chemical 
over the dense grid of samplers in a plume or puff of a physical size that was just large 
enough that an ideal number of simultaneous detections would be measured as the 
chemical passed through the detector array. 

Experiments are (and ought to be) carefully designed to produce useful data sets.  
Even the most rigorously controlled experiments offer the advantage of possibly 
producing unexpected results and thereby increasing knowledge of the underlying 
physics or behavior of systems or components.  (Indeed, without rigorous controls, it may 
be impossible to ever understand an unexpected result.)  It may be impossible to gain new 
scientific knowledge any other way.  Unfortunately, it is practically impossible to 
perform enough experiments and replicates to produce a data set representative of the 
range of CBRNE missions of interest to DTRA. 

Where environmental, transport, and sensor models are available and of reasonable 
fidelity, they can be used to produce synthetic data sets, which may be an adequate 
approximation of truth.  It is important to note that models used to produce predictions 
may not be appropriate or ideal choices for components of a system designed for 
synthetic data generation.  For example, a model that produces an averaged result rather 
than a set of individual realizations may produce synthetic data that lacks the magnitude 
and effect of important stochastic processes.  Synthetic data generation systems offer the 
advantage of allowing the production of data sets for a practically unlimited range of 
scenarios.  They also offer the opportunity to explore scenarios involving notional 
components, such as detectors with improved sensitivity or selectivity that might exist in 
the future. 

The FFT-07 data set and the VTHREAT system are existing sources of 
experimental and synthetic data readily available to DTRA that could be leveraged to 
provide exemplar data sets for sensor data fusion algorithm developers.  These data 
sources, however, are primarily of use for the chemical detection mission area.  Although 
they may have some limited applicability to biological detection, they have no 
applicability to the detection of radiological or nuclear materials that have not been 
dispersed into the atmosphere.  We have learned of a DTRA-owned system that may be 
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capable of generating synthetic data of adequate fidelity for the radiological or nuclear 
detection missions.  If experimental radiological and nuclear detection data sets, of 
comparable quality to that for FFT-07 exist, they can be leveraged for algorithm 
development purposes.  Thus we suggest that DTRA consider developing sources of both 
synthetic and experimental data that could be advantageously used for developing and 
testing sensor data fusion algorithms for the radiological and nuclear detection missions.  
We also suggest that developers be provided with data from multiple sources to help 
prevent diversion of their efforts from true exploitable phenomena by quirks or 
singularities latent in a particular data source. 

Upcoming DTRA-sponsored exercises may provide opportunities to collect 
experimental data sets.  We suggest reviewing, and revising where possible, the plans and 
protocols for those exercises with an eye toward enabling the collection of an 
experimental radiological or nuclear detection data set suitable for use in sensor data 
fusion algorithm development. 

C. Additional Resources for Algorithm Development 
In addition to providing data sets, we also suggest that algorithm developers be 

provided with a written set of descriptions of the range and type of scenarios to which the 
algorithms might be applied.  The mission descriptions provided earlier in this report 
might provide a starting point for such material if it has not already been assembled.  The 
descriptions will help developers better understand the problems that they are being asked 
to help solve. 

We also suggest assembling a documented collection of models that could be made 
available to algorithm developers.  The expertise of the developers will not include all of 
the physics of all of the scenarios and components for which they are developing fusion 
algorithms, but the physics will play an important role in the development.  The goal of 
providing such a collection would be to give developers a head start on ways to represent 
the physical science required as a component of their work. 

The JEM program has driven some efforts toward development and integration of 
sensor data fusion capabilities for CBRNE missions involving the atmospheric transport 
and dispersion of hazardous materials.  The JEM science and technology efforts are 
guided by the program Operational Requirements Document.  We suggest developing a 
documented strategy for a future integrated sensor and modeling system for the nuclear 
and radiological detection, interdiction, and search type missions as it may prove useful 
for developers to understand fully the context of their effort. 

We have observed substantial efforts to simulate detectors and to integrate real-time 
sensor locations and measurements with mapping systems.  It is, therefore, apparent that 
a definite foundational effort has been directed toward addressing the needs of these 
missions.  A document fully describing a comprehensive vision of future reach-back 
capabilities that integrate real-time sensor data and model predictions for the radiological 
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and nuclear detection and search-type missions could prove useful in communicating 
with and setting goals for algorithm developers. 

We also suggest that, as algorithms are developed, very detailed technical 
documentation be included.  The goal is to reduce any disconnect between model 
developers and model users.  In particular, we suggest documenting “capabilities and 
limitations” to include the equations employed, the numerical methods that are used, the 
physical regimes under which approximations are valid, all of the inputs and outputs in 
different modes of operation, and the conditions under which one sub-model is run versus 
another (including hidden “switches” between operational modes, etc.). 

D. Model Validation 
Model validation efforts will be critical to the success of an analytical tool that uses 

a combination of real-world sensing technologies and physics-based models.  It is 
possible to proceed with algorithm development using synthetic data, and this can be a 
reasonable path forward, provided the models producing the data have been extensively 
validated.  In the absence of experimental data and thorough model validation, however, 
the system may be unable to perform its task in the real world.  For example, if an 
algorithm depends upon successful detection of anomalies, and a model has been used to 
represent the normal signal from the sensor network, errors in the model can cause a 
complete failure of the detection scheme. 

Validation efforts provide a means for understanding the uncertainty and bias in 
predictions produced by models.  This understanding is critical to the proper use and 
interpretation of model results as they contribute to the reach-back analytical toolset. 
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Appendix B 
Acronyms and Abbreviations 

3D-Var 3D variational  
4D-Var 4D variational 
4D-LETKF 4D local ensemble transform Kalman filter 
 
ACADA automatic chemical agent detector alarm 
ACARS Aircraft Communications Addressing and Reporting 

System 
ADS-B automatic dependent surveillance–broadcast 
AFRL Air Force Research Laboratory 
AFRL/MNG Air Force Research Laboratory Munitions Group 
AFWA Air Force Weather Agency 
ANN artificial neural networks 
AOML Atlantic Oceanographic and Meteorological Laboratory 
ARW-WRF Advanced Research WRF model 
ASOS Automated Surface Observing System 
ASTM American Standards Testing and Materials 
AT&D atmospheric transport and dispersion 
ATD Algorithms for the Threat Detection 
AUC area under the curve 
AXBT Airborne eXpendable BathyThermograph 
 
BSS blind source separation 
 
CALJET California Land-falling Jets Experiment 
CBRNE chemical, biological, radiological, nuclear, and 

enhanced conventional 
CCD charge-coupled device 
CDF Collider Detector at FermiLab 
CEC Cooperative Engagement Capability 
CFD computational fluid dynamics 
CO2 carbon dioxide 
CPPCA combinatorial probabilistic PCA 
CUSUM cumulative sum 
 
D* Dynamic A* (algorithm)  
DAG directed acyclic graph 
DAI-DAO data input-data output 
DAI-DEO data input-decision output 
DAI-FEO data input-feature output 
DARPA Defense Advanced Research Projects Agency 
DART Data Assimilation Research Testbed 
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DEI-DEO decision input-decision output 
digiPID digital photoionization detector 
DOAS differential optical absorption spectroscopy 
DoD Department of Defense 
DrEnKF “dressed” ensemble Kalman filter 
D-S Dempster-Shafer 
DTRA Defense Threat Reduction Agency 
DWL Doppler wind lidar 
 
ECMWF European Centre for Medium-Range Weather Forecasts  
EED early event detection 
EKF extended Kalman filter 
ELINT electronic intelligence 
EMS emergency medical service 
EnKF ensemble Kalman filter 
EO electro-optical 
ETKF ensemble transform Kalman filter 
EULAG EUlarian semi-LAGrangian 
 
FAL frequency agile lidar 
FASTEX Fronts and Atlantic Storm-Track Experiments 
FEI-DEO feature input-decision output 
FEI-FEO feature input-feature output 
FermiLab Fermi National Accelerator Laboratory 
FFT-07 FUSION Field Trial 2007 
FN false negative 
FNMOC Fleet Numerical Meteorology and Oceanography 

Center 
FP false positive 
FSO forecast sensitivity to observations 
FTIR Fourier transform infrared 
FUSION Fusing Sensor Information from Observing Networks 
 
GDAS Global Data Assimilation System 
GFDL Geophysical Fluid Dynamics Laboratory 
GPS global positioning system 
GSI gridpoint statistical interpolation 
 
HEDAS Hurricane Ensemble Data Assimilation System 
HgCdTe mercury cadmium telluride 
HIS hyperspectral imaging 
HWD Hurricane Research Division 
HWRF Hurricane Weather Research and Forecasting 
 
ICA Independent Component Analysis 
ICD implantable cardioverter defibrillator 
IFF identification friend or foe 
ILI influenza-like illness 
IMM interacting multiple model 
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IMS ion mobility spectrometer 
IP internet protocol 
IR infrared 
ISR intelligence, surveillance, and reconnaissance 
 
JBPDS Joint Biological Point Detection System 
JDL Joint Directors of Laboratories 
JEM Joint Effects Model 
JHAPL Johns Hopkins Applied Physics Laboratory 
JLSCAD Joint Lightweight Standoff Chemical Agent Detector 
JPEG Joint Photographic Experts Group 
JSTO-CBD Joint Science and Technology Office for Chem-Bio 

Defense 
 
LEKF local ensemble Kalman filter 
LES large eddy simulation 
LETKF local ensemble transform Kalman filter 
LLE local linear embedding 
LMM linear mixing model 
LWIR long-wave infrared 
 
MAB multi-armed bandit 
MAP maximum a posteriori 
MB megabyte 
MC Monte Carlo event generator and simulator 
MDP Markov decision processes 
MDS multidimensional scaling 
MTI moving target indicator 
MuSICA Multi-Sensor Integrated Conflict Avoidance 
MVOI multivariate optimal interpolation 
MVU maximum variance unfolding 
 
NAVOCEANO Naval Oceanographic Office 
NCAR National Center for Atmospheric Research 
NCEP National Centers for Environmental Prediction 
NGA National Geospatial Intelligence Agency 
NHC National Hurricane Center 
NMF non-negative matrix factorization 
NOAA National Oceanic and Atmospheric Administration 
NORPEX North-Pacific Experiment 
N-P Neyman-Pearson 
NPV negative predictive value 
NRL Naval Research Laboratory 
NSF National Science Foundation 
NSR normal sinus rhythm 
NWS National Weather Service 
 
OODA observe, orient, decide, act 
OTC over-the-counter 
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PCA principal component analysis 
 
Pd probability of detection 
Pfa probability of false alarm 
POMDP partially-observable Markov decision processes 
PPCA probabilistic PCA 
PPV positive predictive value 
PR precision-recall 
PWIDS Portable Weather Instrumentation Data System 
 
RDECOM Research, Development and Engineering Command 

(U.S. Army) 
REAL Raman-shifted eye-safe aerosol lidar 
RED Random Early Detection 
RIP Running in Place 
RMS root mean square 
ROA remotely operated aircraft 
ROC receiver-operating characteristic 
 
S&T science and technology 
SA situational awareness 
SAA sense and avoid 
SAR synthetic aperture radar 
SCM successive corrections method 
SEIK singular ‘‘evolutive’’ interpolated Kalman 
SIGINT signals intelligence 
SNR signal-to-noise ratio 
SOM self-organizing map 
SPC statistical process control 
SPCA sensible PCA 
SST sea surface temperature 
STE source term estimation 
SVM support vector machine 
SVT supra ventricular tachycardia 
SWOrRD Swept Wavelength Optical Resonant Raman Detector 
 
TB terabyte 
TCAS Traffic Alert and Collision Avoidance System 
THORPEX The Observing System Research and Predictability 

Experiment 
TLM tangent linear model 
TN true negative 
TP true positive 
 
UAV unmanned aerial vehicle 
UV ultraviolet 
UVIC ultraviolet ion collector 
V&V validation and verification 
VEAA vision-enabled autonomous agents 
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VS-IMM Variable Structure IMM 
VT ventricular tachycardia 
VTHREAT Virtual Threat Response Emulation and Analysis 

Testbed 
 
WRF Weather Research and Forecasting  
WSARE What’s Strange about Recent Events 
WSR Winter Storm Reconnaissance 
 
XFT eXtremely Fast Tracker 
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