
April 2021
Approved for public release;

distribution is unlimited.

IDA Document NS D-22638
Log: H 21-000137

INSTITUTE FOR DEFENSE ANALYSES
4850 Mark Center Drive

Alexandria, Virginia 22311-1882

I N S T I T U T E F O R D E F E N S E A N A L Y S E S

Resilience Engineering Demonstrator System:
Limited Bandwidth Text Analytics

(Presentation)

Jessica G. Swallow
Katherine I. Fisher

Nicholas J. Kaminski
Sarah L. Jones

Jeffrey A. Snyder

About This Publication

This work was conducted by the Institute for Defense Analyses (IDA) under
contract HQ0034-19-D-0001, Project AK-2-4793 "Resilience Engineering for
DoD Software and Software-based Systems," for the Office of the Deputy
Under Secretary of Defense for Research (DUSD/Research). The views,
opinions, and findings should not be construed as representing the official
position of either the Department of Defense or the sponsoring organization.

For More Information

Jeffrey A. Snyder, Project Leader
jsnyder@ida.org, (703) 578-2838

Leonard J. Buckley, Director, Science and Technology Division
lbuckley@ida.org, (703) 578-2800

Copyright Notice

© 2021 Institute for Defense Analyses
4850 Mark Center Drive, Alexandria, Virginia 22311-1882 • (703) 845-2000.

This material may be reproduced by or for the U.S. Government pursuant to
the copyright license under the clause at DFARS 252.227-7013 (Feb. 2014).

The Institute for Defense Analyses is a nonprofit corporation that operates three
Federally Funded Research and Development Centers. Its mission is to answer
the most challenging U.S. security and science policy questions with objective
analysis, leveraging extraordinary scientific, technical, and analytic expertise.

iii

Executive Summary

Resilience engineering is a method that allows automated detection and correction of problems in an operational system in
real time. These problems may arise as the environment changes or as the user's needs change. To demonstrate resilience
engineering, IDA has built a proof-of-concept system. The demonstration system is a tool that collects multiple data feeds for an
analyst that is looking at a specific subject area. There is limited bandwidth for processing, so the data feeds must be throttled to
fit within the bandwidth limits. This briefing shows the demonstration system and how resilience engineering improves the
performance of the system.

v

Contents

1. Background ..2
2. Demonstration System ...10
3. Conclusion ...36
Appendix A. Additional Detail on the Limited Bandwidth Text Analytics (LBTA)

Demonstrator System Construction and Operation .. A-1

1

1

Resilience Engineering
Demonstrator System:
Limited Bandwidth Text

Analytics (LBTA)
Jessica Swallow, Katherine Fisher,

Nicholas Kaminski, Sarah Jones, Jeffrey Snyder
24 March 2021

UNCLASSIFIED

2

1. Background

2

Background

• Concept of resilience engineering (formerly known as AI
Engineering) developed to allow automated detection and
correction of problems in the operational system.

• Critical DoD missions rely on a complex set of interrelated
systems:
–A minor failure in any system can potentially lead to a mission failure
o “For want of a nail …”
–No clear one-to-one correspondence between system failures and mission

failures.
• No routine way to design, deploy, monitor, and secure software-

based systems.
• Artificial intelligence and machine learning are capabilities, not

solutions to the problem.

UNCLASSIFIED

3

This slide describes the resilience engineering background and the reasoning behind why the Department of Defense (DoD)
needs to develop resilience engineering techniques to apply to DoD systems.

In this project we were tasked with building a system to demonstrate how resilience engineering would actually work. This
demonstration system has to be complicated enough that resilience engineering would actually be useful, but not so complex
that it would not be clear to the user how and why the resilience engineering is taking the actions it does.

4

3

Goal

• Prepare an unclassified, nontrivial (but not complex) system that
demonstrates a resilience engineering proof of concept.

• Demonstration system is a tool that collects multiple data feeds
for an analyst.

• Limited bandwidth prevents all data in all feeds from being used
by analyst.

• Fixed, equal bandwidth allocation to each feed is suboptimal,
especially as content of each feed changes or if interests of
analyst changes.

5

The goal is to build a demonstration system as a resilience engineering proof of concept. It must be complicated enough to
benefit from resilience engineering, yet still be simple enough that people can understand what the resilience engineering is
doing and why.

We have chosen to look at the typical problem of a tool that collects multiple data feeds for an analyst that is looking at a
specific subject area. There is limited bandwidth for processing, so the data feeds must be throttled to fit within the bandwidth
limits. We do not concern ourselves with why the bandwidth limits exist. There are data streams that the analyst will find useful,
and data streams that the analyst will not find useful. How the bandwidth is allocated will therefore have a significant impact on
the overall utility of the system to the analyst.

6

4

Text Analytics Concept
• Postulate a system with limited bandwidth where a user wants to collect

emerging information about a topic:
• Users choose between two topics: Cancer and natural disasters (or can enter their own).
• Data sources: news headlines, research publications, social media posts, etc.

• Bandwidth limitations prevent system from processing full volume of each data
source.

• Key metric is “value” of data stream for user’s chosen topic (see next slide):
• Using simple text analytics (occurrence of keywords and relevant context) and

processing time to calculate value.
• Orchestrator monitors data stream performance and optimizes total “value” of

combined data streams, within bandwidth limit.
• Orchestrator can control:

• Bandwidth allocation for each data source (based on calculated value).
• When to reconfigure or reboot the system.

• Test harness allows data streams to be controlled separately and be “poisoned”
during the demonstration.

UNCLASSIFIED

7

For our demonstrator, we have postulated a system in which we want to conduct continuous data collection and processing
from a number of data streams, but where we have only limited bandwidth to do so. Hence the system needs to be able to
prioritize its available data sources based on their value to the user. In this example, the data sources are all text of some form,
and we use a text-analytics processing approach to evaluate each data file and determine its value for the user. There are a few
ways that value can be determined. For example, does it have the keywords the user is interested in? Does it have relevant context
words surrounding those keywords? How long does it take to process each data set? The system has an orchestrator that is
monitoring the performance of each data stream and determining when adjustments in bandwidth allocation are necessary, either
by rebooting the system or reallocating bandwidth across the streams.

In this project we are focusing on the resilience engineering techniques, not the text analytics techniques. Therefore, we
have chosen to use basic text analytics rather than developing a complex, nuanced text analysis.

8

5

Metrics

𝑉 ൌ
∑ 𝐼
ேೖ
ୀଵ 𝐶

𝑁 ∗ 𝑤
ൌ
𝜏
𝑤

𝑝

𝛹 ൌ 𝑝

ே

ୀଵ

𝑁𝜏 ൌ 𝑉

ே

ୀଵ

𝑤𝑁 ൌ 𝑉

ே

ୀଵ

𝑤𝐺ሶ𝛩

Ψ = System value during integration time θ:

Stream score: value
generated by stream k per unit

bandwidth. Units of 1/kB.

Number of files that get to the
text analytics from stream k

during the integration period θ.

Indicator variable: 1 if
file i matches user target

interest, 0 otherwise.

Sum of # of unique words
and # of context words that
appear in file i in stream k

Average kB/file
in stream k

Average processing
time/file in stream k

Value generated by
stream k per unit
processing time

𝑝 ൌ
∑ 𝐼
ேೖ
ୀଵ 𝐶

∑ 𝑡
ேೖ
ୀଵ

Processing
time of file i in

stream k

𝜏 ൌ
∑ 𝑡
ேೖ
ୀଵ
𝑁

of active data streams Files/time of stream k
sent to text analytics.

9

This chart summarizes the metrics we have chosen to use to evaluate stream and system performance. Stream performance
is continuously evaluated over integration times, which are periods of data collection between points when the orchestrator
chooses actions. At the end of each integration period, the orchestrator evaluates information about individual stream
performance and overall system health (e.g., measures of data feed rates, confirmation that all portions of the system are
functioning as expected) to decide on an action.

The score of stream k is given by Vk, which is calculated based on several pieces of information determined through the
orchestrator’s monitoring capabilities. Individual files that reach the text analytics for stream k are scored based on (1) whether
any of the target keywords (as defined by the user goals) appear in the text and (2) the number of unique words in the file and
the number of times key context words appear in the file. The number of unique words is used as a crude indicator of
informational content. The scores of all files collected during the integration period are summed, and their sum divided by the
total bandwidth that was occupied by stream k during the integration period. This penalizes data streams that have a high
bandwidth per file but a low score per file.

Note that this method of assessing stream performance works out to value generated per unit bandwidth. Alternative metrics
can be constructed, for example, value generated per unit processing time.

Overall system performance during an integration time is defined by the metric ψ, which sums the individual stream scores
Vk weighted by the number of kilobytes that they used during the integration period.

10

2. Demonstration System

6

Data
Stream A

Data
Stream B

Data
Stream C

Data
Stream D

Data
Stream E

Fixed-
bandwidth

limits

Text
Analytics

Matches Trash

1. A
2. B
3. C
4. D
5. E

User
Selects

Goal

For our demo, we can manipulate the relative value of these streams

UNCLASSIFIED

Demonstration System—Without Resilience Engineering

11

Without resilience engineering, the available data streams overfill the available bandwidth and have to be limited. Since
the value of each data streams relative to the user’s goal is unknown, the bandwidth limits are set to fixed, equal values. In some
cases this works well and the total value of the combined streams is fairly high. In other cases this does not work well and the
total value is suboptimal because low-value streams use too much bandwidth and do not leave enough bandwidth for high-value
streams.

12

7

Example—System Performance without Resilience Engineering

Stream
poisoned

This plot shows the overall performance of the system without the benefit of
the orchestrator during a run in which the user poisoned one stream midway
through the run. Note that the reallocations (dashed green lines) were not
done because the orchestrator was disabled.

ψ

13

This chart shows an example of a run of the demonstrator where the orchestrator was disabled. The user poisoned one
stream midway through the run. Plotted is the system performance as a function of time. The black line is the actual measured
system performance ψ in the previous integration period, while the gray line indicates the orchestrator’s estimated system
performance if the proposed reallocation is accepted. The vertical green dashed lines indicate points where the orchestrator would
have implemented a reallocate action had it been enabled. The actual system performance is significantly lower than the expected
performance if bandwidth were optimally allocated.

14

8

Data
Stream A

Data
Stream B

Data
Stream C

Data
Stream D

Data
Stream E

Allocation of
limited

bandwidth

Text
Analytics

Matches Trash

Orchestrator
• Continuously Monitors the

Performance of Each Data
Stream.

• Chooses an Action.

Orchestrator Actions:
1. Do nothing.
2. Reallocate bandwidth based on

monitoring feed.
3. Reboot system with equal

bandwidth allocations for all
streams.

1. A
2. B
3. C
4. D
5. E

User
Selects

Goal

For our demo, we can manipulate the relative value of these streams

UNCLASSIFIED

Demonstration System—With Resilience Engineering

15

Here is a general schematic of the system with resilience engineering. You can see that the user selects a goal through a
user interface. The orchestrator then uses this goal to initially configure the system, in which multiple data sources are being
funneled to our limited processing bandwidth. Successful files are stored, unsuccessful files are thrown out, and information
about the value of each file is constantly reported to the orchestrator, which decides whether to take any action. The orchestrator
has three actions at its disposal: it can do nothing, it can reallocate bandwidth across the data streams based on the monitoring
information, or it can entirely reboot the system. Reallocation occurs when the orchestrator computes that a more optimized
allocation will achieve a meaningful performance boost; rebooting may occur if some data streams appear blocked or the full
system is detected to be non-functioning. A more advanced system could, for example, use alternative text analytics to improve
the performance of the overall effort to collect information—but for our demo, we focus on the reallocate/reboot options.

16

9

Data
Stream A

Data
Stream B

Data
Stream C

Data
Stream D

Data
Stream E

Allocation of
limited

bandwidth

Text
Analytics

Matches Trash

Orchestrator
• Continuously Monitors the

Performance of Each Data
Stream.

• Chooses an Action.

Orchestrator Actions:
1. Do nothing.
2. Reallocate bandwidth based on

monitoring feed.
3. Reboot system with equal

bandwidth allocations for all
streams.

1. A
2. B
3. C
4. D
5. E

User
Selects

Goal

For our demo, we can manipulate the relative value of these streams

UNCLASSIFIED

Demonstration System—With Resilience Engineering
Data feed options:
• Lines from

Shakespeare
• News Headlines

(various sources)
• Tweets
• Academic journal

abstracts
NiFi

17

There are several options available for the data feed, including lines from Shakespeare, headlines from the news, tweets,
and abstracts from academic journals. All the data are publicly available on the internet and do not contain PII. Through the test
harness you can adjust the data rates of the streams, as well as bias their content toward one topic or another. This means that
you can cause streams to become more or less valuable relative to the selected goal, which the orchestrator needs to be able to
detect and adapt to. Data-feed handling and bandwidth allocation occur in NiFi.

NiFi is an open-source software suite that automates the flow of data between software systems. These flows can be
controlled through a graphical user interface (GUI) (see slides 26–27) or an XML description of the interfaces.

18

10

Bandwidth Allocation

• All streams always granted at least a minimum bandwidth.
• Orchestrator proposes remaining bandwidth allocations

according to the squared relative performance of each stream:

– If stream input rate is too low to fill its bandwidth allocation, extra gets
passed to the next best stream.
–Enforces some fairness. Resultant system value can be less than

theoretical maximum because lower performing streams with nonzero
value are still allocated some bandwidth above the minimum.

• Bandwidth allocations are only accepted if a substantial increase
in system value is estimated.

𝑉ଶ

𝑉ଶ

19

Dynamic bandwidth allocation is done using an algorithm summarized here. All streams are granted a minimum bandwidth
that permits them to always be “heard,” even when they are very low scoring. This ensures that if a stream’s performance
changes, it will be detected, even if the stream was previously low performing. Bandwidth allocation then proceeds by
apportioning remaining available bandwidth to streams based on their relative squared performance scores. This choice of weight
ensures that the highest performing streams receive the most bandwidth, but also allows some fairness, in the sense that streams
with moderate performance still receive more bandwidth than the minimum. If a stream does not have enough data flowing to
fill its full bandwidth allocation, extra bandwidth is made available to the next best stream.

Based on the resulting proposed bandwidth allocations, the orchestrator then uses a model to estimate the expected
performance ψ of the system if the bandwidth allocations are implemented. The orchestrator only implements a reallocation if a
substantial improvement (>10% increase in ψ) is expected. Otherwise, the orchestrator does nothing.

Note that the orchestrator may also choose to reboot the system; slide 19 summarizes the conditions for a reboot. When a
reboot occurs, equal bandwidth is allocated to all streams upon restart.

20

User Actions

Change text
analytics focus

Stop existing data
streams

User Interacts with System Through a GUI

Plot monitoring
information

Change or adjust
content of data

streams

Change feed rate of
data streams Stop NiFi service

Pause processors
within the NiFi

template

Start new data
streams

• Red actions should trigger a reboot.
• Orange actions could trigger either a

reboot or a reallocation.
actions could trigger a

reallocation.
• Green actions should not trigger any

orchestrator actions.
• Determination of whether to reboot,

reallocate, or do nothing depends on
monitoring information available to
the orchestrator.

• The orchestrator can respond to user
actions based on system
monitoring—but the user does not
give the orchestrator instructions.

• Stopping the demo (gray) stops the
orchestrator.

Stop Demo

Test Harness

UNCLASSIFIED

21

This diagram represents all the actions that are available through the GUI, including actions designed to disrupt the activity
of the NiFi system. The test harness actions are designed to mimic events that would be occurring in the environment, outside
the control of the system user. In an operational context, these would be the events that a resilience engineering system would
need to react to.

22

12

Example—System Performance with Resilience Engineering

This plot shows the overall performance of the system with the orchestrator
during a run in which the user poisoned one stream midway through the run.
The actual system value (solid black line) is much higher than the
performance without the orchestrator (shown on slide 7).

ψ

Stream
poisoned

23

This chart shows an example of a run of the demonstrator where the orchestrator was enabled. The user poisoned one stream
midway through the run. The system performance is plotted as a function of time. The black line is the actual measured system
performance ψ in the previous integration period, and the gray line indicates the orchestrator’s estimated system performance if
the proposed reallocation is accepted. The vertical green dashed lines indicate points where the orchestrator implemented a
reallocate action. After reallocation, the actual system performance approaches the performance expected if the bandwidth were
optimally allocated. As shown in the plot, reallocation occurs only when a substantial gain in ψ is anticipated.

This example can be compared directly with the orchestrator disabled case shown on slide 7.

24

13

Example—System Performance with Resilience Engineering

Stream
poisoned

User
goals

changed

NiFi
service
killed

NiFi
service

recovered

This plot shows the overall performance of the system during a run in which
the user took several actions using the test harness: poisoning one stream,
changing the goals for the text analytics, and killing the NiFi service.

ψ

25

This chart shows an example of a run of the demonstrator in which several actions are taken, including poisoning a stream,
changing the user’s goals, and killing the NiFi service in the orchestrator. System performance is plotted as a function of time.
The black line is the actual measured system performance ψ in the previous integration period, and the gray line indicates the
orchestrator’s estimated system performance if reallocation is accepted. As shown in the plot, reallocation occurs only when a
substantial gain in ψ is anticipated.

The vertical green dashed lines indicate points where the orchestrator implemented a reallocate action. The vertical dashed
maroon line indicates a point when the orchestrator implemented a reboot action.

26

14

Example—System Performance with Resilience Engineering

Blue arrows show the orchestrator’s response to each external event.
Notice how system value eventually improves after initial drops in
performance due to poisoning or loss of NiFi service.

Stream
poisoned

User
goals

changed

NiFi
service
killed

NiFi
service

recovered

27

This chart highlights the orchestrator’s actions in response to different events from the test harness. Shortly after a stream
was poisoned, system performance significantly degraded, but this degradation was detected and the orchestrator reallocated
bandwidth, slightly improving performance. After the user changed the goals of the text analytics, the orchestrator reallocated a
few times, improving system performance. After the NiFi service was killed, the orchestrator rebooted the system, and
performance was recovered after the first reallocation following that reboot.

This is a screenshot from the GUI—note that data are plotted with x-axis values rounded to the nearest minute.

28

15

Same Example—Bandwidth Allocations

0

5

10

15

20

25

30

35

40

45

43:40.8 46:33.6 49:26.4 52:19.2 55:12.0 58:04.8 00:57.6 03:50.4

Th
ro

ttl
e

R
at

e
fo

r L
as

t I
nt

eg
ra

tio
n

Ti
m

e
(k

B/
m

in
)

Time Point

64092
64093
64094

Stream
poisoned

User goals
changed

NiFi service
killed

NiFi service
recovered

This chart reports the bandwidth allocations
for the streams (designated by port numbers
64092–64094) as a function of time.

Note that this chart lags the real-time status of
the system—the data points represent the
bandwidth allocation during the previous
integration period.

It typically takes about two integration times
from the time of an external stimulus for the
resulting system adaptation to show on this
chart. This is the time for the system to detect
the change, take an action, and then plot that
action at the end of the new integration time.

29

This chart plots throttle rates for each data stream as a function of time for the same demonstrator run as shown on the
previous two slides. The throttle rate is the permitted bandwidth per minute for each stream. These data are the rates for the
previous integration time, so they lag real-time events by about a minute. As noted on the chart, it typically takes about two
integration times from the time of an external stimulus for system adaptation to be apparent on this chart. This is the time required
for the system to detect the change in performance, take a corrective action, and then collect another integration period’s worth
of data to plot the results.

30

16

Same Example—Bandwidth Allocations

0

5

10

15

20

25

30

35

40

45

43:40.8 46:33.6 49:26.4 52:19.2 55:12.0 58:04.8 00:57.6 03:50.4

Th
ro

ttl
e

R
at

e
fo

r L
as

t I
nt

eg
ra

tio
n

Ti
m

e
(k

B/
m

in
)

Time Point

64092
64093
64094

Stream
poisoned

User goals
changed

NiFi service
killed

NiFi service
recovered

Reallocation for
stream poisoning

Reallocation
for change of

user goals

Reallocation
post-reboot

Reallocation to
optimize for initial

conditions

31

This chart highlights the detail of certain reallocation events that occurred in response to various external events during the
demo shown on the prior slides. The initial system performance was optimized by giving stream 64092 the most bandwidth;
however, after that stream was poisoned, streams 64093 and 64094 were given more bandwidth. Then, when the user’s goals
were changed, stream 64094 was given the most bandwidth. After the system reboot occurred, all streams were initialized with
equal bandwidth, but the orchestrator quickly detected that stream 64094 was the best performing stream and gave that stream
the largest bandwidth allocation again.

32

17

Comparison: System with and without Resilience Engineering

Orchestrator
Disabled

Orchestrator
Enabled

System Value (ψ)

Data
poisoning

Data
poisoning

Bandwidth Used

Data
poisoning

Data
poisoning

33

This chart compares the overall system value (ψ) (left column) and bandwidth used by each stream (right column) between
nearly identical cases with the orchestrator disabled (top row) and enabled (bottom row). The system value is much higher when
the orchestrator is allowed to increase the bandwidth allocated to the more valuable streams at the expense of the bandwidth
allocated to less valuable streams. This is also true after data poisoning (around 5.5 minutes). Note that the system automatically
detects and corrects for the data poisoning with no need for human intervention.

Note that the first two entries on the bandwidth used plots are incomplete because it took over 30 seconds to get all the data
streams flowing. The target topic was “cancer” with context words “treatment” and “therapy.” Poisoning was implemented 4
minutes and 40 seconds after initialization of stream 3 and consisted of changing the natural hazard bias of stream 1 to 91%.

Initial stream specifications:

0: Shakespeare 6 Hz

1: Twitter, 10% natural hazard bias, 4 Hz

2: Twitter, 60% natural hazard bias, 4 Hz

3: NewsCat, 5 Hz

34

18

Role of Metric Selection

• Two different ways of measuring stream
score:
• Normalized by stream processing time.
• Normalized by stream bandwidth (kB).

• Usually doesn’t affect stream rankings—
but it can!

• Often leads to different relative
performance.

• Choice of metric will influence the
orchestrator’s suggested reallocation
scheme!

• Also, note initial inaccuracy of stream
scores: the system hasn’t had enough
time to collect performance metrics and
has to make some assumptions!

0

50

100

150

200

250

40:48.0 48:00.0 55:12.0 02:24.0

St
re

am
 V

al
ue

 (S
co

re
/k

B)

Time Point

64092
64093
64094

0

0.05

0.1

0.15

0.2

0.25

0.3

40:48.0 48:00.0 55:12.0 02:24.0

St
re

am
 V

al
ue

 (S
co

re
/u

ni
t

pr
oc

es
si

ng
 ti

m
e)

Time Point

Scoring per kB,
the light blue

stream does the
best at this time

point!

Scoring per
processing time,
the red stream

does the best at
this time point!

System initially
inaccurately

estimates stream
performance

This metric is usually
more volatile

35

This slide highlights the effect of the choice of stream performance metric on the orchestrator’s choices. As noted on slide
5, value/bandwidth was the metric used by the orchestrator to judge stream performance. Alternative metrics exist, however,
such as value/processing time. These metrics usually result in the same stream rank, but they often show different relative
performance (which would affect exact bandwidth-allocation weights), and they occasionally result in different stream ranks, as
shown here near minute 53. Scoring per processing time is also typically more volatile than scoring per bandwidth, as shown in
the graphs on this slide. Thus, the choice of metric influences the orchestrator’s proposed reallocations and its ability to maximize
system performance. Note also that scoring of the streams is initially quite inaccurate because the orchestrator hasn’t yet had
enough time to collect performance information about the individual streams and is therefore forced to make some assumptions
about their performance.

36

3. Conclusion

19

Conclusion

• We have created an unclassified, nontrivial (but not complex)
demonstration system that is capable of demonstrating the
ideas of resilience engineering.
–The Low-Bandwidth Text Analytics (LBTA) system incorporates an

orchestrator that optimizes the bandwidth allocations of different data
feeds based on the analyst’s current interest and the data feeds’ recent
value to that interest.

• The resilience engineering (RE) concepts demonstrated in
LBTA can be applied to other systems, such as:
–Communications networks.
–Sensor networks.
–Programming code.

A-1

Appendix A.
Additional Detail on the Limited Bandwidth Text Analytics (LBTA)

Demonstrator System Construction and Operation

A-2

20

Appendix:
Additional Detail on the

LBTA Demonstrator
System Construction and

Operation

UNCLASSIFIED

A-3

The remaining charts provided additional detail about the overall architecture and operation of the LBTA demonstrator.

A-4

NiFi as a Service
Throttles data according to
orchestrator bandwidth
allocationLogs FolderNiFi monitoring

files

Text analytics
output

Orchestrator Output
(stream & system

monitoring)

Text
Analytics

Log Parser

Data
Sender

Orchestrator

Display
Functions

Datasets

Nipyapi

Service commands via python

User interaction via GUI
NiFi control port
NiFi input port
NiFi output port
Shared NiFi/main storage
Storage
Python code
NiFi service

Demonstrator Detail View

UNCLASSIFIED

A-5

This schematic is a wiring diagram representing the full system. The full system runs inside a docker container that can be
hosted on a Linux machine or Amazon Web Services node. The goal is to show how the orchestrator and other python code
components interact with file storage and the NiFi service.

Arrows represent the direction of information flow, including generation of new files (arrows that end in the purple data
storage rectangles), reading of files (arrows that begin in the purple data storage rectangles), movement of files (arrows moving
from data sender through NiFi to text analytics output), and sending of commands (Nipyapi and NiFi as a service).

This diagram doesn’t necessarily represent user NiFi-disruption functions, which also act via the NiFi control port or via
service commands.

Interaction points available from the GUI are represented with yellow diamonds.

A-6

NiFi as a Service
Throttles data according to
orchestrator bandwidth
allocationLogs FolderNiFi monitoring

files

Text analytics
output

Orchestrator Output
(stream & system

monitoring)

• Throttling adjustment
• Stop/start NiFi processors
• Clear NiFi canvas
• Load template xml files
• Check if NiFi is running

Text
Analytics

Log Parser

Data
Sender

Orchestrator

Display
Functions

Datasets

Nipyapi

Service commands via python

User interaction via GUI
NiFi control port
NiFi input port
NiFi output port
Shared NiFi/main storage
Storage
Python code
NiFi service

• Stop/start NiFi service

Demonstrator Detail View

UNCLASSIFIED

Here, we have added some information about the types of interactions the orchestrator has with NiFi.

A-7

NiFi Service

Logs FolderNiFi monitoring
files

Text analytics
output

Orchestrator Output
(stream & system

monitoring)

• Throttling adjustment
• Stop/start NiFi processors
• Clear NiFi canvas
• Load template xml files
• Check if NiFi is running

(2) Throttle

(1) Add origin port info

(3) Send data out

(4) Monitor flow file
input/output through all

processors

Text
Analytics

Log Parser

Data
Sender

Orchestrator

Display
Functions

Datasets

Nipyapi

Service commands via python

User interaction via GUI
NiFi control port
NiFi input port
NiFi output port
Shared NiFi/main storage
Storage
Python code
NiFi service

• Stop/start NiFi service

Demonstrator Detail View

UNCLASSIFIED

Here, we show a little more detail about what is happening inside NiFi.

A-8

(1) JSON received via TCP

(2) Flow file created
• Time received
• Size received
• Port received from
• Content

(3) Flow file updated
• Port information

added to content

(4) Throttling controls
bytes/min for each
data stream
(x) Flow files that
wait too long are
discarded

(5) JSON sent out via TCP

NiFi Service
1

2

3

4

5

x x x x x
6

(6) NiFi monitors processor
activity according to a 5‐minute
moving average—records in a
log at regular intervals:
• Flow files/bytes in
• Flow files/bytes out
• Run status
• Bytes read/written
• Processing time/flow file

Logs Folder

JSON

JSON

NiFi input TCP port
NiFi output TCP port
NiFi processors
NiFi ControlRate (throttle)
processor

Flow file
JSON file
Log file
Discardx

NiFi Detail View

UNCLASSIFIED

A-9

This schematic is a zoomed-in view of what happens inside of the NiFi service. Up to five data streams may be operational
at any given time, but they will be throttled differently, depending on the performance of those streams detected by the
orchestrator. In the diagram, darker shading means that more flow files are being let through for that data stream. Flow files that
wait too long are discarded from the flow, as indicated by the red ×. Streams that experience more throttling (smaller proportion
of flow files let through) will also have a higher proportion of files discarded (indicated by the thickness of the red arrows).

A-10

Do Nothing

Do when:
• NiFi service is running.
• All operational input streams are

getting data through the throttle.
• Optimized bandwidth reallocation is

not expected to increase total
performance by more than
threshold.

Action includes:
• Recording “do nothing” decision.
• Recording monitoring information

for all data streams and full system.

Reallocate

Do when:
• NiFi service is running.
• All operational input streams are

getting data through the throttle.
• Optimized bandwidth reallocation is

expected to increase total
performance by more than
threshold.

Action includes:
• Recording “reallocate” decision.
• Stopping the ControlRate processors

in NiFi, changing their rate
parameter, and restarting those
processors.

• Recording monitoring information
for all data streams and full system.

Reboot

Do when:
(1) NiFi service is not running
OR
(2) At least one operational input
stream is not getting data through the
throttle.

Action includes:
• Recording “reboot” decision.
• If problem (1): Restart NiFi service,

make sure canvas is clear, load and
start template xml with default
bandwidth allocations.

• If problem (2): Stop all processors,
clear NiFi canvas, stop NiFi service,
restart NiFi service, load and start
template xml with default
bandwidth allocations.

Orchestrator Actions and Decision Algorithm

UNCLASSIFIED

This chart summarizes the orchestrator’s available actions and the conditions that must be met to choose each action. These
conditions are checked during each integration time using a decision algorithm.

A-11

What is happening in NiFi during reallocation?

For each data stream:
(1) Stop ControlRate processor.
(2) Change maximum rate.
(3) Restart processor.

1

2

3
All steps accomplished via

nipyapi without user
involvement.

UNCLASSIFIED

This chart gives a more detailed view of what occurs in the NiFi service during a reallocation event.

A-12

All steps
accomplished via
nipyapi and python

without user
involvement.

(1) Stop all processors.*
(2) Clear canvas.*
(3) Stop NiFi service.*
(4) Start NiFi service in blank state.
(5) Load and initialize template.
* Only if service is still running when
reboot decision is reached.2

1

3

4

5

What is happening in NiFi during a reboot?

UNCLASSIFIED

This chart gives a more detailed view of what happens inside of NiFi during a reboot decision.

A-13

Orchestrator: Recorded Information After Each Decision Cycle

System Level
• Timestamps of decision‐making
• Reboot/Reallocate/Do Nothing
decision

• Allowed maximum bandwidth
• Actual bandwidth used
• System value generated during
prior integration time

• Expected value in next integration
time if reallocation occurs

For Each Data Stream
• Timestamps
• Stream score metrics (with and without
processing time or kB normalization)

• Average text analytics processing time/file
• Feed rate in (files and bytes)

• Two methods of estimating byte rate—the value
used for orchestrator decision is also recorded.

• Post‐throttle feed rate (files and bytes)
• Two estimators for file rate based on different

monitoring methods—both are recorded.
• Proposed reallocation bandwidth limit

When a REBOOT decision is reached, only RED items are recorded.
BLUE items are determined from NiFi monitoring logs.
PURPLE items are determined from text analytics results.
Bold items are calculated from both information sources.

UNCLASSIFIED

This chart summarizes information that the orchestrator tracks and records after each decision cycle.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
(0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE

April 2021
2. REPORT TYPE

FINAL
3. DATES COVERED (From–To)

4. TITLE AND SUBTITLE

Resilience Engineering Demonstrator System:
Limited Bandwidth Text Analytics (Presentation)

5a. CONTRACT NUMBER
HQ0034-19-D-0001

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Swallow, Jessica G.
Fisher, Katherine I. ,
Kaminski, Nicholas J.
Jones, Sarah L.
Snyder, Jeffrey A.

5d. PROJECT NUMBER
AK-2-4793

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Defense Analyses
4850 Mark Center Drive
Alexandria, VA 22311-1882

8. PERFORMING ORGANIZATION REPORT
NUMBER

IDA Document NS D-22638

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

USD(R&E)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
 OF

ABSTRACT

SAR

18. NUMBER
 OF

PAGES

54

19a. NAME OF RESPONSIBLE PERSON
Bonneau, Robert

a. REPORT
Uncl.

b. ABSTRACT
Uncl.

c. THIS PAGE
Uncl.

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

15. SUBJECT TERMS

(571) 372-6724

Resilience engineering is a method that allows automated detection and correction of problems in an operational system in
real time. These problems may arise as the environment changes or as the user's needs change. To demonstrate
resilience engineering, IDA has built a proof-of-concept system. The demonstration system is a tool that collects multiple
data feeds for an analyst that is looking at a specific subject area. There is limited bandwidth for processing, so the data
feeds must be throttled to fit within the bandwidth limits. This briefing shows the demonstration system and how resilience
engineering improves the performance of the system.

Limited Bandwidth; Natural Language Processing; Resilience Engineering

Approved for public release; distribution is unlimited (25 May 2021).

	Front Cover
	Inside Cover
	Executive Summary
	Contents
	Resilience EngineeringDemonstrator System:Limited Bandwidth TextAnalytics (LBTA)
	Background
	Goal
	Text Analytics Concept
	Metrics
	Demonstration System—Without Resilience Engineering
	Example—System Performance without Resilience Engineeri
	Demonstration System—With Resilience Engineering
	Bandwidth Allocation
	User Interacts with System Through a GUI
	Example—System Performance with Resilience Engineering
	Same Example—Bandwidth Allocations
	Comparison: System with and without Resilience Engineering
	Role of Metric Selection
	Conclusion
	Appendix A.Additional Detail on the Limited Bandwidth Text Analytics (LBTA)Demonstrator System Construction and Operation
	Demonstrator Detail View
	NiFi Detail View
	Orchestrator Actions and Decision Algorithm
	What is happening in NiFi during reallocation?
	What is happening in NiFi during a reboot?
	Orchestrator: Recorded Information After Each Decision Cycle
	Report Documentation Page

