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Regularization for Continuously Observed Ordinal Response Variables with Piecewise-Constant 
Functional Predictors 

1. Introduction 

Many engineering applications involve the collection of functional data in which the unit of 
measurement is a curve measured over a continuous time domain. In this manuscript, we 
consider a case study involving a Follow-On Operational Test and Evaluation (FOT&E) 
conducted by the United States Army on the RQ-7BV2 Shadow, a tactical unmanned air vehicle 
system tasked with, among other tasks, providing full motion video to supported ground units. 
The quality of full motion video was the response variable of interest, and it was recorded on an 
ordinal scale continuously over the duration of each mission.1 In addition, important covariates, 
such as the air vehicle’s altitude and the distance from the air vehicle to the supported unit, were 
also observed continuously over time. With respect to notation, we let 𝑌𝑌𝑖𝑖�𝑡𝑡𝑖𝑖𝑖𝑖�, 𝑋𝑋1𝑖𝑖�𝑡𝑡𝑖𝑖𝑖𝑖�, and 
𝑋𝑋2𝑖𝑖�𝑡𝑡𝑖𝑖𝑖𝑖� be functions describing the video quality, altitude, and distance from the air vehicle to 
the supported unit, respectively, for mission 𝑖𝑖, measured at time 𝑡𝑡𝑖𝑖𝑖𝑖  (1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 = 54; 1 ≤ 𝑗𝑗 ≤
𝑚𝑚𝑖𝑖), where 𝑡𝑡𝑖𝑖𝑖𝑖 ∈ 𝑇𝑇𝑖𝑖, denotes the time domain for the 𝑖𝑖th mission. The value 𝑛𝑛 denotes the total 
number of missions from the test and the subscript mi denotes the number of observations (i.e. 
time points) for mission 𝑖𝑖. While functional data is common in practice and the field of 
functional data analysis has progressed in recent years [see Ramsay and Silverman (2005) for an 
overview of these analytical methods], there has been little if any research regarding the analysis 
of function-on-function modeling involving an ordinal response and continuous covariates.  

 Functional regression problems are generally categorized into three types:   

1. Functional predictor regression in which the response variable is regressed on functional 
covariates  

2. Functional response regression in which a functional response variable is regressed on 
scalar covariates 

3. Function-on-function regression in which a functional response is regressed on functional 
covariates.  

Regardless of the type of functional regression problem, there is a need to combine information 
both across (replication) and within (regularization) functions. In this context, we refer to 
“replication” from sampling perspective rather than the experimental design perspective. Like 
most DoD testing, our example contains no pure replication with factors like altitude and 
distance being fixed. Data are observed in the following triplicate for each mission:  
�𝑌𝑌𝑖𝑖�𝑡𝑡𝑖𝑖𝑖𝑖�,𝑋𝑋1𝑖𝑖�𝑡𝑡𝑖𝑖𝑖𝑖�,𝑋𝑋2𝑖𝑖�𝑡𝑡𝑖𝑖𝑖𝑖��. Information in these triplicate observations cross the 𝑖𝑖 = 1, 2, … , 𝑛𝑛 =
54 missions is combined to construct a predictive model that describes the relationship between 

                                                           
1 Each mission consists of the period of time between the air vehicle’s launch and recovery during which the air 
vehicle was tasked to provide full motion video to a ground unit participating in the test, such as the First Battalion, 
6th Infantry Regiment.   



the response and covariates. In our example, the predictive model will enable the Department of 
Defense (DoD) to profile video quality given the Shadow’s altitude and distance. Regularization 
involves imposing constrains on the data collected over time in order to borrow information 
across time periods (i.e., observations “within” a function) that are expected to be similar to each 
other. If a variable is expected to have similar values across a range of time, then the estimation 
of the function at time t is improved by borrowing the information on this variable from nearby 
observations in time.  For many functional data problems, regularization involves some type of 
data smoothing. Regularization can also be used to prevent overfitting by accounting for 
potential redundancy of time points that are similar to one another.   

In this paper, we will discuss the analysis of a function-on-function problem and compare the use 
of functional smoothing to an alternative approach that focuses on thinning. The thinning 
approach is commonly used in many communities including the DoD when data are highly auto-
correlated. In the comparison, we will illustrate problems with thinning when the functional 
structure of the data is more complex than a simple autocorrelation.  

This paper is motivated by a desire to develop a predictive capability linking the covariates 
distance and altitude to the video quality of the Shadow UAV. To exploit information across 
missions in a predictive analysis, we use an ordinal mixed regression with both approaches. The 
remainder of the paper is organized as follows. Section 2 summarizes the RQ-7BV2 Shadow, the 
test that generated the data, and characteristics of the data itself. Section 3 discusses the two 
regularization approaches considered to prevent overfitting and leverage information across time 
within each mission. Section 4 provides background on cumulative logistic regression and 
generalized linear mixed models, which are applied to the both of the regularized datasets. 
Section 5 compares results from these two methods discussed, and Section 6 contains concluding 
remarks.  

2.  Operational Testing of the Shadow UAV 

Prior to fielding new capabilities, US Army systems undergo testing meant to mimic the real 
environment in which the system will be employed. This process, called operational testing, is a 
key part of the United States Department of Defense (DoD) acquisition process. These tests use 
systems that are representative of the versions that will be deployed (e.g., production line 
systems as opposed to prototypes) and are conducted in environments similar to those in which 
the system will be used. System operators have military rank, training, and experience consistent 
with the system’s concept of employment. The goal is to characterize the capabilities of the 
system that the warfighter can expect should the system be used in combat.  

The Network Integrated Evaluation (NIE) in a twice-annual event conducted by the US Army to 
evaluate and help improve integration of the Army’s tactical communication effort. These events 
include hundreds of US Army soldiers, often including units preparing to deploy overseas, 
including a brigade-sized unit of friendly “blue” forces simulating a multi-week fight against an 
opposing “red” force. The iteration in May of 2014 presented a good opportunity to exercise the 



full capabilities of the Shadow and observe how a US Army brigade was able to employ it in a 
simulated combat environment. Of particular interest at this test were upgrades to Shadow’s data 
link (through which the air vehicle receives commands from the ground and sends back imagery) 
and interface with ground units. Over the course of the test, 54 missions were recorded, including 
over 244 flight hours.  

The Shadow2 is a tactical unmanned air vehicle system with the primary mission3 of 
reconnaissance, surveillance, target acquisition, and battle damage assessment.  It is operated by 
two Soldiers in a ground control station, one who flies the air vehicle and the other who operates 
the payloads, including both optical and infrared cameras capable of capturing full-motion video. 
The aircraft has a wingspan of over 20 feet, weighs roughly 460 pounds, is launched 
pneumatically, and normally lands on a paved runway. It has already seen over 970,000 flight 
hours of use by the US Army in both Iraq and Afghanistan. Typical missions include 
investigating particular areas in search of enemy units, reconnaissance of convoy routes to detect 
enemy activity, and surveillance of high-value targets or buildings. Forward-deployed units 
supported by the Shadow may be equipped with remote video terminals capable of receiving 
full-motion video from the Shadow payload in real-time. Analysis of the Shadow’s capability to 
provide continuous full-motion video to supported units as a function of the Shadow’s altitude 
and distance provides the motivation for this paper.  

A typical mission for Shadow might proceed as follows: 

1. After launching, the Shadow receives tasking to investigate a particular area in support of 
one or more ground units capable of receiving video transmissions from the Shadow.  

2. An airspace coordination cell will assign the Shadow air space in which to operate, and 
the Shadow will proceed towards the area, staying within the altitude and location 
restrictions of its assigned airspace.  

3. Once it arrives on station, the Shadow will maintain altitude with a circular orbit, 
typically off-set from the target or area of interest.   

4. As the needs of the supported unit change, the Shadow’s tasking is altered dynamically, 
often requiring the Shadow to re-position to accommodate the new tasking.  

5. The Shadow is re-tasked as needed throughout the duration of its mission (potentially up 
to 9 hours) until its mission is complete and it returns to base.  

Over the course of a mission, Shadow will change its location in response to new assignments 
and may change altitude due to airspace restrictions that change as other air assets (helicopters, 
etc.) enter and leave the area. Additionally, Shadow may climb to provide better line of sight to 

                                                           
2 Though this paper focuses on the capabilities of the air vehicle, the RQ-7BV2 Shadow system also includes ground 
equipment, such as the pneumatic launcher, recovery system, and the equipment by which the air vehicle is 
controlled from the ground. Since these components are not of interest in this paper, we will use the terms 
“Shadow” and “air vehicle” interchangeably.  
3 Shadow has many other capabilities and missions that were evaluated during this test event, but our data and the 
unique challenges that came with it concern the ISR capabilities.  



supported units or descend to avoid cloud cover, which can prevent the camera from observing 
activity on the ground.  

Summary of Test Data 

Data resulting from this test have unique characteristics. For each mission, the quality of the 
video provided by Shadow is recorded as a three-level4 ordinal variable. This data was collected 
by Army officers co-located with the supported units. These officers observed the video provided 
by the Shadow in real-time, recording the initial quality of the data on the ordinal scale and 
noting the times at which video quality degraded or improved. The resulting timeline captures 
the video quality at any point during the mission, rated ordinally. Shadow’s altitude and distance 
were recorded over time at a rate of 1

60
 Hz (once per minute). Figure 1 plots these three variables 

for a representative mission. 

 

Figure 1:  Example flight from RQ-7BV2 Shadow FOT&E. Video quality is measured on a 
three-level ordinal scale, increasing from “No Video” to “Intermittent Video” to 

“Continuous Video”. 

Since video quality is observed ordinally, its profile over time presents itself as piece-wise 
constant for periods of time. Both covariates, distance and altitude, also have piece-wise constant 

                                                           
4 No Video, Intermittent Video, and Continuous Video 



profiles over time with small perturbations that exhibit high autocorrelation. The small 
perturbations in distance are due to the circular orbit of the air vehicle. Relative to both the 
magnitude of the distance and the larger changes in distance (ex. Note the small perturbations in 
distance from 320 minutes to 450 minutes), this cyclical variation is negligible. Based on the 
behavior of the air vehicle described above, it is reasonable to think of these covariates as step 
functions:  Changes in altitude are infrequent during most missions, and distance to target tends 
to change substantially only when the air vehicle is repositioning for a new task. The median first 
order autoregressive correlation across all missions is r=0.85, but this does not tell the whole 
story. Autocorrelation is highly variable within missions. Over regions where Shadow maintains 
altitude and is not re-tasked, both covariates will have autocorrelations near 1, since Shadow did 
not change position beyond its orbit. As Shadow repositioned, both altitude and distance changed 
substantially in short periods of time, yielding much lower autocorrelations during those periods. 
In the following sections, we will discuss two approaches for addressing the autocorrelation and 
piece-wise constant structure of these variables as a possible methods for regularizing the data. 

 

3. Regularization Approaches for Individual Missions 

As noted earlier, video quality, altitude and distance exhibit piece-wise profiles across time and 
hence much of the data observed in real-time is redundant in nature. In most functional data 
applications, information across time that is observed to be similar (and hence exhibits high auto-
correlation) is distilled into a summary measure.  This process is known as regularization. In this 
section, we discuss two approaches to regularizing Shadow data. 

Thinning Approach 

One common approach to addressing autocorrelation among observations within a given mission 
is to thin the data. Thinning is often used in the DoD testing community to account for 
autocorrelated data observed over time and has been applied to a disparate systems from radars 
to UAVs. While thinning is not typically considered a regularization approach by the functional 
data community because it ignores complex functional structures, it is relevant to our analysis 
because of its prevalence in use and the ease implementation.  

Generally, thinning data by a rate of λ means sampling the original data set such that a data set of 
size 𝑛𝑛 (rounded to the nearest integer) is generated, where 𝑛𝑛 is the total number of data points in 
the autocorrelated data set and 𝜆𝜆 ∈ (0,1). By letting 𝜆𝜆 = 1 − 𝜎𝜎𝑎𝑎 where 𝜎𝜎𝑎𝑎 is an estimate of the 
autocorrelation in our data set, we can theoretically sample data in such a way that they are 

independent by taking every ℎth observation, where ℎ = �1
𝜆𝜆
� 5. However, to achieve 

independence the autocorrelation must be constant across the full time range.  

                                                           
5 The ceiling function. 



Looking to the right side of Figure 1 (near t=447), we can see that the response variable can 
change quickly at times. Should the thinning be performed systematically as described above, 
such periods may be missed completely. To avoid this scenario, we drew (1 − 𝜆𝜆)∑ 𝑚𝑚𝑖𝑖

𝑛𝑛
𝑖𝑖=1  

observations from the 𝑁𝑁 = ∑ 𝑚𝑚𝑖𝑖
𝑛𝑛
𝑖𝑖=1  total number of data points without replacement. The 

autocorrelation from the Shadow data set across all missions was 𝜆𝜆 = 0.85, so only 15% of the 
data was retained post-thinning. After thinning the data, we achieve an effective sample size of 
1,983 data points or 15% of the 13,496 observations taken at one minute intervals. As will be 
discussed in more detail in Section 5, a cumulative logistic mixed model regression was fit to the 
thinned data, and factor effects for altitude and distance were estimated. To account for the 
stochastic variability of this approach, this process was repeated 500 times. Parameter estimates 
and associated standard errors were recorded, and the median values across the 500 runs was 
used to compute a p-value for the significance of each factor. The results from this approach are 
shown in Section V. Table 1 shows a subset of the 23 data points sampled in the 500th iteration 
via thinning from the example mission.  

Functional Smoothing Approach 

The thinning approach ignores several features of the data, including the non-constant 
autocorrelation within missions. By using thinning to regularize the data, have reduced the 
amount of information available when fitting our regression model in proportion to the 
autocorrelation observed across the whole data set, but this brute force approach ignores the 
unique structure of each mission. For example, a mission with 10 different distance (location) 
changes and no altitude changes provides different information than a mission with 2 distance 
(location) changes and two altitude changes. Thinning assumes that each observation is 
correlated with observations adjacent in time, and that this correlation is constant over time. 
Contrary to this assumption, the data shown in Figure 1 could more accurately be described as 
piece-wise constant curves. Both distance and altitude remain constant for long periods of time, 
then exhibit rapid changes, then return to being constant or near-constant. This behavior can be 
accurately modeled using step functions. The distance factor resembles a step function 
contaminated by small cyclical perturbations, with the perturbations resulting from the circular 
loiter pattern of the air vehicle when holding position near a target or area of interest. Since these 
perturbations are small in magnitude relative to changes in distance that occur when the air 
vehicle is assigned a new task, the loss of this feature when approximating the factor as a step 
function should have minimal impact on our results. The approach we present below accounts 
for the structure of the observed curves while still allowing us to fit a regression model for 
prediction and variance quantification.  

To model altitude and distance as step functions, we approach the data on a mission-to-mission 
basis. The critical challenge is to accurately identify time points corresponding to changes in the 
covariates. The change points for video quality are already recorded in the data. Using the set of 
change points from both covariates and the response variable, we can estimate each factor’s 
value over the regions between each change point. Over these regions, all three curves should be 



constant or near-constant, making estimation of the functions for each region trivial. This process 
is summarized in the following list: 

1. Identify change points for altitude and distance for each mission.  
2. For each mission, generate a set of change points by combining the change points from 

altitude, distance, and video quality for that flight. 
3. Estimate the value of each factor for each interval between two change points. We used 

the median over the range to protect against sensitivity to the exact placement of the 
change point.  

The result of this process is a step function estimate of each factor for each flight. 

Change Point Identification 

In many applications, identifying change points for a given curve requires both identifying the 
number of change points and identifying the correct locations in time where the changes occur. 
These locations are often referred to as knots6 in the literature on spline fitting. As mentioned in 
Jupp (1975), finding the proper locations is computationally difficult for larger datasets with a 
large amount of locations. In many cases, selecting the number and locations of knots can be 
done by hand. This is undesirable in our case and others for several reasons. First, since the 
number of functions to be approximated is large, selecting knot locations by hand will be time 
consuming. Second, human error is introduced when deciding proper knot placement. Though 
still computationally costly, modern computational capabilities and algorithms make automated 
knot-fitting a viable option for our data set. 

The literature contains several methods for identifying knot locations. Processes we considered 
can generally be described as having two steps. First, the algorithm will find the optimal location 
for a fixed number of knots. Next, cross validation method is used to compare fits using various 
numbers of knots to select the optimal number of knots. One method, proposed in Picard et al. 
(2005) assumes that the data are generated by a Gaussian process with the mean specified by a 
step function and independent variances within a cluster. Dynamic programming is used to 
reduce the computational complexity of the algorithm to O(n2). Another approach is to use a 
Haar wavelet basis with even/odd cross validation, as proposed by Nason (1996). The Haar basis 
is piecewise constant, making it well suited to approximating a step function. The advantage to 
this method is that the wavelet decomposition is computationally fast, allowing it to work well 
when other methods may prove to be computationally infeasible. Though we did not use this 
approach, Haar wavelets should be investigated in future work as a potential alternative to the 
approach described below. 

                                                           
6 In this manuscript, we use the phrase “knots” exclusively in the context of spline fitting. We include this note to 
avoid confusion among readers familiar with aviation or nautical terminology, where the same word is used as a 
measure of speed.  



The approach used in this application was to approximate the step function via a spline of degree 
0. Using the methods of Spiriti et al. (2013), a genetic algorithm was used to find the optimal 
knot locations. The optimal locations are those which minimize the residual sums of squares 
between the approximation and the data collected. Denoting the covariate to be approximated by 
𝑋𝑋𝑘𝑘𝑖𝑖, the residual sums of squares criterion for 𝑟𝑟 knots for the 𝑘𝑘th factor on the 𝑖𝑖th mission is 
given by  

RSS(𝒃𝒃𝒊𝒊, 𝝃𝝃𝒊𝒊) = ��𝑋𝑋𝑘𝑘𝑖𝑖�𝑡𝑡𝑖𝑖𝑖𝑖� − � 𝑏𝑏𝑖𝑖𝑖𝑖𝐵𝐵𝑖𝑖𝑖𝑖(𝑡𝑡𝑖𝑖𝑖𝑖;
𝑟𝑟𝑖𝑖+1

𝑖𝑖=1

𝝃𝝃𝒊𝒊)�

2𝑚𝑚𝑖𝑖

𝑖𝑖=1

, 

where 𝝃𝝃𝒊𝒊 denotes the set of knot locations,  𝐵𝐵𝑖𝑖𝑖𝑖 a spline function of degree zero, and 𝑏𝑏𝑖𝑖𝑖𝑖 the 
coefficient for the 𝑙𝑙th spline function for the 𝑖𝑖th mission. The criterion was then calculated for 
each number of possible knots ∈ 1, … , 𝑟𝑟𝑚𝑚𝑎𝑎𝑚𝑚.  

Generalized cross validation (GCV) reduced the computational time of this process. The number 
of knots must be identified for each covariate for each mission, meaning the computationally 
taxing process described above must be repeated many times. To reduce overall computation 
time, generalized cross validation (GCV) was used. Since the change points from both covariates 
and the response variable will be combined for each mission, it was desirable to identify a 
parsimonious set of knots that is adequate for modeling each covariate. Therefore, we added a 
penalty term based on variance of the covariate. Denote the number of knot locations selected by 
GCV for a single covariate to be by �̂�𝑟𝐺𝐺𝐺𝐺𝐺𝐺 = arg min

r ∈1,2,…r𝑚𝑚𝑚𝑚𝑚𝑚

GCV(𝑟𝑟). Instead, we choose the largest �̂�𝑟 

such that GCV(�̂�𝑟) ≤ GCV(�̂�𝑟𝐺𝐺𝐺𝐺𝐺𝐺) +  SD(GCV(𝒓𝒓)) and �̂�𝑟 ≤ �̂�𝑟𝐺𝐺𝐺𝐺𝐺𝐺. As the number of knots increases, 
GCV(𝑟𝑟) decreases, with the rate of decrease eventually approaching 0. Penalizing based on the 
standard deviation of GCV(𝑟𝑟) pushes �̂�𝑟 towards the “elbow” of the curve defined by GCV(𝑟𝑟) and 
away from the tail. While this penalty was shown to improve the function estimates for this data 
set, it may not be necessary for other applications. 

Step function approximation 

Once the knots are found, we combine the change points from all factors (the observed change 
points from video quality and the estimated knots from altitude and distance) for each mission. 
For mission 𝑖𝑖, let 𝜉𝜉11𝑖𝑖, 𝜉𝜉 21𝑖𝑖, … , 𝜉𝜉 𝑘𝑘𝑖𝑖1

1𝑖𝑖 ∈ 𝛏𝛏� 1𝑖𝑖 be the set of knots for altitude. Similarly, let 𝛏𝛏� 2𝑖𝑖 and 𝛏𝛏3𝑖𝑖 

be the set of estimated knots for distance and observed change points for video quality for 
mission 𝑖𝑖 respectively. Then 𝛏𝛏�𝑖𝑖 = 𝛏𝛏�1,𝑖𝑖⋃𝛏𝛏�2,𝑖𝑖⋃𝛏𝛏3,𝑖𝑖 is the estimated set of all change points for 
mission 𝑖𝑖. To eliminate redundancy, change points that are close together in time (less than five 
minutes apart) are combined. Figure 2 shows the change points for each variable for our example 
mission. The knots from the estimated altitude and distance curves as well as the change points 
recorded for video quality have been shown in dotted lines on each of the charts. Vertical lines 
represent estimated change points, with the symbol used in the line indicating the factor 



generating the change point. If we denote our example flight as mission 7, then the line of “x”s 
represents the single knot in 𝛏𝛏�11, the lines of “+”s represent the knots from 𝛏𝛏�21, and the lines of 
“◊” represent the change points from 𝛏𝛏31. Taken together, these change points along with the 
beginning and end of the mission define a set of 𝑟𝑟1 + 1 = 8 intervals on the domain of this flight, 
𝑇𝑇1. Let 𝜉𝜉11 < ⋯ < 𝜉𝜉𝑟𝑟1

1 ∈ 𝛏𝛏1 be the change points for our example mission, and  𝜏𝜏𝑖𝑖 = (𝜉𝜉𝑖𝑖, 𝜉𝜉𝑖𝑖+1] be 
the intervals between each change point. Then ∪𝑖𝑖=1

𝑟𝑟1+1 𝜏𝜏𝑖𝑖 = 𝑇𝑇1. Finally, we must estimate values of 
the step function for each interval. For altitude, let 𝑋𝑋�11(𝑡𝑡) =  𝑐𝑐𝑖𝑖1 ∀ 𝑡𝑡 ∈ 𝜏𝜏𝑖𝑖. Since the curves are 
typically near-constant over these intervals, the simple median is adequate. Thus, 𝑐𝑐𝑖𝑖1 =
𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑛𝑛{𝑋𝑋1(𝑡𝑡)|𝑡𝑡 ∈ 𝜏𝜏𝑖𝑖1}.  

 

Figure 2: Observed values and fitted 0-order splines (for altitude and distance) with change 
points included from each function.  



This representation of the data is simultaneously simpler and consistent with the complex 
functional nature of the data. Table 2 shows our example mission represented in tabular form. 
Applying the same procedure to all 54 missions in our data set yields a data matrix with a total of 
347 rows, with each row corresponding to a period of time during a flight when the functional 
covariates and response were constant. Note that the effective sample size resulting from this 
approach (347 effective observations) is substantially smaller than the sample size resulting from 
the thinning regularization (1,983 effective observations). 

4. Predictive Modeling Approach 

After performing the regularization of the data within each mission, we next need to construct a 
predictive model that links the information across missions to determine the effect of the distance 
and altitude covariates to the video quality response variable.  

Cumulative Logistic Regression 

Proportional odds logistic regression is a standard approach for modeling independent ordinal 
responses, and the time dependent nature of functional data can be addressed via a mixed ordinal 
logistic model.  Before discussing the mixed ordinal logistic model, we will review the ordinal 
logistic model for independent responses. For a response variable 𝑦𝑦 taking on ordinal values 1 to 
C and a 1x𝑘𝑘 vector of explanatory variables, 𝒙𝒙𝑖𝑖𝑖𝑖, the proportional odds model is given by 

   log � 𝐹𝐹𝑖𝑖𝑖𝑖
1−𝐹𝐹𝑖𝑖𝑖𝑖

� = 𝛼𝛼𝑐𝑐 + 𝒙𝒙𝑖𝑖𝜷𝜷,  𝑐𝑐 = 1, … ,𝐶𝐶 − 1  (1) 

where 𝒙𝒙𝑖𝑖𝑖𝑖𝜷𝜷 = 𝛽𝛽1𝑋𝑋1 + ⋯+ 𝛽𝛽𝑘𝑘𝑋𝑋𝑘𝑘  and 𝐹𝐹𝑖𝑖𝑐𝑐 denotes the probability that the response for unit i falls 
into the cth category or lower. More explicitly, 

 𝐹𝐹𝑖𝑖𝑖𝑖𝑐𝑐 = 𝑃𝑃�𝑌𝑌𝑖𝑖𝑖𝑖 ≤ 𝑐𝑐� = exp�𝛼𝛼𝑖𝑖+𝒙𝒙𝑖𝑖𝑖𝑖𝜷𝜷�
1+exp�𝛼𝛼𝑖𝑖+𝒙𝒙𝑖𝑖𝑖𝑖𝜷𝜷�

,    𝑐𝑐 = 1, … ,𝐶𝐶 − 1. 

 

This model is also referred to as the cumulative logit model, since the explanatory variables predict 
the cumulative probabilities of y.  Other common ordinal logistic regression models include the 
adjacent-category model and the continuation-ratio model [see Agresti (2007), and Agresti 
(2012)]. We utilize the cumulative logit model in our analysis, but the methodology presented here 
could also be applied with other link functions.  Therefore, for our application, let 𝒙𝒙𝑖𝑖𝑖𝑖 be the 𝑙𝑙th 
regularized data point from the 𝑖𝑖th mission. Then 

𝐹𝐹𝑖𝑖𝑖𝑖𝑐𝑐 = 𝑃𝑃�𝑌𝑌𝑖𝑖𝑖𝑖 ≤ 𝑐𝑐� =
exp (𝛼𝛼𝑐𝑐 + 𝒙𝒙𝑖𝑖𝑖𝑖𝜷𝜷)

1 + exp (𝛼𝛼𝑐𝑐 + 𝒙𝒙𝑖𝑖𝑖𝑖𝜷𝜷)
, 𝑐𝑐 = 1,2. 

Generalized linear mixed models 

In many applications, data is observed longitudinally in clusters. With respect to this application, 
observations occur across time for each mission and the mission represents a cluster of 



observations. Missions are assumed independent of one another but observations across time 
within a given mission are inherently correlated, and the correlation structure must be properly 
accounted for in the analysis. For multilevel data such as this, random cluster (ex. here cluster = 
mission) effects can be added into the regression model to account for this correlation. The 
resulting model is a mixed model containing fixed or population averaged effects which address 
systematic variation across the missions and random or subject-specific effects which address 
within mission variation. Mixed models for continuous normal outcomes were first presented by 
Laird and Ware (1982), and these models appear extensively in the literature. In non-normal data 
situations, these mixed models are commonly referred to as generalized linear mixed models 
(GLMM) and Myers, Montgomery, Vining and Robinson (2010) discuss applications of these 
models to engineering and industrial data.  

Assuming there are 𝑖𝑖 = 1, … ,𝑛𝑛 independent missions with 𝑙𝑙 = 1, … , 𝑟𝑟𝑖𝑖 regularized observations 
per mission, the GLMM relates the conditional mean for the ith mission to the fixed and random 
effects as follows, 

    𝐸𝐸[𝑌𝑌𝑖𝑖𝑖𝑖|𝜹𝜹𝑖𝑖 ,𝒙𝒙𝑖𝑖𝑖𝑖] = 𝑔𝑔−1(𝒙𝒙𝑖𝑖𝑖𝑖𝜷𝜷 + 𝒛𝒛𝑖𝑖𝑖𝑖 + 𝜹𝜹𝑖𝑖), 

where 𝑌𝑌𝑖𝑖𝑖𝑖 is the response in mission i at the 𝑙𝑙th regularized data point, g is a differentiable 
monotonic link function, 𝒙𝒙𝑖𝑖𝑖𝑖 is the associated (1x2) vector of fixed effect model terms (altitude 
and distance), 𝜷𝜷 is the corresponding (2 x 1) vector of fixed effect regression coefficients, 𝜹𝜹𝑖𝑖 is 
the (q x 1) vector of random factor levels associated with the ith mission and 𝒛𝒛𝑖𝑖𝑖𝑖  is the (1 x q) 
vector of random effects.  For the thinning approach, there are (1 − 𝜆𝜆)∑ 𝑚𝑚𝑖𝑖

𝑛𝑛
𝑖𝑖=1 = 𝑁𝑁𝑡𝑡ℎ𝑖𝑖𝑛𝑛 = 1,983 

effective data points per sampled itteration, and for the smoothing approach, there are 
∑ (𝑟𝑟𝑖𝑖 + 1)𝑛𝑛
𝑖𝑖=1 = 𝑁𝑁𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑡𝑡ℎ = 347 effective data points. The conditional response, 𝐸𝐸[𝑌𝑌𝑖𝑖𝑖𝑖|𝜹𝜹𝑖𝑖, 𝒙𝒙𝑖𝑖𝑖𝑖], is 

assumed to have an exponential family member distribution and each of the q random effects are 
assumed normally distributed with mean zero, and the variance-covariance matrix of the vector 
of random effects in the ith mission is denoted 𝑫𝑫𝑖𝑖. The 𝑫𝑫𝑖𝑖 are typically taken to be the same for 
each cluster. 

 Extending the cumulative logit model to the GLMM, the conditional cumulative 
probability of 𝑌𝑌𝑖𝑖𝑖𝑖 resulting in an outcome in the cth category can be denoted as 𝐹𝐹𝑖𝑖𝑖𝑖𝑐𝑐 = 𝑃𝑃(𝑌𝑌𝑖𝑖𝑖𝑖 ≤
𝑐𝑐|𝜹𝜹𝑖𝑖,𝒙𝒙𝑖𝑖𝑖𝑖) . The GLMM representing the probability the response for unit i at time j falls into the 
cth category or lower is given by 

𝐹𝐹𝑖𝑖𝑖𝑖𝑐𝑐 = 𝑃𝑃(𝑌𝑌𝑖𝑖𝑖𝑖 ≤ 𝑐𝑐|𝜹𝜹𝑖𝑖,𝒙𝒙𝑖𝑖𝑖𝑖) =
exp�𝛼𝛼𝑐𝑐 + 𝒙𝒙𝑖𝑖𝑖𝑖𝜷𝜷 + 𝒛𝒛𝑖𝑖𝑖𝑖𝜹𝜹𝑖𝑖�

1 + exp�𝛼𝛼𝑐𝑐 + 𝒙𝒙𝑖𝑖𝑖𝑖𝜷𝜷 + 𝒛𝒛𝑖𝑖𝑖𝑖𝜹𝜹𝑖𝑖�
 

where the notation is as defined previously. 

5. Comparison of Results 



Data from both regularization approaches (i.e. thinning and smoothing) were analyzed using a 
cumulative logistic mixed model regression, as discussed in Sections IV. The random effect for 
mission was statistically significant (p-value <0.01) for both approaches, and no second-order 
interaction effects were significant. For the thinning approach, five hundred Monte Carlo data 
sets were. Table 3 shows the median parameter estimates and median standard errors across the 
500 runs with associated p-values. Table 4 shows results and p-values from the cumulative 
logistic mixed model based on the data set generated by smoothing. Due to concerns over 
operational security, the altitude and distance values were transformed to obscure the exact 
impacts these factors have on system performance.  

Both sets of results report that video quality tends to degrade the further away from the supported 
unit the air vehicle is. The negative parameter estimates for altitude resulting from both 
regularization approaches are counterintuitive. Since the range of altitudes observed during this 
test (1,200 to 3,600 meters) are small relative to the horizontal distances between the air vehicle 
and supported unit, differences in altitude are unlikely to make a substantial impact on the 
strength of the signal from the air craft to the supported unit. Therefore, the principal impact one 
might expect from altitude would be on the line-of-sight between the air vehicle and the antenna 
capturing the video for the supported unit. If this line-of-sight is obstructed by brush, small trees 
or other such microterrain, video quality may degrade. Aircraft flying at higher altitudes are less 
likely to face line-of-sight obstructions, so if altitude were to have any effect on video quality, 
we would expect improved performance at higher altitudes. The date of test factor is included to 
model changes in performance over the duration of the test. The positive parameter estimate for 
Date of Test indicates that Shadow performance improved over the duration of the exercise, 
perhaps as crews became more familiar with operating the air vehicle and device used to capture 
video broadcast by the air vehicle.  

One major difference in the results from the two methods is the statistical significance of 
altitude. Though the parameter estimates are similar, the model fit to the data generated using the 
step function approximation of the factors shows a larger standard deviation and a much larger p-
value than the thinning approach generated. Within the DoD, p-values smaller than 0.2 are 
typically regarded as statistically significant. By this standard, using the thinning approach would 
lead us to conclude that altitude had a significant negative effect on video quality. We believe 
this conclusion is incorrect based on the results of the step function approach which incorporates 
the piece-wise constant structure of the altitude factor. This conclusion is also supported by our a 
priori knowledge of the system, which suggests that video provided by Shadow should not 
degrade in response to changes in altitude.  

The difference in reported p-values is attributable to the difference in standard errors reported by 
these methods. Note that the standard error reported based on the smoothing regularization is 
much larger than the standard error based on thinning. This is due in part to the much larger 
effective sample size (1,983 vice 347) that results from thinning vice smoothing. As data are 



collected on an increasingly granular scale, it is vital that appropriate methodologies are used to 
regularize the data and accurately represent the true amount of information.  

Understanding population-level system performance as well as mission-to-mission variability is 
critical, and our approach provides estimates for both. Figure 3 shows the population estimates of 
the probabilities of experiencing varying levels of video quality as a function of the distance 
from the air vehicle and supported unit midway through the test (date of test = 11).  The lower 
black line show the estimated probability of experience video quality of at least Intermittent 
Video or higher, and the higher black line shows the probability of experiencing full motion 
video. The cumulative probabilities were computed by averaging over the random effects.  

 

 

Figure 3: Cumulative probability of video quality by distance from ground station 

Looking only at population-level estimates obscures the considerable mission to mission 
variation observed during testing. Figure 4 shows the estimated video quality thresholds for each 
mission in gray lines with the thinker black line representing the population estimate shown in 
Figure 3. The left panel of Figure 4 shows the probability of no video as a function of distance, 
and the right panel shows the probability of no video or intermittent video. There is considerable 
variability from mission to mission. For example, the probability of intermittent video or no 
video (right panel) on the best mission was lower than the population mean probability of no 
video(left panel). Mission-to-mission variability can be attributed to any of a large number of 
sources, potentially including meteorological conditions during the mission, the air vehicle and 
support equipment used for the mission, the proficiency of the air vehicle crew, and the 
proficiency of the soldiers in the supported unit with the video capture device. Since all of these 
factors may also vary when the Shadow system is deployed, quantifying both the population 
average and mission-to-mission variability provides the US Army with valuable information on 
the utility of the system.  



 

Figure 4: Thresholds between levels of video quality for each mission 

6. Conclusions 

We have proposed two approaches for analyzing continuously-observed ordinal response 
variables with continuously-observed piece-wise constant predictors. While intuitively appealing 
and straightforward to execute, the thinning approach to regularization may not be adequate for 
autocorrelated data with identifiable functional forms.  When autocorrelation is not constant 
within functions, thinning may overestimate the effective sample size of the data, leading to 
Type 1 errors when determining factor significance. A more rigorous study of the performance 
of thinning would be necessary to show this result generally, but this is beyond the scope of our 
case study. The thinning approach to regularization we proposed leverages the piecewise-
constant structure of our data, and we can be used to generate a data set that accurately represents 
the observed test data.  Combined with accurate regularization, cumulative logistic mixed model 
regression can provide population-level performance estimates and measure mission-to-mission 
variation.  

This approach may be generalizable beyond application for the United State DoD. In clinical 
trials, patients may be monitored frequently over time, and some medications require 
administration characterized by heavy doses followed by recovery periods during which the drug 
is administered in a lower dosage or not at all. A plot over time of the level of medication may 
resemble a step function. Within the DoD many other unmanned air vehicle systems are in 
development, many of which will have the ability to transmit full motion video. It is likely that 
testing these systems will generate data similar to that discussed above. As functional data 
continues to become increasingly common across all fields, novel analysis approaches must 
continue to be pursued.  
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Distance 
(kM) 

Altitude 
(m) 

Video 
Quality Mission Day of 

Exercise 
29.4 1259.42 1 7 4 
46.3 2358.69 1 7 4 
45.1 2437.39 1 7 4 
46.4 2441.11 1 7 4 
46 2435.69 1 7 4 

53.7 2435.27 1 7 4 
55.5 2438.62 1 7 4 
⋮ ⋮ ⋮ ⋮ ⋮ 

33 1409.26 2 7 4 
 

Table 1:  Data points from example mission selected by thinning.  

 

  



 

Distance 
(kM) 

Altitude 
(m) 

Video 
Quality Time Mission Day of 

Exercise 
45.1 2437 1 47 7 4 
53.7 2438 1 58 7 4 
50.2 2437 2 13 7 4 
53.6 2743 2 163 7 4 
41.1 2742 2 39 7 4 
30.7 2742 2 126 7 4 
32 1864 3 7 7 4 

31.3 1417 2 6 7 4 
 

Table 2:  Factor values over intervals between change points.  

 

  



 

Factor Parameter Estimate Standard Error p-value 
Altitude 

(transformed) -0.144 0.0858 0.057 

Distance 
(transformed) -0.292 0.1513 0.029 

Date of Test 0.218 0.0653 <0.000 
Table 3:  Cumulative logit mixed model regression results based on thinning regularization.  

  



 

 

Factor Parameter Estimate Standard Error p-value 
Altitude 

(transformed) -0.109 0.2236 0.628 

Distance 
(transformed) -0.513 0.2480 0.039 

Date of Test 0.207 0.0654 0.002 
Table 4: Cumulative logit mixed model regression results using smoothing regularization. 
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