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Executive Summary 

Over the past four decades, the field of machine learning has produced deep insights into the 
nature of induction, as well as compelling applications for business and government. Interest in 
this topic has exploded in recent years, due to breakthroughs in computational methods, increased 
processing power, and the growing availability of large data sets. Much of the excitement has 
focused on learning in deep neural networks, which have produced substantial performance 
improvements in computer vision, speech recognition, language translation, and other arenas. 
However, this class of techniques typically relies on very large training sets, which are not 
available for all application areas. In response, researchers are developing new methods for deep 
learning that are less dependent on massive data repositories.  

In this paper, we review the history of work in machine induction and draw lessons for the 
specialized but important task of rapid learning from small and moderately sized sample sets. We 
discuss the notion of learning as a search for models that fit the training cases, and we note two 
distinct paradigms: search through a space of model structures (which characterizes much of the 
early work in machine induction) and search through a parameter space (which includes deep 
learning methods). Because the older tradition emphasizes induction from very limited quantities 
of data, it offers lessons that can benefit ongoing work with deep networks.  

We also review techniques that have successfully increased the rate of learning from limited 
data, including the use of constrained formalisms, guards against overfitting, feature selection, 
ensemble methods, background knowledge, and revision of existing models. These themes appear 
in the deep learning literature, but they were examined more fully in the structure-learning 
paradigm and many insights carry over to the parameter-learning framework. We also propose the 
adoption of earlier methodological insights, such as reporting learning curves, running experiments 
that reveal sources of power, measuring learning rate as a function of task characteristics, and 
examining tradeoffs among different approaches. In addition, we note that the older tradition offers 
relevant distinctions: separating learning systems from performance systems removes distractors 
from the problem statements of zero-shot, one-shot, and few-shot learning while highlighting the 
importance of reporting learning curves; referencing the bias-variance tradeoff will help explain 
rapid learning results as it relates the variability in error on new training cases to constraints on 
induction. 

We close with several recommendations for the machine learning community and 
government agencies that fund its work: increase the diversity of induction methods under study, 
collect and popularize challenge problems for learning from small training sets, and encourage 
more systematic scientific studies of rapid learning. We also suggest organizing meetings that 
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bridge the paradigms of structural and parametric learning and funding tutorials and summer 
schools to foster greater intellectual diversity. These steps should extend the reach of machine 
learning technology to application areas where training data are difficult to obtain. 
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1. Background and Motivation  

Recent years have seen growing excitement about advances in statistical machine learning, 
not only in university research laboratories but also in industry and government. Considerable 
attention has focused on deep neural networks, which can involve millions of numeric parameters 
that are tuned automatically. This approach requires powerful computers with large memories, but 
improvements in digital hardware have made them tractable, leading to successful applications in 
speech recognition, visual perception, and language processing, among other tasks. Naturally, 
these results have encouraged the U.S. Government to explore their use in military, security, and 
related settings.  

Standard applications of deep neural networks rely on very large sets of training cases. Thus, 
it is not surprising that this paradigm been championed by companies like Google, Facebook, and 
Amazon, which collect such data repositories (e.g., text, audio, image, and video) as part of their 
core business models, including information about user behaviors (e.g., purchase records, social 
media). The approach has also received substantial use in China, which collects large data sets not 
only for commercial purposes but also to analyze the behavior of its citizens. However, there are 
many settings in which large training sets, especially ones with labeled cases, are both unavailable 
and impractical to create. As a result, there are increasing concerns about the reliance on large 
training sets, and there is a growing academic literature on ways to mitigate it. However, an older 
body of research addressed similar issues using quite different terminology, and it seems important 
to bridge this gap.  

In the remainder of the paper, we discuss these and related topics. We start by stating the task 
of machine learning in terms of inputs provided and outputs generated. Next, we turn to the topic 
of rapid learning from small training sets and common terms used to describe this behavior. We 
then recount relevant results from both the early history of machine learning and more recent work 
on deep neural networks. Building on these reviews, we discuss a number of recurring themes 
shared by the paradigms and some lessons learned from the earlier research that can inform 
ongoing work. We close with recommendations for the machine learning community and ways the 
U.S. Government can foster further progress.  
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2. Statement of the Problem 

We should start by reviewing the generic problem of machine learning, which we can state 
in terms of the inputs available and the outputs produced. We can specify this task as:  

Given: A set of training cases C related to some performance task T; 

Given: A performance system P that employs knowledge K to address T; 
Given: A space of hypotheses or models for this knowledge; 

Find: Knowledge K' that lets P perform well on T for C and that generalizes to new 
test cases.  

Every machine learning system contains two components: a learning system that acquires 
knowledge, and a performance system that utilizes knowledge to accomplish a task. The 
performance system is best viewed as a constant (the mechanism that transforms task inputs into 
outputs does not change). Instead, the learning system extracts useful knowledge from training 
cases, which the performance system employs to improve behavior. Many machine learning 
systems start with no initial knowledge and effectively random task performance. Others seek to 
improve task performance given substantial initial knowledge. The most commonly studied 
performance task is classification, in which one assigns a new case to one of a number of known 
categories. This requires a classification mechanism that uses the learned model for this purpose. 
Most work focuses on supervised learning, in which a category label is provided with each training 
case, but unsupervised variants have also been studied. Learning can also improve performance on 
tasks that involve reactive control, language processing, and plan generation. In each setting, it is 
important to distinguish the learning system (which acquires expertise) from the performance 
system (which uses it), as the mechanisms are distinct. One can combine a given performance 
mechanism with distinct learning processes to produce different behaviors and vice versa. 

Note that this statement of the problem given above does not specify the number of training 
cases available to drive the learning process. The system might be provided with thousands or 
millions of labeled instances for each category (or with fewer).1 Typical machine learning papers 
report experimental results on training sets of whatever sizes are available. This was not a major 
issue through the early 1990s, when research focused on learning from hundreds to thousands of 
cases. However, the mid-1990s saw the emergence of the data-mining movement, which 
emphasized the collection and use of large data sets to create the most accurate models possible.  

                                                
1 In some cases, many training cases may be available but only a subset have labels, which raises different issues 

that we will not discuss here. 
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Since then, the advent of the World Wide Web, the widespread adoption of smart phones, the 
Internet of Things, and other developments have led to even larger collections of data. These 
technologies have enabled the creation of new data repositories (e.g., of Web pages, news stories, 
blogs, images, videos) and access to these information sources for purposes of model induction. 
Combined with substantial growth in storage capacity and impressive increases in processing 
speed, researchers and developers in both universities and companies have come to concentrate 
their energies on induction methods that assume the availability of very large training sets.  

However, this assumption only holds for certain types of applications. In many other settings, 
there is little data available, and machine learning must extract what it can from much smaller 
training sets. This is especially true in some scientific disciplines, where experiments can be time 
consuming and expensive. A similar situation holds in medicine, where privacy restrictions limit 
accessibility to hospital databases, rare diseases produce only small data sets, and novel ailments 
like COVID-19 require rapid response based on limited samples. Similar issues arise in the 
military, where vision systems must recognize newly deployed weapon systems from limited 
experience with them and autonomous vehicles must adapt rapidly to changed environments. In 
contrast, machine learning and data mining have concentrated on large data, which has distracted 
developers from devising methods that extract as much as possible from small samples. The 
challenge in such cases is that, because there are fewer training cases to guide search through the 
space of hypotheses, one must draw on other sources of power to take their place. Fortunately, 
there is growing recognition that we need more research on induction from small amounts of 
experience, which we call rapid learning. 
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3. Terminology for Rapid Learning 

We cannot discuss the target of rapid learning without vocabulary to describe this behavior. 
The past decade has seen researchers introduce a number of terms, and we will consider whether 
such terminology lends itself to scientific insights. We focus on a recent article by Wang et al. 
(2019), which states that: 

A computer program is said to learn from experience E with respect to some classes 
of task T and performance measure P if its performance can improve with E on T 
measured by P. (p. 4) 

The authors then define few-shot learning as a “type of machine learning problem (specified 
by E, T, and P) where E contains only a limited number of examples with supervised information 
for the target T” (p. 4). They further define the special cases of one-shot learning, in which E 
contains only one example per category, and no-shot learning, in which E has no training cases, 
although other information may be available. In other words, one-shot, few-shot, and no-shot refer 
to more than learning tasks. They also specify experimental regimens that provide a certain number 
of training cases for each category and then measure the learned classifier’s accuracy on new test 
cases. Thus, it may be more accurate to use “one-shot, few-shot, and no-shot training,” which have 
fewer connotations about the results of learning.  

A drawback of one-shot learning is that, to someone from outside the field, it suggests that a 
system can learn all it needs to know from one training case for each category, but this will almost 
never occur.2 Consider the nearest neighbor algorithm (Cover & Hart, 1967), one of the earliest 
induction techniques that merely stores each training instance and, when asked to classify a new 
item, retrieves the most similar (or “nearest”) according to some metric and predicts the retrieved 
case’s class. Clearly, this method learns something from each training example, but it will only 
achieve high accuracy on new test instances for the simplest learning tasks. The same observation 
holds for more sophisticated approaches to induction, like few-shot learning, which hints that 
learning is complete after a few instances.  

A more constructive response is to examine the rate at which a learning system improves 
performance as a function of the number of training cases. This distinguishes clearly between the 
task (e.g., supervised learning for classification) and how well a particular system does on the task 
(e.g., exhibits slow or rapid improvement). This idea relates to the notion of sample complexity in 
theoretical analyses of learning (Haussler, 1990). Expectations about the rate of learning should be 

                                                
2 Although “one-shot” or “one-trial” learning has a long history in psychology (Guthrie, 1946), “few-shot learning” 

is a more recent AI coinage of questionable syntax.  
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conditioned on the difficulty of the performance task. For instance, if each category has multiple, 
well-separated subclasses, then we will need at least one training case per subclass. Other factors, 
such as mislabeled samples and irrelevant features, can also affect learning rate. This clarifies that 
the number of training cases needed to learn an effective classifier is a matter of degree.  

However, formal analyses of sample complexity typically predict rates of learning that are 
orders of magnitude slower than those observed in practice. A more empirical approach, with much 
older origins in psychology, involves the collection of learning curves (Langley, 2000). Rather 
than measuring performance for training sets of a single size, often selected arbitrarily, learning 
curves plot performance as a function of the number of training cases. This clarifies that 
performance typically improves gradually with training and distinguishes clearly between the rate, 
intercept, and asymptote of learning. Moreover, learning curves let us examine learning rate as a 
function of task difficulty, which can be influenced by factors like complexity of the target concept, 
number of irrelevant features, and noise level.3 Learning curves may also cross when comparing 
two or more different methods, i.e., when one approach learns more rapidly early on but has a 
lower asymptote. It is crucial to understand such tradeoffs if we want to apply machine induction 
in data-sparse settings.  

We should also discuss a third term—zero-shot learning—that has received considerable 
attention (Wang et al. 2019). In this paradigm, one provides a system with a description of some 
new category (e.g., a face) based on its component features (e.g., eyes, nose, and mouth), which 
have been learned earlier on simpler tasks. The system combines the features in this description 
and uses the result to classify cases of the new category with no additional training. The adjective 
zero-shot is somewhat misleading, because the system has been given a labeled training case for 
the class, but one specified in abstract terms. According to this view, the approach is actually a 
variant on one-shot induction, but it nevertheless examines the important idea of cumulative 
learning, in which later acquisition builds on earlier experience.  

In summary, the recent interest in learning from small numbers of training cases is a positive 
sign, but the terminology that many researchers have adopted is misleading, and the experimental 
method associated with it reveals less information than desired. To develop, understand, and 
evaluate systems that learn from small training sets, we must examine their rate of learning. The 
older paradigm of reporting learning curves provides details about the rate of performance 
improvement, and we recommend that the community adopt this approach instead. 

                                                
3 Some average-case analyses (e.g., Langley, Iba, & Thompson, 1992; Pazzani & Sarrett, 1992) address these issues, 

but such work is rare. 
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4. Early Research on Rapid Learning 

The concern with rapid learning is far from new. Much of the early research on machine 
learning during the 1970s and 1980s addressed the issue. During this period, the great majority of 
publications focused on implemented systems and their experimental evaluation. The scientific 
aim was to understand how characteristics of induction algorithms and induction tasks map onto 
characteristics of learning behavior. Developers typically demonstrated their system’s abilities on 
small training sets—often well under a hundred cases. Early methods often learned very rapidly, 
but many of them also relied on unrealistic assumptions, such as conjunctive concepts and the 
absence of noise. Many techniques were also incremental, in that they processed one instance at a 
time and learned something from each one. Nevertheless, this era saw many intellectual advances 
and impressive results, which can inform current research in this area. 

The 1980s saw widespread adoption of more sophisticated induction methods that handled 
more complex concepts and dealt with noisy training data, such as decision-tree construction 
(Quinlan, 1983, 1992), rule induction (Clark & Niblett, 1989), and backpropagation in neural 
networks. Even so, experiments showed that these techniques could learn accurate models from 
reasonably few training cases,4 leading to a variety of applications that were deployed successfully 
in the commercial sector (Langley & Simon, 1995). 

We can divide these early approaches to automated induction into two broad categories. One 
class, originally associated with the field of pattern recognition, assumed models of fixed structure 
and focused on estimating their parameters. This paradigm included early work on neural 
networks.5  The other class, initially associated with the term machine learning, emphasized 
determination of model structure as part of the learning task. This paradigm was sometimes 
referred to as “symbolic learning”; it included rule induction, decision-tree construction, and many 
other techniques, as well as some parameter estimation methods (generally embedded within the 
identification of model structures). 

Researchers during the 1980s and 1990s devised a variety of responses to the challenge of 
rapid learning, although not always stated in these terms. These responses all addressed two related 
issues. The first is to reduce the variance of learned models: the degree to which learning on 
different training samples produces different performance. The second is to reduce overfitting: the 
degree to which a learned model does better on training cases than on test cases. We discuss 
                                                
4 For instance, Quinlan (1983) reported that his approach to decision-tree induction required about four cases per 

terminal node to learn a complex classifier for chess end games. 
5 It also included classic statistical techniques like linear regression, as well as simple probabilistic methods like 

naive Bayes. 
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strategies for addressing these issues below.  We emphasize methods investigated in the structure-
learning paradigm, as many ideas from the parametric paradigm have found their way into the 
deep learning literature. 

A. Constraining Formalisms  
One response has employed restricted representations to scope the learning problem. 

Examples have included decision trees with only one test (Holte, 1993) and constrained Bayesian 
networks (Friedman, Geiger, & Goldszmidt, 1997). Despite their inability to encode many possible 
models, such methods have fared much better in practice, achieving higher accuracy and lower 
variance than many expected, especially on training sets of limited size. Studies of one-layer 
perceptrons (Shavlik, Mooney, & Towell, 1991) and naive Bayesian classifiers (Langley et al., 
1992) have produced similar results within the parametric paradigm. These early results were 
counterintuitive to many researchers at the time, but they continue to offer valuable insights with 
direct relevance to induction from small training sets. 

B. Guarding Against Overfitting  
Another way to reduce variance and speed up learning is to modify more powerful methods 

to guard against overfitting the training data. In decision-tree and rule induction, this typically 
involves pruning learned structures to eliminate questionable elements (Quinlan, 1992). Pre-
pruning methods involve early halting, before finding a model that overfits the training data, 
whereas post-pruning instead eliminates elements of a complex model after it has been found. This 
serves the same role as adding a regularization term in the parameter-estimation paradigm (Bishop, 
2007), which can drive many weights to zero. 

C. Selecting Features  
A different way to reduce model complexity, and thus lower variance, is to select a subset of 

features to use during induction cases (Blum & Langley, 1997). One common technique, backward 
elimination, starts with all features and eliminates those with low predictive utility. Another 
approach, forward selection, instead starts with no attributes and adds ones that improve predictive 
ability.6 

D. Creating Ensembles  
A fourth response counters high variance by constructing a number of candidate models from 

different subsets of the training data and then combining their predictions at performance time. A 
common technique for this is bagging (Breiman, 1996), which takes the majority vote of the 

                                                
6 An analogous technique in the parametric paradigm, principal components analysis, acts to prioritize and reduce 

the number of features in a very different, algorithmic, manner. 
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learned models. Although originally designed for structural learning methods like decision-tree 
induction, the approach is equally relevant to neural networks and other parametric techniques. 

E. Using Background Knowledge  
Another response uses background knowledge about a domain, typically stated as rules, to 

enable learning from relatively few samples. For instance, analytical or explanation-based 
learning methods (e.g., DeJong, & Mooney, 1986) construct an explanation for each training case 
and learn a new rule from each one. A related scheme provides knowledge known as declarative 
bias (e.g., Adé, de Raedt, & Bruynooghe, 1995) to specify a constrained space of candidate 
hypotheses. 

F. Revising Existing Models  
A final class of techniques initiates the learning process from an existing model and revises 

it in response to training data. The initial structure may be handcrafted, as in early work on the 
revision of logic programs (e.g., Ourston & Mooney, 1994), but it can also be the result of prior 
learning on a related task, as in work on structural transfer (e.g., Shapiro, Könik, & O’Rorke, 
2008). Both approaches make learning easier by reducing the distance between the initial and 
target model. 

Research on each of these strategies focused on improving the predictive accuracy (or 
reducing the error) of learned classification models. Some efforts, especially on model revision, 
explicitly addressed the challenge of increasing learning rates and reported learning curves, 
whereas others did so only implicitly, reporting performance on whatever size data sets were 
available. By the late 1990s, these positive results were widely interpreted as resulting from a 
“bias-variance tradeoff.” We can define the variance of a learning system as the degree to which 
the error on new test cases changes in response to changes in the samples (drawn from some 
distribution) on which it is trained. We can define the bias of a learner as the degree to which it 
produces minimal error on new test cases when given infinite training data, which relates to its 
ability to create arbitrary decision boundaries. We refer to a tradeoff because, in most situations, 
altering the induction method to reduce its bias will increase its variance and vice versa. This 
empirical relationship is relevant to learning from small training sets because, given unlimited 
data, the variance approaches zero. Thus, the tradeoff is far stronger when only small samples are 
available. The success of the techniques above can be attributed to reducing variance in ways that 
more than offset the cost of increasing bias. For this reason, they each remain relevant to the 
objective of rapid learning and deserve the attention of today’s researchers. 
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5. Recent Research on Rapid Deep Learning 

Researchers in deep learning have begun to examine the problem of acquiring expertise from 
limited data. The most common setting is classification, utilizing a deep neural net containing 
thousands to millions of free parameters. In this context, the terms zero-shot, one-shot, and few-
shot learning refer to the quantity of supervised training data available to the classifier. These 
methods often compensate by drawing on a body of related knowledge and expertise. For example, 
an image, such as a tiger, can be recognized without any training data for that class (zero-shot 
learning) because tigers are known to be large, striped, and carnivorous—features that are 
recognizable from imagery (Markowitz et al., 2017). A new image class can be recognized from a 
single positive example (one-shot learning) using the features extracted from an image classifier 
for related tasks together with its training data as negative examples (Kozerawski and Turk, 2018). 
Hand-written characters from 50 alphabets can be recognized given one to five examples of each 
class (few-shot learning) after pre-training on a large body of related discrimination tasks (Snell et 
al., 2017). All of these approaches apply prior expertise to simplify the target learning task.7  

Much of the work in rapid deep learning focuses on the N-way K-shot classification problem, 
which we segment into performance and learning tasks: 

N-way classification 

Given a data sample drawn from one of N classes 

Determine which class the sample belongs to in N 

K-shot learning 

Given prior expertise encoded in some form 

Given K supervised samples of each class 

Learn to perform N-way classification  

The assumption in rapid deep learning is that direct experience with the target classification 
task is very limited, meaning K and N are small, and those samples are insufficient to train a deep 
network alone. As a result, prior expertise plays a critical role in work on rapid deep learning. The 
survey by Wang et al. (2019) categorizes research in this area by the mechanisms used to exploit 
prior knowledge and identifies three main approaches:  

                                                
7 It is worth noting that the terms zero-shot, one-shot, and few-shot learning are not synonymous with work in deep 

neural nets. For example, Fei-Fei et al. (2006) build a prior over image features in a source task, and use Bayesian 
updating to learn a classifier given one to six instances of each target class. 
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• adapt training data from related tasks to bias the classifier,  

• modify the model (the neural net architecture) to make the classifier easy to learn, and  

• use knowledge from related tasks to inform parameter search. 

A few examples may help to clarify these strategies. Methods of adapting training data are 
prevalent in deep learning, where the models contain very large numbers of free parameters. 
Researchers in deep learning frequently stretch training data by translating, flipping, scaling, 
cropping, and rotating images, by taking rolling windows from sequential data, or by simply 
adding noise to existing training data (among other transformations). Attribute strengths learned 
from a large set of scene images can be used to augment training data while preserving their labels 
(Kwitt et al., 2016). New training data for a target class in a few-shot learning context can be 
generated by employing feature models acquired from background knowledge (Schwartz et al., 
2018). These techniques were much less common in classical machine learning research, which 
emphasized constrained representations that required limited training data. 

Many approaches act by modifying the model to make it easier to learn. For example, prior 
experience can be used to constrain a deep network by directly sharing model parameters (Zhang 
et al., 2018). They address few-shot classification by importing model structure from ImageNet to 
obtain low-level features and then training new layers to adapt that knowledge for fine-grained 
image classification. The work by Snell et al. (2017) exploits prior knowledge by training a deep 
network on discrimination tasks drawn from a hand-written character dataset. It identifies class 
prototypes in the compact representation produced by this network, then matches the 
representation of a new sample against the prototypes to retrieve a classification vector.  

Methods that use knowledge learned on related tasks to inform parameter update are 
beginning to appear in the deep learning literature. For example, prior experience can be used to 
initialize parameter values throughout a deep network before optimizing them by standard methods 
(e.g., gradient descent) (Donahue et al., 2013). The researchers trained a deep convolutional 
network on a 1000-way object recognition task and used the resulting parameter values to seed a 
classifier for subcategory and scene recognition tasks, resulting in state-of-the-art accuracy given 
limited amounts of supervised data. In contrast, Finn et al. (2017) used prior knowledge directly 
to speed search; they employed experience from a family of K-shot learning tasks to compute a 
direction of change for updating model parameters on a different K-shot learning task. They 
showed rapid learning from as little as one gradient update step in regression, classification and 
reinforcement learning tasks.  

As a whole, research in rapid deep learning faces the issue that small data sets invite 
overfitting in models with thousands to millions of parameters. The methods of exploiting prior 
experience compensate for that tendency and simultaneously cast rapid deep learning as a form of 
knowledge transfer. Although many papers focus on learning from a few samples in the target 
task, the quantity of prior experience they employ is not always clear. Papers typically report 
classification accuracy obtained after training on zero, one, or a few samples of the target class, 
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whereas a small number provide learning curves that measure accuracy on a test set after each 
sample is presented to the learning system. This emphasis on prediction accuracy is most likely 
inherited from research on deep learning where large amounts of training are available or assumed. 
In Chapter 7, we argue that the use of learning curves will influence research on rapid deep learning 
in productive directions. 
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6. Recurring Themes 

We should also consider the metaphor of induction as search and its implications for rapid 
learning, especially as it plays a central role in both the structural and parametric learning 
paradigms. The idea is far from new, dating back at least to Simon and Lea (1974), who viewed 
induction as search through two related spaces of hypotheses and instances. Mitchell (1982) 
popularized the notion in the context of supervised learning of conjunctive rules, and by the mid-
1980s, it had become widely adopted by researchers in the machine learning community. 

To characterize any problem in terms of search, we must specify some notation for 
representing candidates, along with an initial candidate, operators for generating new candidates 
from existing ones, criteria to select among operators or candidates, and a termination criterion. 
For learning, this means specifying a formalism for models, an initial model or hypothesis, 
operators for generating or updating models, criteria for selecting among them, and conditions on 
when to halt.  

We can describe many classic induction tasks in these terms, although many systems have 
relied on quite simple search methods. Most techniques for searching a space of model structures, 
such as those for inducing decision trees (Quinlan, 1992) and Bayesian networks (Heckerman, 
Geiger, & Chickering, 1995), rely on “greedy” search, which iteratively selects the best-scoring 
successor candidate until termination. The search metaphor has been equally important in work on 
statistical induction, including neural networks, but these approaches typically explore a space of 
parametric values for structures that are fixed in advance. Rather than generating different 
structural candidates and using heuristics to select the best alternative, they rely on schemes like 
gradient descent, which iteratively computes the next parametric candidate from the current one. 

The model spaces that arise in machine induction are generally very large, which means they 
include many candidate solutions. However, the difficulty lies not in finding models that score 
well on some evaluation criterion (e.g., error on the training set), but in finding ones that will also 
generalize well to novel test cases. Larger search spaces typically hold more candidates that do 
well on the training data but poorly on test data. This is the underlying cause of overfitting and 
high variance, which slow the rate of learning and require more training cases. 

The implications are intuitive and straightforward. We can mitigate overfitting and improve 
learning rate by modulating the search process. One approach is to reduce the size of the space by 
adopting constrained representations, selecting features, or using background knowledge. Another 
is to decrease the depth of search, which we can achieve by starting closer to the target model, as 
demonstrated in work on model revision. A third option is to improve the evaluation function that 
guides search, for example, by finding a better criterion for deciding how to extend a decision tree 
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or a better update function for neural networks. A fourth alternative is to improve the termination 
criterion, as in pruning during the induction of decision trees, which attempts to reduce overfitting 
by eliminating questionable branches.8 

Although deep learning focuses on parameter estimation rather than inducing model 
structures, these approaches to modulating search are equally relevant to reducing reliance on large 
training sets. Wang et al. (2019) recently explored this idea in very similar terms. They focused on 
“few-shot” scenarios in which the number of training cases is held constant, but the intent to 
increase learning rate (task performance as a function of training sample size) is the same. They 
discuss constraining the hypothesis space to reduce the search required to find a good model (e.g., 
by adding structure to the network) and guiding the search more effectively (e.g., by improving 
meta-parameters). Their terminology differs from the literature on structural learning, but they 
propose similar ideas adapted in ways appropriate to deep neural networks. 

This suggests that we should reexamine the strategies from Chapter 4 in terms of the search 
metaphor and attempt to identify direct analogs between the two paradigms. The first column of 
Table 6-1 lists the six strategies for reducing variance, the second column presents examples from 
the structural learning paradigm, and the third column gives examples from the deep learning 
movement. There has been considerable diversity within the structural paradigm because different 
groups have focused on different structural formalisms (e.g., decision trees, rule sets, Bayesian 
networks). The deep learning community instead designs a neural network for a given task and 
searches for parameter values, but with millions of such parameters, this can have a similar effect 
to structural search. As a result, insights about the latter remain relevant to deep learning. 

Table 6-1. Themes and Approaches to Modulating Search across the Structural Learning and Deep 
Learning Traditions 

Theme  Structural Learning Rapid Deep Learning 

Constraining 
formalisms 

Decision trees with one test 
 

Custom model architectures and 
standard component layers (e.g., 
convolutional, recurrent) 

Guarding against 
overfitting 

Pre-pruning model structures 
Post-pruning model structures 
 

Dropout layers 
Imposing regularization terms 
Detecting overfitting during training 

Selecting features Backward elimination of features 
Forward selection of features  

Embedded representations 
Distillation (reducing model size) 

                                                
8 Introducing more sophisticated search methods does not help on its own, as this only increases the chances of 

finding a model that does well on training data and poorly on test data. There is evidence that more extensive 
search can increase variance and reduce generalization to new cases. 
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Theme  Structural Learning Rapid Deep Learning 

Creating ensembles Combining multiple decision trees or 
rule sets 

Combining multiple neural networks 

Using background 
knowledge 

Analytical learning methods 
Constructive induction 
Declarative bias to bound space 

Using features from pre-trained 
networks 
Training on related tasks 
Informing parameter update 

Revising existing 
models 

Handcrafting initial model  
Structural transfer from other tasks 

Initializing parameters 
Importing model substructure 

Constrained formalisms restrict the degrees of freedom within a learning system and reduce 
variance in the resulting performance as the training data changes. Where work in structural 
learning employs restricted representations to accomplish this goal, research in deep learning 
shapes information flow across model layers and time. As an illustration, an autoencoder is a deep 
neural net trained to predict its input after forcing the signal through a network layer of reduced 
size (called an embedded representation). This bottleneck plays the role of a constrained formalism 
in structural machine learning; it captures the key information and causes the autoencoder to have 
less variance than a fully connected design for the same task. Variations on this theme are common 
in rapid deep learning. For example, Vinyals et al. (2016) compared embedded representations of 
images to perform N-way classification and generate the embedding by considering training cases 
in serial, thus ensuring that key features were remembered over time. More broadly, researchers 
in deep learning shape information flow (the analog of imposing a constrained formalism) by 
building networks from known structural elements (such as convolutional and fully connected 
layers) and primitive elements with special properties (such as recurrent neural nets and long short 
term memory layers that incorporate feedback and memory). 

Guarding against overfitting prevents a learning system from capturing unnecessary detail in 
the training data or, equivalently, forces it to generalize from the data at hand. In the early rapid 
learning literature, the key adaptation is to prune learned structures (e.g., by penalizing conjunctive 
concept length). In the deep learning (and rapid deep learning) literature, the analogues are to 
introduce regularization terms into the optimization function that enforce a level of generality and 
to detect/use the onset of overfitting to terminate the training process. In addition, dropout layers 
(where a portion of the neurons turn off on each parameter update cycle) create multiple network 
variants whose output is combined by subsequent layers. This reduces variance by making 
predictions rely on different training distributions. 

Feature selection facilitates hypothesis search by reducing model size. Structural learning 
techniques select features that are often hand-engineered or that explicitly transform 
representations to reduce dimensionality (e.g., by employing principal components analysis). In 
contrast, deep learning systems infer higher-level features from raw inputs as part of learning to 
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perform the target task. At minimum, the learned features summarize inputs. For example, a 
convolutional network combines windows of input data (typically in a cascade across layers). 
Learned representations can also be embedded (i.e., forced to lower dimensionality), as in the case 
of an autoencoder described above. The work by Snell et al. (2017) is an example; it relies heavily 
on embedded representations for feature reduction to perform character recognition. 

Ensemble methods combine the predictions of multiple learned classifiers, which reduces 
variance by partitioning the available training data. This technique is common in the structural 
learning literature, although it is infrequently employed in rapid deep learning. Wasay et al. (2020) 
argued that the training cost of multiple deep networks is the barrier and responded with a method 
of sharing those costs by generating multiple classifiers from a small number of more general 
parents.  

Using background knowledge facilitates search by restricting the space of possible 
hypotheses. The effect is similar to using constrained formalisms, although the emphasis is on 
focusing the search within an existing model structure. As mentioned above, research in structural 
learning frequently specified a constrained space of candidate hypotheses via logical rules. In the 
context of rapid deep learning, background knowledge takes the form of features inferred by other 
learners or data from related tasks that a learning system transfers into its parameter set through 
training. For example, the work by Zhang et al. (2018) incorporates background knowledge by 
importing model structure.  

The approach of revising existing models takes on somewhat different forms. In non-
parametric learning, model revision acts to refine a prior structure that has been hand-engineered 
or transferred from a related task. In rapid deep learning, the model architecture is task-specific 
but fixed, so model revision has the character of parameter tuning. As mentioned in Chapter 5, 
Donahue et al. (2013) imported model layers from a related task (incorporating background 
knowledge) and then initialized the free variables from prior knowledge to speed parameter search 
(revising the existing model). Work by Finn et al. (2017) is something of an outlier here, as it 
employs background knowledge to directly inform gradient update steps through a deep network. 
In contrast, most of the work in both structural learning and rapid deep learning drives hypothesis 
search from objective functions but makes no special mention of search control. 

In summary, the perspective of learning, as search developed in the structural learning 
literature from ~1980 to the present, supplies distinctions that span work on rapid deep learning. 
The lessons from classical work on learning as search are also relevant to work on rapid deep 
learning going forward. 
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7. Lessons Learned 

Despite the increased interest that machine learning has received recently, it is a mature 
discipline with decades of prior accomplishments. Thus, it seems reasonable to extract lessons that 
can inform and guide research on rapid learning in deep neural networks. Here, we identify a 
number of such insights, which we state in generic terms as they apply equally to all induction 
paradigms. 

A. Separate Learning from Performance 
Many ideas about machine induction come from psychology, which has long distinguished 

between performance on a task and learning, which it defines as change in this performance. Early 
research in machine learning retained this separation, but it has become less common in recent 
years. This distinction makes it clear that we can combine a given performance mechanism (e.g., 
decision-tree classification) with different induction techniques (e.g., inducing a decision tree with 
or without pruning). Moreover, we can combine a particular learning process (e.g., storing cases) 
with different performance methods (e.g., 1 nearest neighbor vs. 5 nearest neighbors). We must 
examine both elements to draw conclusions about the sources of system power. 

B. Record and Analyze Learning Curves 
Measuring performance after N training cases, which is the norm in the deep learning 

literature, provides very limited information regardless of whether N is small or large. In contrast, 
collecting learning curves reveals the rates at which performance improves as a function of the 
amount of training data and reveals the intercepts and asymptotes of learning. These observations 
offer both theoretical insights about when rapid learning is possible and practical support for rapid 
learning in applied settings. 

C. Take Advantage of Classic Insights 
Four decades of research have revealed many ways to make induction more effective and 

increase the rate of learning. The community should take advantage of constrained formalisms, 
guards against overfitting, feature reduction techniques, ensemble methods, background 
knowledge, and revision of existing models to make learning effective when only small data sets 
are available. All are known in the deep learning community, but they are especially important as 
aids for induction from small training sets. 
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D. Understand Sources of Power 
Empirical studies of machine learning have the potential to elucidate underlying causes of 

behavior, but all too often they only show incremental improvement without offering clear 
explanations. Treating data repositories as “benchmarks” encourages a competitive mindset that 
produces uninformative “bake offs.” In contrast, controlled experiments can reveal the reasons for 
observed differences, not just their existence, and suggest general design principles that apply in 
many different situations. 

E. Realize Not All Learning Tasks Are Created Equal 
Some problems are inherently more difficult than others and require more training data. 

Experiments with synthetic domains, especially when combined with learning curves, can 
systematically vary factors such as target complexity and noise level that can affect task difficulty. 
Such careful studies can help explain variations in results observed across different natural data 
sets, including the reasons that some tasks support faster rates of learning or higher asymptotic 
behavior than observed on other problems. 

F. Recognize and Utilize Tradeoffs 
No approach or paradigm for machine learning will always produce the best results—they all 

have their strengths and weaknesses. This makes it essential that we understand the conditions 
under which an induction method works well or poorly. Some approaches may handle noise better 
but require more training data, whereas others may learn more rapidly but give lower asymptotic 
performance. Scientific understanding must precede engineering confidence about how different 
learning methods will fare in real-world settings and thus guide the selection of a technique that 
matches the task at hand. 

These lessons have proved useful during the extended history of machine induction. They are 
not limited to either neural networks or rapid learning, but they are highly relevant to both of these 
contexts. 

 



8-1 
 

8. Recommendations 

In the preceding sections, we examined the challenge of rapid learning, the terminology used 
to describe it, prior work in two major paradigms, themes that cut across those paradigms, and 
some lessons from both lines of research. In closing, we should consider ways in which the 
machine learning community, including researchers and government sponsors, should alter its 
future trajectory. We begin with recommendations for researchers, then consider ways the U.S. 
Government could encourage machine learning researchers and developers to pursue these 
additional activities. In each case, we provide an action item and explain the reasons behind it.   

A. Devote More Attention to Domains That Require Rapid Learning 
Not all applications come with large training sets available and, in many cases, they would 

be prohibitively expensive or even impossible to collect. Rare diseases, almost by definition, 
produce few samples for training, and responses to novel contagions such as COVID-19 would 
benefit from early analyses of limited data before the contagions spread widely. Adversaries’ 
weapon systems and computer viruses typically remain secret until deployed or released, making 
it highly desirable to create models from as few instances as possible. Improved methods for rapid 
induction will extend the reach of machine learning to such high-risk settings.  

B. Adopt Classic Lessons about Empirical Study of Learning 
As noted earlier, machine learning has been a mature discipline for decades and has 

developed many experimental tools for understanding the behavior of induction systems. Learning 
curves, although not currently popular, are especially relevant for the situations with small 
samples, as they reveal performance as a function of training set size. Such plots can vary with 
problem characteristics such as noise level, can exhibit tradeoffs among different abilities, and can 
indicate that no approach is uniformly better. Robust engineering of systems for rapid learning 
depends on understanding strengths, weaknesses, and sources of power. 

C. Incorporate Insights from Structural Induction into Deep Learning 
Recent excitement about one paradigm for learning in deep neural networks (gradient descent 

through a parameter space) does not detract from the many successes of a different paradigm 
(structural learning, which instead searches a space of distinct model structures). The parametric 
and structural frameworks draw upon quite different metaphors, but each has lessons to offer about 
how to increase the rate of learning. Researchers in both communities would benefit from 
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mastering the others’ literature and attempting to incorporate these insights into their own approach 
to machine induction.  

D. Increase the Diversity of Induction Methods under Study 
If we believe that no approach to machine learning is always superior, then the community 

would benefit from exploring a broader range of techniques. Methods for inducing decision trees, 
logical rules, Bayesian networks, and case libraries introduce different biases than deep neural 
networks, many of them relevant to learning from small training sets. Experimental comparisons 
of alternative mechanisms will reveal when each produces better results and may point the way to 
hybrid frameworks that combine the best of different paradigms.  

E. Collect and Popularize Challenge Problems for Rapid Learning 
Government agencies should identify challenging and impactful problems that require rapid 

learning and fund research on them. Examples might be safe autonomous vehicle navigation in 
rare near-accident scenarios and discovery of effective treatments for rare diseases. In both cases, 
training data are difficult to obtain, but benefits of successful rapid learning would be high. Prizes 
are another option, as rapid learning tasks support well-defined achievement goals.  

F. Encourage Careful Scientific Studies of Rapid Learning 
Although competitions can galvanize interest in a topic, they can also distract a community 

from efforts to understand the reasons for any mechanism’s success or failure, including relations 
between features of the task, characteristics of the learning method, and overall system behavior. 
Government agencies can discourage “bake offs” and reward researchers for carrying out balanced 
studies that reveal limitations and tradeoffs. Work on adversarial learning has been a step in the 
right direction, but it should be combined with careful studies that examine factors influencing its 
effects. 

G. Organize Meetings on Bridging Structural and Deep Learning 
Many deep-learning researchers are unfamiliar with methods for structural induction and 

many structural induction researchers are unfamiliar with deep-learning techniques. Given that 
both paradigms have insights that would benefit the other, Government agencies should support 
meetings that bring together the two communities and expose them to each other’s concepts, 
terminology, techniques, and experimental methods. This will help bridge the intellectual gap and 
encourage new work that crosses paradigm boundaries. 

H. Fund Tutorials and Summer Schools to Foster Intellectual Diversity 
Although cross-paradigm meetings are an important step, they will not be sufficient on their 

own. U.S. agencies should complement them by funding other activities, such as tutorials and 
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summer schools that aim explicitly to increase intellectual diversity within the machine learning 
community. Participants should come away with a clear view of the field’s long and successful 
history, the great variety of techniques it has developed, and the benefits of having a large 
repertoire of methods from which to draw. 

These activities could be encompassed by new funding programs that are aimed specifically 
at addressing challenges that arise in learning from small amounts of training data. Taken together, 
these and similar efforts should strengthen and broaden the machine learning community, 
improving its ability to develop robust methods for rapid learning, understand when these methods 
are effective, and apply them to problems of national interest. 
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Appendix A: Recent Papers in Rapid Learning 

Although this paper has primarily examined broad strategies for rapid learning that can be shared 
across the structural and parametric learning traditions, this section illustrates how those strategies 
are realized in a selection of recent technical papers. We have organized this discussion into two 
symmetric subsections describing recent work in each tradition. 

1. Recent Papers in Rapid Parametric Learning 
A good deal of current research in rapid parametric learning is motivated by recent DARPA 
programs.9  Table A-1 identifies a selection of papers that illustrate themes presented in Table 6-
1, which we discuss below. 
 

Table A-1. Recent Papers in Parametric Learning that Illustrate Rapid Learning Themes 

Theme Description References 

Constraining formalisms Embed parametric methods in constrained 
formalisms to enable rapid learning 

Pfeffer, 2017; Wang & Yeung 
2016 

Selecting features Exploit embedded representations to 
speed learning 

Brown et al., 2020; 
Bommasani, Katiyar, & Cardie, 
2019 

Using background 
knowledge 

Apply ontological knowledge to speed 
learning 
Select transfer tasks that facilitate rapid 
learning 

Zhou, Khashabi, Tsai, & Roth, 
2018; Yin, Hay, & Roth, 2019; 
Nayak & Bach, 2020; Su, Maji, 
& Hariharan, 2020  

Revising existing models Augment training data to refine learned 
models (and speed learning) 

Beck, Papakipos, & Littman, 
2019; Wang, Girshick, Hebert, 
& Hariharan, 2018 

a. Constraining Formalisms 
The first strategy embeds parametric learning in constrained formalisms to achieve rapid learning. 

Pfeffer (2017) learns from data in the context of a hand-coded program expressed in a 
probabilistic programming language. Statements in this language define a probability 
density function over values produced by the program, and learning is motivated by an 
error function that measures how well this density function models a training set. 

                                                
9 Examples include Science of Artificial Intelligence and Learning for Open-world Novelty (SAIL-ON), Lifelong 

Learning Machines (L2M), Explainable AI (XAI), and Machine Common Sense (MCS). 
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Although this work is in its early stages, it suggests a method of merging classical 
programming with statistical learning that speeds learning by constraining tasks. 

Work on Bayesian deep learning (Wang and Yeung, 2016) mates deep learning models for 
perception tasks to probabilistic graphical models for causal inference and dealing with 
uncertainty. Many variants have been proposed for recommendation, topic modeling, and 
control tasks, along with multiple learning algorithms for acquiring free parameters (e.g., 
expectation management, Bayesian conditional density filtering, and stochastic gradient 
variational Bayes). Overall, these approaches support rapid learning by constraining the 
learning tasks, enabling model acquisition from smaller datasets.  

b. Selecting Features 
Several recent papers in natural language processing rely on embedded representations to speed 
learning. This is a form of feature selection, as discussed in Chapter 6. 

Brown et al. (2020) noted that language models learned from very large bodies of text 
implicitly acquire many distinctions that make them applicable to new linguistic tasks. 
They showed that GPT-3 (with 175 billion free parameters that are trained 
autoregressively on a language prediction task) achieves strong performance as a few-
shot learner on new datasets and tasks including translation, question answering, 
unscrambling words, using a novel word in a sentence, and performing three-digit 
arithmetic.  

Bommasani et al. (2019) developed techniques for encoding relational data and making it 
useful in sentiment analysis tasks; given a text snippet, is a named entity positive, 
negative, or neutral towards a target relation or event? Their approach acquires embedded 
representations of entity mentions, target mentions, and context from text, and passes 
those encodings to a simple fully connected network for sentiment classification. This 
work contributes to rapid deep learning in the same sense as Brown et al. [3]; it enables 
language learners to develop rich representations that are immediately applicable to new 
domains. 

c. Using Background Knowledge 
A number of recent papers illustrate the theme of using background knowledge to speed learning. 

Zhou et al. (2018) employed ontological knowledge to address the zero-shot entity typing 
problem; given a reference in a sentence and a taxonomy of entity types, identify a set of 
types appropriate to the mention. Their approach links context words to type-compatible 
Wikipedia pages and exploits human-curated information in the Wikipedia pages to infer 
the entity type. 

Yin et al. (2019) addressed zero-shot text labeling tasks. Their approach trains the BERT 
language model (Devlin et al., 2019) on entailment examples and exploits the learned 
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ontological knowledge to perform new entailment tasks (e.g., to identify the topics, 
emotions, or situations implied by a text snippet). 

Nayak and Bach (2020) exploited common-sense knowledge embedded in hand-constructed 
graphical structures like ConceptNet10 to perform classification tasks. Their approach 
learns to translate the structure of a knowledge graph into a neural net and then employs 
the neural net for several classification tasks. The resulting system shows strong 
performance on zero-shot intent classification, fine-grained entity typing, and object 
recognition tasks.  

Su et al. (2020) examined the best pairing of source and target tasks when exploiting 
background knowledge. They considered a scenario composed of pretraining on 
unlabeled image rotation tasks (e.g., assembling a jigsaw puzzle composed of birds and 
animals), followed by few-shot learning on a target classification task using images from 
the same domain. The work shows that (a) with no additional training data, adding an 
auxiliary self-supervised task improves the performance of existing few-shot techniques, 
and (b) the benefits of self-supervision increase with the difficulty of the target task (e.g., 
classifying increasingly noisy images). It is not entirely clear why the relation in (b) 
exists, but it provides guidance for phrasing a variety of rapid deep learning tasks. 

d. Revising Existing Models 
Several recent papers illustrate the theme of achieving rapid learning by revising existing models. 

Beck et al. (2019) refined learned models for automated driving tasks by training on 
additional data that would otherwise be discarded. Their method associates numeric 
feedback with human piloted examples (e.g., negative feedback for swerves, positive for 
pristine lane changes) and acquires deterministic continuous control programs from any 
range of good and bad behavior demonstrations.  

Wang et al. (2018) speeded learning in few-shot classification tasks by (in the author’s 
words) “hallucinating” new training data that is specifically useful for learning. Their 
approach couples an image generator (that maps real samples into new variants) to an 
image classifier and achieves targeted hallucination by passing the classification loss into 
the generator during training.  

In summary, many recent research efforts in rapid parametric learning can be appreciated as an 
exploration of historical themes discussed in this document that unify the traditions of statistical 
and parametric learning. 

                                                
10 https://conceptnet.io/ 
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2. Recent Papers in Rapid Structural Learning 
Despite the attention that deep neural networks have received, there has continued to be active 
work on structural learning, much of it focused on effective induction from small training sets. 
Table A-2 identifies a selection of recent papers that illustrate themes presented in Table 6-1, which 
we discuss below. 

 
Table A-2. Recent Papers in Structural Learning that Illustrate Rapid Learning Themes 

Theme Description References 

Constraining formalisms Use constrained structural notations 
to limit the space of hypotheses 

McFate & Forbus, 2016; Schede, 
Kolb, & Teso, 2019 

Using background 
knowledge 

Provide structural building blocks to 
generate candidate hypotheses 

Muggleton, Dai, Sammut, 
Tamaddoni-Nezhad, Wen, & 
Zhou, 2018; Mitra & Baral, 2016 

Revising existing models Identify which model elements lead 
to errors and repair them 

Klenk, Piotrowski, Stern, Mohan, 
& de Kleer, 2020; Arvay & 
Langley, 2016  

a. Constraining Formalisms 
One common strategy used to support rapid learning in the structural paradigm is to adopt a 
constrained formalism for representing models and hypotheses. Here are two recent examples of 
this approach. 

McFate and Forbus (2016) reported a system that encodes categories as conjunctions of 
features in predicate logic, each with an associated conditional probability. An 
incremental learning process updates these probabilities, adds new relations, and 
introduces new categories when training cases are sufficiently dissimilar. The system 
learned the accurate semantics for denominal verbs like giving from only nine sentences 
per word and generated correct inferences for new instances that occurred in very 
different constructions.  

Schede et al. (2019) described an approach to inducing constraint programs that are stated as 
a collection of linear inequalities over a set of continuous variables. Their system learns 
accurate and interpretable constraints from substantially fewer training cases than its 
predecessors, needing only 200 samples on standard test problems. 

b. Using Background Knowledge 
Another important approach to increasing learning rates within the structural paradigm is to 
provide generic background knowledge that informs the induction process. Here are two instances 
of this technique.  

Muggleton et al. (2018) reported a novel method for computer vision that uses meta-
interpretive learning to invent useful predicates and induce logical models from small 



A-5 
 

training sets. Their system uses background knowledge about shadows and reflection, 
stated in relational logic, to speed the acquisition of visual object categories on both 
synthetic and natural images—exhibiting one-shot learning in some cases. 

Mitra and Baral (2016) presented an approach to language processing that learns logical rules 
for use in question answering, reference resolution, and inference. They provided two 
very general axioms in the event calculus that let their system use learned rules more 
effectively. The authors did not report results on small data sets, but their method fared 
substantially better than neural networks, which suggested more rapid learning. 

c. Revising Existing Models 
Another line of research starts with a structural model that is consistent with past observations but 
revises the model's content when it no longer fits the data. Two recent efforts illustrate this 
approach. 

Klenk et al. (2020) reported an approach to learning in environments that change over time. 
Their HYDRA system starts with an accurate model of the physical world stated in 
PDDL+, a planning formalism that includes discrete and continuous elements. When 
anomalies arise, it generates structural and quantitative hypotheses, runs a small number 
of experiments to evaluate them, and selects the candidate with the most support to revise 
its model. Their system produced encouraging results in the Science Birds domain.  

Arvay and Langley (2016) described a system that encodes models as sets of processes, each 
with an algebraic rate expression and one or more derivatives that are proportional to it. 
When given multivariate time series that diverge from a model’s predictions, it identifies 
which processes are responsible, then either revises their parameters or replaces them 
with other processes that better fit the observations. The system needs only tens of data 
points to detect anomalies and guide the search for process models.  

Other recent work in the structural learning framework has continued to explore themes that 
support rapid learning. For example, Painsky and Rosset (2017) examined induction of random 
forests (a widely used ensemble method based on decision trees), which guards against overfitting. 
Although this research was not motivated by the desire to improve rapid learning, it should have 
that effect as it acts to decrease the variance on predictions learned from small quantities of data.  

3. Summary 
Recent papers in both the parametric and structural paradigms have advanced the technology for 
learning effective models from small training sets. Despite their differences, they all draw on the 
long history of insights on this topic. Some recent work integrates ideas from both paradigms. For 
example, Ross et al. (2018) presented a system that uses the output of a symbolic parser to 
determine the structure of a deep neural network that in turn learns grounded representations from 
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captioned videos. Hybrid approaches of this form hold the promise to combine the benefits of 
structural and parametric methods for rapid learning. 
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