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Executive Summary 

Government sponsors are often interested in predicting attrition rates for service 
members at future time points. The Institute for Defense Analyses developed a tool, 
the Finite-Interval Forecasting Engine (FIFE), to produce point forecasts of attrition rates 
using neural networks and gradient boosted trees. Point forecasts are most commonly 
considered in isolation, but while point forecasts are useful, they only provide partial 
information regarding the future distribution of the quantity of interest and no 
information regarding the uncertainty in the forecast.  

We discuss methods for quantifying uncertainty in these survival forecasts. Point 
estimates for future values of interest can be close to the truth, but they are always subject 
to uncertainty. In some classification prediction problems, future realized data can be 
classified incorrectly with high probability. While FIFE currently uses advanced 
approaches for achieving high-quality forecasts, robust methods for quantifying 
uncertainty in these predictions have not been implemented. Use of distributional forecasts 
or prediction intervals around point estimates can facilitate understanding of the 
uncertainty associated with these predictions when used appropriately.  

We define relevant terminology in relation to prediction uncertainty and address how 
these terms differ based on field of study, and we discuss the properties of prediction 
intervals and describe the specifics of our objective in adding methods to FIFE that can 
produce these intervals. Our literature review investigates differing approaches to 
quantifying forecast uncertainty, which includes generic methods and use-specific 
methods; we implement some of these approaches in FIFE. Among those implemented 
methods, we find that generic approaches can often be too conservative in the sense that 
they provide intervals that are too wide, and use-specific methods can be misleading in the 
sense that they provide intervals that do not attain nominal coverage. In some situations, 
we find that these intervals can be severely distorted. We discuss the performance of these 
methods and suggest improvements.  
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Uncertainty?

 All forecasts have uncertainty
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Data Uncertainty Approximation Uncertainty

𝑦ො௧ ൌ 𝑓௧ 𝜃መ േ 𝑒𝑟𝑟𝑜𝑟 𝑦ොଵ,௧ ൌ 𝑓ଵ,௧ 𝜃መ 𝑦ොଶ,௧ ൌ 𝑓ଶ,௧ 𝜃መ 𝑦ොଷ,௧ ൌ 𝑓ଷ,௧ 𝜃መ

Epistemic Uncertainty: 𝑓 ∈ ? ? ?
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Introduction - Context

DOD planning requires forecasting
IDA’s Finite Interval Forecasting Engine (FIFE) is a tool to 
forecast categorical outcomes 
 Often used to predict when an individual leaves service
 Uses gradient boosted tree and neural network modelers
 Primary output: individual level probability of exit
 Can use this to get items of interest like expected count of 

exits for a group of individuals

 Quantifying uncertainty in forecasts can help sponsors make 
better decisions

3

Introduction - FIFE

How do we quantify uncertainty in FIFE Predictions?

4
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A Prediction Interval (PI) is a set of bounds around a prediction 
for a future unobserved value

There are two desirable properties for a PI:
1. Bigger Coverage Probability
2. Smaller Interval Width

Introduction – Prediction Intervals

Future unknown 
value

Prediction Interval
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Introduction – Prediction Intervals

Coverage Probability = 8/10

Future unknown 
value

Prediction Interval
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A Prediction Interval is a set of bounds around a prediction for 
a future unobserved value.

There are two desirable properties for a PI:
1. Bigger Coverage Probability
2. Smaller Interval Width
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Introduction – Prediction Intervals

A Prediction Interval is a set of bounds around a prediction for 
a future unobserved value

There are two desirable properties for a PI:
1. Bigger Coverage Probability
2. Smaller Interval Width

Coverage Probability = 10/10
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Introduction – Prediction Intervals

A Prediction Interval is a set of bounds around a prediction for 
a future unobserved value, based on a given confidence level

There are two desirable properties for a PI:
1. Bigger Coverage Probability
2. Smaller Interval Width

Coverage Probability = 5/10

8
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Introduction – Prediction Intervals

A Prediction Interval is a set of bounds around a prediction for 
a future unobserved value, based on a given confidence level

There are two desirable properties for a PI:
1. Bigger Coverage Probability
2. Smaller Interval Width

Coverage Probability = 9/10

9

Procedure:
1. Choose a confidence level (90%)
2. Get the tightest intervals that have at 

least 90% coverage probability 

Prediction Interval Methods

10
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Prediction Interval Methods - Overview

1. Generic Methods
 Do not rely on underlying algorithm
 Can be applied to any predictions with our data type
 Often conservative

2. Use-Specific Methods
 Uses underlying modeling framework 
 Vary based on type of algorithm
 Often tighter intervals

11

PI Generic Methods – Chernoff Bounds

 Start with a binomial random variable
 Use Chebyshev’s inequality to derive probabilistic bounds
 Can be used for the expected count of exits for a group of 

individuals at a future time point

12

 Pointwise, Chebyshev, not using specific information => 
overly conservative
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PI Use-Specific Methods

Specific Method = your favorite algorithm or modeling 
framework
Many algorithms, sometimes many methods per algorithm
Today: cover 2 methods 
 Neural Networks: MC Dropout
 Gradient Boosted Trees: Stochastic Gradient Langevin Boosting

13

Adaptations

Naïve Ensemble 95% PIs

MC Dropout (Neural Network) SGLB (GB Tree)

14
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PI Use-Specific Methods

Ensemble PIs needed for 95% Coverage

15

Correct intervals

MC Dropout (Neural Network)
PI Coverage Probability: 48%

SGLB (GB Tree)
PI Coverage Probability: 2%

PI Use-Specific Methods

Ensemble PIs needed for 95% Coverage

16

Correct intervals

MC Dropout (Neural Network)
PI Coverage Probability: 48%

SGLB (GB Tree)
PI Coverage Probability: 2%

Need to Inflate predictive variance to account for the underlying uncertainty
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Adaptations

Ensemble PIs with inflated variance

17

PICP: 98%

PICP: 91%

PICP: 96%

PICP: 99%

PICP: 87%

PICP: 84%

MC Dropout (Neural Network)
PI Coverage Probability: 95%

SGLB (GB Tree)
PI Coverage Probability: 95%

Conclusion and Future Work

18
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Conclusion

DOD forecasts commonly focus only on point estimates
 The uncertainty regarding those forecasts is important
 Many methods are available to quantify that uncertainty

Future work
 Investigate other PI methods
 Update hyperparameter tuning method
 Investigate heterogeneity across forecast horizons

FIFE updates:
 Updated Chernoff Bound PIs for sums of counts
 PIs implemented for Gradient Boosted Tree and Neural Network 

modelers in FIFE

19FIFE Github: https://github.com/IDA-HumanCapital/fife feature/prediction_intervals branch

J. W. Dennis
jdennis@ida.org
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PI Methods – Chernoff Bounds

Chernoff bounds are PIs around sums of independent 
Bernoulli trials, derived using Chebyshev’s inequality.

A looser version was previously used in FIFE:

23

PI Use-Specific Methods – Gal and Malinin

MC Dropout Stochastic Gradient 
Langevin Boosting

Modeler Neural Network Gradient Boosting

Source of 
ensemble variance

Dropout of NN units Random sub-sampling of trees

Source of added 
uncertainty

Added model precision 𝜏 Gaussian noise injected in 
gradient

Restrictions Must have required choice of 
L2 regularization parameter

Must have required choice of 
L2 regularization parameter

24
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ID Period X1 X2 X3 Exit Prob Exit?

556 3 B -0.03 0.94 0.17

556 4 B -0.03 0.94 0.30

556 5 B -0.03 0.94 0.48

Simulation Study Setup

 N = 2000, Time Periods = 50, Avg Exit Prob = 0.4
 First 2/3 of data used for training, last 1/3 for testing

25

ID Period X1 X2 X3 Exit Prob Exit?

556 3 B -0.03 0.94 0.17 No

556 4 B -0.03 0.94 0.30

556 5 B -0.03 0.94 0.48

ID Period X1 X2 X3 Exit Prob Exit?

556 3 B -0.03 0.94 0.17 No

556 4 B -0.03 0.94 0.30 No

556 5 B -0.03 0.94 0.48

ID Period X1 X2 X3 Exit Prob Exit?

556 3 B -0.03 0.94 0.17 No

556 4 B -0.03 0.94 0.30 No

556 5 B -0.03 0.94 0.48 Yes

 Known underlying survival probabilities used to calculate out-
of-sample PI Coverage Probability (PICP)
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