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Executive Summary 

Survival analysis can be a useful tool for modeling the attrition of service members, 
particularly when it comes to forecasting future states of survival for those members. 
Government sponsors are often interested in predicting these attrition rates at future time 
points. The Institute for Defense Analyses (IDA) has developed a tool for this purpose: the 
Finite Interval Forecasting Engine (FIFE) (Institute for Defense Analyses 2021). FIFE is a 
forecasting tool that produces predictions through the use of various modeling frameworks, 
including deep neural networks and gradient boosted trees. FIFE combines methods from 
both survival analysis and multivariate time series analysis to predict future states of 
survival, along with total counts of attrition, for service members at various future points 
in time. 

We discuss methods for quantifying uncertainty in these survival forecasts, both for 
individual probabilities of exit, and aggregated total exits. While FIFE currently uses 
advanced approaches for maximizing forecasting performance, through the use of 
LightGBM for gradient-boosted trees, and Keras for neural networks, there are little-to-no 
implemented methods for measuring uncertainty in these predictions. Point estimates for 
future values of interest can be close to the truth, but they are never correct. In some 
classification prediction problems, future realized data that occurs far from the training 
data can be classified incorrectly with high probability. Use of prediction intervals around 
those point estimates leads to appropriate understanding of the accuracy of these 
predictions. Having a probability distribution associated with a future value, instead of just 
a point estimate, facilitates understanding of the uncertainty associated with forecasts. 

We define relevant terminology in relation to prediction uncertainty and address how 
these terms differ based on field of study, and we discuss the properties of prediction 
intervals and describe the specifics of our objective in adding methods to FIFE that can 
produce these intervals. Our literature review investigates differing approaches to 
quantifying forecast uncertainty, which includes generic methods and learner-specific 
methods. We then implement a few of these approaches in FIFE and discuss their 
performance. 
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1. Introduction 

Survival analysis can be a useful tool for modeling the attrition of service members, 
particularly when it comes to forecasting future states of survival for those members. 
Government sponsors are often interested in predicting these attrition rates at future time 
points. The Institute for Defense Analyses (IDA) has developed a tool for this purpose: the 
Finite Interval Forecasting Engine (FIFE) (Institute for Defense Analyses 2021). FIFE is a 
forecasting tool that produces predictions through the use of various modeling frameworks, 
including deep neural networks and gradient boosted trees. FIFE combines methods from 
both survival analysis and multivariate time series analysis to predict future states of 
survival, along with total counts of attrition, for service members at various future points in 
time. 

We discuss methods for quantifying uncertainty in these survival forecasts, both for 
individual probabilities of exit, and aggregated total exits. While FIFE currently uses 
advanced approaches for maximizing forecasting performance, through the use of 
LightGBM for gradient-boosted trees, and Keras for neural networks, there are little-to-no 
implemented methods for measuring uncertainty in these predictions. Point estimates for 
future values of interest can be close to the truth, but they are never correct. In some 
classification prediction problems, future realized data that occurs far from the training data 
can be classified incorrectly with high probability. Use of prediction intervals around those 
point estimates leads to appropriate understanding of the accuracy of these predictions. 
Having a probability distribution associated with a future value, instead of just a point 
estimate, facilitates understanding of the uncertainty associated with forecasts. 

We can imagine a situation where a service needs to forecast attrition to make decisions 
regarding force planning. A point prediction simply informs the individual of the expected 
attrition rate, and says nothing regarding how close one can expect the actual attrition rate 
to be to the forecast. An interval forecast, on the other hand, can inform the planner that the 
actual attrition rate is expected to fall into some range with some specified probability. Two 
methods can produce the same point forecast but different interval forecasts. A shorter 
interval with good properties would indicate that we are fairly certain regarding the actual 
future attrition rate compared to a comparable interval that is wider. Understanding the 
properties of these intervals is necessary to understand how well they capture uncertainty. 

Further, certain situations may result in the need to budget for situations other than the 
expected mean or median attrition rate. For example, forecasting an upper bound on attrition 
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with some probability may be more appropriate for a critical occupation. Forecast intervals 
can facilitate understanding of such bounds.1 

The paper will proceed as follows: We define relevant terminology in relation to 
prediction uncertainty and address how these terms differ based on field of study. We will 
then discuss the important properties of prediction intervals and describe the specifics of our 
objective in adding methods to FIFE that can produce these intervals. Our literature review 
investigates differing approaches to quantifying forecast uncertainty, which includes generic 
methods and learner-specific methods. We then implement a few of these approaches in 
FIFE and discuss their performance. 

Note that our proposed methods are not producing any mechanism to explain our 
predictions or make any kind of causal inference. Our methods measure uncertainty 
surrounding predictions that FIFE makes; they do not analyze any of the underlying 
covariates or suggesting correlation between any variables. 

A. Terminology 
First, we define a few terms that are important to the content of this paper. We should 

note the distinction between prediction interval and confidence interval in the literature, and 
also address how these terms are used different in statistics versus econometrics. Chatfield 
(1993) describes the difference: “The term confidence interval is usually applied to estimates 
of (fixed but unknown) parameters. In contrast, a prediction interval is an estimate of an 
unknown future value that can be regarded as a random variable at the time the forecast is 
made.” In general, prediction intervals account for more sources of uncertainty than 
confidence intervals do, because of the unknown factors that will affect future outcomes. 
These sources of uncertainty include things like model misspecification and noise from 
random error in the data, and, as such, lead to intervals that have wider ranges than 
confidence intervals would, given the same chosen confidence level (Khosravi et al. 2011). 
In econometrics, CIs and PIs are sometimes used interchangeably, which can lead to some 
confusion. In some cases, a confidence interval for an unknown parameter, such as a mean 
of a random variable, can be used as the prediction interval for future realizations, which 
may cause these intervals to be too tight and have coverage probability much below the 
desired level (Hyndman 2013). In this paper, we focus on prediction intervals, which we will 
sometimes also interchangeably call forecast intervals, in order to note that the intervals are 
quantifying uncertainty related to forecasted values. 

                                                 
1  Other methods also exist to help with this problem, but they will not be discussed here. 
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B. Prediction Interval Properties 
There are two main properties we desire for quality prediction intervals: coverage 

probability and interval width. When we construct a prediction interval (or confidence 
interval) with a given confidence level (95% for example), we are indicating that the interval 
will ideally have at least a 95% chance of containing the future unrealized value of the 
random variable of interest. In practice, this is called the PI coverage probability (PICP), 
which is measured as 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
1
𝑛𝑛
�𝑐𝑐𝑖𝑖

𝑛𝑛

𝑖𝑖=1

, 

where 𝑐𝑐𝑖𝑖 = 1 when the interval contains the true value, and 𝑐𝑐𝑖𝑖 = 0 otherwise. Since an actual 
future realization only occurs once, we can use simulation techniques to obtain the PICP for 
a model by treating observed data as training data. 

As Khosravi et al. (2011) notes, if all we care about is achieving at least nominal 
coverage probability, we could make every interval infinitely wide, which would give us no 
new information about the accuracy of our predictions. Along with achieving the desired 
coverage level, we also want our intervals to have the smallest width possible. This is 
measured by the mean prediction interval width (MPIW): 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
��𝑈𝑈(𝑋𝑋𝑖𝑖) − 𝐿𝐿(𝑋𝑋𝑖𝑖)�
𝑛𝑛

𝑖𝑖=1

, 

where 𝑈𝑈(𝑋𝑋𝑖𝑖) is the upper bound and 𝐿𝐿(𝑋𝑋𝑖𝑖) is the lower bound of the PI for the 𝑖𝑖th sample. 

As we compare prediction interval techniques, we will use these measures to determine 
which approaches lead to the highest quality PIs. 

C. Types of Uncertainty 
First, we briefly discuss the various types of uncertainty that are present when building 

models and making forecasts, some of which we can quantify, and some we cannot. The 
literature generally distinguishes three categories of uncertainty with differing methods to 
quantify each: approximation uncertainty, model (or epistemic) uncertainty, and data (or 
aleatoric) uncertainty (Hüllermeier and Waegeman 2021). 

Approximation uncertainty exists because we cannot always pick the model from all 
evaluated candidate models that will perform the best in practice. The signal that a model is 
trying to find is often confused with noise and random error in our training data. Having a 
larger number of candidate models that are evaluated leads to a higher chance of the chosen 
model, picked based on some type of performance score, having simply exploited the noise 
the best, without actually being best suited to model future unrealized data. Approximation 
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uncertainty can be lowered by trying to have training and testing data that is as similar as 
possible to the future real data, but it can never be eliminated entirely. 

Model uncertainty (also known as epistemic uncertainty) arises from the fact that we 
cannot evaluate all possible models, and may not have the true model in our set of candidate 
models that are evaluated. Our lack of knowledge about the true structure of the model leads 
to this uncertainty (Chatfield 1995). Estimates of model uncertainty are only accurate if our 
set of candidate models is representative of all possible models, which practically is 
challenging given that we can only ever evaluate a finite number of models. Specific 
methods for quantifying epistemic uncertainty depend on the type of modeling framework 
used, such as a neural network or gradient boosted tree modeler. 

Data uncertainty (also known as aleatoric uncertainty), is an irreducible type of 
uncertainty that occurs because of the stochastic nature of all random variables we would be 
trying to predict. Simply put, a forecasted probability or value will almost never equal the 
actual observed outcome. Aleatoric uncertainty is accounting for the randomness of actual 
data, describing the variance of the conditional distribution of our target variable, due to 
unmeasured variables, or things like measurement error (Tagasovska and Lopez-Paz 2019). 

The following example illustrates these three types of uncertainty: Suppose we are 
trying to predict the future probability 𝑝𝑝 that a non-traditional die will roll a 1. Let 𝑋𝑋 
represent the face that die lands on when it is rolled. Suppose we choose a set of candidate 
models with the probability mass function of 𝑝𝑝(𝑥𝑥) = 1

𝑛𝑛
, where 𝑛𝑛 is the total number of sides 

on that dice. If we have a set of data from previous dice rolls, or our own manufactured 
training data, approximation uncertainty occurs when one candidate model is perceived to 
be the best in relation to our training data (𝑝𝑝(𝑥𝑥) = 1

5
 for example), when in practice a 

different model will give us the best predictions (say 𝑝𝑝(𝑥𝑥) = 1
4
). Model (epistemic) 

uncertainty represents the fact that we may not know enough about the true structure of the 
model. Suppose that the true model is actually of the form 𝑝𝑝(𝑥𝑥) = 𝑐𝑐

𝑛𝑛
, where 𝑐𝑐 is the number 

of sides on the dice that have a 1 on them. Our set of candidate models is not representative 
of the true model, since we do not consider the fact that a dice could have a number of sides 
that have the same integer on them. In this case, quantifying this model uncertainty can 
correctly demonstrate our lack of knowledge about the true model. Finally, data (aleatoric) 
uncertainty comes from the fact that the proportion of times we observed the desired 
outcome (the proportion of times we roll a 1) will often not equal our predicted probability 
of that outcome, due to the randomness of the actual dice roll. In a perfect world, we could 
greatly reduce this uncertainty by knowing variables like the launching point of the dice and 
the physics of its movement, but accounting for all factors in practice is impossible. We can 
only aim to have a model that comes as close as possible to predicting the true outcomes. 
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The methods that we explore in this paper make attempts to measure some of these 
types of uncertainty through prediction intervals. However, just because we measure some 
of the uncertainty in these intervals, we should not disregard the rest as if they do not exist. 
It can be dangerous to give a measurement for some of the unknown that we have in our 
predictions, only to lead others into a false sense of security that nothing else could be outside 
of our scope of knowledge. Educating others on uncertainty that a method cannot quantify 
is just as important as noting what it can. 

D. Task Specifics 
In this paper, we explore methods for measuring uncertainty, particularly in relation to 

the forecasts generated by the Finite Interval Forecasting Engine from IDA. FIFE has two 
different approaches available for predicting the future probability of survival for individuals 
in the service at future time points: a deep neural network modeler through Keras2 and a 
gradient boosted tree modeler through LightGBM.3 Our aim is to explore possible methods 
for adding prediction intervals in relation to these forecasts, and implementing some of the 
most promising ones as FIFE methods. Adding these measures of uncertainty quantification 
will enhance the ability of those who are using these predictions to make proper decisions 
based on how certain these forecasts are likely to be. We aim to compute prediction intervals, 
both for the individual probability of survival for a given time point, as well as the overall 
count of exits at a time point for a number of individuals. 

  

                                                 
2  Keras documentation: https://keras.io/ 
3  LightGBM documentation: https://lightgbm.readthedocs.io/en/latest/ 

https://keras.io/
https://lightgbm.readthedocs.io/en/latest/


6 

 

This page is intentionally blank. 

 



7 

 

2. Methods 

There are two categories of prediction interval methods that we explore in relation to 
quantifying uncertainty in survival data predictions: generic methods, and learner-specific 
methods. A generic PI method indicates that the strategy does not need to know anything about 
the type of training method used in creating the predictions, but instead can be applied to any type 
of survival data time series predictions. These methods are useful in that they can be applied in 
many scenarios, but also tend to be more conservative in their prediction interval estimation than 
others. 

Chernoff bounds are prediction intervals derived theoretically for the sum of independent 
Bernoulli trials, each with its own independent probability 𝑝𝑝𝑖𝑖. Through the use of Chebyshev’s 
inequality, a nice expression is obtained for a (1 − 𝛼𝛼)% prediction interval, conditional on just the 
sum of predicted probabilities of success ∑ 𝑝𝑝𝑖𝑖𝑛𝑛

𝑖𝑖=1 . These bounds tend to be very conservative by 
nature, giving wider intervals than obtained elsewhere (Goemans 2015). 

Techniques for computing exact coverage probability of any set of existing prediction 
intervals derived theoretically (with a formula) are detailed by Wang (2008). By using simulation 
techniques to compute the coverage probability for a supposed value of 𝑝𝑝, given a fixed sample 
size, a minimum coverage probability and average coverage probability can be calculated by 
getting these coverage probabilities across a fine grid of possible 𝑝𝑝 values. Wang further suggests 
a method for altering existing PIs based on the average coverage probability, in order to ensure 
that the final PI will have average coverage probability equal to the nominal coverage desired. 

A clustering technique using K-Nearest-Neighbors regression (Huang and Perry 2016) 
provides an interesting way of obtaining prediction intervals, in that similar scenarios from 
previous historical data are used to form a probabilistic distribution of forecasting error, for any 
random variable to have a future value predicted. For a given individual who has a future value 
predicted, a search for previous observations in the historical data who shared similar covariates 
is conducted using KNN regression, and the realized outcomes for those similar observations are 
combined to create a distribution of possible forecast errors, from which PIs can be derived. 
Similarity in this method is quantified by a measure of Euclidean distance in a hyperspace with 
dimensions defined by a number of selected variables. Huang suggests having time be represented 
as a covariate as well, in order to give appropriate lesser weight to training data that occurred 
further in the past. 

Next, we turn to learner-specific methods, which use the underlying modeling framework to 
construct appropriate prediction intervals for forecasts. Since FIFE uses neural network and 
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gradient boosted tree strategies, we will focus our literature review on these two specific learner 
types. There are multiple ways of constructing PIs using theoretical or asymptotic formulations, 
such as Hwang and Ding’s (1997) method, which uses an asymptotic result to form prediction 
intervals for single layer neural network predictions. However, the method assumes that noise is 
normal and homogeneous, which is not guaranteed in most scenarios. Many of these theoretical 
PIs either make assumptions that are often violated, or may not reach nominal coverage probability 
in practice. 

Bayesian methods for constructing prediction intervals using a posterior predictive 
distribution for a random variable of interest are very common, and often highly accurate. In cases 
of large data (as is often the case with FIFE datasets), the computational cost of implementing 
these methods is not as feasible. The same can be said for bootstrap-type PI methods for neural 
networks, in that they are also very computationally expensive in big data settings, although they 
are simple and easy to implement. 

Gal and Ghahramani (2016) uses an ensemble of neural network models with dropout to 
approximate a Bayesian posterior distribution when constructing prediction intervals, yielding 
similar accuracy to Bayesian methods without being too costly. The method, called MC Dropout, 
can be used with any deep neural network model that has dropout applied between each hidden 
layer, and utilizes predictions from independent models to form a probability distribution for future 
outcomes. The paper demonstrates how the predictions from these independent NN models 
approximate the true Bayesian posterior predictive distribution. MC Dropout is very easy to use, 
and is almost as fast to run as the original neural network model if parallelization is possible. 

Another promising NN ensemble method is the one provided by Lakshminarayanan, Pritzel, 
and Blundell (2017), which also uses independent NN models to approximate a Bayesian posterior. 
This method includes a measurement for quantifying out-of-distribution shift.4 Well-calibrated 
predictions using this approach are robust to model misspecification and out-of-distribution shift. 
However, implementing this method is a little more challenging than Gal’s MC Dropout method. 

While the previous methods are all based on fitting prediction intervals to existing neural 
network forecasts training using a prediction error loss function, Khosravi et al. (2011) introduces 
a method called Lower-Upper Bound Estimation (LUBE), that trains deep neural networks on a 
loss function constructed to yield the highest quality prediction intervals. If the ultimate goal is to 
generate accurate predictions, then building your neural network model to output the tightest 
prediction intervals, with the desired coverage probability, makes a lot of sense. Khosravi et. al 
gives a strategy for constructing a prediction interval quality score, that values both coverage 
probability and interval width, which can be used as the loss function for the NN training. Each 

                                                 
4  Out-of-distribution shift, or data shift, occurs when certain properties of the dataset used for training are different 

from those of the dataset used for other purposes, such as testing or forecasting. A neural network that is making 
predictions for a dataset that is different in this respect from the training data should have a much higher level of 
predictive uncertainty. 
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prediction will then yield two values, a lower and upper bound for the prediction interval, instead 
of just a single point estimate. 

There are two prediction interval methods for stochastic gradient boosted trees that we find 
intriguing for use in FIFE. The first, proposed by Malinin, Prokhorenkova, and Ustimenko (2021), 
constructs an ensemble of independent SGBT models to get a sense of the uncertainty in our 
predictions. While there is no guarantee in how well a distribution of predictions from usual 
independent stochastic gradient boosted tree models will approximate the true Bayesian posterior 
predictive distribution for a random variable, Malinin uses Langevin dynamics (Ustimenko and 
Prokhorenkova 2021) introduced in Stochastic Gradient Langevin Boosting (SGLB) to ensure that 
ensembles of predictions do approximate the true posterior. These SGLB models inject Gaussian 
noise into the gradients and use L2 regularization in a sequential boosting algorithm, in order to 
enable proper sampling from the posterior. 

Malinin also proposes a method for cutting down the computation time of these prediction 
intervals by using just one SGLB model, and forming a virtual ensemble of models by taking 
sequential subsets of trees within the single model to approximate a full independent ensemble. 
While this technique does yield lower quality prediction intervals, compared to an independent 
ensemble of SGLB models, it outperforms any estimate of prediction uncertainty that would 
otherwise be gained through a traditional single stochastic gradient boosted tree model. These 
methods also include a measure for distinguishing epistemic and aleatoric uncertainty in the model 
predictions, which is a very nice feature. The main drawback with these approaches in relation to 
FIFE is that they require set choices of learning rate and L2 regularization in order to theoretically 
approximate the true posterior predictive distribution, which doesn’t allow for any set of 
hyperoptimized choice of gradient boosted tree parameters to be used. 

The Natural Gradient Boosting (NGBoost) algorithm (Duan et al. 2020) is another good 
choice for constructing prediction intervals for gradient boosted trees. NGBoost allows for any 
choice of base learner (such as a gradient boosted tree), parametric probability distribution, and 
scoring rule / loss function (such as the MLE), to generalize gradient boosting to probabilistic 
regression and compute prediction intervals for random variables. 

We next examine several of the aforementioned approaches, each of which we implement in 
some form into FIFE, and examine the performance of each. 

A. Chernoff Bounds 
Chernoff bounds are probability statements about random variables that give a probability of 

a random variable being greater than or less than a certain quantity, derived using Chebyshev’s 
inequality.5 There are different forms to Chernoff bounds, but we focus on the bounds for a sum 
                                                 
5  Chebyshev’s Inequality is 𝑃𝑃(|𝑋𝑋 − 𝐸𝐸(𝑋𝑋)| ≥ 𝑎𝑎) ≤ 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋)

𝑎𝑎2
. For a sum of iid random variables, this can be reworked 

as 𝑃𝑃 ��∑𝑋𝑋𝑖𝑖
𝑛𝑛
− 𝜇𝜇� ≥ 𝜖𝜖� ≤ 𝜎𝜎2

𝑛𝑛𝜖𝜖2
. 
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of independent Bernoulli trials, each with its own independent probability of success, 𝑝𝑝𝑖𝑖. We can 
use these to form prediction intervals around the count of exits from service for a group of 
individuals at a given future time point. 

Let 𝑋𝑋 = ∑ 𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1 , where 𝑋𝑋𝑖𝑖 = 1 with probability 𝑝𝑝𝑖𝑖 and 𝑋𝑋𝑖𝑖 = 0 with probability 1 − 𝑝𝑝𝑖𝑖, and 

all 𝑋𝑋𝑖𝑖 are independent. Let 𝜇𝜇 = 𝐸𝐸(𝑋𝑋) = ∑𝑝𝑝𝑖𝑖. Then, for a chosen value of 𝛿𝛿, the Chernoff upper 
bound is given by 

𝑃𝑃(𝑋𝑋 ≥ (1 + 𝛿𝛿𝑈𝑈)𝜇𝜇) ≤ �
𝑒𝑒𝛿𝛿𝑈𝑈

(1 + 𝛿𝛿𝑈𝑈)1+𝛿𝛿𝑈𝑈�
𝜇𝜇

 for all 𝛿𝛿𝑈𝑈 > 0, (1) 

and the Chernoff lower bound is given by 

𝑃𝑃(𝑋𝑋 ≤ (1 − 𝛿𝛿𝐿𝐿)𝜇𝜇) ≤ �
1

𝑒𝑒𝛿𝛿𝐿𝐿(1 − 𝛿𝛿𝐿𝐿)1−𝛿𝛿𝐿𝐿�
𝜇𝜇

 for all 0 < 𝛿𝛿𝐿𝐿 < 1. (2) 

By strategically choosing the value of 𝛿𝛿, one can create bounds that have a specified level of 
confidence, such as 95% confidence. 

Sometimes, a somewhat looser, but more convenient set of bounds are used in practice. The 
conservative upper bound is expressed as 

𝑃𝑃(𝑋𝑋 ≥ (1 + 𝛿𝛿𝑈𝑈)𝜇𝜇) ≤ exp�−
𝛿𝛿𝑈𝑈2

2 + 𝛿𝛿𝑈𝑈
𝜇𝜇�  for all 𝛿𝛿𝑈𝑈 > 0, (3) 

and the conservative lower bound is expressed as 

𝑃𝑃(𝑋𝑋 ≥ (1 − 𝛿𝛿𝐿𝐿)𝜇𝜇) ≤ exp�−
𝛿𝛿𝐿𝐿2

2
𝜇𝜇�  for all 0 < 𝛿𝛿𝐿𝐿 < 1. (4) 

By strategically choosing the value of 𝛿𝛿, one can create bounds that have a specified level of 
confidence, such as 95% confidence (Goemans 2015). 

1. Chernoff Bounds in FIFE
A previous implementation existed in FIFE to calculate the Chernoff bounds around a random

variable that represents the sum of iid Bernoulli trials, with a given level of significance, 𝛼𝛼. 
However, the bounds use the more conservative form of the Chernoff bounds, given that the 
formulation simplifies the expressions for the bounds in order to analytically calculate the desired 
𝛿𝛿 for a given significance level 𝛼𝛼. The function that calculates these bounds is the 
‘compute_aggregation_uncertainty()’ function, inside ‘utils.py’. 

With this current formulation, we can solve for the specific 𝛿𝛿 needed to get the exact bounds 
that lead to the desired significance level 𝛼𝛼. For example, if 𝛼𝛼 = 0.025, we can set the upper tail 

bound exp �− 𝛿𝛿𝑈𝑈
2

2+𝛿𝛿𝑈𝑈
𝜇𝜇� to be equal to 0.025, and solve for 𝛿𝛿𝑈𝑈. 

However, these formulations are more conservative than the original bounds in (1) and (2), 
and they produce wider intervals than necessary; we will use the original expressions to produce 
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tighter intervals. This requires an optimization function, since there isn’t always an analytical 
solution for 𝛿𝛿 in this case. 

Our goal is to set 𝛼𝛼, our significance level, and then solve for 𝛿𝛿, where 𝛼𝛼 = � 𝑒𝑒𝛿𝛿𝑈𝑈
(1+𝛿𝛿𝑈𝑈)1+𝛿𝛿𝑈𝑈

�
𝜇𝜇

. 

We can use an optimizer to find the single value of 𝛿𝛿𝑈𝑈, the Chernoff upper bound, that minimizes 
the expression below: 

��
𝑒𝑒𝛿𝛿𝑈𝑈

(1 + 𝛿𝛿𝑈𝑈)1+𝛿𝛿𝑈𝑈�
𝜇𝜇

− 𝛼𝛼�
2

. (5) 

Similarly, to find the lower bound, we minimize the expression: 

��
1

𝑒𝑒𝛿𝛿𝐿𝐿(1 − 𝛿𝛿𝐿𝐿)1−𝛿𝛿𝐿𝐿�
𝜇𝜇

− 𝛼𝛼�
2

. (6) 

Using this approach in experimentation always leads to single solutions for 𝛿𝛿. Even if this 
method were to fail, we could always fall back on the simplified version of the Chernoff Bounds, 
in (3) and (4), that can be calculated analytically. Figure 1 illustrates the tighter intervals that the 
original Chernoff Bounds give, compared to the simplified version currently implemented in FIFE. 

 

 
Note: A comparison of the conservative confidence bounds, (3) and (4), to the tighter confidence bounds, (1) and (2). 

Figure 1. Comparison of Chernoff Bounds 

2. 3D Plots of Minimization Function 
Figure 2 provides a 3D plot of the function that is minimized in order to find the optimal 𝛿𝛿 

values that lead to our calculated upper and lower bounds. The left plot shows the value of the 
function to minimize for the upper bound, given a grid of 𝜇𝜇 and 𝛿𝛿 values, for a fixed 𝛼𝛼 = 0.025. 
It is difficult to see where the function is minimized in the plot on the left, but we can gain more 
clarity by looking at the plot on the right, which enlarges the figure to focus on the areas where the 
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function quantity is under 0.000625. The right pane indicates that the function has a global 
minimum for any given value of 𝜇𝜇, leading to our unique solution for 𝛿𝛿: 

 

 
Note: These plots show the values of the function to be minimized for any given 𝜇𝜇 and 𝛿𝛿 values when calculating the 

Chernoff upper bound. The plot on the right is an enlarged version of the plot on the left. For any 𝜇𝜇, there appears 
to be a global minimum, leading to a unique solution for 𝛿𝛿. 

Figure 2. Chernoff Bounds Objective Function 
 

The plot of the minimization function for the lower bound is similar, so we won’t include it here. 

3. 3D Plots of Optimized Bounds 
Figure 3 provides 3D plots of calculated Chernoff upper bound values for a grid of possible 

𝜇𝜇 values (expected sum of independent Bernoulli trials) and 𝛼𝛼 values (significance levels). The 3D 
plots for the lower bound values show similar behavior, but with the calculated bound values 
dipping lower towards small 𝛼𝛼 values, not rising like in the plots above for the upper bounds. 

 
Note: These plots show the calculated Chernoff upper bounds for a grid of 𝜇𝜇 and 𝛼𝛼 values. The plot on the right is the 

log-scale version of the plot on the left. 

Figure 3. Chernoff Bounds Calculations 
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B. MC Dropout for Deep Neural Networks 
Bayesian methods for estimating prediction uncertainty in neural network (NN) models are 

usually accurate but computationally expensive; Gal and Ghahramani (2016) proposes a deep 
neural network model ensemble technique to approximate Bayesian methods without the 
additional cost, which addresses this issue. Gal proves that a collection of independent deep neural 
network model predictions, with dropout applied in each hidden layer, can be aggregated to 
approximate the true posterior predictive distribution of a random variable to be predicted. The 
proposed method, called MC Dropout, can be applied to any existing deep NN model that uses a 
constant dropout rate between each hidden layer. Neural network models in FIFE frequently use 
dropout, which makes MC Dropout a very enticing approach to obtaining prediction intervals in 
our case. 

Dropout neural network models sample binary variables for every input point and every 
hidden unit inside each layer (except the last), with each variable taking value 1 with probability 
𝑝𝑝𝑖𝑖 and value 0 if not. A value of 0 corresponds to that unit being dropped for that instance. This 
technique is successfully used to prevent model over-fitting. Gal proves that the model outputs 
resulting from the addition of random dropout approximate the probabilistic deep Gaussian 
process, with no simplifying assumptions needed.6 

1. Obtaining Model Uncertainty 
Gal shows that the predicted values from each outcome of 𝑇𝑇 independent deep NN models 

produce a posterior predictive distribution for each of those predicted random variables. In 
particular, for a chosen random variable, 𝑦𝑦𝑖𝑖∗, to be predicted, we can estimate the first two moments 
of the predictive distribution as follows: 

𝐸𝐸(𝑦𝑦𝑖𝑖∗) ≈
1
𝑇𝑇
�𝑦𝑦�𝑖𝑖𝑖𝑖∗
𝑇𝑇

𝑡𝑡=1

, 

and 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦𝑖𝑖∗) ≈ 𝜏𝜏−1 +
1
𝑇𝑇
��𝑦𝑦�𝑖𝑖𝑖𝑖∗ − 𝐸𝐸(𝑦𝑦𝑖𝑖∗)�

2
𝑇𝑇

𝑡𝑡=1

, 

where 𝜏𝜏 is the model precision parameter. These estimates for the first two moments can be used 
to construct desired prediction intervals for random variables of interest. 

According to Gal, while using a large number of independent NN models 𝑇𝑇 can be helpful in 
getting an accurate estimate of the prediction intervals, a smaller number of models, such as 10, 
may be enough in many cases to get a usable estimate. Furthermore, if parallelization is possible, 

                                                 
6  Additional technical details are provided in the appendix. 
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independent forward passes through the NN model can be done concurrently, leading to almost 
identical computation time as compared to just a single model run. 

2. Choosing hyperparameters 
There are several hyperparameters needed in MC Dropout in order to derive the model 

precision, 𝜏𝜏, the inverse of which is added on to the variance of the NN predictions to obtain the 
total predictive variance of the model. The model precision 𝜏𝜏 is calculated as 

𝜏𝜏 =
𝑝𝑝ℓ2

2𝑁𝑁𝑁𝑁
, (7) 

where 𝑝𝑝 is the rate at which units are not being dropped, ℓ is the prior-length scale, 𝑁𝑁 is the number 
of observations in the data, and 𝜆𝜆 is the weight-decay, functioning as the L2 regularization 
parameter in (13). The choice of ℓ greatly impacts 𝜏𝜏, as the Gaussian process prior depends on ℓ, 
set to be shorter for high-frequency data and longer for low-frequency data. Unfortunately, there 
is very little instruction on how to properly pick this parameter. 

One of Gal’s examples mentions setting the prior length-scale to be 10−2 for most datasets 
based on the range of the data, but this choice is not feasible for predictive variance for survival 
probabilities. In this example, they use Bayesian optimization to find the optimal 𝜏𝜏, which leads 
to their choice of 𝜆𝜆, which seems to suggest that using an optimization strategy to directly choose 
𝜏𝜏 is actually the preferable route, rather than using (7) to calculate it based on an imprecise choice 
of ℓ. The model precision itself is just an estimate of the inverse of the assumed observation noise 
(Gal 2015). The fact that little guidance is given on strategies to find the optimal 𝜏𝜏 makes using 
MC Dropout in practice much less straightforward than desired. 

The choice of activation function for the NN hidden layers also impacts the behavior of the 
predictive uncertainty estimates. Activation functions that saturate, such as the sigmoid activation 
function used by default in FIFE, will behave differently than those that do not, such as a ReLU 
activation function. Gal notes some anecdotal evidence that use of the ReLU activation function 
increases the predictive uncertainty for estimates far from the original data, while the sigmoid 
function does not. 

3. Usage in FIFE 
The MC Dropout method for obtaining prediction intervals for forecasts is available as the 

‘compute_model_uncertainty()’ method for an object of class ‘TFModeler’. The function creates 
an ensemble of forecasts from independent neural network models (with dropout required between 
each layer), which are aggregated to form an asymptotic posterior distribution for the future values 
or classification probabilities of any observation of interest, for a number of future time points. 
The user can choose the number of independent models that will be used. As noted in Gal et al., 
while the quality of prediction intervals will be more robust with a larger number of models (50 or 
100 for example), a good estimate of the amount of uncertainty can be generated with a smaller 
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number of models. We would recommend using a minimum of 10 independent dropout models. 
In addition, the user can specify other hyperparameters for the model using the ‘params’ argument, 
a specific dropout rate, if different than previously specified in ‘params’, and the confidence level 
with which the prediction intervals will be computed (95% confident by default). 

Estimated forecasts, and their corresponding prediction intervals, are plotted using the 
‘plot_forecast_prediction_intervals()’ method for ‘TF_Modeler’, which requires the output of 
‘compute_model_uncertainty()’. Individual observation forecasts, as well as aggregated sums of 
individuals are shown using this function. Note that prediction intervals for the sum of exit counts 
are for the expected value of counts, not the actual realized count number. 

Additionally, unbalanced panel data can be generated for use with these methods using the 
‘fabricate_data()’ function in ‘tests_performance/Data_Fabrication.py’ in FIFE, which now 
includes an argument, ‘covariates_affect_outcome’, which, if True, allows for individual 
covariates to have an affect on outcome probability, along with the survival probability for each 
person diminishing over time, following a Weibull distribution for the log hazard rate. 

C. Stochastic Gradient Langevin Boosting 
The use of ensembles of independent models is a valuable technique for quantifying 

predictive uncertainty in stochastic gradient boosted trees. One can use a model ensemble method 
to obtain probability distribution for a future outcome value. An ensemble of independent 
stochastic gradient boosted trees (with different seeds) can be used to obtain these distributions 
(and corresponding prediction intervals), but there are no guarantees as to how well this will 
approximate the true predictive distribution, usually leading to distorted intervals. 

Malinin, Prokhorenkova, and Ustimenko (2021) introduces a method to approximate a 
Bayesian predictive posterior distribution by combining stochastic gradient boosting (SGB) with 
Langevin Dynamics7 (Ustimenko and Prokhorenkova 2021). Stochastic Gradient Langevin 
Boosting (SGLB) uses a special form of the Langevin diffusion equation8 specifically designed 
for gradient boosting. This enables sampling from the desired predictive distribution through the 
use of SGLB ensembles. Estimates of uncertainty through this method also are able to disentangle 
model (epistemic) uncertainty and data (aleatoric) uncertainty for the predictions. 

Traditional Stochastic Gradient Boosting uses a random sub-sample of the training data, 
rather than the whole dataset, to update the sequential model and train the next tree. This technique 
introduces a small amount of noise into the model in order to prevent model overfitting. Given a 
dataset 𝐷𝐷 = �x(𝑖𝑖),𝑦𝑦(𝑖𝑖)�𝑖𝑖=1

𝑁𝑁
 and loss function 𝐿𝐿, with a chosen SGB learning rate 𝜖𝜖, the model 

updates at each iteration 𝑡𝑡 using the following formula: 

                                                 
7  Langevin dynamics mathematically are commonly used to model the dynamics of molecular systems. 
8  A stochastic differential equation used in Langevin Dynamics (van Kampen 2007). 
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𝐹𝐹(𝑡𝑡)(𝐱𝐱) = 𝐹𝐹(𝑡𝑡−1)(𝐱𝐱) + 𝜖𝜖ℎ(𝑡𝑡)(𝐱𝐱), 

where 𝐹𝐹𝑡𝑡−1 is the previously constructed model at the last iteration, and ℎ(𝑡𝑡)(x) is the function that 
approximates the negative gradient −𝑔𝑔(𝑡𝑡)(x,𝑦𝑦) : = −𝑑𝑑𝑑𝑑(𝑦𝑦,𝑠𝑠)

𝑑𝑑𝑑𝑑
�
𝑠𝑠=𝐹𝐹(𝑡𝑡−1)(x)

. The function ℎ(𝑡𝑡)(x) ∈ 𝐻𝐻 

is chosen from some family of functions 𝐻𝐻, in order to minimize the expected difference between 
the negative gradient and the learner, as seen in the following: 

ℎ(𝑡𝑡) = argmin
ℎ∈𝐻𝐻

 𝐸𝐸𝐷𝐷 ��−𝑔𝑔(𝑡𝑡)(𝐱𝐱,𝑦𝑦) − ℎ�𝐱𝐱,𝛟𝛟(𝑡𝑡)��
2
�, (8) 

where 𝛟𝛟(𝐭𝐭) are the parameters of the function ℎ(𝑡𝑡). 
While analyzing an ensemble of independent SGB model predictions can provide some sense 

of the predictive uncertainty, there is no theoretical underpinning that leads to any kind of 
convergence towards a desired Bayesian posterior distribution. 

Stochastic Gradient Langevin Boosting (SGLB) models make two changes to the traditional 
SGB modeling process. First, Gaussian noise is explicitly injected into the gradients that are used 
to train the model, allowing for proper exploration of the solution space to find the global optimum. 
Equation (8) is replaced by 

ℎ(𝑡𝑡) = argmin
ℎ∈𝐻𝐻

 𝐸𝐸𝐷𝐷 ��−𝑔𝑔(𝑡𝑡)(𝐱𝐱,𝑦𝑦) − ℎ(𝐱𝐱) + 𝜈𝜈�
2
� , 𝜈𝜈 ∼ 𝒩𝒩 �0,

2
𝛽𝛽𝛽𝛽

𝐼𝐼𝑁𝑁�, (9) 

for some choice of 𝛽𝛽. The Gaussian noise introduced by 𝜈𝜈 allows the SGLB model to properly 
sample the posterior distribution for our parameter space. Additionally, a regularization parameter, 
𝛾𝛾, is introduced into the model updating algorithm leading to the following formula: 

𝐹𝐹(𝑡𝑡)(x) = (1 − 𝛾𝛾𝛾𝛾)𝐹𝐹(𝑡𝑡−1)(x) + 𝜖𝜖ℎ(𝑡𝑡)�x,𝛟𝛟(𝑡𝑡)�. (10) 

Ustimenko and Prokhorenkova (2021) show that introducing 𝛾𝛾 as a regularizer in this fashion 
is equivalent to standard L2 regularization in the form of 𝐿𝐿𝑁𝑁(𝐹𝐹, 𝛾𝛾) = 𝐿𝐿𝑁𝑁(𝐹𝐹) + 𝛾𝛾

2
�|𝐹𝐹|�

2
2
. 

The SGLB model parameters 𝛉𝛉(𝑡𝑡) at each iteration form a Markov chain that weakly 
converges to the stationary distribution: 

𝑝𝑝𝛽𝛽∗ (𝛉𝛉) ∝ exp(−𝛽𝛽𝛽𝛽(𝛉𝛉|𝐷𝐷) − 𝛽𝛽𝛽𝛽||𝛤𝛤𝛉𝛉||22), 

where 𝛤𝛤 is an implicitly defined regularization matrix, based on the choice of tree algorithm 
(Malinin, Prokhorenkova, and Ustimenko 2021). In order to enable sampling from the true 
posterior distribution, Malinin sets 𝛽𝛽 = 𝑁𝑁 and 𝛾𝛾 = 1

2𝑁𝑁
 in order for the stationary distribution, using 

a negative log-likelihood loss function, to be proportional to the true posterior 𝑝𝑝(𝛉𝛉|𝐷𝐷): 

𝑝𝑝𝛽𝛽∗ (𝛉𝛉) ∝ exp(log𝑝𝑝 �𝐷𝐷 �𝛉𝛉) −
1
2
� |𝛤𝛤𝛉𝛉||22� ∝ 𝑝𝑝(𝐷𝐷|𝛉𝛉)𝑝𝑝(𝛉𝛉), (11) 

under Gaussian prior distribution 𝑝𝑝(𝛉𝛉) = 𝒩𝒩(0,𝛤𝛤). 
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Predictions from an ensemble of independent SGLB models can be aggregated to form a 
predictive distribution for any random variables to be forecast in the future. Prediction intervals 
constructed in this fashion vastly outperform PIs made from normal SGB models. 

1. Virtual SGLB 
In certain cases, producing an ensemble of SGLB models can be computationally expensive, 

especially if the dataset is large. Malinin, Prokhorenkova, and Ustimenko (2021) proposes an 
alternative method that outputs prediction intervals at a much lower cost, in the form of a Virtual 
SGLB, which enables generating a virtual ensemble from only one single SGLB model instance. 
Due to the sequential nature of gradient boosted trees, a simple random sampling of trees isn’t 
appropriate, since each tree is dependent upon the previous tree. Instead, a truncated version of an 
SGLB model, containing all trees from 𝐹𝐹(1)(x) up to some 𝐹𝐹(𝑘𝑘)(x), can be used as one of many 
individual models in the virtual ensemble. For instance, if a single SGLB model contains 1000 
trees, a virtual ensemble containing 10 sub-models can be obtained by the first sub-model having 
trees 1 through 500, the second sub-model having trees 1 through 550, and so on up to the last sub-
model, containing trees 1 through 1000. Predictions from each of these sub-models can be used in 
the same way as in a normal SGLB ensemble to form predictive distributions. Given that there 
will be a high degree of correlation between the models in the virtual ensemble, predictive 
uncertainty estimates perform worse than when using a usual SGLB ensemble, but this technique 
still provides much better prediction intervals than any traditional PIs constructed from one single 
SGB or SGLB model. In a sense, a virtual SGLB provides a much higher quality set of PIs than a 
single model, without any added computational cost. 

2. Differentiating Model and Data Uncertainty 
There are a few steps to calculating the total uncertainty in predictions using SGLB 

ensembles, as well as differentiating that uncertainty into data uncertainty and model uncertainty. 

We define �𝑃𝑃�𝑦𝑦|x;𝛉𝛉(𝑚𝑚)��
𝑚𝑚=1
𝑀𝑀

 as an ensemble of probabilistic models sampled from the posterior 

𝑝𝑝(𝛉𝛉|𝐷𝐷), where 𝑃𝑃�𝑦𝑦|x,𝛉𝛉(𝑚𝑚)� is a single model from that ensemble. Malinin notes that the 
predictive posterior distribution of the ensemble is obtained by taking the expectation with respect 
to the models in the ensemble: 

𝑃𝑃(𝑦𝑦|x,𝐷𝐷) = 𝐸𝐸𝑝𝑝(𝛉𝛉|𝐷𝐷)[𝑃𝑃(𝑦𝑦|x,𝛉𝛉)] ≈
1
𝑀𝑀
� 𝑃𝑃
𝑀𝑀

𝑚𝑚=1

�𝑦𝑦|x;𝛉𝛉(𝑚𝑚)�, 𝛉𝛉(𝑚𝑚) ∼ 𝑝𝑝(𝛉𝛉|𝐷𝐷), 

where 𝑀𝑀 is the number of models in the ensemble. 
The entropy of the predictive posterior distribution estimates the total uncertainty in 

predictions: 
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ℋ[𝑃𝑃(𝑦𝑦|x,𝐷𝐷)]= 𝐸𝐸𝑃𝑃(𝑦𝑦|x,𝐷𝐷)[−log𝑃𝑃(𝑦𝑦|x,𝐷𝐷)]

≈
1
𝑁𝑁
�−
𝑁𝑁

𝑖𝑖=1

log �
1
𝑀𝑀
�𝑃𝑃
𝑀𝑀

𝑖𝑖=1

�𝑦𝑦|x;𝛉𝛉(𝑚𝑚)�� .
 

This measure of total uncertainty includes both data and model uncertainty. In order to estimate 
data (aleatoric) uncertainty by itself, we obtain the expected entropy of each of the 𝑀𝑀 models in 
the ensemble, 𝐸𝐸�ℋ[𝑃𝑃(𝑦𝑦|x,𝛉𝛉)]�. By subtracting the expected data uncertainty from the total 
uncertainty, we can obtain ℐ[𝑦𝑦,𝛉𝛉|x,𝐷𝐷], the estimated model (epistemic) uncertainty: 

ℐ[𝑦𝑦,𝛉𝛉|x,𝐷𝐷]= ℋ[𝑃𝑃(𝑦𝑦|x,𝐷𝐷)] − 𝐸𝐸�ℋ[𝑃𝑃(𝑦𝑦|x;𝛉𝛉)]�

≈ ℋ �
1
𝑀𝑀
� 𝑃𝑃
𝑀𝑀

𝑚𝑚=1

�𝑦𝑦|x;𝛉𝛉(𝑚𝑚)�� −
1
𝑀𝑀
� ℋ
𝑀𝑀

𝑚𝑚=1

�𝑃𝑃�𝑦𝑦|x;𝛉𝛉(𝑚𝑚)��

≈
1
𝑁𝑁
�−
𝑁𝑁

𝑖𝑖=1

log �
1
𝑀𝑀
�𝑃𝑃
𝑀𝑀

𝑖𝑖=1

�𝑦𝑦𝑖𝑖|x𝑖𝑖;𝛉𝛉(𝑚𝑚)��

−
1
𝑀𝑀
��

1
𝑁𝑁
�−
𝑁𝑁

𝑖𝑖=1

log�𝑃𝑃�𝑦𝑦𝑖𝑖|x𝑖𝑖;𝛉𝛉(𝑚𝑚)���
𝑀𝑀

𝑖𝑖=1

.

 

Essentially, model uncertainty is being measured as the level of spread or disagreement with 
respect to the models in the ensemble, whereas data uncertainty is being measured as the level of 
spread within each model. 

3. Usage in FIFE 
The Stochastic Gradient Langevin Boosthing method for obtaining prediction intervals for 

gradient boosting forecasts is available as the ‘compute_model_uncertainty()’ method for an object 
of class ‘LGBModeler’. The function creates an ensemble of forecasts from independent gradient 
boosting models, which are aggregated to form an asymptotic posterior distribution for the future 
values or classification probabilities of any observation of interest, for a number of future time 
horizons. The user can choose the number of independent models that will be used. Similar to the 
neural network prediction intervals, while the quality of prediction intervals will be more robust 
with a larger number of models (50 or 100 for example), a good estimate of the amount of 
uncertainty can be generated with a smaller number of models. We would recommend using a 
minimum of 10 independent dropout models. 

In addition, the user can specify other hyperparameters for the model using the ‘params’ 
argument, like the confidence level with which the prediction intervals will be computed (95% 
confident by default). The ‘langevin_variance’ parameter of ‘compute_model_uncertainty()’ is the 
choice of 𝜎𝜎2 in our adaptation of Equation (9), written as follows: 

ℎ(𝑡𝑡) = argmin
ℎ∈𝐻𝐻

 𝐸𝐸𝐷𝐷 ��−𝑔𝑔(𝑡𝑡)(𝐱𝐱,𝑦𝑦) − ℎ(𝐱𝐱) + 𝜈𝜈�
2
� , 𝜈𝜈 ∼ 𝒩𝒩(0,𝜎𝜎2𝐼𝐼𝑁𝑁), (12) 
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We set 𝜎𝜎2 = 2
𝛽𝛽𝛽𝛽

 to adjust the variance of the Gaussian noise inserted into the gradient as a 

whole. By default, 𝜎𝜎2 is set to zero in ‘compute_model_uncertainty()’, although this is not 
recommended. Without using a proper strategy to tune this parameter, resulting prediction 
intervals will be distorted, especially if 𝜎𝜎2 = 0. We talk about strategies for choosing this 
parameter in section 2.4. 

Estimated forecasts, and their corresponding prediction intervals, are plotted using the 
‘plot_forecast_prediction_intervals()’ method for ‘LGB_Modeler’, which requires the output of 
‘compute_model_uncertainty()’. Individual observation forecasts, as well as aggregated sums of 
individuals are shown using this function. Note that prediction intervals for the sum of exit counts 
are for the expected value of counts, 𝐸𝐸[∑ 𝑦𝑦𝑖𝑖𝑁𝑁

𝑖𝑖=1 ], not the actual realized count number, [∑ 𝑦𝑦𝑖𝑖𝑁𝑁
𝑖𝑖=1 ], 

where 𝑦𝑦𝑖𝑖 is 1 if individual 𝑖𝑖 survives, and 0 if individual 𝑖𝑖 exits. 

In order to allow for noise to be injected into the gradients for FIFE LightGBM models, we 
use a custom objective function, which adds noise with a defined variance to the original gradients 
based on the binary log loss function used in classification for binary outcomes. When defining 
custom objective functions in LightGBM, outputs are given in logit form, so a sigmoid function is 
needed to transform the values into the correct survival probabilities. Currently, the resulting 
predictions using our custom loss function9 (with no added Gaussian noise) are close to predictions 
using the default loss function but not identical. As a temporary fix, we have adjusted all forecasts 
using the custom loss function up or down based on the difference between mean forecasts from 
the default function and mean forecasts using the custom function. 

D. Restrictions for MC Dropout and Stochastic Gradient Langevin Boosting 
There is a notable restriction that prevents us from using the MC Dropout and SGLB methods 

right out-of-the-box: both require specific choices of regularization parameters, such as 𝜆𝜆 in 
Equation (7) and 𝛾𝛾 in Equation (10). Adding or changing these hyperparameters for our neural 
network or gradient boosting models would not be advantageous, because any previous 
hyperoptimization used to fine-tune these parameters would be undone, and the predictions 
themselves would lose accuracy. 

In the case of MC Dropout, any choice of L2 regularization parameter may be used, but this 
type of regularization has to exist in the dropout loss function, and no other type of regularization 
seems to be allowed. Additionally, in order to calculate the model precision 𝜏𝜏, Equation (7) 
requires an arbitrary choice of prior length-scale ℓ, which is common for Gaussian process models. 
However, little advice is given in Gal for choosing this, and even minor tweaks to this parameter 
can dramatically alter the resulting model precision 𝜏𝜏. The paper even suggests to optimize the 
choice of 𝜏𝜏, rather than calculating it directly. 

                                                 
9  The custom loss function is called ‘bce_loss()’ within FIFE. 
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For Stochastic Gradient Langevin Boosting, Malinin, Prokhorenkova, and Ustimenko (2021) 
sets L2 regularization parameter 𝛾𝛾 = 1

2𝑁𝑁
, in order to derive Equation (11). It does not seem that 

any other regularization parameters are allowed in the gradient boosted tree model. 

MC Dropout and Stochastic Gradient Langevin Boosting both provide a similar process to 
quantifying forecast uncertainty. First, they get the base predictive variance from ensembles of 
predictions. Next, they employ some additional step to inflate that variance to account for all of 
the uncertainty. We want to use this process to compute prediction intervals for our models, 
without needing to meet the specific constraints of MC Dropout and SGLB by changing the 
original model structure. 

Our solution is to design a strategy to optimize the inflated variance parameters for each of 
these methods in order to produce resulting prediction intervals that have the desired out-of-sample 
coverage probability. For neural network models, we can tune the choice of model precision 𝜏𝜏 to 
accomplish this. A single ensemble of NN models can be trained, resulting in a predictive variance 
for each random variable to be predicted, and then the choice of 𝜏𝜏 can be adjusted such that the 
resulting variance added to the original prediction intervals meets the desired width. We propose 
a method for tuning 𝜏𝜏 later. 

For gradient boosted tree models, we will use Equation (12), so that we can directly optimize 
the choice of variance, 𝜎𝜎2, in order to achieve out-of-sample nominal coverage probability. Unlike 
our neural network approach, a new ensemble of predictions must be constructed each time we 
choose a new value for 𝜎𝜎2. 

1. Parameter Tuning for Simulated Data 
In order to test a possible strategy for tuning the variance inflation parameters for both the 

neural network and gradient boosting models, we simulated panel data using FIFE’s 
‘fabricate_data()’ function, inside ‘tests_performance/Data_Fabrication.py’. We simulated a 
dataset of 2000 individuals, having 50 total time periods, with each person having around a 40% 
chance of exiting at any time point on average. However, by setting the argument 
‘covariates_affect_outcome=True’, each observation’s probability of exit depends on the 
individual covariates, as well as the length of time periods the observation has been in the 
simulation, with the probability of exit increasing over time, using a Weibull distribution for the 
log hazard rate of survival. We used the first two-thirds of the dataset (periods 1 through 33) as 
the training data, and reserved the final two-thirds as the test set, used to calculate out-of-sample 
PI coverage probability. 

After hyperoptimizing parameters for both the neural network and gradient boosting 
modelers, we constructed an ensemble of 50 independent predictions for both, using the 
‘compute_model_uncertainty()’ function, without adding any variance inflation. Figure 4 
illustrates an example of the predicted survival probability for an observation in the test dataset, 
for both modelers. Each point shows the predicted survival probability at a future time horizon, 
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and the edges of the gray area are the lower and upper bounds for the 95% prediction intervals 
constructed using the ensemble predictions. 

 
Note: These plots show the predicted survival probability, with corresponding naive 95% prediction intervals, for an 

example observation in the simulated dataset. These naive 95% PIs are distorted; that is, they claim to have 95% 
coverage probability, but their actual coverage probabilities are much lower: 48% for the intervals in the left panel 
and 2% for the intervals in the right panel. 

Figure 4. Predicted Survival Probability with Naive Bounds 
 

While these prediction intervals seem very informative, their actual out-of-sample coverage 
probability is terrible: 48% for the neural network, and 2% for the gradient boosted tree. The 
predictions from the ensembles themselves do not have enough variance to account for the amount 
of uncertainty needed. 

To widen the prediction intervals for the neural network, we will optimize our choice of 
model precision 𝜏𝜏. The inverse, 1/𝜏𝜏, is the variance that is added to the existing variance of the 
prediction intervals, in order to form wider PIs. We can choose the value of 𝜏𝜏 such that the new 
prediction intervals have an out-of-sample coverage probability of exactly 95%, averaged across 
all future time horizons. 

For the gradient boosted tree, we can choose an optimal value of 𝜎𝜎2, the variance of the 
Gaussian noise injected into the gradient, such that the resulting PIs have at least nominal coverage. 
Each time we choose a new value of 𝜎𝜎2, a new ensemble of predictions must be computed using 
this choice, until we find the value that leads to around 95% out-of-sample coverage probability, 
averaged across all time horizons. We can’t get a choice of 𝜎𝜎2 that leads to the exact nominal 
coverage, because the predictions themselves will change each time due to the stochastic nature of 
the gradient boosting. Figure 5 shows the new prediction intervals that result from tuning these 
parameters to achieve 95% coverage, averaged across all time horizons. 
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Note: These plots show the predicted survival probability, with corresponding 95% prediction intervals, for an 

example observation in the simulated dataset after optimizing the choice of variance inflation parameters to 
achieve nominal coverage. 

Figure 5. Predicted Survival Probability with Proposed Bounds 

2. Parameter Tuning for Real Data 
Calculating out-of-sample PI coverage probability for real data with a continuous output 

would be simple, but given that our outputs are categorical, we cannot use the same strategy used 
in our simulation study to tune the variance inflation parameters, because we only observe the 
actual outcomes in real data rather than the underlying categorical probabilities. There are several 
different potential solutions to this that we have considered. 

One option is to calculate an empirical survival probability for each observation in the test 
set by grouping observations with similar covariates into clusters, and then using the actual 
survival proportion for a cluster at a time point as the empirical survival probability. These 
empirical probabilities would then be used to assess out-of-sample PI coverage. Some possible 
clustering methods include K-Means Clustering, and K-Nearest-Neighbors, the latter being 
implemented in Huang and Perry (2016), which could be of use here. The biggest issue with this 
approach is that datasets with categorical variables are difficult to use in these clustering 
approaches. While Preud’homme et al. (2021) compare the computational feasibility of these 
approaches with large datasets and high numbers of categorical variables is uncertain. Another 
empirical option is to simply bin observations in the test set together that have similar predicted 
survival probabilities at the same time horizon. The observed survival proportion for all 
observations in each bin can be used as the empirical survival probability, which is used to assess 
out-of-sample PICP. This may not be a reasonable approach since this method only groups 
observations together based on the predicted output, without consideration of any of the covariates. 

The approaches above group observations together to determine the mean empirical 
frequency conditional on the groupings. An alternative approach involves modeling the mean 
conditional on covariates in-sample on the test set. In principle, we could train the same FIFE 
modeler on the test data to predict the mean of the empirical frequencies conditional on covariates 
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in the test set. These survival probabilities can be treated as the future unobserved probabilities 
and then used to compute the out-of-sample PICP for the intervals originally constructed. 
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3. Discussion 

Many of the best existing methods for constructing prediction intervals for forecasts for 
neural networks and gradient boosted trees use ensembles of independent models to form 
approximate posterior predictive distributions for forecasted random variables. Both MC Dropout 
for neural networks (Gal and Ghahramani 2016), and Stochastic Gradient Langevin Boosting 
(Malinin, Prokhorenkova, and Ustimenko 2021) take additional measures to add to the existing 
predictive variance to account for more predictive uncertainty and generate PIs that should have 
nominal coverage probability. MC Dropout uses a global model precision parameter 𝜏𝜏 to add 
variance to the existing ensemble PIs. SGLB adds Gaussian noise into the gradients to randomize 
the parameter movement and mimic sampling from the predictive posterior.  

However, both of these methods require specific choices of model tuning parameters, such 
as L2 regularization, in order for the predictive distributions to approximate a Bayesian posterior. 
We want to use these methods of variance inflation without changing any of the existing model 
hyperparameters, such as choice of L2 regularization, that have already been optimized to achieve 
the best predictive performance.  

Our proposed solution is to tune the parameters that control the amount of variance inflation 
by monitoring out-of-sample prediction interval coverage probability, until we achieve nominal 
coverage. This is simple enough for simulated data where we know the underlying survival 
probabilities used to generate the observed outcomes, but this is more challenging when dealing 
with real data where the probabilities are not visible. We have proposed several possible strategies 
for computing empirical survival probabilities for the out-of-sample data, so that we can still 
calculate the PI coverage probabilities for our test data and tune the variance inflation parameters 
accordingly. 

A. Future Work 
The main objective for possible future work is to implement a method for tuning the variance 

inflation parameters used in MC Dropout and Stochastic Gradient Langevin Boosting when using 
real classification data. Currently, both PI methods are implemented in FIFE, but they will likely 
output distorted intervals because variance inflation parameters are not tuned by default. 
Additionally, it may be worth tuning these parameters specifically to each time horizon, since the 
amount of uncertainty in forecasts will vary across time. 

We are aware of additional intriguing prediction interval methods for both neural networks 
and gradient boosting that we did not have time to explore in depth, such as Lower-Upper Bound 
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Estimation for NNs (Khosravi et al. 2011). This method trains a neural network to output the 
highest quality prediction intervals, instead of single point estimates. More detail on this approach 
can be found in Appendix B. 

Finally, an additional approach to capturing model uncertainty that we did not discuss 
involves quantile regression (Koenker 2005). Forecasting the lower 𝛼𝛼/2th and corresponding 
upper 1 − 𝛼𝛼/2th quantiles of the distribution provides a natural method for capturing uncertainty 
in a form that is analogous to a prediction interval. Future work can make use of analytical 
developments in quantile regression for survival data, binary responses, and non-parametric 
quantile regression. While Koenker (2005) provides a textbook level treatment of these topics, 
recent work illuminates more recent developments (Koenker et al. 2017). 
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Appendix A. Additional Detail for MC Dropout 

Typically, a deep neural network with dropout has a minimization objective function, such 
as a squared loss, including some 𝐿𝐿2 regularization of the model weights. We will denote y� as the 
output of a NN model with 𝐿𝐿 layers, 𝑁𝑁 observations, and loss function 𝐸𝐸�y𝑖𝑖 , y�𝑖𝑖�. The dropout 
minimization objective function often takes the following form: 

𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
1
𝑁𝑁
�𝐸𝐸
𝑁𝑁

𝑖𝑖=1

�y𝑖𝑖 , y�𝑖𝑖� + 𝜆𝜆���|W𝑖𝑖|�2
2 + �|b𝑖𝑖|�2

2�
𝐿𝐿

𝑖𝑖=1

, (13) 

where W𝑖𝑖  is the NN’s matrix of weights for a given layer 𝑖𝑖, and b𝑖𝑖 is the bias vector for that layer. 
Gal shows that the dropout objective minimizes the Kullback-Leibler Divergence (KL 

Divergence) between an approximate distribution and the posterior distribution of a deep Gaussian 
process, which will enable sampling from the approximate posterior predictive distribution using 
an ensemble of NN model predictions. 

Let 𝛚𝛚 be the set of finite rank covariance function parameters for the deep GP model. Given 
input and output sets X and Y, the predictive probability of the model can be written as 

𝑝𝑝(y|x,X,Y) = ∫ 𝑝𝑝(y|x,𝛚𝛚)𝑝𝑝(𝛚𝛚|X,Y)𝑑𝑑𝛚𝛚, 

where 𝑝𝑝(y|x,𝛚𝛚) ∼ 𝒩𝒩(y�(x,𝛚𝛚), 𝜏𝜏−1I𝐷𝐷) and 𝜏𝜏 is the model precision parameter. Though the 
posterior distribution 𝑝𝑝(𝛚𝛚|X,Y) is intractable, an approximate distribution 𝑞𝑞(𝛚𝛚) is constructed as 
a distribution over matrices whose columns are randomly set to zero, just like how dropout is 
applied in the deep NN model. Given some probabilities 𝑝𝑝𝑖𝑖 and matrices M𝑖𝑖, Gal defines 𝑞𝑞(𝛚𝛚) as: 

W𝑖𝑖= M𝑖𝑖 ⋅ diag ��z𝑖𝑖,𝑗𝑗�𝑗𝑗=1
𝐾𝐾𝑖𝑖 �

z𝑖𝑖,𝑗𝑗∼ Bernoulli(𝑝𝑝𝑖𝑖),for 𝑖𝑖 = 1, … , 𝐿𝐿, 𝑗𝑗 = 1, … ,𝐾𝐾𝑖𝑖−1.
 

When z𝑖𝑖,𝑗𝑗 = 0, this indicates that unit 𝑗𝑗 in layer 𝑖𝑖 − 1 is being dropped out as an input to layer 𝑖𝑖. 

The Gaussian process objective function in this particular case takes the following form: 

𝐿𝐿𝐺𝐺𝐺𝐺−𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
�

−log𝑝𝑝�y𝑛𝑛|x𝑛𝑛,𝛚𝛚�𝑛𝑛�
𝜏𝜏

𝑁𝑁

𝑖𝑖=1

+ ��
𝑝𝑝𝑖𝑖ℓ2

2𝜏𝜏𝜏𝜏
�|M𝑖𝑖|�2

2 +
ℓ2

2𝜏𝜏𝜏𝜏
�|m𝑖𝑖|�2

2�
𝐿𝐿

𝑖𝑖=1

, 

where 𝛚𝛚�𝑛𝑛 is a matrix of Bernoulli random variables from a single sample, meant to approximate 
the dropout matrix, 𝜏𝜏 is the model precision parameter, 𝑝𝑝𝑖𝑖 is 1 minus the dropout rate, and ℓ is 
some prior length-scale chosen based on the frequency of the data (more on this later). By setting 
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the NN loss function to be 𝐸𝐸 �y𝑛𝑛, y�(x𝑛𝑛,𝛚𝛚�𝑛𝑛)� = −log𝑝𝑝�y𝑛𝑛|x𝑛𝑛,𝛚𝛚�𝑛𝑛�/𝜏𝜏, the GP minimization 
function 𝐿𝐿𝐺𝐺𝐺𝐺−𝑀𝑀𝑀𝑀  matches the original dropout minimization function 𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 in (13). Gal states, 
“The sampled 𝜔𝜔�𝑛𝑛 result in realizations from the Bernoulli distribution 𝑧𝑧𝑖𝑖,𝑗𝑗𝑛𝑛 , equivalent to binary 
variables in the dropout case” (Gal and Ghahramani 2016). 
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Appendix B.  Lower-Upper Bound Estimation for Deep 
Neural Network Predictions 

Lower-Upper Bound Estimation (LUBE) is a technique made for constructing and training 
deep neural networks to produce the highest quality prediction intervals for future predictions 
(Khosravi et al. 2011). While we did not have time to explore this method for use in FIFE, we 
think it could be a useful alternative to constructive high quality prediction intervals. 

Traditionally, prediction uncertainty quantification methods are applied after a neural 
network model is trained and has produced point estimates for predicted quantities of interest. 
While point estimates produced this way might be accurate, the resulting intervals around those 
points are often either too conservative or do not reach nominal coverage in practice. Khosravi 
recommends training neural networks with the goal of obtaining the best prediction intervals, 
instead of obtaining the best point estimates, if obtaining high quality prediction intervals is the 
end goal. In the LUBE method, neural network models are trained with a loss function specifically 
constructed to obtain prediction intervals with nominal coverage and smaller interval width, 
through the use of a prediction interval quality score. 

Khosravi’s neural network development procedure directly addresses all the desired 
characteristics of prediction intervals, beyond just coverage probability, which is only one part of 
a high quality interval. A prediction interval that is built only to have maximum coverage can be 
unreasonably wide, if it is not trained to simultaneously have more precise ranges. The proposed 
prediction interval quality score addresses all of these properties in measuring how good an 
interval is. Model training proceeds by improving the quality of the prediction intervals. The 
method leads to more accurate predictions by making narrower prediction intervals through 
training, while maintaining nominal coverage. 

While we have not been able to implement the LUBE method in FIFE, we recommend further 
investigation of this method for use in FIFE. 
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Appendix E. Abbreviations 

Term Definition 

CI Confidence Interval 

FIFE Finite Interval Forecasting Engine 

GBM Gradient Boosted Machine 

IDA Institute for Defense Analyses 

KNN K-Nearest Neighbors 

LUBE Lower-Upper Bound Estimation 

NN Neural Network 

PI Prediction Interval 
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