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Executive Summary 

This paper describes a case study of potential privacy and national security risks 
associated with the aggregation and sale of human genetic data by characterizing how U.S. 
genetic data can be used by strategic competitors to identify individuals. The Director, 
Science & Technology Exploitation and Analytics, Maintaining Technology Advantage 
(MTA), Office of the Under Secretary of Defense, Research & Engineering requested that 
the Institute for Defense Analyses (IDA) develop this paper.  

Since 2018, genetic datasets such as short tandem repeat (STR) and single nucleotide 
polymorphism (SNP) have been “matched” using a phenomenon called linkage 
disequilibrium1 to identify individuals as suspects for violent crimes. In the figure below, 
we calculated the probability of identifying a target at several specific SNP dataset sizes, 
from 100 SNP profiles to 6.6 million SNP profiles. To contextualize the process of 
identifying an individual from matched genetic data, the results model an estimate to the 
following question: What is the probability of identifying a person by matching a collected 
genetic sample with a SNP record of either themselves or a family member as a function 
of SNP dataset size? 
 

 
1  Linkage disequilibrium is a measure of the likelihood that two genes are inherited together. This 

phenomenon allows researchers to predict the probability an individual might possess genotype A, if 
they already know that individual possesses genotype B. Given two disparate datasets such as SNP and 
STR results, linkage disequilibrium can enable record matching even across datasets that test for 
different marker types. 
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Probability of Identifying a Target from Their Genetic Data or that of a Relative Out to the 

Third-Degree Using Various Genetic Tests as a Function of SNP Dataset Size 
 

The above overall probabilities consist of three separate events: 1) the target 
individual or at least one of their relatives is in the SNP dataset record; 2) the collected and 
analyzed genetic sample can be matched with the SNP record of the target or at least one 
of their relatives (first-, second-, or third-degree relatives such as parents, siblings, 
grandparents, aunts/uncles, grand aunts/uncles, or first cousins); and 3) genealogical 
investigation can be used to generate a family tree that enables the identification of the 
target.  

While the matched STR and SNP data may have beneficial applications for law 
enforcement, use of genetic datasets to identify individuals for other purposes (such as 
genetic surveillance) raises both privacy and national security concerns. This study only 
focused on the use of genetic data for estimating reidentification probabilities. Additional 
research would be required to assess other types of data that may be used for 
reidentification alone or in conjunction with genetic data, including health records, social 
media profiles, mobility data, and multiomic data. This analysis contributes to the broader 
discussion about potential policy decisions relating to the privacy and national security 
concerns associated with the acquisition of U.S. persons sensitive personal data, including 
genomic data, by strategic competitors. 
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1. Introduction 

Since 2018, genetic datasets (e.g., the FBI’s CODIS2 database and direct-to-consumer 
genetic testing databases) have been matched using probabilistic methods such as linkage 
disequilibrium for the purposes of identifying individuals as suspects and victims involved 
in violent crimes.3 While this technique may have beneficial applications for law 
enforcement, use of genetic datasets to identify individuals for other purposes raises both 
privacy and national security concerns.  

IDA supports the Director, Science & Technology Exploitation and Analytics, 
Maintaining Technology Advantage (MTA), Office of the Under Secretary of Defense, 
Research & Engineering. The MTA directorate’s mission is to maintain a Department of 
Defense (DOD) technology advantage by balancing protection efforts with technology 
advancements to maintain leadership and technology superiority of critical and emerging 
technologies throughout the technology development lifecycle. MTA collaborates closely 
with the National Security Innovation Base (NSIB)—to include the Military Services, other 
DOD offices, the U.S. defense industry, and the U.S. academic/research enterprise—to 
identify and implement best practices, policies, mechanisms, strategies, and standards that 
protect U.S. technological advantage, foster U.S. technological development, and mitigate 
exploitation by strategic competitors. In 2022, MTA asked IDA to:  

1. Develop a repeatable methodology to assess the national security risk posed by 
strategic competitor acquisition of U.S. biological datasets either alone or when 
combined with other data, and 

2. Apply the methodology to representative case studies illustrating both the threat 
and risk of strategic competitor acquisition of U.S. biological data to facilitate 
messaging across the DOD and broader National Security audiences. 

IDA’s methodology assesses risk as the product of 1) the likelihood of a strategic 
competitor successfully achieving a user-specified application of a given dataset, and 2) 
the resulting consequence to a user-specified operation of interest. This operation of 

 
2  CODIS refers to the Combined DNA Index System, a computer software program that operates the U.S. 

national, state, and local databases of DNA profiles from convicted offenders, unsolved crime scene 
evidence, and missing persons. 

3  Yaniv Erlich, Tal Shor, Itsik Pe’er, and Shai Carmi, “Identity inference of genomic data using long-
range familial searches,” Science 362 (2018): 2, https://doi.org/10.1126/science.aau4832. 
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interest need not be a specific military operation. Consequence to other national security 
activities such as intelligence activities or economic competitiveness are also considered. 
The methodology and results of this analysis are described in IDA papers P-336194 and  
P-334565. 

However, the methodology used in these previous papers requires specification of a 
dataset and its characteristics (e.g., dataset size, types of data, population that data is 
derived from). There remained a need to understand how human genetic dataset 
characteristics (e.g., dataset size and type of genetic data) could more broadly impact the 
consequence resulting from dataset acquisition. MTA asked IDA to analyze how U.S. 
genetic data can be used to identify individuals. This analysis can inform potential policies, 
enforcement actions, and rulemaking concerning the privacy and national security concerns 
associated with the acquisition of U.S. persons sensitive personal data, including genomic 
data, by strategic competitors. A detailed methodology section is also included to explain 
the approach, assumptions, and limitations used to generate the results. 

 

 
4 Robert Cubeta et al, Methodology to Assess Risk from Strategic Competitor Acquisition of U.S. 

Biological Data and Application to an Agricultural Bioprocessing Case Study, IDA Paper P-33619 
(Alexandria, VA: Institute for Defense Analyses, August 2023).  

5  Robert Cubeta et al, Methodology to Assess Risk from Strategic Competitor Acquisition of U.S. 
Biological Data with Case Studies, IDA Paper P-33456 (Alexandria, VA: Institute for Defense 
Analyses, July 2023), TOP SECRET//NO FORN//SI. 
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2. Identifying Individuals from Acquired  
Genetic Data 

In February 2024, President Biden signed the Executive Order on Preventing Access 
to Americans’ Bulk Sensitive Personal Data and United States Government-Related Data 
by Countries of Concern.6 This executive order tasks the Attorney General with 
coordination and consultation with other agencies (including the Department of Defense) 
to issue regulations that prohibit or restrict transactions of bulk sensitive data. One type of 
personal data specifically called out in the executive order is human genomic data. There 
has been considerable interest from the sponsor and stakeholder community on the privacy 
and national security implications of the acquisition of human genetic data from the U.S. 
population. This chapter provides background into the topic, a brief discussion of privacy 
and national security implications of genetic data acquisition, an example of how genetic 
data could be used for surveillance purposes, a methodology for estimating the probability 
that an individual can be identified based on the size of an acquired genetic dataset, and 
the limitations and assumptions used to generate this estimate. 

A. Background 
There are several types of genotyping assays available. Two common genotyping 

assays are short tandem repeat7 (STR) tests and single nucleotide polymorphism8 (SNP) 
tests. STR assays are commonly used for forensic identification purposes (such as in the 
CODIS database), whereas SNP assays are often sold as direct-to-consumer (DTC) kits to 
the public for the purposes of ancestry, health, and entertainment. As of 2019, it was 
estimated that over 26 million individuals worldwide had taken a DTC ancestry test.9 One 

 
6  “Executive Order 14117 of February 28, 2024, Preventing Access to Americans’ Bulk Sensitive 

Personal Data and United States Government-Related Data by Countries of Concern,” Code of Federal 
Regulations (2024): 15421-15430, https://www.govinfo.gov/content/pkg/FR-2024-03-01/pdf/2024-
04573.pdf. 

7  STRs (also known as microsatellites) are segments of the DNA in which certain patterns of DNA are 
repeated, usually 5-50 times. 

8  SNPs are genomic variants consisting of a substitution of single nucleotide at a specific position in the 
genome. 

9  Antonio Regalado, “More than 26 million people have taken an at-home genetic ancestry test,” MIT 
Technology Review, February 11, 2019, accessed August 2, 2023, 
https://www.technologyreview.com/2019/02/11/103446/more-than-26-million-people-have-taken-an-
at-home-ancestry-test/. 
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of the largest DTC companies, 23andMe, has sold over 10 million DNA test kits, mostly 
to individuals in the United States.10 Additionally, many of these DTC companies store 
genetic data and some even resell consumer genetic data to third parties.11  

B. Privacy and National Security Risks of Genetic Data Acquisition 
Human genetic data has several characteristics that make it particularly valuable, 

including: 1) genetic data can be predictive of health conditions, 2) genetic data for an 
individual is immutable and cannot readily be changed, and 3) genetic data is shared 
between relatives. Genetic datasets, particularly when they consist of data from a large 
number of individuals, can result in a variety of privacy, national security, and economic 
risks when acquired by other nations.   

Several types of privacy concerns can arise from the collection of genetic data. 
Discrimination on the basis of genetic data is only prohibited under the Genetic Information 
Nondiscrimination Act of 2008 by health insurance companies and employers, leaving 
loopholes for insurance companies, such as disability, life, or long-term care insurance, or 
other organizations. Additionally, malicious actors can combine personally identifiable 
information with genetic data for use in surveillance, coercion, or manipulation, 
representing a potential national security concern.12 According to a 2019 DOD 
memorandum advising military service members to avoid DTC genetic testing, the 
scientific community has expressed increased concern that genetic data can be used by 
parties for “questionable purposes, including mass surveillance and the ability to track 
individuals without their authorization or awareness”.13  

In addition to privacy concerns, a study commissioned by the American Society of 
Human Genetics estimated the human genetics and genomics sector of the U.S. economy 
had an economic impact of $265 billion in 2019.14 Genetic data has economic value, 
particularly for pharmaceutical companies seeking to develop new medical treatments. For 

 
10  Rani Molla, “Why DNA tests are suddenly unpopular,” Vox, February 13, 2020, accessed August 2, 

2023, https://www.vox.com/recode/2020/2/13/21129177/consumer-dna-tests-23andme-ancestry-sales-
decline. 

11  Scott Thiebes et al, "Valuable Genomes: Taxonomy and Archetypes of Business Models in Direct-to-
Consumer Genetic Testing," J Med Internet Res 22, no. 1 (Jan 21 2020), https://doi.org/10.2196/14890, 
https://www.ncbi.nlm.nih.gov/pubmed/31961329. 

12  National Counterintelligence and Security Center, Safeguarding Our Future: Protecting Personal 
Health Data from Foreign Exploitation (Washington, D.C., 2021): 1. 

13  U.S. Department of Defense, Office of the Secretary of Defense, Direct-to-Consumer Genetic Testing 
Advisory for Military Members (Washington, D.C., 2019): 1. 

14  Simon Tripp and Martin Grueber, “The Economic Impact and Functional Applications of Human 
Genetics and Genomics,” TEConomy Partners, LLC, May 2021, https://www.ashg.org/wp-
content/uploads/2021/05/ASHG-TEConomy-Impact-Report-Final.pdf.  

https://www.ashg.org/wp-content/uploads/2021/05/ASHG-TEConomy-Impact-Report-Final.pdf
https://www.ashg.org/wp-content/uploads/2021/05/ASHG-TEConomy-Impact-Report-Final.pdf
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example, 23andMe partnered with GlaxoSmithKline (GSK) in 2018 (following a $300 
million investment by GSK in 23andMe)15 to use human genetic data as the basis for “the 
development of innovative new medicines and potential cures”.16 Human genetic research 
has an annual U.S. federal government investment of $3.3 billion through research 
funding.17 The collection of large, diverse genomic datasets (such as those held by U.S. 
companies) by other nations can boost their global market share of the genetics and 
pharmaceutical industries, particularly when there is no reciprocal sharing of health data 
by these other nations.  

C. Calculating the Probability of Identifying a Target from Human 
Genetic Datasets 
As mentioned previously, different genetic datasets can be combined for the purposes 

of identification. For example, a sample collected from a crime scene and analyzed using 
either STR or SNP genotyping can be queried against a SNP dataset originally collected 
by a DTC genetic testing company in an attempt to identify a suspect. If no exact genetic 
match is present within the SNP dataset, investigators can also determine whether there are 
partial matches, which could indicate the presence of the suspect’s family member within 
the SNP dataset. While this approach could be beneficial for society for law enforcement, 
it can also be used for genetic surveillance. 

To contextualize this process, we have modeled an estimate of the following question: 
What is the probability of identifying a person by matching a collected genetic sample with 
a SNP record of either themselves or a family member as a function of SNP dataset size?  

This overall probability consists of three separate events:  

1. The target or at least one of their relatives is in the SNP dataset record. 

2. The collected and analyzed sample can be matched with the SNP record of the 
target or at least one of their relatives. 

3. Genealogical investigation can be used to generate a family tree that enables 
the identification of the target. 

 
15  Livescience and Laura Geggel, “23andMe Is Sharing Genetic Data with Drug Giant,” The Scientific 

American, July 18 2018, accessed November 2023, 
https://www.scientificamerican.com/article/23andme-is-sharing-genetic-data-with-drug-giant/. 

16  “GSK and 23andMe sign agreement to leverage genetic insights for the development of novel 
medicines,” GSK, July 25 2018, accessed November 2023, https://www.gsk.com/en-gb/media/press-
releases/gsk-and-23andme-sign-agreement-to-leverage-genetic-insights-for-the-development-of-novel-
medicines/. 

17  Simon Tripp and Martin Grueber, “The Economic Impact and Functional Applications of Human 
Genetics and Genomics,” TEConomy Partners, LLC, May 2021, https://www.ashg.org/wp-
content/uploads/2021/05/ASHG-TEConomy-Impact-Report-Final.pdf.  

https://www.ashg.org/wp-content/uploads/2021/05/ASHG-TEConomy-Impact-Report-Final.pdf
https://www.ashg.org/wp-content/uploads/2021/05/ASHG-TEConomy-Impact-Report-Final.pdf
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This section describes the methodology the IDA team used. Let A refer to the person 
from whom the genetic sample (GSA) was collected (the target individual) and let B refer 
to a relative of person A whose SNP sample (SNPB) is included in the SNP database (A can 
be the same person as B). The goal of this analysis is to characterize how the probability 
of matching GSA to SNPB varies based on 1) the size of the database that includes SNPB, 2) 
the number of loci in GSA, and 3) the familial relationship between A and B (i.e., self, 
sibling, parent, etc.).  

We calculated the probability of matching GSA to SNPB as the product of three 
probabilities: 1) the probability that SNPB is included within the SNP dataset, 2) the 
probability that GSA can be matched to SNPB, and 3) the probability a family tree linking 𝐵𝐵 
to 𝐴𝐴 can be assembled in order to discern the identity of 𝐴𝐴.  The following two sections 
will describe in additional detail the steps and assumptions associated with these three 
probabilities. 

1. Probability that A or their relative out to the third-degree exists in a SNP 
dataset 
The first probability, that SNPB exists within the SNP dataset, depends upon the 

population coverage, which is the percentage of a population that is included within the 
SNP dataset. For this study, we made the simplifying assumption that all individuals are 
equally likely to be present within the dataset representing their population. An example of 
this could be: if it is known that a SNP dataset includes 2% of all U.S. citizens, the 
probability of any U.S. citizen existing in the dataset would be 2%. A second example 
could be that if a dataset is known to include 25% of the residents of the city of Chicago, 
any resident of Chicago would have a 25% chance of being in the dataset. 

In reality, the probability of an individual being included within a SNP dataset 
depends on multiple factors. For example, people of Northern European backgrounds tend 
to be over-represented in SNP datasets compared to other ethnicities. Further, about 75% 
of the MyHeritage dataset is comprised of individuals with a Northern European genetic 
background.18 Northern Americans and Europeans, meanwhile, only comprise about 14% 
of the worldwide population.19 Also, as of December 2019, members of the U.S. Armed 
Forces were advised against the use of DTC genetic tests and consequently may be less 

 
18  Yaniv Erlich et al, “Identity inference of genomic data using long-range familial searches,” Science 362 

(2018): 2, https://doi.org/10.1126/science.aau4832. 
19  United Nations, Department of Economic and Social Affairs, World Population Prospects 2022 

Summary of Results (New York, 2022): 5, 
https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summ
ary_of_results.pdf.  

https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summary_of_results.pdf
https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summary_of_results.pdf
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likely than a member of the general U.S. population to appear in an SNP dataset.20 With 
the variability in ethnic population makeup in SNP datasets and without additional data on 
prevalence of military personnel in DTC genetic datasets, the assumption that all 
individuals are equally likely to appear in the SNP dataset is necessary because it allows 
us to estimate the probability that SNPB is in a SNP dataset based only on the population 
coverage (i.e., size) of the dataset. Should more granular data become available, calculating 
these probabilities would be possible. 

To estimate the probability that one of A’s relatives exists within the SNP dataset, we 
needed to assume a specific family tree. The average number of children per couple in the 
United States was 2.4 in 201521, which we took to be 2 or 3 children per couple to simplify 
visualization and explanation of the family tree and to avoid “partial” individuals.22 As 
summarized in our assumed family structure in Figure 1, we assume the target has 2 
siblings, one of their parents has one sibling and the other parent has two siblings, and half 
of their grandparents have two siblings while the other half have one sibling. This results 
in 4 grandparents, 3 aunts/uncles, 2 parents, 2 siblings, 7 first cousins, 6 grand aunts/uncles, 
and the target (A) for a total of 25 individuals in the assumed family tree. In the figure, the 
gray boxes show the number of each relationship type we assumed and the orange boxes 
refer to the degree of relationship. The results we present later in this paper are specific to 
this family structure, therefore the actual probability of any specific person being identified 
would depend upon their unique family tree (among other factors, see Section E for 
additional detail). 

 

 
20  U.S. Department of Defense, Office of the Secretary of Defense, Direct-to-Consumer Genetic Testing 

Advisory for Military Members (Washington, D.C, 2019): 1. 
21  Gretchen Livingston, Childlessness Falls, Family Size Grows Among Highly Educated Women 

(Washington D.C.: Pew Research Center, 2015), 11. 
22  We did calculate the difference between using 2.5 children per generation vs 2-to-3 children per 

generation and the results were nearly identical, so we decided to use a more easily explainable family 
tree structure with minimal sacrifices to accuracy. 
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Figure 1. Assumed Family Structure for Up to Third-Degree Relatives 

 
First-degree relatives are those with the closest genetic similarity to an individual 

(other than identical twins). This group of relatives includes an individuals’ parents, 
siblings, and children. Second-degree relatives include grandparents and aunts/uncles and 
third-degree relatives include first cousins. For this analysis, we made the assumptions that 
all couples are monogamous (i.e., no half relatives) and non-incestuous, which are common 
simplifying assumptions used to estimate kinship, but will cause an underestimation in the 
probability that a relative of the target is in the SNP dataset. Additionally, we assumed the 
target’s generation is the most recently born generation to have a profile in the SNP dataset, 
which excludes the target’s children, nieces and nephews, and cousins’ children. We 
assumed that individuals under 18 years of age likely will not have their genetic data in the 
SNP dataset and that the target individual (or any of their relatives from the same 
generation) does not have children above 18 years of age. We also assumed that the 
generation of the target’s grandparents are the oldest generation that could be in the SNP 
dataset. 

The probability that the SNP dataset includes either A or at least one relative of up to 
third degree is calculated assuming everyone in the United States has an equal chance of 
being included in the SNP database. This probability is determined based on the number 
of first-, second-, and third-degree relatives an individual has. Therefore, individual A is 
assumed to have 24 first-, second-, and third-degree relatives. Calculating the probability 
that individual A or any one of their first-, second-, or third-degree relatives is in the SNP 
dataset is done by using the following equation:  

 

1 −  (1 −
𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆
𝑁𝑁

)𝑟𝑟 

N = Size of U.S. population; 𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆 = size of U.S. population in the SNP dataset; r = individual A + number of 
relatives 
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Figure 2 shows the probability of an individual or a relative up to third-degree exists 

in datasets of different sizes. In this figure, we have varied the value for r to show 
probabilities of 1) the target existing in the SNP dataset (r = 1), 2) the target or any of their 
first-degree relatives existing in the SNP dataset (r = 5), or 3) the target or any of their  
first-, second-, or third-degree relationships existing in the SNP dataset (r = 25). While the 
probability individual A is within a dataset scales linearly with the size of the dataset, the 
probability that one of their first-, second-, or third-degree relatives is in the dataset 
increases at a more rapid rate. 

 

 
Figure 2. Probability of Individual A or Up to First- or Third-Degree Relatives Existing in 

SNP Dataset 

2.  Probability that Linkage Disequilibrium can be used to match GSA to SNPB 
The second step of the methodology is to determine the probability of matching GSA 

to SNPB given that B is in the SNP dataset. This probability depends on a process called 
linkage disequilibrium (LD). Linkage disequilibrium describes the phenomenon by which 
genes, particularly those close to each other on the genome, are inherited together. Due to 
LD, certain genotype pairs are more or less likely to co-occur and can be used to match 
loci of two different datasets, even if none of those loci pairs are genotyped together in the 
same dataset. To determine the probability that LD can be used to match GSA and SNPB, 
we relied upon the results from four academic papers. Edge et al., determined the 
probability that LD can be used to match an STR sample from an individual to a SNP 
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sample from the same individual (i.e., matching GSA and SNPB when  B = A).23 Kim et al.24, 
determined the probability that LD can be used to match an STR sample from an individual 
to a SNP sample from that individual’s first-degree relative (i.e., matching GSA and SNPB 

if A is the target and B is a first-degree relative of A).25 Finally, de Vries et al. and Morimoto 
et al. determined the probability that LD can be used to match SNP sample (GSA) to a SNP 
record (SNPB) if A is the target and B is a first-, second-, or third-degree relative.26 

Both Edge et al. and Kim et al. utilized previously reported data from the Human 
Genome Diversity Panel, using 642,563 SNP loci and 431 non-CODIS STR loci from 872 
individuals representative of the worldwide population for their analyses.27 In both studies, 
the authors generated figures demonstrating the effect of increasing the number of STR 
loci tested on the probability of successful LD matching. We used the median accuracy 
results included in Figure 4C of Edge et al. to determine the probability that LD can be 
used to match GSA to SNPB in the case that B = A (i.e., matching the target to themselves). 
Likewise, data represented in Figure 4B and 4C of Kim et al., were used to determine the 
probability that LD can be used to match GSA to SNPB in the case that B is a first-degree 
relative of individual A.  

Record matching accuracy values between STR tests and SNP records were not 
available for second- and third-degree relationships. To estimate these values, we used the 
median coefficient of kinship values for second- and third-degree relationships for GSA 
analyzed with 20 STR (25% for grandparents and aunts/uncles and 12.5% for first cousins). 
The coefficient of kinship values for parents and siblings corresponded closely with the 
record matching accuracy values observed by Edge et al. and Kim et al. for first-degree 
relationships, so we assumed that these values could be used to estimate record matching 
for second- and third-degree relationships as well. In cases where GSA was analyzed with 
STR tests using 40 STR, we calculated the average improvement in record matching 
accuracy for parents and sibling relationships (1.78) when increasing from 20 STR to 40 

 
23  Michael D. Edge et al, “Linkage disequilibrium matches forensic genetic records to disjoint genomic 

marker sets,” PNAS 144 no. 22 (2017): 5671-5676, https://doi.org/10.1073/pnas.1619944114. 
24  This paper was from the same lab as Edge et al.   
25  Jaehee Kim et al, “Statistical Detection of Relatives Typed with Disjoint Forensic and Biomedical 

Loci,” Cell 175 (2018): 848-858, https://doi.org/10.1016/j.cell.2018.09.008. 
26  Jard H de Vries et al, “Impact of SNP microarray analysis of compromised DNA on kinship 

classification success in the context of investigative genetic genealogy,” Forensic Science 
International: Genetics 56 (2022), https://doi.org/10.1016/j.fsigen.2021.102625. 

 Chie Morimoto et al, “Pairwise Kinship Analysis by the Index of Chromosome Sharing Using High-
Density Single Nucleotide Polymorphisms,” PLoS ONE 11 7 (2016): e0160287, 
https://doi.org/10.1371/journal.pone.0160287. 

27  This will be mentioned again in the limitations section, but worldwide population diversity does not 
equal U.S. population diversity, thus these results should be taken as rough estimates. 

https://doi.org/10.1016/j.fsigen.2021.102625
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STR loci and multiplied our coefficient of kinship values by this value to approximate the 
increase in accuracy for testing with 40 STR in second- and third-degree relationships. 

To determine the record matching accuracy when comparing a SNP sample from A 
and the SNP record from B, we used published values from de Vries and Morimoto and 
averaged them together. De Vries et al. used SNP samples from 24 Northern European 
donors from the Dutch blood bank, which were then tested at 652,027 SNP loci.28 
Morimoto et al. used SNP samples gathered from 1,498 Japanese donors, which were 
genotyped at 174,254 SNP loci.29  

Table 1 shows the probability of matching (PLD) for various numbers of STR and SNP 
test loci from Edge, Kim, de Vries, and Morimoto. 

 

Table 1. Probability that LD Can Be Used to Match GSA to SNPB  

Relationship 

Probability LD can 
be used to match 

STR (20 loci) to SNP 

Probability LD can 
be used to match 

STR (40 loci) to SNP 

Probability LD can be 
used to match SNP to 

SNP 

Individual 95%* 100%* > 99%*** 
Parent 45%* 80%* >99%*** 
Sibling 50%* 85%* 99%*** 
Second-degree 25%** 43%** 94%*** 
Third-degree 12.5%** 22%** 91%*** 

*  These values represent an STR test that assesses 20 or 40 loci. Similar tables can be generated from the 
dataset presented by Edge and Kim for 5-100 loci. This also assumes that the SNP dataset is of a similar 
size to the dataset analyzed by Edge and Kim (642,563 loci). A SNP dataset including more loci would 
likely have higher match probabilities than those presented in this table. 

** These values were estimated using coefficient of kinship values. 
*** The values in this column represent the median match probabilities between those reported by de Vries 

and Morimoto, which tested at 652,027 loci and 174,254 loci respectively. 

 
The probability of unsuccessfully matching the target through a specific relative, 

either because the relative was not in the SNP dataset, or because matching through LD 
was unsuccessful is calculated using the following formula:  

 

𝑃𝑃𝐵𝐵 = (1 − 𝑃𝑃𝐿𝐿𝐿𝐿
𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆
𝑁𝑁

)   

 
28  Jard H de Vries et al, “Impact of SNP microarray analysis of compromised DNA on kinship 

classification success in the context of investigative genetic genealogy,” Forensic Science 
International: Genetics 56 (2022), https://doi.org/10.1016/j.fsigen.2021.102625. 

29  Chie Morimoto et al, “Pairwise Kinship Analysis by the Index of Chromosome Sharing Using High-
Density Single Nucleotide Polymorphisms,” PLoS ONE 11 7 (2016): e0160287, 
https://doi.org/10.1371/journal.pone.0160287. 

https://doi.org/10.1016/j.fsigen.2021.102625
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Note: PLD refers to the probability that LD can be used to match GSA to SNPB; PB refers to the probability of 
matching to any specific relative (B). 

 
To calculate the overall probability of a match with at least one relative, the PB values 

for each relative can be multiplied together and then subtracted from 1, as demonstrated in 
the following equation for matching with self or a first-degree relative.  

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ = 1 − (𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2 ∗ 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2) 

This formula combines the probability that B is included within the SNP dataset 
(Figure 2) and the probability that LD can be used to match GSA and SNPB when an STR 
test used to analyze GSA assesses 20 or 40 loci or a SNP test used to analyze GSA assesses 
174,254-652,027 loci (Table 1).  

3. Probability that a family tree linking person B to person A can be assembled 
To determine the identity of person A, after a match is made between GSA and SNPB, 

a family tree needs to be constructed to determine the relationship between person A and 
person B. For example, if person B was person A’s first cousin, it would not initially be 
clear which cousin A might be. Additional data types, such as census data, vital records 
(e.g., marriage, birth, and death certificates), the Social Security Death Index, and 
newspapers.com have been compiled into searchable databases available via subscription 
through services such as Ancestry.com and public social media accounts can be used to 
glean additional information.30 Even with this, the process can be challenging.  

Genealogy is a time-consuming, sometimes expensive step in the forensic genetic 
genealogy process. Cost estimates for forensic genetic genealogy are typically in the range 
of $65,000 per case; $15,000 of this cost is associated with laboratory analysis and 
genealogical research with the remainder being used for investigative costs.31 To identify 
person A, person B needs to be definitively identified, then a common ancestor between 
the two must be determined.32 Then the family tree must be built “forward” in time from 

 
30  Ellen M. Greytak, CeCe Moore, and Steven L. Armentrout, “Genetic Genealogy for Cold Case and 

Active Investigations,” Forensic Science International 299 (2019): 107. 
31  Ray Wickenhauser, “Investigative Genetic Genealogy: Current Status and Future Potential.” Forensic 

Science International: Synergy 3 (2021). 
32  Ellen M. Greytak, CeCe Moore, and Steven L. Armentrout, “Genetic Genealogy for Cold Case and 

Active Investigations,” Forensic Science International 299 (2019): 108. 
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the common ancestor out to person A.33 This process is not always successful, even after 
tens or hundreds of hours of research.  

To capture the probability of successfully assembling a family tree, we conducted a 
literature search for publications attempting to quantify the success rate of identification 
following a match between GSA and SNPB. We found two studies34 and a news article35 
that informed our values for this probability, the results of which are summarized in Table 
2. For cases that provided only values in centimorgans (cM), we assumed a degree of 
relationship based on the range of cM shared between different relationship types.36 

 
Table 2. Forensic Genetic Genealogy Case Summaries 

Reference 
Relationship Description 

from Paper 

Assumed 
Degree of 

Relationship* Solved 
Time to 
Solve 

Thompson Parent or sibling 1 Yes 3 hours 
Aldhous Parent or sibling 1 Yes N.L. 
Ertürk 1550 cM 2 Yes N.L. 
Aldhous First cousin 3 Yes < 2 hours 
Ertürk 360 cM 4 Yes N.L. 
Ertürk 280 cM 4 Yes N.L. 
Thompson Second cousin 5 Yes 50-100 hours 
Ertürk 240 cM 5 No N.L. 
Ertürk 170 cM 5 Yes N.L. 
Ertürk 140 cM 5 Yes N.L. 
Aldhous Second cousin 5 Yes Within “hours” 
Aldhous Second cousin 5 No N.L. 
Aldhous Second cousin 5 No N.L. 

 
33  Ellen M. Greytak, CeCe Moore, and Steven L. Armentrout, “Genetic Genealogy for Cold Case and 

Active Investigations,” Forensic Science International 299 (2019): 107. 
34  Jim Thompson, Tim Clayton, John Cleary, Maurice Gleeson, Debbie Kennett, Michelle Leonard, and 

Donna Rutherford, “An Empirical Investigation into the Effectiveness of Genetic Genealogy to Identify 
Individuals in the UK,” Forensic Science International: Genetics 26 (2020): 102263. 

 Mine Su Ertürk, Colleen Fitzpatrick, Margaret Press, and Lawrence M. Wein, “Analysis of the 
Genealogy Process in Forensic Genetic Genealogy,” Journal of Forensic Sciences 67 (2022): 2218-
2229. 

35  Peter Aldhous, “We Tried to Find 10 BuzzFeed Employees Just Like Cops Did for the Golden State 
Killer,” BuzzFeed News, April 9, 2019, https://www.buzzfeednews.com/article/peteraldhous/golden-
state-killer-dna-experiment-genetic-genealogy. 

36  Living DNA, “What does my relationship prediction mean,” last updated in 2020, 
https://support.livingdna.com/hc/en-us/articles/360013536560-What-does-my-relationship-prediction-
mean-. 
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Reference 
Relationship Description 

from Paper 

Assumed 
Degree of 

Relationship* Solved 
Time to 
Solve 

Aldhous Half second cousin 6 Yes N.L. 
Ertürk 120 cM 6 Yes N.L. 
Ertürk 120 cM 6-7 No N.L. 
Ertürk 100 cM 6-7 No N.L. 
Ertürk 90 cM 6-7 No N.L. 
Ertürk 80 cM 6-7 No N.L. 
Ertürk 80 cM 6-7 Yes N.L. 
Ertürk 80 cM 6-7 No N.L. 
Ertürk 70 cM 6-7 No N.L. 
Ertürk 70 cM 6-7 No N.L. 
Ertürk 60 cM 6-7 Yes N.L. 
Ertürk 60 cM 6-7 Yes N.L. 
Thompson Third cousin 7 Yes 50-100 
Aldhous Third cousin 7 No 30+ 
Aldhous Third cousin 7 No N.L. 
Aldhous >third cousin 7+ No N.L. 
Thompson Third to fourth cousin 7-9 No 100+ 
Thompson Third to fourth cousin 7-9 No 100+ 
Thompson >fourth cousin 9+ No 100+ 
Thompson Fourth cousin 9 No 100+ 
Thompson Fourth cousin 9 Yes 50-100 
Thompson >fourth cousin 9+ No 100+ 
Thompson >fourth cousin 9+ No 100+ 
Aldhous >fourth cousin 9+ No N.L. 

*If the assumed degree of relationship could not be determined (e.g., was noted as “greater than third 
cousin” or “between third and fourth cousin”, it was excluded from our determination of identification 
probability.  

N.L. means the time to identify was “not listed” in the referenced article. 

 
In our literature review, 100% of targets in cases where there was a match with up to 

a third-degree relative were able to be identified, thus we assumed the probability for 
successful generation of a family tree to be 1 when examining relatives out to the third-
degree. Not all of the cases were associated with a time to identification, but from the data 
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we gathered, shorter identification times were associated with closer relationships between 
A and B.  

D. Probability of Identifying a Target from Human Genetic Datasets 
Using the methodology described in Section C, Figure 3 depicts the probability of 

identifying a target (A) from a collected genetic sample analyzed using an STR or SNP 
assay (examining 20 or 40 STR loci or hundreds of thousands of SNP loci) with a SNP 
record of either the target, the target or one of their first-degree relatives, or the target or 
one of their relatives up to the third degree as a function of SNP dataset size. Additionally, 
in Appendix A, we expand this figure to also include the probability of matching the genetic 
sample of the target to the SNP record of fourth- and fifth-degree relatives, but with 
additional caveats.  

 

 
Figure 3. Overall Probability of Identifying a Target (A) from Their Genetic Data or that of 

Up to a Third-Degree Relative Using Various Genetic Test Types as a Function of SNP 
Dataset Size 

 
When assuming the probability of assembling a family tree to identify A is 1 for up 

to third-degree relatives, the probability of a successful identification depends primarily 
upon the population coverage of the SNP dataset (i.e., the proportion of a population 
contained within the dataset compared to the overall population) and the number of STR 
or SNP loci (i.e., positions on the genome) that are being tested.  

Table 3 provides estimates of match probability for specific SNP dataset sizes from 
100 to 6.6 million SNP profiles (approximately 2% of the U.S. population).  
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Table 3. Calculated Probabilities Identifying Target (A) from Themselves, or Up to a Third-
Degree Relative Using Various Genetic Test Types 

 
 

Finally, we wanted to explore how the probability of identification changes when just 
considering the target, considering up to first-degree relatives, or up to third-degree 
relatives. Figure 4 shows the overall probability of identification when GSA is analyzed 
with an STR test examining 20 loci when considering only whether the target is identified 
from their own SNP data, considering whether the target is identified by their own SNP 
data or that of one of their first-degree relatives, or considering whether the target is 
identified from with their own SNP data or that of up to their third-degree relatives. Figure 
5 and Figure 6 display analogous cases when the GSA is analyzed using an STR test 
examining 40 loci or a SNP test examining over 100,000 loci, respectively. 

 

 
Figure 4. Overall Probability of Identifying Target (A) from Collected STR Sample (20 Loci) 

from Various Relationship Types 
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Figure 5. Overall Probability of Identifying Target (A) from Collected STR Sample (40 Loci) 

from Various Relationship Types 
 

 
Figure 6. Overall Probability of Identifying Target (A) from Collected SNP Sample (100K+ 

Loci) from Various Relationship Types 
 

As demonstrated in these figures, the relationship between probability of 
identification and SNP dataset size when only considering the target matching with 
themselves is a linear relationship, whereas the probabilities increase at a faster rate with 
SNP dataset size when relatives are considered.  

Finally, we determined the impact on the overall probability of identification when 
person A is known not to be in the SNP dataset. Figure 7 shows the calculated probability 
of identification using up to a third-degree relative assuming that the target is not in the 
SNP dataset. When PLD is lower (as in the 20 STR case), assuming the target is not in the 
SNP dataset makes a larger difference in probability compared to when PLD is higher (as 
in the 100,000+ SNP case). In all cases, however, there is a non-zero probability of 
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identification from datasets of a comparable size to those collected by companies such as 
23andMe, even if person A is assumed to not be in the SNP dataset. This highlights the 
importance of considering genetic data protection more broadly than discouraging 
individual consumers from taking DTC tests, as having one family member of first-, 
second-, or third-degree relatives in a SNP dataset makes that entire group of people more 
vulnerable to genetic surveillance or exploitation. 

 

 
Figure 7. Overall Probability of Identifying Target from Up to Third-Degree Relatives When 

Target is Assumed to Not Be in the SNP Dataset 

E. Assumptions and Limitations 
A few assumptions and limitations are inherent with the approach used to estimate 

the identification probability and are necessary to interpret Figure 3, Figure 4, Figure 5, 
Figure 6, and Figure 7. The magnitude of the uncertainty inherent in these results and the 
sensitivity of the results to the following assumptions is unclear without further analysis:  

1) A specific family tree was modeled based on an “average” U.S. individual, 
where 2 or 3 children per couple was assumed. This resulted in 4 first-degree 
family members, and 24 first-, second-, and third-degree family members. 
Additionally, we assumed all couples were monogamous and non-incestuous. 

2) We assumed that all people within the United States are equally likely to be 
represented in the SNP dataset. In reality, this is unlikely to be the case, as DTC 
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SNP datasets tend to overrepresent Americans of Northern European ancestry37 
and certain populations (e.g., active-duty military) have been advised against 
taking these tests.38 

3) The probabilities of matching STR or SNP data to DTC SNP records were 
developed based off peer reviewed publications39 that analyzed a dataset 
representing the genetic diversity of populations other than the U.S. 
population.40 Ideally, as our audience is primarily geared towards U.S. 
government and industry stakeholders, the underlying data would be more 
representative of the population within the United States. However, the IDA 
team was unable to find data that fit those requirements. Of note, Edge et al. did 
examine the impact of genetic diversity among populations on the matching 
accuracy and found that the average match scores will differ between genetic 
populations with more or less genetic diversity (with less genetically diverse 
populations having higher overall match scores). The overall U.S. population is 
genetically diverse, though the worldwide population is not necessarily 
representative of the population distribution found in the United States. 

4) Edge et al. and Kim et al. provided ranges of probabilities for PLD depending on 
which genetic loci were selected. For this analysis, we modeled the median 
probability values. 

5) There were only limited instances in the literature quantifying the success rate of 
generating a family tree following a successful genetic match to a relative.41 In 

 
37  Yaniv Erlich et al, “Identity inference of genomic data using long-range familial searches,” Science 362 

(2018): 2, https://doi.org/10.1126/science.aau4832. 
38  U.S. Department of Defense, Office of the Secretary of Defense, Direct-to-Consumer Genetic Testing 

Advisory for Military Members (Washington, D.C., 2019): 1. 
39  Michael D. Edge et al, “Linkage disequilibrium matches forensic genetic records to disjoint genomic 

marker sets," PNAS 144 no. 22 (2017): 5671-5676, https://doi.org/10.1073/pnas.1619944114. 
 Jaehee Kim et al, “Statistical Detection of Relatives Typed with Disjoint Forensic and Biomedical 

Loci,” Cell 175 (2018): 848-858, https://doi.org/10.1016/j.cell.2018.09.008. 
 Jard H de Vries et al, “Impact of SNP microarray analysis of compromised DNA on kinship 

classification success in the context of investigative genetic genealogy,” Forensic Science 
International: Genetics 56 (2022), https://doi.org/10.1016/j.fsigen.2021.102625. 

 Chie Morimoto et al, “Pairwise Kinship Analysis by the Index of Chromosome Sharing Using High-
Density Single Nucleotide Polymorphisms,” PLoS ONE 11 7 (2016): e0160287, 
https://doi.org/10.1371/journal.pone.0160287. 

40  The STR to DTC SNP record matching probabilities were based off of the genetic diversity of the 
worldwide population, whereas the SNP to DTC SNP record matching probabilities were based off a 
Japanese population and a Dutch population. 

 

https://doi.org/10.1073/pnas.1619944114
https://doi.org/10.1016/j.cell.2018.09.008
https://doi.org/10.1016/j.fsigen.2021.102625
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all cases where a match was a third-degree relative of the target or closer, the 
target could be identified successfully; when times were reported, they were 
under 5 hours. For this estimation, we assumed that this would hold for all cases 
where a third-degree relative or closer could be matched, but there is a large 
degree of uncertainty with this assumption due to the limited number of data 
points. In other words, we assume that the probability of identification is 100% 
for all relationships out to third degree. 

For these reasons, we present the results of this analysis as an estimate of one potential 
capability associated with acquisition of U.S. genetic data. We aimed to provide the 
sponsoring office with an illustrative case that could be used to demonstrate to stakeholders 
how the size of a SNP dataset may influence the probability of identifying a target.  

Additionally, results should be considered a rough estimate of an “average” U.S. 
citizen, rather than exact figures that convey the probability of identifying any specific 
individual. Factors that could alter the probability of identifying a specific individual 
include: 1) the size and structure of that individual’s family tree,42 2) the genetic diversity 
of the population the target belongs to,43 3) the overall representation of the target’s genetic 

 
41  Jim Thompson, Tim Clayton, John Cleary, Maurice Gleeson, Debbie Kennett, Michelle Leonard, and 

Donna Rutherford, “An Empirical Investigation into the Effectiveness of Genetic Genealogy to Identify 
Individuals in the UK,” Forensic Science International: Genetics 26 (2020): 102263. 

 Mine Su Ertürk, Colleen Fitzpatrick, Margaret Press, and Lawrence M. Wein, “Analysis of the 
Genealogy Process in Forensic Genetic Genealogy,” Journal of Forensic Sciences 67 (2022):  
2218-2229. 

 Peter Aldhous, “We Tried to Find 10 BuzzFeed Employees Just Like Cops Did for the Golden State 
Killer,” BuzzFeed News, April 9, 2019, https://www.buzzfeednews.com/article/peteraldhous/golden-
state-killer-dna-experiment-genetic-genealogy. 

42  Erlich et al, modeled the size of a SNP dataset needed to have a relationship of third cousin or closer 
within the dataset for 99% of a population and found that 2% population coverage (assuming all 
individuals in the population are equally likely to be in the SNP dataset) was sufficient. However, the 
failure rate of genealogical investigations for relationships more distant than first cousins is not 
negligible and the time and cost associated with these investigations increases dramatically the more 
distant the matched relative. 

43  A second cousin match investigated by Aldhous failed because of the low genetic diversity within the 
group; they were incapable of establishing a family tree due to the interrelatedness of the population. 
Additionally, low genetic diversity populations can inflate the match probability, making it more 
difficult to distinguish between actual matches and non-matches (leading to a potentially higher level of 
false positives or false negatives, depending upon cutoff values).  
 Peter Aldhous, “We Tried to Find 10 BuzzFeed Employees Just Like Cops Did for the Golden State 
Killer,” BuzzFeed News, April 9, 2019, https://www.buzzfeednews.com/article/peteraldhous/golden-
state-killer-dna-experiment-genetic-genealogy. 

 Michael D. Edge et al, “Linkage disequilibrium matches forensic genetic records to disjoint genomic 
marker sets," PNAS 144 no. 22 (2017): 5671-5676, https://doi.org/10.1073/pnas.1619944114. 

https://www.buzzfeednews.com/article/peteraldhous/golden-state-killer-dna-experiment-genetic-genealogy
https://www.buzzfeednews.com/article/peteraldhous/golden-state-killer-dna-experiment-genetic-genealogy
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population in DTC SNP datasets,44 and 4) the availability and accessibility of non-genetic 
genealogical data.45 

It is important to note that identification is possible, not only though first-, second-, 
and third-degree relatives, but also through more distant relatives. Indeed, law enforcement 
officials have used the SNP data of second cousins, third cousins, and other relatives to 
identify perpetrators of violent crimes.46 The benefit of expanding genetic searching to 
more distant matches is that there is a greater likelihood of finding a partial match in the 
SNP dataset (increasing the probability in the first step); however, more distant relatives 
have lower genetic similarity to a target (decreasing the probability in the second step) and 
generating a family tree to identify a target from a second cousin or more distant relative 
was not always possible in the literature we reviewed47 (decreasing the probability in the 
third step). Additionally, assembling these family trees can be time and cost prohibitive,48 
particularly for an application such as genetic surveillance where answers may be desired 
in a more rapid timeframe. Appendix A describes the quantification of the probability of 
identifying a target from more distant relatives, which may be useful for some applications 
where timeliness (on the order of days) is not crucial. 

F. Conclusions 
While there remains a need to be able to openly share data for scientific and health 

research, the protection of human genetic data has been a question or topic of interest for 
the last several years, with various groups raising concerns about impacts on privacy and 
national security. This paper determined the probability of identifying a target from human 
genetic datasets to inform potential policies, enforcement actions, and rulemaking 
concerning the privacy and national security concerns associated with the acquisition of 
U.S. persons sensitive personal data, including genomic data, by strategic competitors. 

One of the notable takeaways from this study is the amount of time needed for the 
genealogical step of identifying a person, particularly when investigating family members 

 
44  For example, 75% of the MyHeritage dataset consists of individuals with primarily Northern European 

genetic backgrounds. Yaniv Erlich, et al., “Identity inference of genomic data using long-range familial 
searches,” Science 362 (2018): 2, https://doi.org/10.1126/science.aau4832. 

45  This can include factors such as: a family member uploading a family tree, publicly accessible social 
media profiles, most family members were born in countries with accessible public records (birth, 
death, and marriage). 

46  Yaniv Erlich et al, “Identity inference of genomic data using long-range familial searches,” Science 362 
(2018): 2, https://doi.org/10.1126/science.aau4832. 

47  57% of cases with a second cousin match were successful and 25% of cases with a third or fourth 
cousin match were successful. 

48  Second cousin matches took between 50-100 hours to generate a family tree, when successful. Third 
cousin and beyond matches took 50-100+ hours to generate family trees, when successful. 
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more distantly related than first cousins. However, if this process could be automated or 
more publicly available records made accessible, time and cost could become less 
substantial factors in the ability to identify individuals from distant relatives. Another 
finding that could alter the results of this study is the lack of available data on matching 
and identifying. Additional studies examining the probability of matching distant relatives 
and the time and likelihood of assembling a family tree would enable us to update our 
estimates with data we have greater confidence in. 

Another type of data that may warrant additional exploration and consideration of 
protection may be publicly accessible vital records, social media profiles, and other 
supplementary datasets that can be used to accomplish this genealogical step. Notably, 
public records are likely to increase over time, as generations grow up with access to social 
media and online records, which could alter the probability of successful identification.  
Continued adoption of artificial intelligence to extract and synthesize meaningful data from 
diverse data sources such as the open web and publicly available information may lower 
the time and cost to generate a family tree in the future, resulting in a decreased amount of 
time to identify a target from human genetic datasets without the adoption of additional 
protections. While open access to data has numerous benefits to society, unintended dual 
use of this data should be considered when designing protection efforts. 

Finally, it is clear that policies encouraging individuals in sensitive positions (such as 
active-duty military personnel) to avoid DTC genetic tests is insufficient in protecting those 
individuals’ privacy, as these individuals may be identified through family members whose 
behavior they have little control over. More comprehensive protection measures of large 
human genetic datasets may be necessary to preserve the privacy of U.S. persons and 
mitigate national security concerns associated with the acquisition of U.S. persons’ 
sensitive personal data, including genomic data, by strategic competitors.  Additionally, 
there are other methods of identification of persons that do not rely upon genetic data, 
including mobile phone data. This analysis did not investigate these other methods or 
compare the efficacy or resource intensity of genetic identification to other methods. To 
fully understand the risk genetics could pose to privacy or national security, a full 
characterization of alternative methods that can be used either by themselves or in 
combination with genetics could be beneficial. 
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Appendix A. Identifying Individuals from Genetic 
Data of Distant Relatives 

While matching the genetic sample from person A (GSA) to the SNP record of person 
B (SNPB) of out to third-degree relatives will have a higher probability of being able to 
successfully use LD, it is also possible to perform similar GSA to SNPB matching to more 
distant relatives, such as fifth-degree relatives (e.g., second cousins). As any individual is 
more likely to have more second cousins than they do parents or siblings, widening the 
scope to more distant relatives has the benefit of increasing the probability that a relative 
exists in the SNP dataset without increasing the population coverage included within that 
dataset. However, the genetic similarity between these distant relatives is lower than that 
of first-, second-, and third-degree relatives. Moreover, assembling a family tree for 
relatives more distant than first cousins took researchers days or weeks as opposed to hours 
and was not always successful.49 

In this appendix, we will explore the probability of identification considering up to 
fifth-degree relatives, expanding our discussion from Chapter 2 to include fourth-degree 
(first cousins once removed) and fifth-degree relatives (second cousins and first cousins 
twice removed) to illustrate how distant relationships can influence the probability of 
identification. Figure A-1 shows the family structure we assumed for this analysis, 
including the number of individuals we considered for each relationship type. 

 
49  Jim Thompson, Tim Clayton, John Cleary, Maurice Gleeson, Debbie Kennett, Michelle Leonard, and 

Donna Rutherford, “An Empirical Investigation into the Effectiveness of Genetic Genealogy to Identify 
Individuals in the UK,” Forensic Science International: Genetics 26 (2020): 102263. 

 Mine Su Ertürk, Colleen Fitzpatrick, Margaret Press, and Lawrence M. Wein, “Analysis of the 
Genealogy Process in Forensic Genetic Genealogy,” Journal of Forensic Sciences 67 (2022): 2218-
2229. 

 Peter Aldhous, “We Tried to Find 10 BuzzFeed Employees Just Like Cops Did for the Golden State 
Killer,” BuzzFeed News, April 9, 2019, https://www.buzzfeednews.com/article/peteraldhous/golden-
state-killer-dna-experiment-genetic-genealogy. 
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Figure A-1. Assumed Family Structure for Up to Fifth-Degree Relatives 

 
We can use the same approach described in Chapter 2C to calculate the probability of 

identifying the target. The probability that the target cannot be identified, either because 
no relative is in the SNP dataset, matching is not successful, or assembling a family tree is 
not successful is calculated using the following formula:  

𝑃𝑃𝐵𝐵 = (1 − 𝑃𝑃𝐿𝐿𝐿𝐿𝑃𝑃𝐺𝐺𝐺𝐺,𝐵𝐵
𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆
𝑁𝑁

)   

Note: PLD refers to the probability that LD can be used to match GSA to SNPB and PGG refers to the 
probability that assembling a family tree linking person A and person B is successful. 

To calculate the overall probability of a match with any relative, the PB values for 
each relative type can be multiplied together and then subtracted from 1. We assume the 
number of fourth-degree relatives to be 14 and the number of fifth-degree relatives to be 
68 individuals, which were calculated based on the assumption that each couple has 2 or 3 
children.  

As in Chapter 2C, there are probabilities associated with being able to match GSA to 
SNPB, which are noted in Table A-1. These probabilities were obtained in the same manner 
as those for up to third-degree relationships. We only have references for out to fifth-degree 
relatives for SNP data and not STR data. Higher degrees of relationships can be used, but 
we don’t have the probability of the genetic matching for all degrees past fifth or the data 
for STR-SNP matching past third-degree. 
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Table A-1. PLD and PGG for Up to Fifth-Degree Relatives 

Relationship PLD for SNP-SNP Matching PGG for Identification 

Individual > 99%* 100% 

Parent >99%* 100% 

Sibling 99%* 100% 

Second-degree 94%* 100% 

Third-degree 91%* 100% 

Fourth-degree 56.7** 66% 

Fifth-degree 78%* 66% 

* The values in this column represent the median match probabilities between those reported by de Vries 
and Morimoto, which tested at 652,027 loci and 174,254 loci respectively. 

** The values in this column were from Morimoto et al. as de Vries et al. did not report these values for 
fourth-degree relatives. These values are lower than that of fifth-degree relatives likely because there 
were very few fifth-degree relatives in Morimoto’s dataset. 

 
Finally, we used the available literature data presented in Table 2 to calculate the 

percent of cases where a fourth- or fifth-degree match were made to determine the 
probability of successful identification. We did not consider cases where there was 
uncertainty in the degree of relationship. It is important to note that the amount of time it 
took to assemble family trees for fifth-degree relationships was approximately an order of 
magnitude higher than for first- through third-degree relationships. If time from sample 
collection to identification is of the essence for a particular capability, conducting this 
investigation out to fifth-degree relatives may be prohibitive for most cases.  

Figure A-2 depicts the probability of identifying a target individual from GSA 
analyzed using an STR or SNP assay (examining 20 or 40 STR loci or hundreds of 
thousands of SNP loci) with a SNP record of the target or one of their relatives out to fifth-
degree as a function of SNP dataset size. Again, we are only showing SNP-SNP 
identification data because we lack matching data for STR-SNP in fourth- or fifth-degree 
relatives. 
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Figure A-2. Overall Probability of Identifying Target from Up to Third-Degree or Up to Fifth-

Degree Relative Using an SNP Genetic Test as a Function of SNP Dataset Size 
 

As shown in Figure A-2, the probability of identifying the person of interest increases 
when considering more distant relationships. However, it is important to consider that the 
amount of time it takes to conduct the genealogical investigation may be time and cost-
prohibitive for genetic surveillance purposes. Additionally, more data that can be used to 
derive PLD values for STR matching is needed to characterize how probability of 
identification changes by considering distant relatives. 
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