
IDA Document D-4996

September 2013

Parallel Compilation
on

Virtual Machines
 in a

Development Cloud Environment

David A. Wheeler

Copy
Log: H 13-001206

I N S T I T U T E F O R D E F E N S E A N A L Y S E S

INSTITUTE FOR DEFENSE ANALYSES
4850 Mark Center Drive

Alexandria, Virginia 22311-1882

Approved for public release;
distribution is unlimited.

About This Publication
This work was conducted by the Institute for Defense Analyses (IDA) under
contract N66001-11-C-0001, subcontract D6384-S5, “Homeland Open
Security Technology (HOST),” for Georgia Tech Research Institute. The
views, opinions, and findings should not be construed as representing
the official position of either the Department of Defense or the sponsoring
organization.

Copyright Notice
© 2013 Institute for Defense Analyses
4850 Mark Center Drive, Alexandria, Virginia 22311-1882 • (703) 845-2000.

This material may be reproduced by or for the U.S. Government pursuant
to the copyright license under the clause at DFARS 252.227-7013 (a)(16)
[Sep 2011].

Parallel Compilation
on

Virtual Machines
 in a

Development Cloud Environment

David A. Wheeler

I N S T I T U T E F O R D E F E N S E A N A L Y S E S

IDA Document D-4996

Executive Summary

Government employees and contractors cannot, in some cases, install software
development tools on their local systems. For example, they may be using a mobile
device that cannot adequately support software development tools, or security policy
restrictions may inhibit installing these tools. Yet, many tasks require the creation or
modification of software, so this constraint can inhibit effective use and maintenance of
both open source software (OSS) and government off-the-shelf software (GOTS). If
these constraints cannot be addressed, the result could be higher costs, longer delays, or
even a failure to perform necessary government tasks. A possible solution is to create
“development clouds” that support software development without requiring any tools
specific to software development to be installed in the local system.

An additional argument for development clouds is that they could use parallel
processing to greatly reduce compilation time, speeding development for some software.
However, it would be wise to test whether this hypothesis is actually true. The National
Institute of Standards and Technology (NIST) definition of cloud computing does not
specify the use of virtual machines (VM), but in practice many cloud environments are
implemented using VMs. We wanted to confirm that at least some VM environments
actually support parallel processing for performing compilations, and that using them can
(at least in some circumstances) significantly speed compilations compared to a single
central processing unit (CPU) in a VM. Confirmation is particularly important if a
private cloud is to be acquired, since private clouds can be expensive.

This document describes an IDA innovation lab (iLab) experiment that verifies that
VM environments exist that support parallel processing for performing compilations, and
that using them can (at least in some circumstances) significantly speed compilations
compared to a single-CPU case. Using the default settings, it took 166.85 minutes to
compile the Linux kernel version 3.10.5 with 1 CPU, compared to 28.50 minutes with 16
CPUs, resulting in a reduction of 138.35 minutes (over 2 hours) on average for each full
compilation. Thus, 16 CPUs compiled the software 5.85 times faster compared to one
CPU. An additional optimization (involving the “-j” flag) slightly decreased the average
16-CPU compilation time even further. The fact that parallelism can speed compilations
is not new, but this experiment confirms that this is also true in at least one currently
available environment that implements VMs.

Of course, actual compilation times would vary considerably depending on a variety
of factors. The amount of recompilation required for a particular change, and hardware

i

differences, can vary compilation time substantially. Few tasks (including compilation)
are perfectly parallel, limiting how much gain parallelism can provide. Still, this
experiment gives evidence that, in at least some situations, assigning multiple CPUs to a
VM can significantly speed compilation. It also demonstrates how to test this hypothesis
for other situations.

A system that can cost-effectively provide many CPUs to execute a VM, such as a
development cloud environment, can significantly speed up compilations. Therefore,
development cloud environments may be a useful approach for supporting software
creation and maintenance.

ii

Contents

1. Introduction ... 1-1
2. Approach ... 2-1
3. Findings ... 3-1
4. Conclusions ... 4-1

Appendix A. Detailed Data

Figures

Figure 1. Average speedup varying number of CPUs, default configuration 3-1
Figure 2. Average efficiency varying number of CPUs, default configuration 3-2

Tables

Table A-1. Compilation times varying number of CPUs, default configuration A-1
Table A-2. Compilation times between 1 and 16 CPUs, varying MAKEFLAGS A-2

iii

iv

1. Introduction

Government employees and contractors cannot, in some cases, install software
development tools on their local systems. For example, they may be using a mobile
device that cannot adequately support software development tools, or security policy
restrictions may inhibit installing these tools. Yet, many tasks require the creation or
modification of software, so this constraint can inhibit effect use and maintenance of both
open source software (OSS) and government off-the-shelf software (GOTS). The result
can be higher costs, longer delays, or even a failure to perform necessary government
tasks.

A possible solution is to create “development clouds” that support software
development without requiring any tools specific to software development to be installed
in the local system. A development cloud could be an additional function of a software
“forge.” A forge enables collaborative development of software source code, but forges
do not always directly support all the tasks needed for development (since historically
these tasks were done on a user’s own system). Note that a development cloud is an
application-specific use of cloud computing as defined by National Institute of Standards
and Technology (NIST) Special Publication 800-145 [NIST].

An additional argument for “development clouds” is that they could speed
development for software that is compiled. Many language systems require compilation
during development. The compilation process can produce efficient code, but it is
notorious for taking a long time, and developers using such language systems must
repeatedly perform compilation. There are even cartoons pointing out that compilation
can take a long time and that this time affects developers [Adams] [Cornet] [xkcd].
Many systems have been developed over the years to perform compilation in parallel,
e.g., distributing the process across a network (using tools like distcc [Bonney]) or simply
running many processes simultaneously when multiple processors are available. Since a
large number of higher-performance processors can be aggregated on a development
cloud, a cloud could in theory use many processors to compile a program. In particular, a
cloud environment could provide far more Central Processing Units (CPU) than would
typically be available on a desktop or laptop. If development clouds could significantly
shorten compilation time, this might accelerate the use and acceptance of them by
developers, since they would have a personal incentive to use development clouds. It
would also simplify the use of recompilation to detect certain kinds of attacks [Wheeler].

1-1

Using development clouds as a solution seems reasonable, but before spending
significant money or creating policies on cloud services, it would be wise to test this
assumption. The NIST definition of cloud computing does not specify the use of virtual
machines (VM), but in practice many cloud environments are implemented using VMs.
A VM infrastructure adds new components that might fail to adequately support the use
of parallel CPUs or might interfere with the ability to parallelize tasks. We wanted to
confirm that at least some VM environments actually support parallel processing for
performing compilations, and that using them can (at least in some circumstances)
significantly speed compilations compared to a single-CPU case. Confirmation is
particularly important if a private cloud is to be acquired, since private clouds can be
expensive.

The experiment described in this paper does not commit the Government to any
course of action (including the use, or non-use, of development clouds). Instead, it
simply provides the Government with experimental data to help it understand the
potential impact of a possible course of action.

1-2

2. Approach

We performed a simple experiment to determine whether the multiple CPUs
available on cloud-based systems can significantly reduce compilation time.

We used the existing IDA innovation lab (iLab) equipment, which hosts VMs. This
system is a Dell PowerEdge R720 with two Intel Xeon processors, each with eight cores.
Each Intel Xeon processor was an E5-2650 2.00GHz, 20M Cache, 8.0GT/s QPI Turbo,
with 96 GB of RAM. All VMs run on top of Citrix XenServer Enterprise Edition.

We set up a VM specifically for this experiment. This VM ran the widely used
Fedora Linux distribution, version 19, including necessary compilation tools such as gcc.

We timed a compilation sample when one CPU was assigned to the VM, and
compared that to timings when 16 CPUs were assigned to exactly the same VM (16 is the
maximum number that can be assigned to a VM in the selected configuration). Since we
used the same hardware, varying its use between 1 and 16 virtual CPUs, we did not have
to worry about performance variation between different kinds of hardware. No other
VMs were running on the relevant portion of the IDA iLab system while the tests were
running.

We chose, as our compilation sample, the Fedora version of the Linux kernel
version 3.10.5 (this is the same version that is used by Fedora 19 itself). We obtained its
source code and Fedora build environment using the yum downloader tool. The Linux
kernel was prepared (using “rpmbuild -bp kernel.spec”) and then compiled (built) from
scratch. We performed this preparation and compilation five times in a row to get an
average measure of time. All compilation caches (ccaches) were disabled, and only the
compilation time was measured (as performed by “rpmbuild -bc --short-circuit --nocheck
kernel.spec”). This is a large program; sloccount version 1.26 reports that this Linux
kernel contains 11,256,252 physical source lines of code (SLOC), and that 97.27% is in
the C programming language. Most of it (6,454,002 physical SLOC) is in its “drivers”
subdirectory.

This is an intentionally extreme case:

1. We are recompiling the Linux kernel from scratch each time. In practice,
software developer modifications often do not require complete recompilation of
a system, and build dependency tools (such as make) and compilation caches
(e.g., by ccache) can cause many unnecessarily recompilations to be skipped.
However, since the amount of recompilation necessary greatly depends on the

2-1

specific modifications made, total recompilation from scratch is a reasonable
representation of the worst case (from the point of view of a developer waiting
for the process to complete). Also, many programs continue to use “recursive
make”; a side effect of this common but poor practice is that recompilations
often perform far more operations, and thus take more time, than might
otherwise be expected [Miller].

2. While compilation is not perfectly parallelizable, in most cases compilation of
large programs tends to be parallelizable. In many cases most files can be
compiled independently, and only some tasks (e.g., linking of many files) are
not parallelizable. It is already known that parallel recompilation on non-VM
systems tends to significantly speed compilation.

3. The Linux kernel is a large program divided into a large number of separate
files. Thus it provides many opportunities for parallel compilation.

We chose an intentionally extreme case because if a significant difference was not
found between the use of 1 and 16 CPUs, given these circumstances, it is unlikely that a
significant difference would be found in most other cases. We also timed cases while
varying the number of CPUs between (and not including) 1 and 16; this enabled us to
confirm the results, as well as help characterize how compilation time varies with the
number of CPUs.

Our hypothesis was that assigning multiple CPUs to the VM should provide a
significant decrease in the time to complete compilation compared to a single CPU,
particularly given this intentionally extreme case. Of course, the whole point of an
experiment is to test the hypothesis.

2-2

3. Findings

In this environment and configuration, multiple CPUs did significantly reduce
compilation time (as expected). In the default configuration the average compilation time
for 16 CPUs was 28.50 minutes, while for a single CPU it was 166.85 minutes. Thus,
there was a savings of 138.35 minutes (over 2 hours) for each full compilation in the 16-
CPU case compared to the single-CPU case.

Parallel processing speedup (one word) is defined as (time for 1 CPU/time for this
many CPUs), and parallel processing efficiency is defined as (speedup/number of
processors) [Eager]. Informally, speedup measures how many times faster many CPUs
can solve some problem when compared to using a single CPU. In the 16 CPU case,
with the default configuration, the speedup was 5.85 and the efficiency was 37%. This
efficiency is nowhere near the ideal of 100%, but developers would still be delighted to
reduce each compilation time by more than 2 hours.

As shown in the following figure, the speedup increases sublinearly as the number
of CPUs increases.

Figure 1. Average speedup varying number of CPUs, default configuration

The sublinear increase in speedup indicates that there is a decreasing efficiency in
CPU use as the number of CPUs increases. This is a typical circumstance in parallel
computing. The following figure shows this decreasing efficiency.

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee

du
p

Number of CPUs

3-1

Figure 2. Average efficiency varying number of CPUs, default configuration

The “make” build program supports a “-j” option that can affect the number of

simultaneous jobs [FSF]. We also ran the test cases while setting MAKEFLAGS to “-j
number” and varying that number for both 1 CPU and 16 CPUs. In some cases this
reduced the compilation time further, e.g., in the 16 CPU case, setting the “-j” option to
16 further reduced the average time to 23.86 minutes (compared to 28.50 when the option
is not set), producing a speedup of 6.99 and efficiency of 44%. Of the values of -j tested,
the best result was achieved with multiple CPUs when the number matched the number
of processors (this is consistent with the experimental results of [Blaess]). This flag’s
effectiveness was (as expected) completely dwarfed by the effect of having (or not
having) multiple CPUs.

The appendix provides more details on the experimental results.

0%

25%

50%

75%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ef
fic

ie
nc

y

Number of CPUs

3-2

4. Conclusions

Our findings show conclusively that, in at least some circumstances, virtual
machines provided with many CPUs can perform compilations in significantly less time
than a VM with one CPU. Using the default configuration it took 166.85 minutes with
1 CPU, compared to 28.50 with 16 CPUs. The fact that parallelism can speed
compilations is not new, but we have confirmed that this is also achievable in VMs.

Of course, actual compilation times would vary considerably depending on a variety
of factors. The amount of recompilation required for a particular change, and hardware
differences, can vary compilation time substantially. Few tasks (including compilation)
are perfectly parallel, limiting how much gain parallelism can provide. Configuration
options can also affect efficiency (e.g., by modifying the “-j” option through
MAKEFLAGS). Of course, the number of CPUs used also matters. Still, this
experiment gives evidence that, in at least some situations, assigning multiple CPUs to a
VM can significantly speed compilation. This experiment also demonstrates how to test
this hypothesis for other situations.

There are many opportunities for future work. It would be interesting to investigate
further how the number of CPUs affects compilation times. There are tools (e.g., distcc)
that distribute compilation across a network, specifically to speed up compilation; we
could test those running on VMs as well. We have every reason to believe that we could
apply distributed compilation across a network with VMs, but our experiment did not test
this. The iLab system has a second server with 32 additional CPUs; future experiments
could determine whether adding those resources would speed compilation further, or
conversely, whether using other VMs on the server (with different CPUs assigned to
them) would cause a significant increase in the compilation time. It might be possible to
modify the Linux kernel build system to be far more parallelizable; we have not
investigated this. Instead of measuring recompilation time from scratch, we could
measure average recompilation times after typical changes (e.g., by using version control
system data as samples of typical changes). We could also recompile the program in a
different way (e.g., not through rpmbuild), or compile different programs, to determine
how these changes affect the results.

A system that can cost-effectively provide many CPUs to execute a VM, such as a
development cloud environment, can significantly speed up compilations. Therefore,
development cloud environments may be a useful approach for supporting software
creation and maintenance.

4-1

4-2

Appendix A
Detailed Data

The following table shows the compilation times while varying the number of
virtual CPUs, using a default configuration (MAKEFLAGS was left unset when
compilation began). The table shows the average (mean) time (in minutes), the sample
standard deviation, average speedup, average efficiency and actual times, when varying
the number of CPUs along powers of 2 (speedup is time for 1 CPU/time for this many
CPUs, and efficiency is speedup/number of processors [Eager]).

Table A-1. Compilation times varying number of CPUs, default configuration

CPUs

Average
time

(minutes)

Sample
standard
deviation

Speed-
up

Effici-
ency Actual times

1 166.85 0.48 1 100% 166m5.906s, 167m24.466s,
166m55.956s, 167m1.046s, 166m47.885s

2 107.63 0.44 1.55 78% 107m2.299s, 107m19.588s,
107m43.468s, 107m59.898s, 108m2.966s

4 70.78 0.35 2.36 59% 70m25.171s, 70m25.326s, 70m50.348s,
71m1.050s, 71m11.496s

8 36.20 0.27 4.61 58% 35m46.956s, 36m30.632s, 36m13.059s,
36m11.372s, 36m18.051s

16 28.50 0.16 5.85 37% 28m41.823s, 28m37.153s, 28m26.343s,
28m18.840s, 28m25.350s

A-1

The following table shows the effect of varying the MAKEFLAGS value when the
number of virtual CPUs varies between 1 and 16, with the average time, sample standard
deviation (SStddev), and the actual compilation times.

Table A-2. Compilation times between 1 and 16 CPUs, varying MAKEFLAGS

MAKE
FLAGS

Time (minutes) for CPUs=1 Time (minutes) for CPUs=16

Aver-
age

SStd
dev Actuals

Aver-
age

SStd
dev Actuals

(Unset) 166.85 0.48 166m5.906s, 167m24.466s,
166m55.956s, 167m1.046s,
166m47.885s

28.50 0.16 28m41.823s, 28m37.153s,
28m26.343s, 28m18.840s,
28m25.350s

-j 1 167.21 0.50 166m31.060s, 166m57.618s,
167m38.457s, 167m11.503s,
167m43.635s

28.97 0.27 29m16.752s, 28m58.992s,
28m50.076s, 29m8.809s,
28m35.256s

-j 2 174.75 1.45 173m50.743s, 173m51.798s,
174m29.776s, 174m13.211s,
177m18.070s

25.46 0.36 25m35.657s, 25m31.154s,
25m58.167s, 25m9.193s,
25m4.412s

-j 16 193.39 0.42 193m38.164s, 193m19.189s,
192m42.683s, 193m30.181s,
193m47.256s

23.86 0.36 24m10.411s, 23m46.658s,
24m17.934s, 23m29.803s,
23m34.281s

-j 32 207.50 0.53 208m19.729s, 207m14.792s,
207m21.893s, 206m54.724s,
207m40.279s

24.26 0.08 24m15.226s, 24m16.853s,
24m22.579s, 24m9.731s,
24m13.738s

Note that we time the compilation as performed by “rpmbuild”; this includes many

tasks including key generation.

Also note that we are using samples of a larger population (of potentially-performed
compilations), therefore, we use the sample standard deviation:

𝑠 = � 1
𝑁−1

∑ (𝑥 − 𝑥̅)2𝑁
𝑖=1 .

A-2

The sample standard deviation was calculated using the following Python code:

Make code work on both Python 2.7 and the Python 3 series:

from __future__ import print_function, unicode_literals

from __future__ import division, absolute_import

from math import sqrt

def average_list(x):

 return sum(x) / len(x)

def sample_stddev(x): # Compute sample standard deviation of list

 average = average_list(x)

 sum_squares = sum([(v-average)**2 for v in x])

 return sqrt(sum_squares / (len(x)-1))

A-3

A-4

References

[Adams] Adams, Scott. 2013-06-22. Dilbert. http://dilbert.com/2013-06-22/

[Blaess] Blaess, Christophe. Parallelizing Compilations. 2012-01-14.
http://www.blaess.fr/christophe/2012/01/14/parallelizing-compilations/

[Bonney] Bonney, Laurence. “Reduce compile time with distcc.” IBM developerWorks.
2004-06-22. http://www.ibm.com/developerworks/linux/library/l-distcc/index.html

[Cornet] Cornet, Manu. “One Last Time.” Bonkers World (sic).
http://www.bonkersworld.net/one-last-time/

[Eager] Eager, Derek L, John Zahorjan, and Edward D. Lazowska. “Speedup Versus
Efficiency in Parallel Systems.” IEEE Transactions on Computers, Vol. 38, No. 3,
March 1989, pp. 408–423.

[FSF] Free Software Foundation (FSF). GNU Make Manual. July 28, 2010.
http://www.gnu.org/software/make/manual/

[Miller] Miller, Peter. “Recursive Make Considered Harmful.” Journal of Australian
UNIX and Open Systems Users Group (AUUG), 19(1), pp. 14–25.
http://miller.emu.id.au/pmiller/books/rmch/

[NIST] Mell, Peter, and Timothy Grance. The NIST Definition of Cloud Computing.
National Institute of Standards and Technology (NIST). NIST Special Publication
800-145. September 2011. http://csrc.nist.gov/publications/nistpubs/800-
145/SP800-145.pdf

[Wheeler] Wheeler, David A. Fully Countering Trusting Trust through Diverse Double-
Compiling. 2009. http://www.dwheeler.com/trusting-trust

[xkcd] Munroe, Randall. “Compiling.” xkcd (sic). http://xkcd.com/303/ Note: “xkcd” in
all lower case is the preferred form, and is not an acronym; see
http://xkcd.com/about/

Trademark owners are the owners of their respective trademarks. For example,
Linux® is the registered trademark of Linus Torvalds in the United States and other
countries. URLs are subject to change.

R-1

http://dilbert.com/2013-06-22/
http://www.blaess.fr/christophe/2012/01/14/parallelizing-compilations/
http://www.ibm.com/developerworks/linux/library/l-distcc/index.html
http://www.bonkersworld.net/one-last-time/
http://www.gnu.org/software/make/manual/
http://miller.emu.id.au/pmiller/books/rmch/
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://www.dwheeler.com/trusting-trust
http://xkcd.com/303/
http://xkcd.com/about/

R-2

Acronyms and Abbreviations

ccache Compilation Cache
CPU Central Processing Unit
FSF Free Software Foundation
GNU GNU’s Not Unix
GOTS Government off-the-Shelf
IDA Institute for Defense Analyses
NIST National Institute of Standards and Technology
OSS Open Source Software
SLOC Source Lines of Code
URL Universal Resource Locator
VM Virtual Machine

AA-1

RE PORT DOCUM ENTAT I ON PAG E Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington
Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From – To)

13-09-2013 Final
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Parallel Compilation on Virtual Machines in a Development Cloud Environment N66001-11-C-0001, subcontract D6384-S5

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBERS

6. AUTHOR(S) 5d. PROJECT NUMBER

David A. Wheeler
5e. TASK NUMBER

GT-5-3329
5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES 8. PERFORMING ORGANIZATION REPORT
NUMBER
D-4996
H13-001206

Institute for Defense Analyses
4850 Mark Center Drive
Alexandria, VA 22311-1882

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR’S / MONITOR’S ACRONYM
GTRI Joshua L. Davis

Georgia Tech Research Institute
250 14th Street NW, Room 256
Atlanta, GA 30318

11. SPONSOR’S / MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

Project Leader: David A. Wheeler
14. ABSTRACT

Government employees and contractors cannot, in some cases, install software development tools on their local systems. For example,
they may be using a mobile device that cannot adequately support software development tools, or security policy restrictions may inhibit
installing these tools. A possible solution is to create “development clouds” that support software development without requiring any
tools specific to software development to be installed in the local system. An additional argument for development clouds is that they
could use parallel processing to greatly reduce compilation time. However, it would be wise to test whether this hypothesis is actually
true for virtual machine (VM) environments, since they are often used to implement clouds.
This document describes an IDA innovation lab (iLab) experiment that verifies that VM environments exist that support parallel
processing for performing compilations, and that using them can (at least in some circumstances) significantly speed compilations
compared to a single-CPU case. Using the default settings, it took 166.85 minutes to compile the Linux kernel version 3.10.5 with 1
CPU, compared to 28.50 minutes with 16 CPUs, resulting in a reduction of 138.35 minutes (over 2 hours) on average for each full
compilation. Thus, 16 CPUs compiled the software 5.85 times faster compared to one CPU. Additional optimizations (involving the “-j”
flag) slightly decreased the average 16-CPU compilation time even further.
This shows that a system that can cost-effectively provide many CPUs to execute a VM, such as a development cloud environment, can
significantly speed up compilations. Therefore, development cloud environments may be a useful approach for supporting software
creation and maintenance.

15. SUBJECT TERMS

Parallel compilation, virtual machine, VM, development cloud, cloud, security, mobility, speed, speedup, software development, make,
software creation, software maintenance, government off-the-shelf, GOTS, open source software, OSS

16. SECURITY CLASSIFICATION OF:
17. LIMITATION OF

ABSTRACT

Unlimited

18. NUMBER
OF PAGES

26

19a. NAME OF RESPONSIBLE PERSON
Joshua L. Davis

a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include Area Code)
 678-831-0182 Unclassified Unclassified Unclassified

>

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std, Z39.18

	1. Introduction
	2. Approach
	3. Findings
	4. Conclusions
	Appendix A Detailed Data

