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Measurement of gradient index materials by 

beam deflection, displacement, or mode 

conversion 

Jeremy Teichman, Institute for Defense Analyses, March 9, 2013  

Abstract: For media with heterogeneous index of refraction, rays follow curved paths. 

This paper describes methods exploiting knowledge of the relationship between refractive 

index distribution and ray paths to estimate the refractive index distribution based on 

laser beam deflection, displacement, and mode conversion on passage through the media. 

The work covers axial, radial (cylindrical), and spherical refractive index distributions. 

1. Introduction

Recent advances in manufacturing methods for gradient index optical components 

would benefit from accompanying non-destructive metrology techniques faster than 

current precision interferometric methods. Manufacturers require measurement of the 

spatially varying refractive index profiles in these components in order to evaluate parts 

and processes as well as to locate and orient the index distribution for cutting and 

forming. This paper describes techniques using geometric optics to reconstruct the 

refractive index distribution in a sample based on measurement of laser beam 

displacement, deflection, and to a lesser degree mode conversion after passing through 

samples with axial, radial (cylindrical), or spherical gradients of refractive index. 

Ray paths confined to a plane, as occurs in a plane of refractive index symmetry, 

obey 

    

     
 

  

  
  

  

  
   (1) 

where  ⃗ is the position of a point on the ray,   is the index of refraction, the ray path is 

defined by    ( ), and primes indicate differentiation with respect to   (e.g. [1]). For 

axial, radial, and spherical gradients of refractive index, Eq. 1 reduces to an ordinary 
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differential equation. Integration of the resulting equation results in a relationship 

between the refractive index distribution and the ray paths that can be exploited to 

estimate the refractive index distribution based on measurements of laser beams passing 

through the media. The methods presented here do not rely on measurement of the full 

path of the beams through the media; they utilize only the beam conditions at the entry 

and exit points measureable from outside the media. Beam position, direction, and mode 

shape are all considered. If, due to scatter in the media, the entire beam path can be 

observed and measured, the index all along the beam path relative to that at beam entry 

can be directly calculated using the local slope of the ray path. 

Due to similarities in symmetry, radial gradients behave like spherical gradients 

when viewed normal to the axis of symmetry and like axial gradients when viewed along 

the axis of symmetry. Therefore, the following three cases suffice to cover the three basic 

gradient structures: axial viewed normal to the gradient and parallel to the gradient and 

spherical. The methods are constructed using basic manufacturing shapes for optical 

blanks (slabs for the axial gradients, rods for the cylindrical gradients, and spheres for the 

spherical gradients); however, as long as the cut surface shape is known, the methods 

apply equally to finished components. 

Previous work by others, beginning in 1893 with Weiner [2], includes examining 

index reconstruction 

 by known ray-paths through the full span of a planar or arbitrary medium [3] 

[4];  

 for planar wave-guides with fixed index faces [5];  

 for thin-medium, small displacement, normal beam-incidence [6]; and  

 for cylindrical fiber preforms [7].
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2. Axial Gradient across a Slab 

 

For this case, Eq. 1 reduces to  

  
   

  (     )
 

 

 

  

  
   (2)  

which can be integrated to produce 

 

  
 

   

  
 

  
  

 
  

  
    (3)  

where    is the index of refraction on the entrance face and   
  is the entrance slope. Eq. 3 

indicates that the local slope of a ray path with given entrance conditions will depend 

only on the local index of refraction and the index and slope on the entry face. Eq. 4 is 

equivalent to a Snell’s-law invariant along any ray,                 , where   is the 

angle between the ray and the x-axis and the surface normal in Snell’s law has been 

replaced by the refractive index gradient, which is normal to the iso-indicial surfaces. 

Measurement of the exit slope would allow direct calculation of the index on the exit 

face. Further integration of Eq. 3 across the thickness of the slab yields 
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(4)  

Because the angular deflection and vertical displacement of the beam will not depend on 

initial vertical position, the mode shape of a beam will be preserved through the slab, and 

no additional information can be obtained using beam mode shapes. The deflection of the 

beam   
 (  

 ) depends only on the exit index, not on the interior variation. Only the 

variation of displacement    with the entrance slope will provide information about the 

interior index profile. 

Two basic approaches to the solution of Eq. 4 could be considered. Particularly in a 

manufacturing metrology setting where the element has a known target index profile, an 

iterative approach to solving a discrete version of Eq. 4 would probably be appropriate. In 

such an approach the postulated index distribution would be iteratively adjusted, starting 

with an initial guess given by the target profile to minimize the magnitude of the residual 

between the measured beam displacement and that predicted by the evaluation of the 

right-hand side of Eq. 4 using the postulated index distribution. 

Alternatively, one could attempt to construct the profile directly. An analytic 

approach is possible using methods of integral equations under limiting assumptions 

about the profile. For instance, if the profile is assumed to be monotonic with position (so 

that  ( ) can be inverted to  ( )), the following transformation could be applied 

(without loss of generality assume      ) 
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where 

 ( )  
  

  
   

 ( ) can be reconstructed if  ( ) is known by inverting 
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Eq. 5 theoretically has an analytic solution [8], 

  ( )  
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]   (6)  

Unfortunately, note that     and the innermost integral must take positive values 

from 0 to   
    

 . Alternatively, for inverting a finite set of measurements (  

   ), a piecewise construction of the index using any explicitly integrable functional 

form for the segments would yield the set of M nonlinear equations 

  (  )  ∑ ∫
  

√  
 ( )    

    

 
 

 

(   )
 

 

 

   

   (7)  

By choosing the number of segments such that the total number of unknowns is 

equal to or less than the number of measurements, the system could be solved using 

standard methods. This second method closely resembles the first, although, in the first 

method, numerical integration and any reasonably parameterized form of index profile 

could be used. With the first method, an index profile form with more parameters than 

the number of measurements would be vulnerable non-unique solutions. 
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3. Axial Gradient along a Slab or Cross-section 

of a Radial Gradient 

 

For this case, Eq. 1 reduces to  

      
  

  
(     )  (8)  

Examination of Eq. 8 reveals that the ray path is dependent only on the local logarithmic 

derivative of the index of refraction. A boundary condition on the index must be known 

to solve for the absolute index of refraction. Integration of Eq. 8 yields 

 
     

    
  

 
  

  
    (9)  

Therefore, measurement of the entrance and exit slopes of the beam directly gives 

the ratio of indices at the beam entry and exit points. Measurement of the slope could, for 

example, be done with two partly scattering screens at different known distances from the 

beam exit. Eq. 9 expresses the same invariant as Eq. 3 in a rotated reference frame where 

the iso-indicial surfaces are now normal to the y-axis. In principle, Eq. 9 with data from a 

sweep over the full height of the slab would enable what amounts to numerical 

integration of the index (assuming as a boundary condition a region of known index). 
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Rearranging Eq. 9 and integrating yields 

 

  ∫
  

√(    
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(10)  

Measurement of the displacement (   and   ) gives a second relationship with 

information about an integrated function of index along the ray path. Measurement of exit 

angle and displacement, two scalar quantities, does not provide enough information to 

determine the function  ( ) along the ray path between    and    but could be used to 

evaluate two parameters of a local approximation to an index profile.  

In the ray-optic approximation, mode conversion is like a distributed or convolved 

version of beam displacement. Instead of a ray, we now have an intensity distribution at 

each face of the slab,   ( )   ( ). For the axial case (the cylindrical case is more 

complicated due to off-axis rays from finite beam width and is beyond the scope of the 

current work), assuming the index of refraction and intensity distribution are continuous 

and smooth and that the incident beam has parallel rays, 

 
  (    (  ))  

  (  )

  
  
   

  
(11)  

where  (  )        is the displacement of a ray and depends on the index 

distribution and the incidence angle. Eq. 11 becomes singular if there is a focal point at 

  . In this manner, intensity measurement is a proxy for displacement measurement, only 

making displacement measurement more complicated. But it may be that either the 

beams used are inherently wide compared with the measurement precision, meaning one 

could not escape making mode-shape measurements, or that due to precision differences 

in displacement measurement and intensity measurement there would still be an 

advantage to the latter. In any case, Eq. 11 could be useful to predict mode conversion 

effects based on displacement. Making multiple measurements per beam position (mode 

characteristics, displacement, and angular deflection), could allow some reduction in 

measurement driven errors. For normally incident Gaussian beams with small 

displacements (single parameter fit to index distribution over any given beam path), 

published calculations show detailed wave-optic predictions of mode conversion [6]. 

A. Index Profile Computation 

1. Deflection only method 

It may be useful to reframe Eq. 9 in its analytically distilled form to understand how 

it might lead to computation of index profile. Eq. 9 evaluated at the exit side of the slab, 
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has measured quantities on the left-hand side and values of the unknown index profile on 

the right-hand side. Taking the natural logarithm of both sides and calling 

 (  )    (
    

  

    
  

) 

and 

 ( )      ( )  

yields 

  (  )   (    (  ))   (  )  (13)  

Presuming that 
   

   
   (which is satisfied if there is no ray crossing in the medium) 

and the index is known either along an interval [       (  )) or at a point where 
  

  
  , the index could be calculated everywhere (calculating each successive value of   

from previously known values, where which value in Eq. 13 would be previously known 

depends on the sign of  ). Eq. 13 could be approached analytically (see appendix A), but 

in practice the progressive sweep described here is more likely to be useful. 

2. Displacement only and mixed methods 

Equations 10 and 12, together with measurements of   and   
 , form a basis for 

index determination. Because Eq. 10 is not analytically integrable for all  ( ), index 

profile estimation requires some numerical approximation. The approaches to 

approximating solutions to Eq. 10 can take the form of assuming properties, such as 

piecewise linearity, of the index profile or properties of the ray paths. These are joined by 

assumptions about small displacements relative to the index gradient or thin slabs. 

Approximation A: For the special case where the incident ray is almost normal to 

the slab surface, it is useful to rewrite Eq. 10 as 
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(14)  

For 
(    )

  
  ̃    and   

   , Eq. 10 can be approximated by 
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a. Approach 1: Linear Index over the Displacement of Any Given Ray 

If fractional index changes are small over length scales of the order of the slab 

thickness, rays deflect only a small amount and therefore traverse indices of the order of 

the index at the entry point. Assume the index profile encountered by any given ray can 

be well approximated by a linear function: 

  ( )     (    )       (16)  

Plugging this form into Eq. 10 yields 
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  )(            )   
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(17)  

Integration yields,
1
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  √    

  

 (    )  √(    )  
 

    
  

    

(18)  

which cannot be solved explicitly but can readily be solved numerically for  . This would 

yield a piecewise linear solution to the index, which would in general not be precisely 

compliant with Eq. 12. 

Eq. 17 can be reduced to Eq. 15 under the assumptions of Approximation A, noting 

that  ̃      for this case, and then integrated and solved for the local index gradient 

   
 

 
(
 

 
   

 )  (19)  

As with Eq. 18, this over-constrains the independently measured ray exit slope 

(unless the true index profile is linear). Under these approximations of a linear index 

profile with small angle of incidence and small index change over the ray path, the ray 

path internal to the slab will be given by 

                                                 

1
 Wolfram’s online Integrator Engine (http://integrals.wolfram.com/index.jsp). 
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so these approximations are equivalent to assuming parabolic ray paths as proposed by 

Barnard and Ahlborn [9]. 

b. Approach 2: Quadratic Index over the Displacement of Any Given Ray 

The quadratic approximation has the advantage that the number of unknown 

parameters matches the number of measurements. 

  ( )     (    )     (    )
       (20)  

I am unaware of an explicit solution of Eq. 10 emerging from this form; however, under 

Approximation A (Eq. 15) with  

 ̃            

 
  ∫

   

√  
    (        )

 
 (  )

 

  
(21)  

which yields (Wolfram Integrator) 

  √     
      √  √  

    (      )

    
 √  

   (22)  

Eq. 22 could be solved numerically together with the Approximation A equivalent of Eq. 

12,  

   
     

    (      )   (23)  

c. Other Approximations 

While this type of approach could theoretically be extended to higher order 

polynomial approximations to the local index profile (representing Taylor series 

expansions), there would not be enough measurements to evaluate the parameters of such 

a framework. An alternative would be to look at different expansions of the local index 

profile, particularly those admitting explicit integration of Eq. 10. A one-parameter 

example of such would be an exponential profile, however, a two parameter alternative 

would allow the exit slope and displacement measurements to both be used without over-

constraining the problem. Published work includes a list of explicitly integrable axial 

index distributions (e.g. [5]). 
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3. Refraction at Interfaces 

This analysis has so far neglected the discrete refraction at the ray entrance and exit 

points. The slopes   
  and   

  referenced in all the preceding analysis represent the 

entrance and exit slopes just inside the slab boundary. Transformation into the 

measureable slopes just outside the slab boundary follows. The classic statement of 

Snell’s law, 

                  

can be written in terms of slopes instead of angles. Adopting the notation that  ̂ 
  and  ̂ 

  

represent the external slopes corresponding to the internal slopes   
  and   

 , and    

represents the ambient index of refraction, 
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√   ̂ 
  

   

  
 

√    
  

   
(24)  

where i is either 0 or 1. Combining Eqs. 24 and 12 leads to 

   
    

    
 (

 ̂ 
  

   ̂ 
  

 
 ̂ 

  

   ̂ 
  

)   (25)  

Eq. 25 is the corrected equivalent of the deflection relation Eq. 12. The corrected 

equivalent of Eq. 10, the displacement relation, is 

 

  ∫
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)    

 
  

  

  

(26)  

Note that for normal incidence, there is no refraction at the entrance surface. 



12 

4. Radial or Spherical Gradients 

Due to symmetry, the rays in a planar circular slice through a radially symmetric 

cylinder will remain in the plane of the slice. In a concentric spherical medium, ray paths 

will all remain in the plane they share with the center of the sphere and they will be 

identical to those in a cylindrical medium with the same radial index dependence. 

 

For this case, Eq. 1 reduces to 

 
     

  
 

            

 (      )
  (27)  

where primes indicate differentiation with respect to   along a ray. Integration of Eq. 27 

yields 

 
  

  
  √

    

  
   

(     
  )      (28)  

where R is the outer radius of the element,    is the index on the outer boundary, and   
  

is 
  

  
|
   

. In dimensionless terms, letting 

 ̂  
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where    is the ambient index of refraction, 
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Hence, for the radially symmetric medium as with the planar media, the local ray slope is 

dependent only on the boundary condition and the local index of refraction, not the 

intermediate path. The sign ambiguity emerges from the symmetry of the inbound and 

outbound paths in the medium. 

Previous work on radially symmetric media limited investigation to azimuthally 

complete media such as fiber-optic preforms. For manufacture of spherical shell sections 

such as hemispherical lens components, exposed surfaces provide an opportunity to use 

the deflection technique embodied in Eq. 29 to directly measure the refractive index 

profiles. 

For azimuthally complete media (full spheres or cylinders), the only accessible 

surface has a uniform index of refraction, and therefore nothing can be learned from the 

angle of the emerging beam relative to the surface (deflection). Displacement in the radial 

realm measures the difference in azimuth between the entry and exit points of the beam. 

To integrate Eq. 29 into the displacement relation, one must first identify the innermost 

transit point of the beam,  ̂ , where symmetry dictates 
  ̂

  
  . This satisfies the relation 

 
   

 ̂ 

 ̂ 

 

√   ̂ 
  

   
(30)  

where  ̂  is the relative index at  ̂ . In terms of angle of incidence  ̂, where the initial 

internal angle after refraction   is given by Snell’s law, 

 ̂          ̂  

     
  ̂

  
|
 ̂  

   

In these terms, Eqs. 29 and 30 can be written as 

 
 

 ̂

  ̂

  
  √ ̂  ̂      ̂    (31)  

and 

  ̂  ̂   ̂          ̂  (32)  

indicating  that the behavior is scale invariant. The angle of the ray with the local 

gradient,  , is given by 

     
 

 ̂

  ̂

  
   

In terms of this angle, the invariant of Eq. 31 can be written as 
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      ̂   ̂  ̂        (33)  

equivalent to that in [10] or [1]. 

Integration of Eq. 31 from the outer boundary to  ̂  and back yields 

      ∫
  ̂

 ̂√ ̂  ̂      ̂   
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  (34)  

Index reconstruction proceeds as follows. Let 

  ( ̂)   ̂( ̂) ̂  (35)  

Suppose  ( ̂) is a one-to-one mapping. Substitution of Eq. 35 into Eq. 34 yields 

   ( ̂)        ̂ ∫
  ( )  

√        ̂
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    ̂

  (36)  

where 

  ( )     ̂( )  (37)  

In a practical scanning system, a beam parallel to the x-axis will be translated along the y-

axis. Letting the position of the beam be 

  ̂  
 

 
     ̂  (38)  

and considering the negative instance of Eq. 36 (e.g. rays above the x-axis traveling in the 

positive x-direction), multiplication and integration in a manner similar to that of an Abel 

integral transform yields 
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Switching the order of integration and presuming  ̂   , 
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Applying the boundary condition  ( ̂ )    and rearranging yields 
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 √    √    
)  

 ̂ 

 

  
(40)  

From Eqs. 32 and 38, 

     ̂  ̂   ̂  (41)  

Eq. 41 indicates that from the tangential ray at  ̂    to the normal ray at  ̂    

each ray penetrates progressively deeper into the medium so that reconstruction of the 

refractive index profile at position    ̂  in Eq. 40 depends only on the measured 

displacement of rays corresponding to greater values of  ̂. However, finite surface 

refraction when the medium has an index of refraction greater than ambient prevents 

progressive interrogation up to the surface; from Eq. 32, even a ray tangent to the surface 

(    ̂   ) penetrates to    . Thus, for all incident rays, the effect of the medium 

from the boundary to     manifests only in an aggregated fashion. As a result, unless 

the ambient index of refraction matches or exceeds the surface index of refraction, 

displacement results will not allow full reconstruction of the index profile.
2
 For a medium 

immersed in index matched fluid, the last two terms in Eq. 40 vanish, and the full index 

profile can be reconstructed. 

Returning to azimuthally incomplete media, which would allow beam exit from 

boundaries of varying refractive index (e.g. a lens cut from a spherically symmetric 

distribution or a hemisphere or hemispherical shell), Eq. 33 allows direct index 

reconstruction. If the boundary of the medium is along a radial line (normal to the iso-

indicial surfaces), the external exit angle relative to the surface normal  ̂ gives the 

following relationship for deriving the index at the exit point: 

  ̂  √     ̂  
     ̂

 ̂ 
   (42)  

This would allow the nondestructive evaluation by the deflection method of 

hemispherical lens preforms or the like. 

 Mode conversion for the spherical case is more complicated because finite beam 

width leads to rays in different planes of refractive index symmetry. Treatment of such is 

beyond the scope of this work. 

                                                 

2
  For the lens design problem that is the inverse of the metrology problem described herein (given a set of 

desired ray displacements, what index would be needed), Eq. 40 implies that the refractive index profile 

from the boundary to     could be chosen arbitrarily, and the profile from     to the center would 

follow. 
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5. Conclusion 

For media with axial, cylindrical, or spherical distributions of refractive index, a ray 

slope invariant (Eqs. 3, 9, and 33) allows the use of ray deflection as a means of 

measuring the index of refraction at the exit point as a function of the index of refraction 

at the entrance. This is only useful when surfaces of varying index are exposed, in which 

case approximate reconstructions of the index profile are possible with a finite number of 

measurements. Ray displacement and beam mode conversion also capture information 

about the index distribution and can be used to reconstruct or help reconstruct the index 

distribution. For azimuthally complete spherical gradients or radial gradients viewed 

normal to the axis of symmetry, index reconstruction is only possible in an index-

matching fluid. For the other cases considered, numerical approaches are required, but 

index reconstruction is possible. The analysis here provides a survey of the derivations 

and proposed solution methods for these approaches with an eye toward metrology 

applications for gradient index lens manufacture. 
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Appendix A 

Solution to beam deflection angle method 

Beginning with Eq. 13, the general problem consists of finding  ( ) satsifying 

  (   ( ))   ( )   ( )   (A1)  

given  ( ) and  ( ). Eq. A1 is like a continuous version of a difference equation. In that 

vein, the solution can be separated into a homogeneous and a particular solution, 

 ( )    ( )    ( )  

where the homogeneous solution satisfies 

   (   ( ))    ( )     (A2)  

Suppose there are two solutions to Eq. A1,   ( ) and   ( ). Taking the difference 

between the two versions of Eq. A1, one with each solution plugged in, 

  (   ( ))    ( )     

where   ( )    ( )    ( ). Thus, any solutions to Eq. A1 differ by a homogeneous 

solution. Therefore, finding any particular solution and adding it to the general 

homogeneous solution will provide a complete solution to Eq. A1. By inspection, the 

general solution to Eq. A2 (guaranteeing only continuity) is any periodic function 

transformed over successive periods by the known function  ( ) as long as 
 

  
(  

 ( ))   . Let  ( )     ( ). Taking an arbitrary starting point   , and defining an 

arbitrary periodic function  ( ) over         (  ) , 

    

{
 
 

 
 

 ( )       (  )

 (   ( ))  (  )     ( (  ))

 (   (   ( )))

 

 
 

   (A3)  

Because of the degrees of freedom inherent in the arbitrary periodic function, the 

boundary condition necessary to uniquely determine a solution must define the value of 

 ( ) over a full interval         (  ) . Such a boundary condition would reduce the 

solution of Eq. A1 immediately to a recursive form like Eq. A3. 

 A particular solution can be identified using a Green’s function approach. Let 

  ( ( )  ̃)   (   ̃)   (   ̃)  (A4)  
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where  ( ) is the Dirac delta function. Let 

  ( )   ( ( (  ( ) )))⏟            
                     

 

and likewise for    ( ) as n nested compositions of    ( ). Two particular solutions to 

Eq. A4, differing, as required, by a function of the form of Eq. A3, are 

  (   ̃)  ∑   (   ( )   ̃)

 

   

 (A5)  

both of which are forms of Dirac combs (picket fence) on a half space. 

To construct   ( ), integrate Eq. A4 times the right-hand side of Eq. A1, 

 
∫  ( ̃)( ( ( )  ̃)   (   ̃))  ̃

 

  

 ∫  ( ̃) (   ̃)  ̃
 

  

  ( )  
(A6)  

Comparing the terms of Eqs. A7 and A1 reveals that 

   ( )  ∫  ( ̃) (   ̃)  ̃
 

  

  (A7)  

Taking the Green’s function from Eq. A5, 

 

  ( )  ∫  ( ̃) ∑   (   ( )   ̃)

 

   

  ̃
 

  

  ∑  (   ( ))

 

   

  

(A8)  

If either  (  ( )) or  (   ( )) is appropriately convergent, then a solution has been 

identified. If, as may often be the case, on at least one end of the slab the index becomes 

homogeneous, then 

    
   

 (   ( ))     (A9)  

and convergence of Eq. A9 or A10 is possible. The index profile follows from 

  ( )    ( )  ⁄   (A10)  

The solution method above guarantees that, for smooth  ( ),  ( ) will be at least as 

smooth as  ( ) within each interval [  (  )     (  )). Guaranteeing smoothness 

across the interval boundaries would further constrain the solution. 
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