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Managing Risks: Statistically Principled 
Approaches �to Combat Helmet Testing
Janice Hester, Thomas Johnson, and Laura Freeman

BACKGROUND 
Combat helmet designs are driven by the balance 

between increasing ballistic protection and decreasing 
weight. Starting in World War I, troops wore steel helmets to 
protect against artillery rounds. In 1985, the Personnel Armor 
System for Ground Troops (PASGT) helmet was fielded. 
The PASGT helmet was made from a laminate of ballistic 
material with aramid fibers, and it improved protection 
against fragments. In 2002, the U.S. Army replaced the 
PASGT helmet with the lighter weight Advanced Combat 
Helmet (ACH). The ACH and similar helmets are currently 
the most common helmets worn by U.S. troops. Recently, 
the U.S. Marine Corps developed the Enhanced Combat 
Helmet (ECH), which has a ballistic laminate of ultra-high 
molecular weight polyethylene fibers and provides some 
limited protection against small caliber bullets. Helmet 
designs continue to evolve, and the U.S. Army is pursuing 
two new helmet types – one that provides the protection 
of the ACH but is lighter weight and another that provides 
the protection of the ECH but is lighter weight. Figure 1 
shows the evolution of combat helmets through the years.

Beginning in 2007, congressional concern about the 
accuracy and consistency of body armor testing led to 
increased involvement in personal protective equipment 
by the Director, Operational Test and Evaluation (DOT&E). 
To address the concerns of Congress, DOT&E worked 
with the Services to develop test protocols for the ballistic 
components of First Article Testing (FAT) and Lot Acceptance 
Testing (LAT) for both body armor and combat helmets. In 
2009, DOT&E asked IDA to expand its support for live fire 

IDA’s analyses 

were central to 

the development 

of the most 

recent version 

of the improved, 

statistically 

principled 

acceptance test 

protocols for 

combat helmets.

PROBLEM 
Combat helmets protect troops against artillery rounds, mines, 
and small caliber bullets. Helmet designers strive to achieve 
high ballistic protection with lightweight helmets. Modern 
combat helmets are made from dynamic materials such as 
aramid and ultra-high molecular weight polyethylene fibers, 
which show more variability in performance than simpler 
armors. The Services conduct acceptance tests to evaluate the 
ballistic performance of each helmet design and production 
lot. The challenge to testers is to construct efficient tests to 
determine whether these helmets meet performance criteria.
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test and evaluation to include personal 
protective equipment. IDA’s analyses 
were central to the development of the 
most recent version of the improved, 
statistically principled acceptance 
test protocols for combat helmets.

Helmets must protect against 
multiple ballistic threats; this article 
focuses on IDA’s work on testing 
for resistance to penetration and 
ballistic limit estimation. Our work on 
evaluating resistance to penetration 
using statistically principled 
testing has led to an improved FAT 
protocol for aramid-based helmets. 
Our related research comparing 
newer design methods for fragment 
testing suggests that additional 
improvements to the protocols 
are possible for the estimation of 
ballistic limits. The statistical work 
discussed in this article is supported 
by frequent observations of helmet 
testing and continual analysis of 
helmet test data, which together 
ensure that the statistical studies 
are relevant to helmet testing.

RESISTANCE TO 
PENETRATION

Combat helmets must 
demonstrate a high probability of 

stopping perforation from a 9mm 
handgun round, and some designs 
must also prevent perforation from 
another specified small arms round. 
Each helmet design comes in at 
least four sizes, and during FAT 
they are shot at five locations on 
the helmet and subjected to four 
separate environmental conditioning 
treatments. The FAT must provide 
confidence that all helmet sizes have 
acceptable performance under all test 
conditions. The primary statistical 
challenge for this component of 
testing is to design an efficient test 
that provides this confidence while 
still achieving a low risk of rejecting 
helmets with good performance.

The response of a combat helmet 
to a threat impact is stochastic, 
so resistance to penetration is 
characterized as the probability of 
a projectile completely penetrating 
through the helmet. This probability 
should be very low. The probability 
of penetration can be measured with 
increasing precision as the number 
of test shots increases, but helmet 
testing is expensive and destroys the 
tested helmets. Accordingly, tests 
should be efficient in the number 
of test articles they require.

Figure 1. Evolution of DoD Combat Helmets
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curves in Figure 2 all have the same 
manufacturer’s risk; increasing the 
test size results in a steeper OC curve 
and decreases the government risk.

A helmet design’s resistance 
to penetration can vary among 
the helmet sizes or across test 
conditions. A test with a single 
acceptance criterion on the helmet 
design’s performance across all sizes 
and test conditions is therefore not 
sufficient. Instead, helmets must 
demonstrate performance across 
all sizes and conditions, which 
tends to increase the probability of 
incorrectly concluding that a helmet 
does not meet performance criteria.

IDA developed an analytical 
framework for resistance to 

Acceptance test designs should 
balance the risks of wrongly accepting 
a product that performs poorly and 
of rejecting a product that performs 
well. One important statistical tool 
for comparing acceptance test design 
is an operating characteristic (OC) 
curve, which shows the probability of 
accepting a helmet (passing the test) 
as a function of the true probability 
of penetration. Figure 2 shows OC 
curves for three notional tests that 
range in size from 75 to 450 test 
shots. The numbers of shots and 
allowable penetrations determine 
the shape of the curve, including 
the government’s risk of accepting 
helmets with low performance and the 
manufacturer’s risk that helmets with 
high performance will be rejected. The 

Figure 2. Operating Characteristic Curve for Test Sizes Ranging from 75 to 450 Shots 
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penetration testing during FAT that 
captures the tradeoff between the 
risks of accepting a helmet that 
performs poorly in one condition 
and of rejecting a helmet that 
performs uniformly well across 
all conditions. This is in contrast 
to simpler tests, like those shown 
in Figure 2, for which government 
and manufacturer risks are set for 
two different performance levels 
of the same characteristic (e.g., 
a single, aggregated probability 
of a complete penetration).

Instead of selecting a single  
pass/fail criterion, we select a set 
of pass/fail criteria that specify 
a maximum acceptable number 
of complete penetrations across 
all shots taken and a maximum 
acceptable number of complete 
penetrations within the shots taken 
on each individual test condition. 
For example, in the new protocol 
for aramid-based helmets, no 
more than three penetrations 
for the 9mm round are allowed 
across all sizes, environments, 
and locations (240 shots total). 
Of those three penetrations, no 
more than two can be in any one 
size. Similar criteria exist for 
environment and shot location. 

Figure 3 shows the operating 
characteristic curves for the 
protocol for aramid-based helmets. 
The dotted blue curve shows the 
probability of passing the aggregate 
criterion (three allowed penetrations 
across all 240 shots) as a function 
of the aggregate probability of a 
complete penetration; the solid 
green curve shows the probability 
for each helmet size of passing 
the criterion on the individual size 

(two allowed on any single size) as a 
function of the probability of complete 
penetration for that helmet size; and 
the solid red curve shows the OC 
curve for passing all of the multiple 
test criteria simultaneously for the 
simple case in which the probability 
of a complete penetration does not 
vary among the helmet sizes or test 
conditions. Figure 3 illustrates how 
the statistical methodology IDA 
developed provides acceptable risk 
points both when all helmets have 
uniformly high performance and 
when one helmet size is different. 

The key element of a hierarchical 
test is that if a helmet has uniform 
performance across the conditions, 
then the risk points for the full 
hierarchical test closely match the 
risk points for the aggregate criterion 
alone. The criteria on the individual 
conditions are selected such that, for 
a helmet with uniform performance, 
simultaneously passing the aggregate 
criteria and failing an individual 
criterion through random chance are 
unlikely. The benefit of this approach 
is that the FAT results are diagnostic 
and easy to interpret. If a helmet 
design’s aggregate performance 
is low but uniform across the test 
conditions, then failing for the 
aggregate criterion is more likely 
than failing for one of the criteria 
on the individual conditions. On 
the other hand, if a helmet has high 
aggregate performance but a single 
low performing condition, then 
failing the pass/fail criterion on that 
condition is the most likely result. 
One drawback to this approach is that 
the aggregate and individual criteria 
cannot be specified independently. 
Finer control over these risk points 
is possible with more complex test 
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designs that include the possibility 
for multiple rounds of testing.

BEHIND HELMET BLUNT 
TRAUMA

The rapid deformation of a 
combat helmet following a ballistic 
impact creates a potential for blunt 
trauma injury even when the projectile 
does not completely penetrate 
the helmet; the deforming helmet 
shell can impact the wearer’s head. 
To mitigate this risk, the helmet’s 
deformation following an impact 
with the 9mm test round is measured 
during testing and compared to 
established upper limits. Figure 4 
shows the image of a head form 
filled with clay before a shot is taken 
(left) and after (right); the maximum 

deformation is measured from the 
deepest location in the clay indent. 

The FAT and LAT protocols 
include a procedure for assessing  
the measured deformations against  
the established upper limits. 
Deformation requires a different 
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Figure 3. Operating Characteristic Curves for the DOT&E Aramid Helmet Protocol

Figure 4. Clay Helmet Head Form Before the 
Shot (left) and After the Shot (right) Illustrating 
the Helmet Deformation into the Clay Channel
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analysis method than resistance to 
penetration, because deformation 
is a continuous metric (a measured 
value) rather than a binomial 
(success/failure) metric. IDA used 
simulation studies to investigate the 
best approach to writing a protocol 
for deformation that accounts for 
the multiple test conditions. We 
showed that Analysis of Variance 
(ANOVA) can be applied within a 
FAT to test individual conditions 
while controlling overall risks. 

FRAGMENT THREATS 
AND BALLISTIC LIMIT 
ESTIMATION

The Services set helmet 
performance requirements for the 
minimum ballistic limits against 
several standard fragment simulants; 
these limits are incorporated into the 
DOT&E protocols. The ballistic limit 
is the velocity at which a projectile 
completely penetrates the helmet 
50 percent of the time. While the 
velocity corresponding to a lower 
probability of penetration would be 
a better measurement of ballistic 
protection, the 50th percentile has 
been used historically because it 
is the percentile that is measured 
with the greatest precision.

The test and academic 
communities have developed several 
different procedures for determining 
the ballistic limit of armor through 
testing. IDA performed a simulation 
study to determine which of six 
published procedures would be the 
most efficient and accurate if used 
for helmet testing. Each procedure 
combines a set of rules for selecting 

shot velocities, terminating testing, 
and calculating the ballistic limit. To 
ensure that the simulation results were 
relevant, the simulation incorporated 
historical helmet performance data.

To estimate the ballistic limit, 
testers vary the velocity of the 
test fragment between shots in a 
prescribed manner with the goal of 
finding a velocity range in which there 
is a mix of penetrations (failures) 
and non-penetrations (successes). 
The orange and blue circles in 
Figure 5 are example data for a 
ballistic limit test; they illustrate the 
spread in helmet performance for 
velocities near the ballistic limit.

Under the current test 
procedures, which are known as the 
“up-down method,” testers select 
each shot velocity by increasing or 
decreasing the velocity based on the 
previous shot’s outcome. Once testers 
achieve a predetermined equal number 
of complete penetrations and helmet 
successes within a fixed velocity range, 
they stop the test and estimate the 
ballistic limit as the arithmetic mean 
of this set of shots. The up-down 
method is not statistically rigorous for 
multiple reasons, but in particular it 
frequently does not use all of the data 
to determine the ballistic limit. For 
example, if eight shots are required to 
get three successes and three failures 
in the required velocity range, the 
analysis throws away the other two 
data points. Newer test design and 
analysis methods use generalized 
empirical model fits based on all the 
data to both determine the next shot 
in the test sequence and characterize 
the probability of penetration as a 
function of the projectile’s velocity.
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The most important result of 
IDA’s simulation study was that, 
regardless of the test design method 
used to select shot velocities, using 
model fitting and maximum likelihood 
estimation along with the associated 
criteria for stopping the test resulted 
in a more efficient test than the up-
down method. Figure 5 shows a probit 
model fit to the example test data; this 
is an example of an empirical model 
fit that uses maximum likelihood 
estimation to assess the probability of 
penetration as a function of velocity. 
The measured ballistic limit is an 
estimate of the true ballistic limit, but 
also includes error due to variability 
in the helmet’s performance near the 
ballistic limit. By using maximum 
likelihood estimation, the ballistic 
limit can be estimated with fewer 
shots on average without increasing 
either the bias (the difference between 
the measured and the true value) 
or the variance in the estimate. 

Misestimating helmet 
performance prior to testing can lead 

to poor choices of fragment velocity 
during testing, which can increase 
both the dispersion of and the bias 
in the ballistic limit estimate. Our 
simulation study demonstrated that 
test designs that use generalized linear 
modeling (i.e., three-phase optimal 
design (3POD) and Neyer’s Method) 
to select the shot velocities are less 
sensitive to initial misestimates of 
helmet ballistic limit than the up-
down method. Figure 6 shows the 
median bias and interquartile range 
(25th and 75th percentiles shown as 
the lines extending from each marker) 
of the ballistic limit estimates for 
each method for a range of initial 
misestimates in the variance; the most 
desirable result is a bias of zero with 
a narrow interquartile range. Note 
that the starting assumptions about 
helmet performance were intentionally 
misestimated to show the robustness 
of each method to having limited 
knowledge of the actual performance 
variability around the ballistic limit 
for the helmet design under test. 
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Figure 5. Example Data from a Ballistic Limit Test
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CONCLUSION
The Services will continue to 

pursue lighter helmets and improved 
ballistic performance. The application 
of statistically principled test designs 
will help ensure that new combat 
helmets have acceptable ballistic 
performance. IDA has developed 
innovative design methods that have 
improved helmet testing protocols 
for resistance to penetration, while 

balancing risks to both government 
and manufacturer across multiple 
conditions. IDA’s research on ballistic 
limit design and analysis methods 
shows that further improvements can 
be made to existing protocols. Making 
these improvements will ultimately 
provide a better understanding of 
helmet ballistic performance, resulting 
in better equipment for our soldiers.

 Figure 6. Simulation Results Comparing the Maximum Likelihood Estimate from 
the Probit Model and the Arithmetic Mean Estimator for Various Test Strategies
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