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Executive Summary

Problem
The many substantial benefits of human-level 
machine intelligence for national security applica­ 
tions alone argues for greater investment in 
cognitive architectures for truly intelligent sys­ 
tems. While considerable progress has been made 
in many areas of cognitive science and intelligent 
systems research, we do not yet have computer 
systems with the intelligence of a five year old 
child.

One problem faced by DARPA, as the principal 
U.S. DoD agency for advanced research, is how 
best to foster development of human-level intelli­ 
gence in computer systems to enable realization of 
its many potential benefits for our national secu­ 
rity.

Approach
The approach proposed here is based on a frame­ 
work for "integrated cognition" (INCOG) which 
can be used both to organize essential capabilities 
of human-level cognition, and to assess existing 
and proposed architectures and systems on their 
progress in realizing these capabilities. This 
INCOG framework is used in this paper to assesse 
a score of existing cognitive architectures.

The proposed INCOG approach is to specify 
architectural strategies and develop infrastructure 
mechanisms (if needed) that enable artificial sys­ 
tems to address all the cognitive requirements of 
the INCOG framework. These architectural 
strategies should provide languages and tools for 
expressing the interaction of cognitive compo­ 
nents. They should make it easier to compose the 
components to solve a specific problem or for the 
system itself to understand how it operates so it 
can compose itself as needed.

As an illustration of this INCOG strategy, a 
strawman INCOG architecture is presented which 
seeks to integrate all facets of all the identified 
dimensions of cognition in the INCOG frame­ 
work.

INCOG Framework
The INCOG framework is based on the premise, 
shared by numerous cognitive and other scientists, 
that a human-level thinking machine must be

composed of many, potentially hundreds, of dis­ 
tinct components with different structures, 
reasoning and learning mechanisms, and knowl­ 
edge representations. These components and their 
inter-relationships define a dynamic architecture 
or family of architectures.

Many researchers believe that a cognitive sys­ 
tem should have an ability to learn using different 
approaches; an ability to reason in many domains; 
an ability to acquire and build knowledge; and an 
ability to connect, combine, integrate, collaborate 
and unify knowledge across many domains. These 
distinct, though related, abilities form the dimen­ 
sions of the INCOG framework presented here.

Figure ES-1 presents the INCOG framework as 
a diagram with six axes or dimensions, each rep­ 
resenting natural groupings of key ingredients (or 
capabilities) of integrated cognition. Each of the 
capabilities illustrated along these axes become 
(arguably) increasingly more difficult to obtain 
moving outward from the center to the periphery. 
Each dimension represents a challenge by itself; 
taken together, they present a "DARPA hard 
problem."

The INCOG framework described here is pre­ 
sented only as one possible way of parsing 
cognitive capabilities into a coherent framework. 
Many alternative frameworks are possible. While 
the current framework has benefited from the in­ 
puts of a number of researchers in cognitive 
architectures, it is not presented as a definitive 
model but only as a starting point. But something 
like this is needed to provide a basis for assessing 
existing cognitive architectures, a guide to re­ 
search investment, and a measure of progress 
towards the grail of truly intelligent systems.

INCOG Framework Dimensions
The INCOG dimension of Multi-level Mind is
based on Professor Marvin Minsky's distinctions 
of a six level model of mind, as reported in a re­ 
cent draft of his forthcoming book "The Emotion 
Machine" [MINSKY 2004]. The multi-level mind 
model deals with a number of issues, from the 
relationship of response time and cognitive proc­ 
esses to possible levels of contending control and 
management in the mind.:
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difficult, but in multiple 
dimensions at once is 
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Figure ES-1. INCOG Framework for Ingredients of Integrated Cognition

Unification is the process of combining the dif­ 
ferent elements in a cognitive system to generate a 
cognitive agent's behavior. Different types of 
unification are distinguished in part by the level of 
the "multi-level mind" at which they operate. But 
other aspects of an instantiated cognitive architec­ 
ture, such as purpose and taboos, will affect the 
focus of unification. Any unification level may 
draw on lower levels of unification as needed for 
various behaviors.

Learning Strategies of artificial cognitive sys­ 
tems are still quite primitive compared to human 
learning. However, fully capable integrated cogni­ 
tion systems should be able to utilize all of the 
learning strategies included in the INCOG frame­ 
work. Different strategies for learning are 
distinguished here largely by the amount and 
types of inference required of the learner during 
the course of learning.

The INCOG framework provides an ordered 
list of general purpose Reasoning Domains. In­ 
cluded in the challenges of each reasoning domain 
is the representation of information, as well as the 
formulation and implementation of special pur­ 
pose reasoning algorithms for the domain. It can 
be argued that these challenges increase as we 
move outwards on the Reasoning Domains axis. 
Spatial reasoning, for example, can be considered 
as more complex than temporal reasoning since it 
commonly involves up to three dimensions, 
whereas time ordinarily has but one.

Reasoning Mechanisms are systems for gen­ 
erating conclusions based on premises. This 
dimension includes specification of information 
and its associated semantics, inference rules, and 
algorithms for generating conclusions. Probabilis­ 
tic reasoning, for example, requires specification 
with numerical qualifiers to indicate the probabili­ 
ties of premises and conclusions.

Knowledge Abstraction provides a classifica­ 
tion of knowledge in levels of increasing 
complexity, from simple definitional facts to 
complex stories and lessons. Knowledge is the 
collection of persisting memories used by cogni­ 
tive systems to support reasoning, learning, and 
unification about the internal and external world.

A Survey of Systems
This paper presents individual assessments of 

the coverage of INCOG framework capabilities 
by over fifteen prominent cognitive architectures 
or systems. These assessments were performed in 
collaboration with the system architects, as cited 
below. Each system was assessed for its support 
of each capability in the INCOG framework. 
These assessments, individually and collectively, 
provide a view of the current state of cognitive 
architectures relative to one model of the re­ 
quirements of human-level cognition.

In order to keep this summary brief, it does not 
include the individual system assessments, 
although brief descriptions of the examined
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systems are provided to give some idea of the 
scope.

Soar is a general purpose architecture designed 
as an unified theory of cognition by John Laird, 
Paul Rosenbloom, and Alien Newell. It is a pro­ 
duction rule system based on the simple decision 
cycle - elaboration of state, choice of operators, 
selection of operator, and actions. Soar has a rela­ 
tively large user base among existing cognitive 
architectures. It is supported by the University of 
Michigan and has been applied commercially by 
Soar Technology Inc.

ACT-R is a cognitive architecture using pro­ 
duction rules developed at Carnegie Mellon 
University by John Anderson and Christian Le- 
biere. It includes a detailed approach to 
integrating multiple modules that correspond to 
different cognitive functions. The fundamental 
controlling structure in cognition is reactive- 
where production rules respond to patterns of in­ 
formation in various cognitive buffers. Successive 
versions of ACT-R have seen widespread applica­ 
tions to problems of cognitive and behavioral 
modeling.

The distributed Multi-Agent Reasoning System 
(dMARS) is a C++ implementation of an archi­ 
tecture based on the Belief, Desire, Intention 
(BDI) cognitive model [IKLW 1998]. It was de­ 
veloped by Michael Georgeff as a more powerful 
successor to the Procedural Reasoning System 
(PRS). dMARS has been applied to a very wide 
range of applications, including command and 
control of robotics and spacecraft; and situation 
awareness for the Australian Defense Forces.

ICARUS is an architecture for intelligent 
agents developed by Dan Shapiro and Pat Langley 
of the Center for the Study of Language and In­ 
formation at Stanford University. ICARUS is 
distinguished by its incorporation of affective 
values into memory and behavior; the primacy of 
categorization over execution and of execution 
over problem solving; and the internal determina­ 
tion of tasks, intentions, and rewards.

DARWIN refers to a series of implementations 
of large-scale (over 50,000 cells and 600,000 syn­ 
apses) synthetic models of neural structures 
supporting the evolution of pattern recognition 
and sensorimotor coordination in a synthetic envi­ 
ronment. It has been developed by Reeke, Sporns, 
and Edelman of the Neurosciences Institute and 
Rockefeller University based on Edelman's theo­ 
ries of Neural Darwinism.

UMPRS (the University of Michigan imple­ 
mentation of PRS) is a general purpose 
implementation of PRS. It does not provide (i.e., 
"impose") specific capabilities or representations 
on agent programmers, but rather provides a

framework for their implementation. Hence, its 
core capabilities cover relatively few of the 
INCOG framework ingredients, although UMPRS 
applications have covered many more. Unification 
in UMPRS is focused on goals and planning and 
not reactive tasks.

Shruti and Smirti are related architectures de­ 
veloped by Lokendra Shastri of UC Berkeley 
[SHAST 1999]. They demonstrate how simple, 
neuron-like, elements can encode a large body of 
relational causal knowledge and provide a basis 
for reactive, rapid inference.

SAGE (Self-Aware Adaptive Generalization 
Engine) is a cognitive architecture developed by 
Chris Furmanski and John Hummel of UCLA. It 
is adaptive, self-reliant, and can reason by anal­ 
ogy in order to discover meaningful relationships 
between seemingly dissimilar data. It blends con- 
nectionist/neural networks with symbolic systems. 
Its self-supervised learning uses self-reflective 
algorithms that allow the system to acquire new 
knowledge and learn from its past.

"Panalogy is a cognitive architecture designed 
to support commonsense reasoning being devel­ 
oped by Push Singh and Marvin Minsky of MIT." 
The Panalogy system makes it possible to connect 
multiple representations of knowledge and com­ 
bine diverse reasoning techniques such as 
analogy, case-based reasoning, statistical estima­ 
tion, and logical inference. It does so by applying 
a wide array of meta-managerial components that 
use meta-knowledge about how to select, coordi­ 
nate and repair baseline reasoning and learning 
processes.'"

Novamente is a system organized with distrib­ 
uted atoms of knowledge that may be employed in 
an unlimited number of contexts developed by 
Ben Goertzel of Artificial General Intelligence 
Research Institute (AGIRI). Atoms have truth 
value and attention value. Mind agents operate on 
these atoms, learning how to learn.

JAM is another version of the PRS, this one 
developed by Marcus Huber of Intelligent Rea­ 
soning Systems. It provides Reactive and 
Deliberative models as well as Reflective and 
Self-Reflective capabilities in the form goal se­ 
mantics and meta-level reasoning. Its unification 
is limited to planning and goal-driven behavior.

Daydreamer was developed by Erik Mueller 
of IBM to simulate a human stream of thought 
and its triggering and direction by emotions.

The tools SME, SEQL and MAC/FAC have 
been developed at Northwestern University by

1 Private communication, Push Singh, MIT Media Lab.
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Ken Forbus, Dedre Centner, and others. These 
have been designed for structure-mapping and 
qualitative reasoning.

ThoughtTreasure is a story understanding and 
commonsense reasoning system developed by 
ErikMuelleroflBM.

Stigmergic Cognition consists of cognitive 
components that exhibit emergent behavior and 
have performed well in many roles. It has been 
developed by H. Van Parunak and Sven Brueck- 
nerof Altarum.

Survey Conclusions

General observations supported by this survey can 
be summarized as follows:

• Working implementations tend to require sig­ 
nificant low-level programming for ingredients 
not already present in the architectural models 
(e.g., SOAR, ACT-R, dMARS, UMPRS)

• Learning capabilities are bounded to refine­ 
ment within the scope of initial knowledge 
bases; few systems seek to understand, or 
invoke learning strategies beyond process 
learning related to current knowledge

• Current systems tend to be weak with respect 
to self-reflection and knowledge sharing and 
consequently would be difficult to employ in a 
heterogeneous integrated cognitive architecture 
without extensions

• Current systems have core capabilities that 
cluster near the center of the INCOG frame­ 
work diagram

• Newer or proposed systems have extended 
coverage of the strawman multi-dimensional 
framework near the periphery in some 
dimensions

• There are significant sets of advanced compo­ 
nents (from established cognitive systems) that 
could be included in integrated architectures 
that together would provide significant new ca­ 
pability for cognitive systems.

Strawman INCOG Architecture
The final part of this paper develops an exam­ 

ple top-level architecture that meets the 
requirements of the strawman integrated cognition 
framework described herein. A top-level view of 
the INCOG strawman architecture is shown in 
Figure ES-2. This figure is an adaptation of 
Ronald Brachman's proposed cognitive architec­ 
ture, designed to better capture distinctions made 
in the INCOG framework. In particular, this 
INCOG architecture distinguishes more finely 
between different levels of the multi-level mind,

separating Brachman's Reactive Processes into 
Programmed Instinct and Learned Reactions', and 
adding several other levels above the Reflective. 
This architecture also highlights discourse as a 
key area of human-level cognition by separately 
identifying it and its relations to other input and 
output processing.
The world external to the cognitive agent is repre­ 
sented in the diagram by the External World box 
at the bottom. The rest of the boxes represent in­ 
formation and processes of the cognitive agent. 
Raw Sensory Inputs come into the agent from its 
sensors and are processed initially via Perception 
Processing, which hands off linguistic data to 
Discourse Input. The results of perception and 
discourse input processing are fed to various lev­ 
els of the Mult-ilevel Mind, as appropriate. The 
Multi-level Mind uses inputs from Working Mem­ 
ory and Long Term Memory to place new inputs 
in context and to help determine its responses and 
other activities. The Multi-level Mind also stores 
information in Working Memory and Long-Term 
Memory as warranted. The processing and ex­ 
change of information throughout is enabled by a 
host of Foundation Processes, as well as the 
Computational Substrate. The results of the exe­ 
cution of cognitive processes may then find 
expression in discourse via Discourse Output or 
through other Action Outputs.

To identify more of the specific functional ca­ 
pabilities required to instantiate this architecture, 
a number of functional components were con­ 
ceived and grouped into categories correlated with 
the INCOG framework and architecture. The 
package groupings described in the paper are the 
following:
• Multi-Level Mind Packages
• Foundation Multi-Level Mechanisms
• Foundation Unification Packages
• Foundation Global Mechanisms Packages
• Foundation Reasoners Packages
• Foundation Domain Packages
• Foundation Discourse Support Packages
Two sets of packages are distinguished for the 
multi-level mind. The first applies only to the 
multi-level mind, while the second grouping con­ 
tains foundation packages that may also be used 
by other parts of the INCOG architecture. The rest 
of these categories contain foundational packages 
that are represented by the Foundational Proc­ 
esses box on the top-level architecture diagram.
The paper describes a total of 61 different func­ 
tional packages under these groupings. It then 
proceeds to explain how they can be composed to 
support different higher-level cognitive processes.
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1. Introduction

1.1. Background

There is an expectation that computer-based systems will eventually exhibit or surpass 
the intelligent behavior of humans. There has been much hope in the cognitive science 
community that there is a unifying strategy that will enable us to achieve this vision. 
Numerous cognitive scientists are coming to the conclusion that a human-level thinking 
machine must be composed of potentially hundreds of distinct subsystems with different 
structures (architectures), reasoning and learning mechanisms, and knowledge representa­ 
tions.

A research program on Integrated Cognition (INCOG) has been conceived by the De­ 
fense Advanced Research Projects Agency (DARPA) that would develop architectural 
strategies2 that enable computation based systems to achieve a reasonable facsimile of 
human cognition. The target system should demonstrate human-like capabilities with 
respect to selecting and employing appropriate mechanisms for learning and reasoning in 
different contexts. It would initially provide demonstrations of learning/reasoning capa­ 
bilities at the level of a 5-year-old child, but lacking in experience. In years 3 and 4, it 
would demonstrate an ability to address deeper and more complex problems in areas 
relevant to military applications.

Many researchers believe that a cognitive system should have the following capabilities: 
the ability to learn using different approaches; the ability to reason in many domains; the 
ability to acquire and build knowledge; and the ability to connect, combine, integrate, 
collaborate, and unify knowledge across many domains.

1.2. Problem Statement

Many aspects of military operations in support of national security could benefit from 
human-level intelligence in automated systems. Intelligent information gathering, filter­ 
ing, fusing, and mining by automated systems could contribute greatly to information 
superiority in the battlefield. The Future Combat System (PCS) and Objective Force will 
require highly autonomous behavior from intelligent robotic platforms. The more intelli­ 
gence incorporated into these platforms and their information networks, the more 
effective such future forces will be. Acquisition, analysis, and training could all benefit 
from human-level intelligence in realistic computer models of forces used in their sup-

2 Architecture includes principal components, interfaces, and principles of interrelationship.



porting modeling and simulation systems. Although the potential benefits of human-level 
computer intelligence for these and other DoD applications are obvious, we are still a 
long way from fully realizing such capabilities. Despite decades of research on knowl­ 
edge representations, inference algorithms, and other technologies for intelligent systems, 
we do not yet have computer systems with the intelligence of a 5-year-old child.

One problem faced by DARPA, as the principal DoD agency for advanced research, is 
how best to foster development of human-level intelligence in computer systems to en­ 
able realization of its many potential benefits for the military. The related problem being 
addressed by work at IDA, reported in this paper, is how to provide technology analysis 
support to DARPA in addressing this problem of developing human-level machine intel­ 
ligence.

I
1.3. Purpose

This paper reports on initial analyses of cognitive architectures that show some promise 
of contributing to the development of human-level intelligence in machines. It begins to 
explore alternative technical approaches for cognitive architectures inspired by psycho­ 
logical, biological, neurological, and other architectural concepts.

1.4. Approach

The approach to this initial analysis task involved the following basic steps:

1. Develop a strawman framework and paper defining the multiple dimensions of in­ 
tegrated cognition

2. Engage the research community to describe their cognitive systems (architectures) 
and components in terms of the strawman integrated framework

3. Develop a summary chart to illustrate potential capabilities for integrated cogni­ 
tion and iterate with each research team to refine as needed

4. Summarize hypothetical uses of surveyed systems in integrated cognition archi­ 
tectures

5. Sketch out a notional architecture that integrates all facets of all the identified di­ 
mensions of cognition.

The INCOG framework is described in Section 2, while the cognitive systems and archi­ 
tectures surveyed are reviewed in Section 3. The detailed survey results in terms of the 
framework's dimensions of cognition are provided in the charts of Appendix A. An intro­ 
duction to composing a notional INCOG architecture is presented in Section 4, followed 
by the details in Appendix B.



2. Integrated Cognition Framework

The INCOG framework3 for integrated cognition is based on the premise, shared by nu­ 
merous cognitive and other scientists, that a human-level thinking machine must be 
composed of potentially hundreds of distinct subsystems with different structures, reason­ 
ing and learning mechanisms, and knowledge representations - with these components 
and their inter-relationships defining a (or a family of) dynamic architecture(s). The 
INCOG proposed approach is to specify architectural strategies and develop infrastruc­ 
ture mechanisms (if needed) that enable computation-based systems to achieve a 
reasonable facsimile of human cognition. The architectural strategies should provide 
languages and tools for expressing the interaction of cognitive components, ranging in 
size and complexity from large, tightly integrated systems to simpler agents in Multi- 
Agent Systems. Architecture strategies should make it easier to compose the components 
to solve a specific problem or for the system itself to understand how it operates so it can 
compose itself as needed.

Figure 1 illustrates some of the ingredients of integrated cognition needed to approach 
human like behavior. 4 Each of the axes represents a challenge by itself; taken together, 
they present a DARPA hard problem. One approach to future cognitive systems is to as­ 
sure that whatever is learned to solve a problem today can be re-applied (where 
appropriate) to solve future problems. This might be achieved in part by building cogni­ 
tive systems that reuse the variety of data and procedural abstractions needed to cover the 
large space illustrated in Figure 1. Each of the ingredients illustrated along the many axes 
in Figure 1 become increasingly difficult to obtain moving outward from the center to the 
edges. Further, the ability to re-apply ingredients requires as much independence as pos­ 
sible between the ingredients illustrated on the various axes.

Many researchers believe that a cognitive system should have the ability to learn using 
different approaches, the ability to reason in many domains, the ability to acquire and 
build knowledge, and the ability to connect, combine, integrate, collaborate, and unify 
knowledge across many domains. We will briefly discuss these areas in turn.

In support of the Information Processing Technology Office at DARPA, IDA's Information Technology and Systems Division 

has drafted a framework for considering the scope of capabilities that must be integrated together to reach the INCOG goal.

We would like to thank Professor Pat Langley of the Computational Learning Laboratory at Stanford University who motivated 

Dr. Salasin and Dr. Rolfe to develop Figure 1 to communicate the scope and difficulty of the undertaking to construct an intel­ 
ligent machine architecture.
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Figure 1. Framework for ingredients of integrated cognition

The sub-sections that follow provide a preliminary definition and or discussion of each 
ingredient in the context of the entire framework, as well as the dimension in which it is 
placed.

2.1. Multi-Level Mind

The quotations in this section are drawn from Chapter 5 of the January 2004 draft version 
of "The Emotion Machine", by Marvin Minsky [MNSKY 2004]. The multi-level mind 
model deals with a number of issues, from the relationship of response time and cognitive 
processes to possible levels of contending control and management in the mind. Minsky 
uses the following example of the thought processes of a woman crossing the street to 
illustrate how different levels of mind come into play in ordinary activities:

Joan is part way across the street on the way to present her finished report. While think­ 
ing about what to say at the meeting, she hears a sound and turns her head —and sees a 
quickly oncoming car. Uncertain whether to cross or retreat but uneasy about arriving 
late, Joan decides to sprint across the road. She later remembers her injured knee and 
reflects upon her impulsive decision. "If my knee had failed, I could have been killed— 
and what would my friends have thought of me? " [MNSKY 2004]

2.1.1. Instinct

The level of Instinct (or Instinctive Reactions) is a level of mind based on reactions 
which are said to be "inborn" or genetic in humans and other animals. In machines,



operation at the level of Instinct corresponds to acting in accord with pre-programmed 
reactions, without any real deliberation or explicit planning. In the example, Joan:

hears a sound and turns her head. Many infant animals do such things; they're born with 
just enough "instincts" to help them survive.

Machines may have instinctive responses programmed in terms of rules whose antece­ 
dents match against current conditions to provide a standard response, without any 
reasoning or inference about the consequences. Other implementation paradigms, such as 
neural nets or decision trees can also provide the basis for such pattern matching and in­ 
stinctive reactions. Such reactive behavior can be considered "instinctive" in machines 
insofar as it is not learned through prior experience of the machine.

2.1.2. Reactive

The Reactive (or Learned Reactions) level in this framework is reserved for non- 
deliberative behavior that is learned by a cognitive agent. In the example, Joan:

sees a quickly oncoming car. Joan has learned that certain conditions demand additional, 
specific reactions.

Operation at a Reactive level is characterized by quick responses (reactions) to sensory or 
other information that may be processed to varying degrees into representations of world 
situations. The Reactive level does not exclude formation and use of world or environ­ 
mental models to guide behavior, so long as their use does not become deliberative (as 
described next). Joan's reactive response in our example may be simply her learned pause 
in response to recognition of speeding cars in her vicinity.

2.1.3. Deliberative

Minsky defines the Deliberative Thinking level in terms of our ordinary language under­ 
standing of the term. He acknowledges that "deliberation" is not precisely defined, but is 
rather a "suitcase" type term used to capture a variety of cognitive activities, such as pre­ 
dicting, comparing, and planning. Deliberation's consideration of alternative possible 
futures is one process that distinguishes it from the Reactive level. In the example, Joan 
is:

thinking about what to say at the meeting Here she imagines alternative futures, and vari­ 
ous ways to choose among them.

Distinguishing Deliberative from Reactive levels is important because deliberative con­ 
sideration of alternative futures enables cognitive agents to solve more difficult problems 
than merely instinctive or reactive agents.



2.1.4. Reflective

Functioning at the Reflective level entails an agent representing and reasoning about what 
it has done and thought. The mind forms representations of its own action, thoughts, and 
deliberations, as well as the external world. In the example of Joan's thoughts:

She later remembers her injured knee and reflects upon her impulsive decision. . . . now 
that she has more time to think, she can contemplate what she's recently done. Whenever 
you face a difficult problem, you may find yourself reflecting on your recent ideas, deci­ 
sions, and actions.

2.1.5. Self-Reflective

The Self-Reflective level extends the Reflective level with some model of the entity (the 
self) that performed the deliberations and actions that it reflects upon. A cognitive agent 
operating at this level must have some model of itself, e.g., its capabilities and goals, 
and/or its place within various social contexts. Joan thinks:

"If my knee had failed, I could have been killed. " Here, Joan reflects on what she's been 
doing—and concludes that she made a poor decision: she should not have neglected her 
injured knee.

Self-reflective reasoning can improve an agent's functioning by enabling it to step back 
from a difficult problem or goal and reflect upon how it relates to other aspects of itself. 
Current goals are often derivative of broader interests that may be better served by chang­ 
ing or revising goals when they are frustrated by circumstances.

2.1.6. Self-Conscious

The Self-Conscious level extends self-reflection to reflections on how others perceive the 
self. It represents a capacity to consider and respond to the approval and disapproval of 
other individuals and social groups, using cultural values, goals, and taboos. As such, it is 
essential to full participation in societies of cognitive agents and to culture formation. In 
the example, Joan reflects:

"What would my friends have thought of me? " Here Joan thinks both about something 
she's done—and whether she ought to have done it... To think such thoughts, Joan 
would have to possess resources that not only represent her body, as well as her various 
values and goals, but also her social relationships,. . .

The Self-Conscious level operates on all representations of the self and the world, and
thus will result in behavior that includes cognition, affect, and motivation.

i

2.2. Unification

Unification is the process of combining the different elements in a cognitive system to 
generate a cognitive agent's behavior. Different types of unification are distinguished in 
part by the level of the "multi-level mind" at which they operate. But, other aspects of an 
instantiated integrated cognitive architecture, such as purpose and taboos, will affect the



focus of unification. It is assumed that any system unification level may draw on lower 
level unification ingredients as needed for various behaviors.

2.2.1. Reactive

Reactive unification involves nearly direct reaction to external stimuli. Systems that have 
only a reactive unification process would be difficult to consider as truly cognitive sys­ 
tems. A simple reactive system may be implemented by a set of reaction-stimuli pairs. 
However, not all reactive systems need be considered primitive since there may be very 
complex reasoning involved in their reactions. Further, reactive reasoning may occur in a 
number of domains and may use a knowledge abstraction and learning strategies. Reac­ 
tive systems certainly would utilize the Instinct and/or Reactive elements of the Multi- 
Level Mind.

2.2.2. Planning

Planning-based unification provides a cognitive system behavior that incorporates plan­ 
ning elements. The behavioral response draws upon a set of task elements that can be 
grouped together to form alternative responses to external stimuli or current state infor­ 
mation. Behavior might be characterized as extending over time while the system 
executes the plan. Behavior may driven by a set of measurable objectives. Systems with 
planning-based unification would certainly utilize some capabilities from the Delibera­ 
tive level of the Multi-Level Mind. And, they may use the Instinct and/or Reactive levels 
of the mind as well. Planning-based systems might draw upon all other ingredient axes in 
the Figure 1 chart.

2.2.3. Goal-Driven

Goal-driven cognitive systems incorporate an understanding of goals that may extend 
over large periods of time and involve the generation of metrics to measure progress to­ 
ward the goals. Such system may vary lower level unification processes to achieving a set 
of potentially conflicting goals. Still, such systems may not require broad-based coverage 
of knowledge, reasoning mechanisms, reasoning domains, and learning strategies. Goal- 
driven systems could utilize the Instinct, Reactive, Deliberative, and limited Reflective 
levels of the Multi-Level Mind.

2.2.4. Understanding

Cognitive systems with understanding unification attempt to increase understanding of 
the world and themselves. By understanding the nature of their own capabilities they may 
seek to perform behavior consistent with internal and external goals. Understanding proc­ 
esses may increase relevant knowledge or relate at-hand knowledge to new situations. 
Understanding as a unification mechanism would be expected to extend over the lifetime 
of an individual cognitive system. Further, such systems would be able to share abstract 
knowledge among teams of cognitive systems. Understanding cognitive systems will re­ 
quire broad-based coverage of knowledge, reasoning mechanisms, reasoning domains,



and learning strategies. Understanding unified cognitive systems would utilize the In­ 
stinct, Reactive, Deliberative, Reflective and Self-Reflective levels of the Multi-Level 
Mind.

I

2.2.5. Creativity

Cognitive systems with Creativity unification seek to not only perform behavior consis­ 
tent with goals, but to understand the world about them and seek to extend knowledge 
and understanding about the unknown. Creativity-based unification of cognitive systems 
will result in systems that will understand, look for patterns and analogies, and explore 
the unknown. Such systems can speculate (form and test hypotheses) about the data and 
data relationships. They will require broad-based coverage of knowledge, reasoning 
mechanisms, reasoning domains, and learning strategies including discovery and explora­ 
tion. Creativity unified cognitive systems would utilize the Instinct, Reactive, 
Deliberative, Reflective, Self-reflective, and limited Self-conscious levels of the Multi- 
Level Mind. Creativity requires synthesis of models and/or simulations that provide new 
insights; these insights may well involve advanced learning mechanisms such as "Explo­ 
ration and Discovery" that would manipulate the environment to confirm or extend new 
mental models.

2.2.6. Consciousness

A cognitive system with consciousness unification is one that exhibits behavior that re­ 
flects the integrated cognition (thinking), affect, and motivation that so well characterizes 
human beings. 5 Behavior that is characteristic of consciousness is defined by Ortony et 
al. [ONR, In Prep] in terms of the traditional psychological triumvirate of Affection (af­ 
fect), Conation (will, or motivation), and Cognition: 6

Affect, motivation, and cognition can be considered to he the internal control 
mechanisms of the organism s behavior. We postulate that differences in steady 
state resting potentials, biases, thresholds, and weights for these mechanisms 
comprise the strikingly consistent and strikingly different organizations that are 
known as personality.

These factors are indicated on the INCOG framework diagram (Figure 1) by a label con­ 
veying an increase of their involvement with increasing levels of unification. A cognitive 
system with such consciousness unification might well pass the Turing Test7 with many

5 Wording motivated by a private communication with Andrew Ortony, Donald A. Norman, and William Revcllc based upon a 

draft of [ONR, in prep].

6 Ibid, page 3.

7 When talking about the Turing Test today what is generally understood is the following: The interrogator is connected to one

person and one machine via a terminal, therefore she can't see her counterparts. The interrogator's task is to find out which of the 

two candidates is the machine, and which is the human only by asking them questions. If the machine can "fool" the interrogator, 

it is intelligent. http://cogsci.ucsd.edu/~asaygin/tt/ttest.htmWintro



different individuals. It will most likely utilize all of the ingredients of cognitive systems 
illustrated in Figure 1. In particular it will require processes to support all levels of the 
Multi-Level Mind including the self-conscious.

2.3. Learning Strategies

Learning strategies of artificial cognitive systems are still quite primitive compared to 
human learning. However, fully capable integrated cognition systems should be able to 
utilize all of the learning strategies 8 , 9 illustrated above in Figure 1.

The American Association for Artificial Intelligence (AAAI) website on machine learning 
states that machine learning is said to occur in a program that can modify some aspect of 
itself, often referred to as its state, so that on a subsequent execution with the same input, 
a different (hopefully better) output is produced [AAAI 2004]. Different strategies for 
learning may be distinguished by the amount and types of inference required of the 
learner during the course of learning. 10 Simply adding data to systems information stores 
can increase its knowledge, but this would be considered a very simple learning strategy. 
In contrast, a system capable of performing experiments and generalizing the results to 
new scientific theories exhibits a very sophisticated learning strategy. Higher forms of 
learning may depend upon the appropriate level of unification to be included in the cogni­ 
tive system, e.g., creativity.

2.3.1. Rote Learning

Rote learning is the simplest type of learning strategy in which "no inference or other 
transformation of the knowledge is required on the part of the learner" [MCM 1983]. In 
artificial systems, rote learning can be accomplished by entry of data or knowledge by an 
external agent. In humans, rote learning typically involves memorization of facts without 
much depth of understanding or integration of them with other knowledge.

An overview of such machine learning strategies can be found in [MCM 1983], while a more in depth review is provided in 

[MITCHL 1997].

Private communication, Push Singh of MIT Media lab on machine learning, "a powerful learning machine depends on having a 
powerful architecture—for (a) much of learning is about making improvements to your own architecture, and if your architec­ 
ture does not allow sufficient variation in types of components and ways that those components can be interconnected, then only 
limited self-improvement is possible, and (b) to learn quickly requires great intelligence, in the sense that you need to be able to 
generate good hypotheses about the likely effects of changes to yourself and also good ways to choose between those hypotheses, 
and there may be no "general mechanism "for this besides applying the full intelligence of the resulting architecture to the 
problem (as opposed to limiting yourself to a few weak "learning heuristics" as all learning systems today do).

This means of distinguishing learning strategies is adapted from [MCM 1983].



2.3.2. Stimulus Response

11Stimulus-response learning is a relatively simple learning strategy in which stimuli and 
responses are classified as they occur and the nature of their relationships over time are 
remembered to invoke similar responses in the future. Examples include supervised and 
unsupervised learning, defined as:

Unsupervised learning signifies a mode of machine learning where the system is 
not told the "right answer" - for example, it is not trained on pairs consisting of 
an input and the desired output. Instead the system is given the input patterns and 
is left to find interesting patterns, regularities, or clusterings among them.

Supervised learning is a kind of machine learning where the learning algorithm is 
provided with a set of inputs for the algorithm along with the corresponding cor­ 
rect outputs, and learning involves the algorithm comparing its current actual 
output with the correct or target outputs, so that it knows what its error is, and 
modifies things accordingly. [AAAI 2004]

2.3.3. Process Learning

Process learning is simply defined as learning from mistakes to improve subsequent 
processes within the integrated cognitive system's capabilities.

2.3.4. Instruction

Instruction begins where the cognitive system can assimilate knowledge through instruc­ 
tion provided by humans or other cognitive systems. The cognitive system may be able to 
apply such knowledge to future behavior within the capabilities of the system. For exam­ 
ple, a very capable cognitive system may learn with stories with explanations.

2.3.5. Discourse

Cognitive systems with adequate ingredients will be able to hold discourse on any topic 
as a method of learning from human subject matter experts and other cognitive systems. 
Learning through discourse may be initiated by the external human or by a self-motivated 
cognitive system. Discourse is a higher level of learning that requires dialog and unifica­ 
tion at or above the understanding level. Such cognitive systems need to know how to ask 
questions about ingredients in the knowledge abstraction axis, e.g., semantic facts or epi­ 
sodic facts (e.g., procedures) that require clarification.

There are many definitions of learning mechanisms that include specific reference to knowledge representation and reasoning. 

For example, definitions of learning in AI are found in [Wilson 2004].

10



2.3.6. Exploration and Discovery

Cognitive systems with ample other ingredients may be capable of a self-motivated 
search for truth by exploration and/or discovery within the means of the cognitive system 
and its associated team members.

2.4. Reasoning Domains

The INCOG framework provides an ordered list of general purpose domains for reason­ 
ing. Included in the challenges of reasoning domains is that of representing information 
in the domain as well as formulating and implementing reasoning algorithms for the do­ 
main. It can be argued that these challenges increase as we move outward on the 
reasoning domains axis of the framework. Spatial reasoning, for example, can be consid­ 
ered as more complex than temporal reasoning since it commonly involves up to three 
dimensions, where time ordinarily has but one. Causality may be considered more com­ 
plex still, as it often involves both temporal and spatial dimensions. And commonsense 
reasoning may be seen as involving all the prior reasoning domains (time, space, causal­ 
ity, and resources). The other categories of this dimension, however, are less readily 
compared. So, any ordering of their levels of difficulty will be more controversial.

2.4.1. Time

Reasoning about time includes all of the well-known problems of temporal reasoning. 
Both qualitative reasoning about orderings in time and quantitative reasoning about dura­ 
tions and continuously changing properties are within the scope of human and machine 
temporal reasoning. Such reasoning may utilize precise temporal dates, times, durations, 
and/or equations; or may involve temporal uncertainty, not just qualitative temporal or­ 
dering uncertainties, but alternative (disjunctive) uncertainties, as in alternate dates on 
which an event may occur or have occurred. Temporal reasoning may be couched in 
terms of time points, time intervals, or both. Reasoning with time may involve temporal 
constraint propagation for planning or scheduling; temporal "projection" of known facts 
into the future; or solving time-dependent equations of continuously variable quantities.

2.4.2. Space

Reasoning about space covers single to multi-dimensional spatial reasoning, including 
modeling the spatial properties of 3-dimensional objects and their relationships with each 
other. Subcategories of spatial reasoning include 3-D modeling of physical objects, 
model-based image understanding, path planning, parts-assembly planning, and auto­ 
mated design of spatially structured systems and components thereof.

2.4.3. Causality

Reasoning involving causality includes simple qualitative "one-shot" causation of a dis­ 
crete effect by its cause (e.g., in object collisions), as well as the application of more 
complex causal laws and equations governing physical processes, such as the F=ma of

11



Newtonian physics or the E=mc2 of relativity. Causal reasoning plays a central role in 
planning and prediction, where the causal consequences of actions and events are in­ 
ferred. It is also central to diagnostic reasoning, where the consequences (or symptoms) 
are known while triggering events and/or other causal conditions are inferred. Causal rea­ 
soning is at the heart of scientific investigation and discovery, where the aim is not the 
application of causal laws, but their discovery.

2.4.4. Resources

Reasoning about resources is primarily concerned with resource-constrained planning 
and scheduling. This includes planning with consumable resources, such as fuel, ammu­ 
nition, and energy; as well as with relatively fixed resources, such as real estate and 
infrastructure. Of special concern is time-constrained reasoning in which time itself is 
treated as a resource whose consumption by planning itself constrains the whole planning 
process. Resource reasoning may be as simple as assessing the availability of sufficient 
resources in the preconditions of a single planned action, or as complicated as scheduling 
the utilization of multiple spacecraft instruments for gathering data in planetary flybys 
where resources of electrical power, maneuvering fuel, working instruments, spacecraft 
attitude, viewing time-windows, computer memory, and planning time must all be taken 
into account.

2.4.5. Commonsense

Commonsense reasoning covers a broad range of topics that fall under the relatively 
vague ordinary concept of Commonsense. One area that has received considerable 
research attention is that of commonsense physics, which seeks to reason with the 
physical models and laws used in understanding the interactions of objects and 
substances in everyday life. 12 Another area is commonsense (or folk) psychology, which 
attempts to model common conceptions of human psychology, including psychological 
states, such as knowledge, belief, and anger; and psychological architectures, such as the 
popular Belief-Desire-Intention (BDI) model widely used in software agents. 13 Other 
research in commonsense reasoning focuses on characteristic commonsense reasoning 
patterns, such as "plausible reasoning," which has been modeled by nonmonotonic logics, 
probabilistic systems, and assumption-based truth maintenance.

2.4.6. Preferences

Reasoning about preferences among alternative states of affairs or outcomes of events 
may be used as a guide to reasoning about the most effective planning and execution for 
achieving preferred conditions.

12 Early classic works in AI on commonsense physics include [HOBMOR 1985] and [BOBROW 1985].

13 The foundations of the BDI model are described in [BRTMN 1987].

12



2.4.7. Purpose and Taboos

High-level purposes, such as personal survival or knowledge acquisition, and taboos, 
such as those against killing sentient beings, may also serve to guide planning to achieve 
more specific goals. These constraints can help ensure that ultimate purposes are pro­ 
moted, and violation of taboos is avoided. Agents with integrated cognition ought to be 
capable of accommodating such purposes and taboos in their planning and execution.

2.5. Reasoning Mechanisms

Reasoning mechanisms are systems for generating inferences or conclusions, based on 
premises. This category includes both aspects of specification of information in premises 
and conclusions, as well as its associated semantics, inference rules, and algorithms for 
generating conclusions. Probabilistic reasoning, for example, requires specification with 
numerical qualifiers to indicate the probabilities of premises and conclusions.

Different types of reasoning mechanisms vary in the relations supported between prem­ 
ises and conclusions. With valid inferences in deductive logic, the premises entail the 
content of conclusions, while other forms of inference are weaker in that the content of a 
conclusion could be false even when all the premises involved are true.

2.5.1. Deductive

Deductive reasoning is a branch of cognitive psychology investigating systems ability to 
recognize a special relation between statements. Deductive logic is a branch of philoso­ 
phy and mathematics investigating the same relation. We can call this relation entailment, 
and it holds between a set of statements (the premises) and a further statement (the con­ 
clusion) if the conclusion must be true whenever all the premises are true. 14

2.5.2. Nonmonotonic

Nonmonotonic logics are used to formalize plausible reasoning. They allow more general 
reasoning than standard deductive logics, which deal with universal exceptionless infer­ 
ences. We quote Professor Minker of the University of Maryland:

The subject matter of nonmonotonic reasoning is that of developing reasoning 
systems that model the way in which commonsense is used by humans. Non­ 
monotonic reasoning must therefore be able to leap to conclusions and be 
sufficiently robust so that when a conclusion reached by nonmonotonic reasoning 
is shown to be wrong it may be revised. Nonmonotonic reasoning is based on 
classical logic but it is a new logic developed exclusively by workers in artificial 
intelligence It is a significant departure from the views of logicians and philoso­ 
phers concerning humans and reasoning. [MNKER 1993]

This is a cognitive system generalization of a cognitive psychology definition, see e.g., [WILK.EL 2001].
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Formally, the theorems of a theory in a nonmonotonic logic need not increase monotoni- 
cally (i.e., with only positive changes) with the addition of new axioms. This allows 
exceptions to rules to be added as axioms that "defeat" or remove prior conclusions. 
Nonmonotonic reasoning has been applied widely to the default inheritance of properties 
of classes of objects by their subclasses, and to default causal inferences for expected 
consequences in planning actions.

2.5.3. Probabilistic

Probabilistic reasoning is the formation of probability judgments and of subjective beliefs 
about the likelihood of outcomes and the frequencies of events [WILKEL 2001]. Al­ 
though the probability calculus can also be applied to inductive and abductive reasoning, 
we distinguish these as separate categories of reasoning.

I
2.5.4. Inductive

Inductive reasoning is reasoning from facts to a generalization about them. Inductive rea­ 
soning may infer simple empirical generalizations, for example that all objects of a 
certain type share a property that has been observed in all observational instances of that 
object type (e.g., all crows are black). Elaborate scientific theories may also be based on 
inductive generalizations (perhaps generalizing on empirical generalizations). Developing 
scientific theories, however, is widely recognized as involving other types of reasoning as 
well, such as application of "Occam's razor" and conformance with other theories.

Induction is one kind of inference that introduces uncertainty, in contrast to Deductive 
reasoning in which the truth of a conclusion follows necessarily from the truth of the 
premises.

2.5.5. Abductive

Abductive reasoning is reasoning in which explanatory hypotheses are formed and evalu­ 
ated. Diagnosis of the causes of the manifestations of some disorder (e.g., of equipment 
malfunction or disease) is a paradigm of abductive reasoning. An adequate formalization 
would have to take into account the following aspects of abduction: explanation is not 
deduction; hypotheses are layered; abduction is sometimes creative; hypotheses may be 
revolutionary; completeness is elusive; simplicity is complex; and Abductive reasoning 
may be visual and non-sentential [THGSHL 1997]. Abductive reasoning seeks the "best" 
explanation of a situation based on limited knowledge.

2.5.6. Analogical

Analogy is 1) similarity in which the same relations hold between different domains or 
systems; 2) inference that if two things agree in certain respects then they probably agree 
in others. A number of researchers believe this to be the strongest form of human reason­ 
ing as it supports discovery of new concepts and relationships.

14



2.6. Knowledge Abstraction

Knowledge is the collection of persisting memories used by cognitive systems to support 
reasoning, learning, and unification about the internal and external world. Internal 
knowledge is formulated at the self-reflective and above level of the multi-level mind. 
Knowledge abstraction provides the disciplined classification of knowledge in levels of 
increasing complexity, from simple definitional facts to complex stories and lessons.

2.6.1. Semantic Facts

Semantic facts define the meaning of terms and symbols used to express knowledge. 
Symbols may be linguistic or non-linguistic, including a broad range of sensory represen­ 
tations. Semantic facts do not cover broader relationships expressed at higher levels of 
knowledge abstractions, e.g., in episodic facts and stories. Facts about particular objects, 
events, or actors in the world are included in this category of knowledge abstraction, in­ 
sofar as they independent of episodes. Ontologies, used in computer systems, express 
semantic facts that specify individual semantic relationships.

In humans, semantic facts are contained in semantic memory described in the MITECS 
Abstracts [WILKEL 2001] as:

Semantic memory . . . allows humans and nonhuman animals to acquire and use 
knowledge about their world. Although humans habitually express and exchange 
their knowledge through language, language is not necessary for either remem­ 
bering past experiences or knowing facts about the world.

2.6.2. Episodic Facts

Episodic facts encode previous episodic experiences as perceived by the cognitive sys­ 
tem. The following quotations [WILKEL 2001] concerning human episodic memories 
should motivate the cognitive system definition of episodic facts:

Episodic memory is a recently evolved, late developing, past-oriented memory 
system, probably unique to humans, that allows remembering of previous experi­ 
ences as experienced. William JAMES (1890) discussed it as simply "memory." 
The advent of many different forms of memory since James's time has made ad­ 
jectival modifications of the term necessary.

Our ability to remember events in our daily life and acquire specific facts after 
reading a newspaper or watching a newscast underscores our ability to rapidly 
acquire new memories. In general, these memories encode who did what to 
whom where and when, and have been described as episodic memories.

2.6.3. Concepts

Concepts are abstractions that relate sets of semantic and episodic facts. Concepts are du­ 
rable, possibly extensible, and discoverable. Concepts may be derived from sets of
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particular facts about objects classified as similar type or may be composed from other 
concepts. The MITECS abstracts [WILKEL 2001] describe concepts as:

The elements from which propositional thought is constructed, thus providing a 
means of understanding the world, concepts are used to interpret our current ex­ 
perience by classifying it as being of a particular kind, and hence relating it to 
prior knowledge. The concept of "concept" is central to many of the cognitive 
sciences.

2.6.4. Components

Components are related collections of episodic and semantic facts and concepts that sup­ 
port understanding of actors, objects, and events. An example of a component is a trace of 
actors, chains of events, objects or other abstractions through space and time and their 
interaction with other objects, events, and actors. Another example of a component is the 
motivation of each of the actors. Components may include: historical and situational con­ 
text, alternatives, plans, consequences, and mood, etc.

2.6.5. Relations

The Relations category in our knowledge abstraction hierarchy is comprised of relations 
among lower-level knowledge abstractions and possible classes or instances of stories. 
These Relations may be used to recompose a story as a narrative along with a formalized 
story mark-up language.

2.6.6. Stories

The Stories category of knowledge abstraction is broader than the ordinary concept of 
accounts of specific incidents or events. In addition to ordinary fictional and historical 
stories told in books, by individuals, on stage, through movies, or other media, we in­ 
clude expository accounts of areas of knowledge, such as textbooks, journal articles, 
lectures, and the like. Such accounts share attributes of ordinary stories in that they are 
composed of lower-level knowledge abstractions woven together through relations to ex­ 
press underlying motivations, themes, and "lessons." A physics text, for example, could 
be understood to provide quasi-narrative accounts of how to solve physics problems, pos­ 
sibly accompanied by historical sketches of the development of the underlying physical 
theories.

2.6.7. Lessons

Lessons are what may be learned from stories to guide future behavior of cognitive sys­ 
tems and their offspring.
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3. Cognitive Systems Survey Results

3.1. Overview

We break the existing cognitive systems into two categories: established systems and 
newer systems. Every cognitive system surveyed could potentially contribute concepts, 
designs, and built components to a new integrated cognition architectures. 15 Review of 
each surveyed system was conducted by the researchers who developed and extended the 
architectures. This was done though a series of discussions with each research team that 
culminated with their submission to the authors of the final charts included in this paper.

We make the following general observations about the cognitive systems surveyed:

1. Working implementations tend to require significant low-level programming for 
ingredients not already present in the architectural models, e.g., SOAR, ACT-R, 
dMARS, UMPRS, ...

2. Learning capabilities are bounded to refinement within the scope of initial knowl­ 
edge bases; few systems seek to understand, or invoke learning strategies beyond 
process learning related to current knowledge.

3. Current systems tend to be weak with respect to self-reflection, and knowledge 
sharing and consequently would be difficult to employ in a heterogeneous inte­ 
grated cognitive architecture without extensions.

4. Current systems have core capabilities that cluster near the center of the strawman 
integrated multi-dimensional framework.

5. Newer or proposed systems have extended coverage of the strawman multi­ 
dimensional framework to near the periphery in some dimensions.

6. Coverage is sparse within a specific ingredient dimension because of the large 
number of potentially interrelated reasoning domains not addressed in any of the 
architectures.

" The strawman integrated cognition framework proposed within this paper describes elements of an extensive concept for cogni­ 

tion architectures.
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7. There is a significant set of advanced components (established cognitive systems) 
that could be included in integrated architectures that together would provide sig­ 
nificant new capability for cognitive systems.

3.2. Established Systems

Established systems have some maturity and have demonstrated some capability in a va­ 
riety of integrated cognition dimensions, and have a respectable user community.

Established systems include:

1. SOAR

2. ACT-R

3. dMARS

4. ICARUS

5. DARWIN

6. UMPRS
(

3.2.1. SOAR - University of Michigan - Laird

SOAR is a general purpose architecture designed as an unified theory of cognition by 
John Laird, Paul Rosenbloom, and Alien Newell [RLN 1993]. It is a production rule sys­ 
tem based on the simple decision cycle - elaboration of state, choice of operators, 
selection of operator, and actions. Soar has a relatively large user base among existing 
cognitive architectures. It is supported by the University of Michigan and has been ap­ 
plied commercially by Soar Technology Inc. Input for assessment of Soar's support for 
the elements of the INCOG framework (Figure 3 of Appendix A 16 ) was provided by John 
Laird of the University of Michigan and Robert Wray of Soar Technology.

Utility: Soar is embeddable with extension and rule sets to implement many components 
of an integrated cognition system.

I
3.2.2. ACT-R - University of Pennsylvania - Anderson, Lebiere

ACT-R [ANDLE 1998] is a cognitive architecture using production rules developed at 
Carnegie Mellon University (CMU) by John Anderson and Christian Lebiere. It includes 
a detailed approach to integrating multiple modules that correspond to different cognitive 
functions. The fundamental controlling structure in cognition is reactive-where produc­ 
tion rules respond to patterns of information in various cognitive buffers.

All Figure references in the remainder of this section arc contained in Appendix A.
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Successive versions of ACT-R have seen widespread applications to problems of cogni­ 
tive and behavioral modeling. Input for assessment of ACT-R's support for the elements 
of the INCOG framework (Figure 4) was provided by John Anderson and Christian Le- 
biereofCMU.

Utility: ACT-R based systems are embeddable for many components of an integrated 
cognition system.

3.2.3. dMARS - Precedence Research Australia - Georgeff

The distributed Multi-Agent Reasoning System (dMARS) is a C++ implementation of an 
architecture based on the BDI cognitive model [IKLW 1998]. It was developed by Mi­ 
chael Georgeff as a more powerful successor to the Procedural Reasoning System (PRS). 
dMARS has been applied to a very wide range of applications, including command and 
control of robotics and spacecraft, and situation awareness for the Australian Defense 
Forces. Input for assessment of dMAR's coverage of the INCOG framework (Figure 5) 
was provided by Michael Georgeff of Georgeff Inc.

Utility: BDI concepts may be useful for integrated cognitive systems.

3.2.4. ICARUS - Stanford University - Langley

ICARUS is an architecture for intelligent agents developed by Dan Shapiro and Pat 
Langley of the Center for the Study of Language and Information at Stanford University 
[LSAS 2002]. ICARUS is distinguished by its incorporation of affective values into 
memory and behavior; the primacy of categorization over execution and of execution 
over problem solving; and the internal determination of tasks, intentions, and rewards. 
Input for assessment of ICARUS's coverage of the INCOG framework (Figure 6) was 
provided by Pat Langley of Stanford University.

Agents in ICARUS incorporate long-term memory of hierarchical skills that encode how to 
accomplish objectives and a long-term memory of hierarchical concepts that describe 
how to recognize states of the environment. Both skills and concepts have associated 
value functions that the architecture uses to control its behavior. The system also includes 
short-term memories for intentions and beliefs, each element of which has associated af­ 
fective values. The ICARUS focus is on reactive tasks that can be managed with the 
knowledge expressed with conceptual goals.

Utility: ICARUS is a general purpose architecture which is not yet broadly supported. Po­ 
tential applications to integrated cognition remain to be determined.

3.2.5. DARWIN - NSI - Edelman

DARWIN refers to a series of implementations of large-scale (over 50,000 cells and 
600,000 synapses) synthetic models of neural structures supporting the evolution of pat­ 
tern recognition and sensorimotor coordination in a synthetic environment [RSE 1990]. It
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has been developed by Reeke, Sporns, and Edelman, of the Neurosciences Institute and 
Rockefeller University based on Edelman's theories of Neural Darwinism [EDEL 1987]. 
Input for assessment of DARWIN's coverage of the INCOG framework (Figure 7) was 
provided by Gerald Edelman of the Neurosciences Institute.

DARWIN uses synthetic neural modeling for a multi-level theoretical approach to prob­ 
lem of understanding neuronal bases of adaptive behavior. Models include the 
environment and large-scale models of neurons and control mechanisms. Applications 
included automata for pattern recognition.

Utility: Darwin could provide real time sensor steering and target tracking components 
for integrated cognition.

I 
3.2.6. UMPRS - University of Michigan - Huber

UMPRS (the University of Michigan implementation of PRS) is a general purpose im­ 
plementation of the PRS [LHKD 1994]. It does not provide (i.e., "impose") specific 
capabilities or representations on agent programmers, but rather provides a framework for 
their implementation. Hence, its core capabilities cover relatively few of the INCOG 
framework ingredients, although UMPRS applications have covered many more. Unifica­ 
tion in UMPRS is focused on goals and planning and not reactive tasks. Input for 
assessment of UMPRS's coverage of the INCOG framework (Figure 8) was provided by 
Marcus J. Huber of Intelligent Reasoning Systems.

Hypothesis: UMPRS provides useful concepts for fully capable integrated cognition sys­ 
tems.

3.3. New Systems

New systems have new integration strategies and mechanisms with respect to the estab­ 
lished systems category previously described. Further, the capabilities may not be yet 
implemented, and generally lack a large using community.

New systems include:

1. Shruti Smirti

2. LISA SAGE

3. Panalogy Architecture

4. Novamente

5. JAM-IRS

6. Daydreamer

7. SME, SEQL and MAC/FAC

8. ThoughtTreasure

9. Stigmeric Cognition
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3.3.1. Shruti/Smirti - UC Berkeley - Shastri

Shruti and Smirti are related architectures developed by Lokendra Shastri of UC Berkeley 
[SHAST 1999]. They demonstrate how simple, neuron-like, elements can encode a large 
body of relational causal knowledge and provide a basis for reactive, rapid inference. In­ 
put for assessment of Shruti/Smirti's coverage of the INCOG framework (Figure 9) was 
provided by Lokendra Shastri of UC Berkeley.

Utility: Shruti provides a key cognitive real-time component that supports reactive text 
understanding. It may provide a general model for composition for integrated cognition 
systems.

3.3.2. SAGE - HRL, UCLA, Furmanski, Hummel, Holyoak

SAGE (Self-Aware Adaptive Generalization Engine) is a cognitive-based architecture 
that is adaptive, self-reliant, and can reason by analogy (like people do) in order to 
discover meaningful relationships between seemingly dissimilar data. It blends 
connectionist/neural networks with symbolic systems. Its self-supervised learning uses 
self-reflective algorithms that allow the system to acquire new knowledge, learn from its 
past, and avoid extensive human intervention by guiding its own performance. 
Applications include roles a as network security watch dog, decision aid for intelligence, 
or strategic agent for military simulation. Input for assessment of SAGE's coverage of the 
INCOG framework (Error! Reference source not found.) was provided by Chris 
Furmanski and John Hummel of HRL Laboratories, LLC, and UCLA.

Utility: A very general integrated model that provides composition concepts and compo­ 
nents for integrated cognition systems.

3.3.3. Panalogy Architecture - MIT - Singh, Minsky

Panalogy is a cognitive architecture designed to support commonsense reasoning being 
developed by Push Singh and Marvin Minsky of MIT [SINGH, 2003]. It utilizes multiple 
strategies for representation and reasoning to support typical types of commonsense rea­ 
soning. It has a capability to learn how to learn, includes commonsense understanding, 
and more. Input for assessment of Panalogy's coverage of the INCOG framework (Figure 
11) was provided by Push Singh of MIT.

Utility: A very general integrated model that provides composition concepts and compo­ 
nents for integrated cognition systems.

3.3.4. Novamente - Novamente LLC - Goerztel

Novamente is a system organized with distributed atoms of knowledge that may be em­ 
ployed in an unlimited number of contexts [GPSML 2003]. Atoms have truth value and 
attention value. Mind agents operate on these atoms, learning how to learn. Input for as-
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sessment of Novamente's coverage of the INCOG framework (Figure 12) was provided 
by Ben Goertzel of Artificial General Intelligence Research Institute (AGIRI).

Utility: Novamente provides a very general integrated model that provides composition 
concepts and components for integrated cognition systems.

3.3.5. JAM - IRS - Huber

JAM is another version of the PRS [HUBER 1999]. It provides Reactive and Deliberative 
models as well as Reflective and Self-Reflective capabilities in the form goal semantics 
and meta-level reasoning. Its unification is limited to planning and goal driven behavior, 
and does not support much in the way of learning. Input for assessment of JAM's cover­ 
age of the INCOG framework (Figure 13) was provided by Marcus Huber of Intelligent 
Reasoning Systems.

Utility: The JAM model provides composition concepts and components for integrated 
cognition systems.

I
3.3.6. Daydreamer - IBM - Mueller

Daydreamer was developed by Erik Mueller of IBM to simulate a human stream of 
thought and its triggering and direction by emotions [MUEL 1998]. Input for assessment 
of Daydreamer's coverage of the INCOG framework (Figure 14) was provided by Erik 
Mueller of IBM.

Utility: Daydreamer provides cognitive components for reactive, affective mood man­ 
agement including social interaction with humans and other machines with affective 
ingredients of integrated cognition systems.

3.3.7. SME, SEQL, and MAC/FAC - Forbus/Gentner

A number of tools for structure-mapping and qualitative reasoning have been developed 
at Northwestern University by Ken Forbus, Dedre Gentner and others [FFG 1994]. These 
include the tools the Structure-Mapping Engine (SME), SEQL and MAC/FAC, which are 
assessed together in Figure 15. Input for assessment of coverage of the INCOG frame­ 
work by these tools was provided by Ken Forbus of Northwestern University.

Utility: These tools provide concept and design for cognitive components for analogical 
reasoning for integrated cognition systems.

3.3.8. ThoughtTreasure - IBM - Mueller

ThoughtTreasure is a story understanding and commonsense reasoning system developed 
by Erik Mueller of IBM [MUEL 1998]. Input for assessment of ThoughtTreasure's cov­ 
erage of the INCOG framework (Figure 16) was provided by Erik Mueller.
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Utility: ThoughtTreasure provides concept, design, and components for commonsense 
evaluation of discourse for integrated cognition systems.

3.3.9. Stigmergic Cognition - Altarum - Van Parunak, Brueckner

Stigmergic Cognition consists of cognitive components that exhibit emergent behavior 
and have performed well in many roles [PARBRU 2003]. Input for assessment of Stig­ 
mergic Cognition's coverage of the INCOG framework (Figure 17) was provided by H. 
Van Parunak and Sven Brueckner of Altarum.

Utility: Stigmergic Cognition provides concept and design, and cognitive components for 
social behavior with goal orientation for integrated cognition systems.
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4. Integrated Cognition Architectures

4.1. Use of Cognitive Components in Integrated Cognition

Some of the cognitive systems described above could be extended for integration into an 
integrated cognition framework and architecture and used as components themselves in 
such a framework. We have illustrated that notion in Figure 2.
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Figure 2. Example Technologies for Integrated Cognition

The complete summary of each component's capabilities as currently specified is pro­ 
vided in Appendix A. This appendix contains summary charts for each established and 
new architecture indicating the scope of capability. These architectures all lack the neces­ 
sary architectural mechanisms to operate within the total scope of the strawman 
integrated cognition framework. This is because the components themselves do not have 
the spectrum of interfaces and functions necessary for an integrated cognition system as 
described in the strawman framework.
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4.2. Example Top Level Architecture for the Strawman Framework

DARPA Information Processing Technology Office (IPTO) Deputy Director, Dr. Barbara 
Yoon, asked Dr. Robert Rolfe to build an illustration of a top level architecture that could 
serve as an example of how one might approach constructing an integrated cognition sys­ 
tem. Further, such a top-level architecture provides the mechanisms to parcel out 
program work packages to achieve integrated cognition.

In Appendix B we describe such an example architecture for integrated cognition compli­ 
ant with the strawman framework presented in this paper. This example of a top-level 
architecture for integrated cognition is defined in terms of some 64 functions, a variety of 
interface mechanisms, and basic architectural and design principles.

I
4.3. Summary

This paper set out with a goal to define a new level of integrated cognition capability in 
computational systems. On the way we learned that current systems exhibit a full spec­ 
trum of capabilities. As a result, we endeavored to define a new strawman framework for 
integrated cognition exploring the full set of relevant dimensions. We then surveyed es­ 
tablished, those documented in the literature, and new architectures under development, 
and asked the respective research teams to analyze their demonstrated and projected ca­ 
pabilities with respect to the strawman framework. Finally, we developed an example 
top-level architecture to illustrate the functions, interface mechanisms, and principles 
necessary for a new generation of cognitive systems.
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Appendix A. Survey Detailed Results

This appendix presents the summary results of the capabilities of cognitive architectures 
relative to the cognitive dimensions described above. Capabilities of established and new 
architectures are distinguished at different levels via the following definitions of color 
codes.

Green dots indicate core integrated capability
- Ingredient may be adequate today, but probably will require re-tooling 

for integrated cognition
O Yellow dots indicate one or more example systems have been 

integrated with the core framework as applications
- This implies that there is an understanding in the community of 

researchers of how to interface and integrate, at least for the specific 
application, but perhaps not generally

- A yellow dot alone indicates the possibility exists to add the ingredient 
into the existing architecture without modifying its core

@ Blue dots indicate potential extensions of the core framework
- There are feasible concepts to extend the core framework
- Potentiality is reinforced by there being yellow dots as well indicating 

somebody has at least attempted a narrow implementation, not 
necessarily a general purpose or architecturally robust solution

- Light blue dots have the potential for INCOG investment
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Appendix B. Example Top-Level Integrated Cognition
Architecture

In this appendix we provide an example top-level architecture that meets the require­ 
ments of the strawman integrated cognition framework described in this paper.

INCOG Architecture Challenge

Cognitive architectures for computers face a truly grand challenge in providing a super­ 
structure for human-level cognitive performance. To fully meet this challenge will require 
providing support for many cognitive capacities, including:

• Intelligent interaction with humans and other systems that reduces the work­ 
load of the human user by anticipating and performing a variety of intelligent 
tasks

• A cognitive model that fuses self-consciousness, and self-reflective, delibera­ 
tive, and reactive capability toward common goals and objectives on differing 
time horizons

• Synthesizing discourse with diverse participants

• Integrating multiple forms of reasoning and new knowledge forms

• Integrating a critical mass of knowledge to provide intelligent behavior

• Adaptation to changing objectives using a priori and learned situational 
knowledge

• Massive distribution and parallelism needed for real problem solving

• Self-management to dynamically reach goals and objectives

The scope of a cognitive architecture that supports everything in the cognitive framework 
presented above is broad, indeed. It needs to:

• Incorporate by concept and design the full scope of integrated cognition capa­ 
bilities

• Support the understanding of the changing context of discourse with humans 
and other cognitive components
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• Incorporate capabilities to operate as a team player or leader in coordination 
with teams of specialists with diverse sets of expertise domains

• Manage behavior with fuzzy goals, sub-goals with integrated motivation, af­ 
fective and cognitive resources, a variety of models, and diverse classes of 
knowledge

• Be teachable by humans and cognitive systems of its class

• Be able to communicate the justification for the planned or exhibited behavior

• Manage dynamic collection of cognitive components with a high degree of 
parallelism necessary to reach useful results in periods dictated by external 
need and internal goals and capabilities

• Continuously refine and/or alter its planned hypothetical behavior until plan­ 
ning or urgency require new behavioral output

• Retain learned information as knowledge in symbolic and/or iconic form for 
future use

• Develop understanding and new learning strategies to support possible future 
behavior on various time horizons based on builder's imprinted values

In developing an architecture to meet these needs, many fundamental design issues need 
to be addressed, including an architecture for dynamic distributed processing, the design 
of working and long-term memory, and a variety of foundational components. Multiple 
interacting processes must be supported that can span as many distributed processors as 
possible using available technology. Working memory requires a system design that en­ 
ables sharing working memory across distributed processes while supporting real-time 
performance needs. Long-term memory needs persistent storage of knowledge available 
to all processes including a variety of reasoning mechanisms. Various common founda­ 
tion components are needed, which can be built once and deployed throughout the 
machine mind as needed, both statically and dynamically. And, substrate services need to 
be selected or designed for distributed computing, bootstrapping, evolution, management, 
persistence, cloning, and fault tolerant services.

Learning: An Example of Integration Requirements

As an example of how human-level cognition really requires integration of many cogni­ 
tive ingredients or capabilities, consider learning. Full support for human-level learning 
capabilities can be expected to require integrating many of the ingredients of the INCOG 
framework, which may be grouped into the following functional areas:

• Discern / modify / validate relationships and context
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- Deductive, Nonmonotonic, Probabilistic/Inductive, Analogical, and Com- 
monsense Reasoning Mechanisms

• Store and retrieve information at multiple levels

- Semantic Facts, Episodic Facts, Relations, Concepts, Stories, Lessons

• Reason along multiple dimensions, e.g.,

- Time, space, causal models, resources

- Preferences, urgency 

Integrate learned material into behavior at the appropriate level, e.g.,

- Reactive / instinctual

- Planning / goal driven / Deliberative

- Creative (novel combinations or perturbations of learned material)

- Understanding and apparent consciousness by producing a unified picture 
of learned material, relationships among the material and to concept of 
"self," and providing explainable plans and behavior

• Acquire new knowledge, processes, tasks, and skills for multiple domains

- Incorporate learning, understanding, assessment, and self-programming 
model

This is just one example among many high-level cognitive processes that require many of 
the ingredients of the INCOG framework in order to approach human-level cognition. 
Other examples will be provided below, after presenting a strawman architecture for inte­ 
grated cognition.

INCOG Strawman Architecture

A top-level view of the INCOG strawman architecture is shown in Figure 18. This figure 
is based on Dr. Ronald Brachman's proposed cognitive architecture [BRACK 2002], 
which has been adapted here to better capture distinctions made in the INCOG frame­ 
work. In particular, this INCOG architecture distinguishes more finely between different 
levels of the multi-level mind, separating Brachman's Reactive Processes into Pro­ 
grammed Instinct and Learned Reactions; and adding several other levels above the 
Reflective. This architecture also highlights discourse as a key area of human-level cogni­ 
tion by separately identifying it and its relations to other input and output processing.
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Figure 18. INCOG Strawman Architecture Top-Level Static Components

This architecture diagram represents the world external to the cognitive agent by the Ex­ 
ternal World box at the bottom. The rest of the boxes represent information and processes 
of the cognitive agent. Raw Sensory Inputs come into the agent from its sensors and are 
processed initially via Perception Processing, which hands off linguistic data to Dis­ 
course Input. The results of perception and discourse input processing are fed to various 
levels of the Mult-ilevel Mind, as appropriate. The Mult-ilevel Mind uses inputs from 
Working Memory and Long-Term Memory to place new inputs in context and to help de­ 
termine its responses and other activities. The Multi-level Mind also stores information in 
Working Memory and Long-Term Memory as warranted. The processing and exchange of 
information throughout is enabled by a host of Foundation Processes, as well as the 
Computational Substrate. The results of the execution of cognitive processes may then 
find expression in discourse via Discourse Output or through other Action Outputs. The 
Discourse Outputs consist of the intended discourse, which is communicated to the ap­ 
propriate physical effectors as Action Outputs in order to effect speech, writing, and any 
other forms of communication.

In the sections that follow, different aspects of this architecture will be elaborated. First, 
various knowledge abstractions used in working and long-term memory will be pre­ 
sented. This is followed by a presentation of an extensive set of 61 functional "packages" 
that represent processes used by the main elements of the architecture diagrammed in 
Figure 18. Next, an example package description is elaborated in terms of its functional 
components and their relationships. Then, ontologies, which enable communication 
among the packages, are discussed. After that, several aspects of learning in cognitive 
systems are discussed, including: learning mechanisms, principles for learning, new
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model capabilities for learning, linguistic learning, and learning expectations. Finally, 
some examples are presented of composite cognitive functions that are composed out of 
various combinations of the 61 functional packages. Structure charts are provided to de­ 
scribe the following composite cognitive functions: apparent conscious behavior, self- 
reflection, and speech and text processing.

Memory Knowledge Abstractions

A cognitive agent's memory must be capable of storing a wide variety of different types 
of information. There are many different ways of parsing this information into categories 
based on different criteria, such as its: reasoning domain; application domain; complex­ 
ity; importance/relevance; and proximity to real-world interface via sensors or actions. 
Many different such parsings are relevant to the interests of organizing information ap­ 
propriately for the many possible components and interfaces of cognitive systems. Here, 
we present just one high-level view or parsing of such information in Figure 19. This ab­ 
straction is presented at the "knowledge level" 17 to identify some of the key types of 
knowledge involved in the cognitive processes used within this INCOG architecture. It 
organizes the different types of knowledge required for the cognitive ingredients of the 
INCOG framework in Figure 1, with a focus on the dimensions of Knowledge Abstrac­ 
tions and Reasoning Domains.

Behavior-Action Context
Situation, History, Goals, Capabilities, 

_, .Alternative Futures, Efficacy, Urgency

_____. /
I Threaded Episodes

Semantic attributes, e.g.. Events, 
Objects, Actors, Features, and 

;, Characteristics
/

Episodes
Sensor Inputs, Data Sequences, 

Process Logs, Histories, and Stories

Understani
Based upon 

Formal, 
System,

Conceptual,
and 

Mental 
Models

Declarative
Noble Goals. Prime Directives 

Concepts, Ontologies, Common Sense, Facts, 
Logical and Temporal Relations, Models, Tactics, Techniques, Procedures m

Figure 19. Long-Term Memory Knowledge Abstractions

The "knowledge level" was introduced by Herbert Simon in his presidential address to the AAAI at their first conference in 
1979, as recorded in [SIMON 1981, 1982] and reflected upon in [SIMON 1993].
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The knowledge abstractions presented here are divided into four main groupings linked to 
each other and to a symbolic representation of the "understanding" of this knowledge that 
arises (or emerges) from it being placed within the context of different models and their 
associated cognitive processes. Declarative knowledge covers a broad range of informa­ 
tion, including the "Noble Goals" or "Prime Directives of the Builders Imprint level of 
the multi-level mind. The ontologies included here capture the semantics of the vocabu­ 
lary used in representing a cognitive agent's knowledge. Commonsense information may 
be captured in part by the ontologies and in part by other facts about various domains 
common to a community of cognitive agents. Other facts and their relationships- 
temporal, causal, and otherwise-are included, as are various models of objects and proc­ 
esses. Tactics, techniques, and procedures are also included as Declarative, insofar as 
they are expressed declaratively, making them amenable to manipulation by the cognitive 
agent, for example in selecting, assessing, and modifying them for suitable purposes.

Episodes are an abstraction of knowledge that is organized into temporal and/or causal 
sequences. It can be understood as being composed from Declarative knowledge that is 
organized to identify sequencing relationships. Raw sensor inputs in sequential data 
streams can constitute such knowledge when placed within a computational context that 
supports inference of the temporal relations, which may be only implicit in the data 
stream itself. Episodes may also be composed by explicit dating of related events or 
states, as in histories and some stories. Tracings of objects or processes through se­ 
quences of such episodic information constitutes knowledge of Threaded Episodes. A 
threaded episode might, for example, capture key characteristics of an actor of interest as 
they change over time.

The knowledge abstraction category of Behavior-Action Context is intended to capture 
knowledge about the relations between behavior or actions and their context, such as the 
situation and history in which they occur; the capabilities that enable them; the alternative 
futures that are conceived of as their possible consequences; their expected or actual effi­ 
cacy in achieving related goals; and the urgency with which they are planned or 
performed. Such contextual knowledge may cover actual behavior and actions that have 
been performed, as well as possible behavior and actions that are contemplated for future 
action or postulated as explanations of past events. Knowledge at the level of Behavior- 
Action Context can elaborate knowledge of a Threaded Episode to provide, for example, 
the conditions that an actor found promising for an action (or series of actions) in respect 
of the goals of the actor and its assessment of its own capabilities.

Functional Packages for Integrated Cognition

In order to identify more of the specific functional capabilities required to instantiate this 
architecture, a number of functional components are described and grouped into catego­ 
ries corresponding to the different parts of the INCOG architecture and dimensions of the 
INCOG framework. This grouping of functional components into packages can be under­ 
stood as analogous to the use of packages in object-oriented programming languages, 
such as C++ and Java. They are groupings of related functions and information. But, they
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are not necessarily independent, in that functions of one package may well require use of 
some of the functionality found in other packages.

The package groupings presented here are the following:
• Multi-Level Mind Packages

- Foundation Multi-Level Mechanisms
• Foundation Unification Packages
• Foundation Global Mechanisms Packages
• Foundation Reasoners Packages
• Foundation Domain Packages
• Foundation Discourse Support Packages

Two sets of packages are distinguished for the Multi-Level Mind. The first applies only to 
the Multi-Level Mind, while the second grouping contains foundation packages that may 
also be used by other parts of the INCOG architecture. The rest of these categories con­ 
tain foundational packages that are represented by the Foundational Processes box on the 
top level architecture diagram of Figure 18. Such packages may be used by multiple ar­ 
chitectural components. In the following subsections, each functional package is briefly 
described. A full specification of these packages is beyond the scope of this initial presen­ 
tation of the architecture. Much more work will be required to develop a full design for 
any of these packages.

Multi-Level Mind Functional Packages

We begin the identification of individual functional packages with a set that is uniquely 
assigned to the Multi-Level Mind part of the cognitive architecture. These packages oper­ 
ate together to provide apparent conscious output that appears to mimic the single 
conscious state of a human. In fact, just as for the human mind, multiple independent 
activities will occur. Going beyond human mental capabilities, alternative futures may be 
explored in greater breadth and depth and rigorously evaluated by an artificial cognitive 
agent. And, daydreaming may be an on-going activity. Unlike embodied humans, some 
of the perceptual processing units may be duplicated at will to evaluate many alternatives 
in parallel with no loss in reactive performance.

The Multi-Level Mind packages are listed in a table (Table 1) along with brief descrip­ 
tions, establishing the presentation format for all the integrated cognition packages 
identified here.
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Table 1. Multi-Level Mind Packages

Package Name Package Description

1. Behavior Adjudication and 
Unification

Nominates cognitive components and adjudicates redac­ 
tion of processes, working memory, and knowledge. 
Resolves priorities that cannot be settled in other proc­ 
esses, with rules and precedence.

2. Motivation Provides and maintain motivation, generic goals, and ob­ 
jectives for current state, both external and internal.

3. Affect Provides and maintains affective state and influence affec­ 
tive state of others.

4. The Builders Imprint Applies imprinted values and taboos through critics and 
censors to machine's functions generating visible behav­ 
ior.

5. Self-Conscious Generates adaptive behavior associated with cultural, so­ 
cial, and team behavior.

6. Self-Reflective Applies self-reflective processes utilizing representations 
of self-descriptions, deliberations, internal states, and the 
external situation to evaluate capabilities and past behav­ 
ior to develop future alternatives.

7. Reflective Applies reflective processes related to executing current 
goals and objectives. Operates with representations of de­ 
liberations, internal states, and the external situation to 
evaluate available future behavior.

8. Deliberative Applies deliberative processes related to current goals and 
objectives. Deliberative operates on representations of 
internal states, external situations, and current capabilities.

9. Learned Reactive Applies learned and evolved reactive processes. Operate 
on representations of world situations with little influence 
from internal state except for resource conservation.

10. Programmed Instinct Applies built-in core behavior and skills that only change 
though software updates.

Foundational processes used by the Multi-Level Mind and other parts of the INCOG ar­ 
chitecture are presented in Table 2.
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Table 2. Foundation Multi-Level Mind Packages

Package Name Package Description

11. Self-Model Builder and 
Maintainer

Creates and maintains a dynamic model of the current 
working memory (or alternative) and attributes, processes, 
status and state models, ownership, sharing, status, and 
projected changes of key attributes.

12. Self-Conscious Emotion 
Generator

Implements, e.g., an Ortony-like model of preferences 
[ORTNY 2003] that are related to events, actors, and ob­ 
jects that are always context dependent.

13. Self-Reflective Observer Monitors internal behavior of machine and its components 
and relates to temporal progress toward long-term and 
current goals, objectives, plans, tasks, and skills execu­ 
tion.

14. Reflection Tracer Constructs an episodic thread of internal and external 
events for use by any process to evaluate performance.

15. Cognitive Component 
Performance-Evaluator

Evaluates the present and past performance of cognitive 
components in context of goals and objectives, internal 
and external states.

16. State Transition Preference 
Generator

Generates new preferences to create a shift in machine 
behavior to achieve a new outcome consistent with pre­ 
sent goals and objectives.

17. Goals and Objectives Manages goals and objectives stack for long-term and 
short-term guidance of machine behavior.

18. Prediction and Virtual 
Planning

Manages processes that evaluate alternative futures given 
real or synthetic situation assessment, capabilities, goals, 
objectives.

19. Alternative Future 
Generator

Evaluates alternative futures given a real or synthetic 
situation, goals, objectives, and current, increased or aug­ 
mented capabilities.

20. Recommended Alternatives Produces recommended alternatives including alternative 
futures based upon existing situation and resources to in­ 
crease general understanding, situation understanding, 
and/or new capabilities.
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Package Name

21. Trans-frames

i

22. Trans-frames Learning
1

23. Process Planning and 
Analysis

24. Process Learning

Package Description

Rules of thumb supporting reactive behavior that provide 
the imagination of possible outcomes of a current situation 
or a small perturbation of the current situation.

Learn rules of thumb generated and generalized from al­ 
ternative futures generation and evaluation processes.

Analysis of a variety of processes in variety of domains, 
incorporates analogical and inductive reasoning to 
propose and evaluate new processes.

Incorporates taught or created new processes and learns 
application contexts and boundaries.

Foundation Unification Packages

Foundation packages supporting the Unification dimension of the INCOG framework are 
described in Table 3. In particular, the Creativity Generator and Exploration and Discov­ 
ery packages provide key support to the Creativity level of capability in the framework. 
The Situation Understanding package supports multiple capabilities, especially the Un­ 
derstanding capability, which also draws on the learning packages (Plan Learning and 
Skill Learning). The Behavior/Actions Context Generation package supports all unifica­ 
tion levels from Understanding to Consciousness. The Planning package is used at the 
Plan level and above, while the Skills package is accessed via all levels of unification, 
including the Reactive.

Table 3. Foundation Unification Packages

Package Name Package Description

25. Creativity Generator Self-motivated analogical and inductive reasoning to cre­ 
ate, maintain, and obsolete understanding based upon 
semantic relations between knowledge including formal, 
system, conceptual, and mental models.

26. Exploration and Discovery Explore and discover knowledge about internal and exter­ 
nal worlds, enhance understanding and alternative 
behavior.
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Package Name

27. Situation Understanding

28. Behavior/ Actions Context 
Generation

29. Plan

30. Plan Learning

31. Skills

32. Skill Learning

Package Description

Support for situation understanding in any domain based 
upon a general model and process.

Generates semantic relations to link Understanding com­ 
ponent of knowledge to possible behavior/actions in 
context of existing or hypothetical goals, objectives, and 
existing behavior/actions concept libraries.

Supports planning with generalized planners for a variety 
of domains.

Plan learning and unlearning by experience, discourse and 
instruction, e.g., captures hypothetical and executed plans 
and builds performance models and semantic relationships 
to support plan knowledge creation, maintenance, and ob­ 
solescence.

Built-in and acquired skills application and maintenance.

Skill learning and unlearning by experience, discourse, 
and instruction.

Foundation Global Mechanisms Packages

Certain cognitive packages provide functionality supporting most, if not all, aspects of 
the top-level architecture. Interface packages for working and long-term memory are the 
best example of such global foundation mechanisms since practically all functional com­ 
ponents will need to access and/or store knowledge in memory. The other global 
mechanism packages (Programming Model Observer, Self-Programming Module, Ex­ 
planation of Behavior, and Inductive Repair), while not as essential as memory access, 
can provide an invaluable service to many architectural components by enabling assess­ 
ments of performance and correction of functional and knowledge deficiencies.
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Table 4. Foundation Global Mechanisms Packages

Package Name Package Description

33. Working Memory Interface Access to distributed working memory representing 
known state of world, problems spaces, alternative fu­ 
tures, and distributed components. Working memory 
includes iconic and symbolic representations for states, 
goals, sub-goals, plans, skills, actions, alternative futures, 
events, actors, and objects of present interest.

34. Long Term Memory 
Interface

Access to long-term memory for any process supporting 
multi-level mind processing. Creates, modifies, and obso- 
letes knowledge structures based on instruction, 
experience, and creativity provided by other global 
mechanisms.

35. Self-Programming Module Reasoners are supported by program and code generators 
and existing problem space libraries.

36. Programming Model 
Observer

Self-generated model observers specialized to each model 
type. Create, modify, and obsolete visibility to embedded 
Reasoners.

37. Explanation of Behavior All packages support explanation of knowledge used, 
processes invoked, and status; this package integrates and 
presents explanations in the context of system model, 
world model and goals, objectives, plans, tasks, skills, and 
actions.

38. Inductive Repair Inductive repair reviews system performance with system 
model and determines process obsolescence and redaction 
of working memory and knowledge base structures gener­ 
ated.

Foundation Reasoners Packages

The Reasoning Mechanisms dimension of the INCOG framework is supported by sepa­ 
rate packages for each of the principal capabilities in the dimension, as described in Table
5.
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Table 5. Foundation Reasoners Packages

Package Name Package Description

39. Deductive Deductive reasoning is a branch of cognitive psychology 
investigating cognitive systems ability to recognize a spe­ 
cial relation between statements.

40. Nonmonotonic The subject matter of nonmonotonic reasoning is that of 
developing reasoning systems that model the way in 
which commonsense is used by humans.

41. Probabilistic Probabilistic reasoning is the formation of probability 
judgments and of subjective beliefs about the likelihood of 
outcomes and the frequencies of events.

42. Inductive Inductive reasoning is reasoning from facts to a generali­ 
zation about them. Inductive reasoning may infer simple 
empirical generalizations. Induction is one kind of infer­ 
ence that introduces uncertainty, hence conclusion must 
validated through modeling and simulation and/or ex­ 
periment.

43. Abductive Abductive reasoning is reasoning in which explanatory 
hypotheses are formed and evaluated.

44. Analogical Analogy is (1) similarity in which the same relations hold 
between different domains or systems; (2) inference that if 
two things agree in certain respects then they probably 
agree in others.

Foundation Domain Packages

The Reasoning Domains dimension of the INCOG framework is supported by a group of 
packages whose mapping to the principal capabilities in the dimension is generally obvi­ 
ous, per the descriptions in Table 6. While spatial and temporal modeling are combined in 
a single package here due to their similarities, this package (45) can be expected to de­ 
compose with specialized components for those aspects of spatial and temporal reasoning 
that benefit from separate treatments. Advanced capabilities involving spatial, temporal, 
and causal modeling are delegated to a separate package (47) for scientific modeling. 
Lower-level support for spatial and temporal modeling of sensors and effectors also has 
separate support, from the Kinesthetics and Perceptual package (48). A package for 
commonsense assessment of situations (49) is supplemented with one focused on learn­ 
ing of commonsense in social and economic situations (50) to emphasize the special
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needs of this capability. A final reasoning domain package (51) is allocated to resources, 
their modeling, monitoring, and utilization.

| Table 6. Foundation Domain Packages

Package Name Package Description

45. Spatial and Temporal 
Relations

Support for spatial and temporal reasoning, invocation, 
and working memory; and for knowledge creation, main­ 
tenance, and obsolescence.

46. Causality Relationships Support for causal relationships in working memory and 
knowledge creation, maintenance, and obsolescence in­ 
cluding current and past episodes.

47. Math, Physics, Chemistry, 
Biologic, and Other Sciences

Support for scientific concepts, analysis, modeling, and 
simulation for application to a variety of problems.

48. Kinesthetics and 
Perceptual

Support for embodiment in different applications of the 
artificial mind for adapting sensors and actuators of dif­ 
ferent types; also includes perceptual processors for 2D 
and 3D image processing including feature extraction.

49. Commonsense in Social 
and Economic Situations

Supports commonsense assessment of current situation; 
supports commonsense rules of thumb attributes, relation­ 
ships, and behavior.

50. Commonsense in Social 
and Economic Situations 
Learning

Supports development of commonsense, social and eco­ 
nomic knowledge from experience and instruction.

51. Resources Models and evaluates external resource states, projects 
resource availability, evaluates known history and pro­ 
vides goals, objective plan, tasks, and actions to meet 
current objectives and possible future objectives.

Foundation Discourse Support Packages

Separate foundation packages are identified to support linguistic discourse, including 
language generation and understanding, as described in Table 7.
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Table 7. Foundation Discourse Support Packages

Package Name Package Description

52. Discourse Generator Generates proposed discourse to support a specific con­ 
text, goals and objectives. Includes processes to redact 
previous interpretations of linguistic inputs.

53. Context Interpreter Identifies current context for discourse and provides ap­ 
propriate semantics links to relevant knowledge, tracks 
threads of context associates with each goal and objective, 
and discourse episodes.

54. Listener and Parser Semantically annotates voice or text episodes with lin­ 
guistic and emotion expression relations.

55. Word, Phrase, Sentence Provides word, phrase, sentence, and episode syntax and 
semantics in context.

56. Human Emotion 
Interpreter

Human and machine composite linguistic and visual in­ 
terpreter for episode emotion, e.g. mood, emphasis, etc.

57. Emotion Expression Identifies emotion expression expressed though voice or 
body state or movement, embedded emotion signals.

58. Human Emotion Library Provides interpretation of human emotion expressed 
through speech, language, and visual perception and pro­ 
vides emotion expression learning from experience.

59. Machine Emotion Library Provides voice, text and visual mechanisms to express 
current emotional state of the machine to support dis­ 
course and team activity.

60. Command, Instruction 
Interpretation, and Dialog

Interprets commands and instructions in context of current 
working memory model, maintains an external dialog as 
required.

61. Speech and Text Processing Semantic interpretation of external speech and text inputs 
and internal stream of consciousness available to all proc­ 
esses with linguistic inputs.
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Example Package Elaborations

A diagram of a possible functional decomposition of the Situation Under­ 
standing package (27) is provided to illustrate how a functional package 
may be decomposed into other functional components.

Figure 20 shows numerous aspects of one possible decomposition of situation under­ 
standing derived from a model of situation awareness used in information warfare 
[AGHS 2001]. The use of the function Generate Alternative Futures in this decomposi­ 
tion illustrates how distinct functional packages in the INCOG architecture may overlap, 
as this aspect of situation understanding would naturally call upon capabilities in the Al­ 
ternative Future Generator package (19).

Identify 
Possible Patterns

Assess 
Capabilities

Relevant Prior 
Knowledge

Match
Tactics, Techniques, 

Procedures

Assess 
Opportunities

Assess Context -
Values, Beliefs,

Taboos
Extract

State & Object
Information

Generate
Alternative

Futures

Figure 20. Situation Understanding Model (27)

A particular functional package description might also be elaborated via textual descrip­ 
tions of the how the package functions in support of cognition. A brief textual elaboration 
of the Self-Conscious Emotion Generator package (12) is provided here to illustrate and 
to better explain its distinctive functionality.

Self-Conscious emotion addresses: To what degree are the events, actions, and object at­ 
tributes in machines cognition window in compliance with learned values, censors, 
ideals, and taboos [ORCLCO 1988]. The six-level model of the human mind developed 
by Professor Marvin Minsky considers long-term memory associated with learned values, 
censors, ideals, and taboos as drivers of the self-conscious emotion level of the mind 
[MNSKY 2004]. There is a valence to the emotion and a resulting degree or strength met-
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ric for preference [ORCLCO 1988]. In the context of discourse, selected use of vocabu­ 
lary communicates valence and preference strength; this is true for human voice, text, and 
video inputs, and could be true for cognitive system outputs, voice, and multi-media. Dy­ 
namic inputs affecting self-conscious emotion include alerts and status notification from 
all other components of the cognitive system. The Self-Conscious Emotion provides mo­ 
tivation to change focus as required.

Cognitive Architecture Ontology

Any cognitive system that approaches human-level cognitive capacities will require a 
language (or languages) to express concepts, reason with them, and communicate them to 
others. And, the terms (words) of that language, which represent individual concepts, will 
need some representation of their semantics (or meaning) in order to enable meaningful 
processing of knowledge expressed in the language, as well as for communicating such 
meanings effectively to other cognitive agents, who may not share the same concepts or 
language.

An ontology is a formal specification of the semantics of terms used in a vocabulary. A 
popular definition by one of the pioneers in ontology development is:

In the context of knowledge sharing, I use the term ontology to mean a specifica­ 
tion of conceptualization. That is, an ontology is a description (like a formal 
specification of a program) of the concepts and relationships that can exist for an 
agent or a community of agents. This definition is consistent with the usage of on­ 
tology as set-of-concept-defmitions, but more general. [GRUBER, 1993].

Ontologies are useful as part of an architectural specification for cognitive agents in sev­ 
eral respects. An ontology (or set of ontologies) can establish a uniform vocabulary for 
use by a community of cognitive agents. This can enable considerable precision in com­ 
munications among the agents of such a community. But, just as important is that an 
ontology provides a specification of the semantics of a vocabulary to be used within a 
cognitive agent. In particular, in the context of a cognitive architecture conceived of as 
composed of many distinct functional components communicating with each other to re­ 
alize higher-level cognitive processes, an ontology (or set thereof) is essential to establish 
common understanding of terminology used by the different components. Such ontolo­ 
gies not only enable communications, they enable a modular architecture in which 
different realizations of a particular type of component (or functional package) can be 
swapped in and out to explore alternative implementations without any need to adjust the 
other components that interact with it.

Complex architectures, such as the one sketched here, may define a single overarching 
ontology to cover all information exchange, or may define separate ontologies to cover 
distinct vocabularies used between subgroups of architectural components. Even a single 
ontology may be divided into parts based upon natural groupings of related concepts. Fol­ 
lowing is a list of a number of such concept groupings (here referred to as libraries) that 
have been identified as required to support certain components of the presented INCOG 
architecture.
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• Abstract Concept Libraries
a Sets, Sequences, Numbers and Arithmetic, Relations, Mathematics,.. .

• Human Natural Language Libraries

• Human Emotion Foundation Library
a Human Emotional Expression Library 

I - Vocal intonations, words, facial expression, and gesture

• Machine Emotion Foundation Library

• Multiple Domain Concepts Ontology Library 
| - http://www.daml.org/ontologies/, http://www-ksl-svc.stanford.edu:5915/

• Epochal Dialog Ontology Library

• Epochal Frame, Trans-frame, ... Library

• Future Prediction Ontology Library by Domain

• Learning Strategies Ontology Library

Abstract concepts are grouped separately from concrete concepts, such as those that refer 
to physical objects, their properties, and relationships. Ontologies for human natural lan­ 
guage are distinguished in order to allow artificial cognitive agent ontologies some 
freedom from natural language constraints, while still allowing them to communicate 
with humans using a variety of human natural languages. Emotion libraries may also de­ 
fine different variations on emotional expression for machines than they do for humans, 
as reflected in the dual emotion libraries listed. Separate ontological categories may also 
be distinguished for epochal dialogs and frames, as well as for types of predictions and 
learning strategies, as listed here. The Multiple Domain Concepts ontology library is a 
catch-all category that can capture ontological groupings for many other domains of 
knowledge, some of which can be found in special topic ontologies documented at the 
cited reference websites.

Learning Mechanisms

Learning has long been argued to be an essential capability in any system that aspires to 
intelligence, much less to human-level cognitive performance. There are many diverse 
learning strategies and different ways of categorizing them. The INCOG framework di­ 
vides learning strategies into the following six categories, based roughly on the amount 
and types of inference required of the learner during the course of learning:

• Rote
• Stimulus Response
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• Process Learning
• Instruction
• Discourse
• Exploration and Discovery

Rote learning requires practically no inference. Stimulus response learning inherently in­ 
volves classification, i.e., of the presented stimuli to a generalization of them which 
enables a conditioned response to stimuli of that type. Process learning may include a 
wide variety of inferential capabilities in order to support learning from mistakes. Infer­ 
ence involved in exploration and discovery can range from the quite minimal, in learning 
simple facts about the environment, to the most demanding, in devising, executing, and 
evaluating experiments to discriminate among alternative scientific theories.

The higher-level learning strategies may involve many diverse learning mechanisms, 
such as the following:

• Analogical Reasoning
• Case-based Reasoning
• Classification and Regression Trees
• Genetic Algorithms
• Genetic Programming
• Neural Networks 

	Rule Induction
• Statistical Pattern Recognition - Bayesian, Nearest Neighbor

Although descriptions of these mechanisms are beyond the scope of this paper, the reader 
can find such descriptions in general machine learning texts, such as [MITCHL 1997].

New Model Capabilities for Learning

The most capable integrated cognitive systems will have special abilities to manipulate 
their own learning mechanisms (or processes) and related knowledge representations. In 
particular, such learning systems will be able to generate new knowledge representations 
and related learning processes, e.g. rules or others, in various domains. But, that does not 
mean that such a system needs to begin as a "tabula rasa," free of learning processes and 
knowledge. Rather, initial learning processes and knowledge stores may be used to boot­ 
strap learning in such systems. And, it is expected that even the most capable cognitive 
systems will require built-in knowledge and process generators to allow linguistic and 
other perceptual inputs to be dynamically related to its semantic needs. However, all 
learning processes and their knowledge representations will be evaluated over time, 
nominated, tested, validated, and discarded as warranted. In order to support these 
evaluations and revisions to learning knowledge and processes, such cognitive systems 
will require some type of self-programming model. They will need to be able to repro- 
gram themselves to learn most effectively in different contexts.
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Linguistic Learning

Language is given special attention in this strawman cognitive architecture because lin­ 
guistic capabilities are seen as essential for some higher-level cognitive processes. We 
will not try to argue this view here, although it is certainly supported by our experience 
with natural cognitive systems. Linguistic capabilities are especially important for many 
types of learning, which are enabled by linguistic communication. In this section, we 
briefly review how learning from external information sources via language fits into the 
strawman cognitive architecture.

Basic processes for knowledge acquisition from external linguistic sources are illustrated 
by the diagram on the left side of Figure 21. This shows how different levels of linguistic 
representations may enter the language processing facilities at different levels. Speech 
input arguably requires special auditory processing (Voice Recognition) before it is rec­ 
ognized as speech. Recognized linguistic elements of speech (e.g., phonemes and words) 
can then be passed on to a Natural Language Processing (NLP) Algorithm. Simplified 
text input can bypass the voice processing algorithms, and may be input directly to the 
NLP algorithm in some cases. Machine encoded text input, in particular, requires no spe­ 
cial sensory recognition capabilities in machines, although humans will require text 
recognition processing (typically visual) to prepare written text for NLP. More structured 
text, such as XML tagged text in the News Industry Text Format (NITF) might bypass 
basic NLP algorithms, although it may still require processing to establish "episode con­ 
text," e.g., organizing facts into ordered episodes. The most highly structured text, such 
as that used in intelligent software agent communication or knowledge bases might even 
bypass the Episode Context Generator. But, even at this level, linguistic information will 
require Use Dependent Context Analysis to establish its relevance to potential use in be­ 
havior. Hence, the diagram shows all input linguistic information going through this 
processing stage before it emerges as use dependent knowledge that can be effectively 
used in Unified Behavior.
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Knowledge Acquisition Processes

"Use Dependent" Knowledge 
Generation for Unified Behavior

Speech 
Input

' Ptvas* or Sentence Sequence 
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Analyses Frequency 
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M.il iiUonii;

Knowledge generation 
templates

Use Process Library 
Situation Understanding 
(27. 53)
Concept 
Extension/Creation (25, 42)

Goal Generation (17) 

Objectives Generation (17) 

Alternative Futures (18) 

Planning & Tasking (29) 

Actions (28)

'iit of sctn ai multiple levels

Figure 21. Relationship Between Linguistic Learning and Unified
Behavior - Step 1

The right side of Figure 21 shows a Use Process Library, which provides functional ca­ 
pabilities for both Use Dependent Context Analysis and Use Dependent Knowledge 
Generation drawn from the functional packages of the strawman architecture. Library 
components are labeled here with the numbers of the utilized functional packages. Alto­ 
gether, this figure illustrates the first main step in linguistic learning - the recognition and 
contextual understanding of linguistic inputs. The next step, illustrated by, shows how 
such linguistic knowledge is stored in the Knowledge and Process Library.
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Figure 22. Relationship Between Linguistic Learning and Unified
Behavior - Step 2
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Figure 22 illustrates the use of a Self-Programming Model to generate process knowledge 
that is then stored in the Knowledge Process Library to alter or augment existing knowl­ 
edge about how to do things, including knowledge about how to learn. This ability, not 
just to learn new facts, but to learn how to use knowledge and to learn new and revised
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processes, cognitive and otherwise, is characteristic of the highest levels of learning ca­ 
pabilities.

Learning Expectations

Progress in learning systems will require systems capable of self-generation of knowl­ 
edge and related processes. High-level cognitive learning requires abilities to both 
validate candidate knowledge and to unlearn putative knowledge and processes that are 
invalidated. Learning must be part of the integrated cognition architecture.

Today's "intelligent" or "expert" systems depend primarily on structured rules (possibly 
based on the formalized declarative semantics of an ontology), which are hand coded into 
knowledge and processes. Tomorrow's approach should be able to use a core of such 
hand coded knowledge to bootstrap the cognitive system, which can then acquire new 
information via structured text or simplified English inputs. Future, more advanced, cog­ 
nitive systems will be able to use free form text available from libraries and the World 
Wide Web, as well as speech inputs and interactive dialogs to acquire knowledge. And, 
such advanced learning systems would, by no means, be limited to strictly language- 
based learning. Text and speech will be supplemented with pictures and diagrams. And, 
real world sensory inputs from visual, auditory, and other sensors will support other 
modes of knowledge acquisition and learning.

Structure Charts for Composite Cognitive Functions

The capabilities of the functional packages of the strawman cognitive architecture may be 
combined to create higher-level functionality, or may themselves be composed out of 
other functional packages. In this section, a couple of examples are provided of such 
composite cognitive functions. Structure charts are used to display the relationships be­ 
tween packages and the flow of information among them.

Apparent Conscious Behavior

Cognitive agents that exhibit apparently conscious behavior are likely to be drawing upon 
the functional cognitive packages shown in Figure 23. This structure chart shows inputs 
of alerts, and other status data, along with linguistic information annotated by emotional 
and other contextual information. These are accepted by the Behavior Adjudication and 
Unification package, which gets input on high-level goals and taboos from The Builders 
Imprint, and hands off its behavioral assessments to the State Transition Preference Gen­ 
erator. Preferences among competing goals are adjudicated in collaboration with Process 
Planning and Analysis, and the results propagated to the Discourse Generator, and oth­ 
ers. The Discourse Generator is shown as making use of the Machine Emotion Library to 
assess and impress the appropriate emotional tone on discourse. Each of these processes 
will make use of Working Memory and Long-Term Memory as warranted.
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Figure 23. Static structure chart for apparent conscious behavior

Self-Reflective Package

An example of decomposition of a functional package into supporting functional pack­ 
ages is shown in Figure 24. Self-reflection is shown as being initiated by inputs from 
discourse, alerts, status notifications, actions, and planned actions, which are processed 
first by the Cognitive Component Performance Evaluator. In the context of self- 
reflection, the relevant inputs will likely concern perceptions/alerts on the self, including 
those generated by external actors. This uses the Goals, Objectives, Metrics package as a 
basis for evaluating self-performance, and shares its assessments with the Alternative Fu­ 
ture Generator. This generates relevant possible alternative futures using the Trans- 
frames packages to determine possible outcomes of the current situation or small pertur­ 
bations thereof. The resulting possible alternative futures relative to current situation, 
goals, and capabilities are processed by the Recommended Alternatives package to pro­ 
duce recommended alternatives. Process Planning and Analysis is used as warranted for 
analyzing relevant processes that may affect alternative futures of interest.

The result of this whole self-reflective process is a set of self-reflective alerts and/or 
status notifications, along with recommended actions when warranted. When self reflec­ 
tive performance assessments are neutral, they may not warrant any particular action or 
change of action. Negative self-assessments may require corrections to current behavior 
or adjustments to knowledge and process libraries to promote future corrections. Positive 
self-reflective assessments may serve to reinforce behavior. In any case, the output self- 
reflection results may trigger further analysis of the basis for the observed performance in 
order to avoid or repeat similar results in the future.
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Abbreviations and Acronyms

AAAI American Association for Artificial Intelligence

ACT-R Adaptive Control of Thought or Atomic Components of Thought - Rational

AGHS Advanced GPS Hybrid Simulator

AGIRI Artificial General Intelligence Research Institute

AI Artificial Intelligence

APOC Activating-Processing-Observing-Components

BDI Belief Desire Intention

C2 Command and Control

CCRP Command and Control Research Program

CMU Carnegie Mellon University

CSLI Computer Science Learning Lab

DARPA Defense Advanced Research Projects Agency

DARWIN a core operating system

dMARS Distributed Multi-Agent Reasoning System

DoD Department of Defense

PCS Future Combat System

FIPA ACL Foundation for Intelligent Physical Agents Agent Communication Language

GPS General Problem Solver

HRL (formerly Hughes Research Laboratories, now just HRL Laboratories, LLC)

ICARUS (not an acronym)

IDA Institute for Defense Analyses

Acros-1



INCOG Integrated Cognition

IPTO Information Processing Technology Office

IRS | Intelligent Reasoning Systems

ISLE Info Systems Learning

JAM another version of PRS

KIF Knowledge Interchange Format

KQML Knowledge Query and Manipulation Language

LISA Laser Interferometer Space Antenna

MAC/FAC Many Are Called but Few Are Chosen

MIT Massachusett's Institute of Technology

MITECS MIT Encyclopedia of Cognitive Science

NITF News Industry Text Format

NLP Natural Language Processing

NL-SOAR unified language capability built in the Soar cognitive architecture

NSI Neurosciences Institute

ONR Office of Naval Research

PRS Procedural Reasoning System

SAGE Self-Aware Adaptive Generalization Engine

SEQL (apparently not an acronym)

SME Structural Mapping Engine

SOAR general cognitive architecture for developing systems that exhibit intelligent 
	behavior

UC University of California

UCB University of California, Berkeley

UCLA University of California, Los Angeles

UMPRS University of Michigan implementation of PRS

	Acros-2



URL Uniform Resource Locator

US United States

XML Extensible Markup Language

Acros-3





REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching 
existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this 
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington 
Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. 
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of 
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1 . REPORT DATE (DD-MM-YY)

October 2004

2. REPORT TYPE

Study

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

Integrated Cognition - A Proposed Definition of Ingredients, A Survey of 
Systems and Example Architecture

5a. CONTRACT NUMBER

DASW01-98-C-0067/ 
DASW01-02-C-0012

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBERS

AUTHOR(S)

Robert M. Rolfe, Task Leader 
Brian A. Haugh

5d. PROJECT NUMBER

5e. TASK NUMBER

DA-5-2326
5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES

Institute for Defense Analyses 
4850 Mark Center Drive 
Alexandria, VA 22311 -1882

8. PERFORMING ORGANIZATION REPORT 
NUMBER

IDA Paper P-3855

SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

DARPA
3701 N. Fairfax Drive
Arlington, VA 22203-1714

10. SPONSOR'S / MONITOR'S ACRONYM

DARPA
11. SPONSOR'S / MONITOR'S REPORT 

NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release, unlimited distribution: 16 November 2005.
13. SUPPLEMENTARY NOTES

14. ABSTRACT

Numerous cognitive scientists believe that a human-level thinking machine must be composed of potentially hundreds of 
distinct subsystems with different structures, reasoning and learning mechanisms, and knowledge representations —with 
these components and their inter-relationships defining a (or a family of) dynamic architecture(s). DARPA tasked IDA to 
help define a program, integrated cognition, to specify architectural strategies and develop infrastructure mechanisms (if 
needed) that enable computation based systems to achieve a reasonable facsimile of human cognition. IDA developed a 
new framework to understand the problem of integrated cognition, evaluated the current state of knowledge, and has 
proposed a straw man architecture to kick-start the effort. The benefits of integrated cognition for thinking machines 
would be immense. This is truly a DARPA hard problem, the solution of which will have huge potential payoffs, in 
particular, to realize intelligent C2, C4ISR, and robotic force elements.

15. SUBJECT TERMS

Cognitive systems, artificial intelligence, multi-level mind, machine knowledge, episodic memory, self-consciousness, 
self-reflective, reflective, deliberative, reactive, instinct, planning system, goal driven behavior, learning strategies, 
machine discourse, machine exploration, reasoning domains, reasoning mechanisms, integrated cognition.

16. SECURITY CLASSIFICATION OF:

a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

17. LIMITATION OF 
ABSTRACT

Unlimited

18. NUMBER 
OF PAGES

90

19a. NAME OF RESPONSIBLE PERSON

Ms. Debra Amick

19b. TELEPHONE NUMBER (Include Area Code)

(571)526-4163

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std, Z39.18



r



•• , . , . , : -. ' ' •• .-•-.-!' , .

•A-0 •:-/>' -":•;

'

I;'!;;;::'•-;-i^ r V.! ; '^';;-"ti' "X<' ^' '',VV\ , ; /-' lv-'> .'

o-'^V - -. •• / -'•$.--£' .. .• " . *'••',• ,;•''- ':"V^->,- ' , <•-''"i"^'~ * •>'• '• • '•^•^ V^^i.?^^^.^;---? --v '•' ,
•- "\ :; ,V"rr,,,-v, S. Vi/,^^ vr,v,:v^ 'r •>•-•"•;• ' '•'^•> t K- "'.•:•.'•: "'•;' ..•. .v,-^'1 '.' -.• v-;'.1 :;,- 1' •> 'r -^^^-' : - r ':^^ •:--:.^-.;Y 1 ^.',

•".--' '-V-.' • --u : - trV'; /•":v'% ; -' < '^^M.'C.'V^ -°\,

^f,

- •.
: ' .



tl


	blank: THIS PAGE INTENTIONALLY LEFT BLANK
	Copyright IDA/Scanned June 2007: Copyright IDA/Scanned June 2007


