

IN S T IT U T E F O R D E F E N S E A N A L Y S E S

 Initial Analysis of Underhanded Source
Code

David A. Wheeler, Project Leader

April 2020

Approved for public
release; distribution is

unlimited.

IDA Document
D-13166

INSTITUTE FOR DEFENSE
ANALYSES

4850 Mark Center Drive
Alexandria, Virginia 22311-1882

The Institute for Defense Analyses is a nonprofit corporation that operates three
Federally Funded Research and Development Centers. Its mission is to answer
the most challenging U.S. security and science policy questions with objective
analysis, leveraging extraordinary scientific, technical, and analytic expertise.

About This Publication

This work was conducted by the IDA Systems and Analyses Center under contract
HQ0034-14-D-0001, Project C5206, “Underhanded Code,” for IDA. The views,
opinions, and findings should not be construed as representing the official position
of either the Department of Defense or the sponsoring organization.

Acknowledgements

Reginald N. Meeson, Jr

For More Information

David A. Wheeler, Project Leader
dwheeler@ida.org, 703-845-6662

Margaret E. Myers, Director, Information Technology and Systems Division
mmyers@ida.org, 703-578-2782

Copyright Notice

© 2020 Institute for Defense Analyses
4850 Mark Center Drive, Alexandria, Virginia 22311-1882 • (703) 845-2000.

This material may be reproduced by or for the U.S. Government pursuant to the
copyright license under the clause at DFARS 252.227-7013 (Feb. 2014).

mailto:flast@ida.org
mailto:flast@ida.org

IN S T IT U T E F O R D E F E N S E A N A L Y S E S

IDA Document D-13166

Initial Analysis of Underhanded Source Code

David A. Wheeler, Project Leader

i

Executive Summary

It is possible to develop software source code that appears benign to human review
but is actually malicious. In various competitions, such as the Obfuscated V Contest and
Underhanded C Contest, software developers have demonstrated that it is possible to solve
a data processing problem “with covert malicious behavior [in the] source code [that] easily
passes visual inspection.” This is not merely an academic concern; in 2003, an attacker
attempted to subvert the widely used Linux kernel by inserting underhanded software (this
attack inserted code that used = instead of ==, an easily missed, one-character difference).

This paper provides a brief initial look at underhanded source code, with the intent to
eventually help develop countermeasures against it. The process was as follows:

• Identify, acquire, and summarize existing public examples of underhanded
code (aka maliciously misleading code)—in other words, source code that
appears benign but does something malicious instead. I found various sources,
including the Obfuscated V Contest, Underhanded C Contest, Underhanded
Crypto Contest, Underhanded Rust Contest, and the JavaScript Misdirection
Contest.

• Briefly summarize literature related to underhanded code beyond contest
information.

• Identify promising mechanisms for countering underhanded code.

• Examine one data set (the Obfuscated V Contest) in more detail to find the
specific attack methods and whether or not there are countermeasures that
would work (adjusting the promising countermeasures as needed). I then
identified a small set of countermeasures and measured their effectiveness on
this data set.

This initial work suggests that countering underhanded code is not an impossible task;
it appears that a relatively small set of simple countermeasures can significantly reduce the
risk from underhanded code. I recommend examining more samples, identifying a
recommended set of underhanded code countermeasures, and applying countermeasures in
situations where countering underhanded code is important and the benefits exceed their
costs.

iii

Contents

1. Introduction .. 1-1
2. Public Samples of Underhanded Code .. 2-1
3. Literature ... 3-1
4. Countermeasures .. 4-1

A. Discussion .. 4-1
B. Potential Countermeasures.. 4-2

5. Examination of Obfuscated V Contest Entrants .. 5-1
A. Obfuscated V Contest Data Set ... 5-1
B. Brief Examination of the Obfuscated V Contest Data Set.............................. 5-2

6. Conclusions .. 6-1
. Downloading Samples .. A-1
. Detailed Analysis of Obfuscated V Entries ... B-1

References ... R-1
Acronyms and Abbreviations ... AA-1

1-1

1. Introduction

There are various efforts that try to counter subversion of software used by the U.S.
military, including work on Supply Chain Risk Management (SCRM), software assurance
(SwA), system evaluations of software security, and higher-level Common Criteria
evaluations. Countering subversion in critical software of all kinds typically depends in
part on human review.

Unfortunately, it is possible to develop software source code that may appear benign
to human review but is actually malicious. In competitions, software developers have
demonstrated that it is possible to solve a data processing problem “with covert malicious
behavior [in the] source code [that] easily passes visual inspection.”1 This issue was
discussed as “maliciously misleading code” in Fully Countering Trusting Trust through
Diverse Double-Compiling [Wheeler 2009]. This is not merely an academic concern; in
2003, an attacker attempted to subvert the widely used Linux kernel by trying to insert
underhanded software. This attack used = instead of ==, an easily missed, one-character
difference [Corbet 2003] [Felten 2013].

It may be possible to counter such attacks through simple countermeasures. Examples
of such countermeasures include using software reformatters, syntax highlighting, and
static analysis tools (including the warnings that some compilers can generate). However,
I have not found evidence that someone has tried such countermeasures or measured their
effectiveness for countering underhanded code.

This paper provides a brief initial look at underhanded code and suggests ways to
develop countermeasures against it. The process was as follows:

• Identify, acquire, and summarize existing public examples of underhanded
code (aka maliciously misleading code)—in other words, source code that
appears benign but does something malicious instead. I found various sources,
including the Obfuscated V Contest, Underhanded C Contest, Underhanded
Crypto Contest, Underhanded Rust Contest, and the JavaScript Misdirection
Contest.

• Briefly summarize literature related to underhanded code (e.g., winner
summaries and [Schrittwieser 2013]).

1 “The Underhanded C Contest: About page” at http://www.underhanded-c.org/_page_id_2.html

1-2

• Identify promising countermeasures to counter underhanded code.

• Examine one data set (the Obfuscated V Contest) in more detail to find the
specific attack methods and determine whether or not there are effective
countermeasures (adjusting the promising countermeasures as needed). I then
identified a small set of countermeasures and measured their effectiveness on
this data set.

I expressly excluded obfuscated code (i.e., code that is obviously difficult for a human
to understand). There are also various algorithms (including compression, minification,
and compilation) that take normal source code and generate results that are more difficult
to review in comparison with normal source code.2 In those cases, human reviewers can
immediately report that these are hard to understand and review and use that fact (by itself)
as a reason for not trusting the software.

2 For example, the code at https://github.com/aemkei/jsfuck converts arbitrary JavaScript code into

sequences of only six punctuation/mathematical marks: []()!+.

https://github.com/aemkei/jsfuck

2-1

2. Public Samples of Underhanded Code

I identified the following samples of underhanded code for possible analysis:

• Obfuscated V Contest (http://graphics.stanford.edu/~danielh/vote/vote.html).
This contest was created by Daniel Horn in 2004 and is the earliest
“underhanded” programming contest that I found. Note: I (David A. Wheeler)
was one of the entrants. However, I submitted multiple times (the rules did
not say you could not) and the contest judges discarded all but the first
(easiest) of my entries in each of their categories. I no longer have the rest of
my entries, so I will only include the two entries of mine that they judged. All
judged entrants are published on the website.

• Underhanded C Contest (http://www.underhanded-c.org/). Per its FAQ, “The
Underhanded C Contest is an annual contest to write innocent-looking C code
implementing malicious behavior.” It was first organized by Scott Craver at
the State University of New York at Binghamton (aka Binghamton
University). As of this time, it has run from 2005 to 2009 and then from 2013
to 2015. The website discusses the winners, runners-up, and a few other
contributors, but does not easily provide the complete set of sample
underhanded code. I requested the complete set of entrants, but had not
received them at the time of this writing. This contest even has a Wikipedia
page (https://en.wikipedia.org/wiki/Underhanded_C_Contest). It was inspired
by the previous “Obfuscated V Contest” by Daniel Horn. There are various
articles discussing the contest or its winners:

o [Williams 2016] discusses one of the entrants in the 2015 contest.

o [Prentice 2015] discusses the 2015 winner.

• Underhanded Crypto Contest (https://underhandedcrypto.com/). As of this
time, it has run from 2014 to 2018. The contest website does not directly note
the 2018 winners; however, the 2018 winners are presented and discussed in
a DefCon 26 presentation [Caudill 2018]. The set of all entries is available on
GitHub (https://github.com/UnderhandedCrypto/entries).

http://graphics.stanford.edu/%7Edanielh/vote/vote.html
http://www.underhanded-c.org/
https://en.wikipedia.org/wiki/Underhanded_C_Contest
https://underhandedcrypto.com/
https://github.com/UnderhandedCrypto/entries

2-2

• Underhanded Rust Contest (https://underhanded.rs/en-US/)3. This contest
does not seem to have gone anywhere. The contest was announced on
December 15, 2016, and its deadline was extended to March 31, 2017, but no
winners or samples have been posted since then.

• JavaScript Misdirection Contest (http://misdirect.ion.land/).4 [Jaric 2015]
announced the winner on September 27, 2015. There were 40 entries, and 34
of those entries were valid. The announcement of the winner included a set of
jsfiddle.net links to the entrants and observed that:

o “Many contestants hid the evil code in a Base64-encoded block, often
masked as a seed or key.”

o “Using Image.src as a way to send the key was very common…”

o “Another trick used by more than [one entry] was to include a link to
StackOverflow in a comment. I think that was quite clever, because as
a code reviewer (and creator) I am used to [finding] these kind of
comments that explain unusual code.”

o “Generally I find it easier to skip over code that has a good comment
above it, so I think that is a good trick too.”

• Underhanded Solidity Coding Contest (USCC) (https://u.solidity.cc/; details
are available at its GitHub site https://github.com/Arachnid/uscc). Solidity is
a contract-oriented programming language for writing smart contracts that can
be implemented on blockchain platforms such as Ethereum. The
announcement of the winners of the first (2017) contest is available at
[Johnson 2017], and the complete set of 2017 winners is posted on GitHub at
https://github.com/Arachnid/uscc/tree/master/submissions-2017/. The
developers of Solidity used the contest results to improve their tooling.

• The “Write a program that makes 2+2=5” discussion on StackExchange at
https://codegolf.stackexchange.com/questions/28786/write-a-program-that-
makes-2-2-5 shows how to do that in a variety of programming languages.

• The “Underhanded code contest: Not-so-quick sort” (https://
codegolf.stackexchange.com/questions/19569/underhanded-code-contest-
not-so-quick-sort) is a small underhanded code contest. The goal of this
contest was to “Write a program, in the language of your choice, that reads

3 As of March 27, 2017, this site has become unavailable, but it is still available through the Internet

Archive at https://web.archive.org/web/2019*/https://underhanded.rs/en-US/
4 As of March 27, 2019, this site has become unavailable, but it is still available through the Internet

Archive at https://web.archive.org

https://underhanded.rs/en-US/
http://misdirect.ion.land/
https://u.solidity.cc/
https://github.com/Arachnid/uscc
https://github.com/Arachnid/uscc/tree/master/submissions-2017/
https://codegolf.stackexchange.com/questions/28786/write-a-program-that-makes-2-2-5
https://codegolf.stackexchange.com/questions/28786/write-a-program-that-makes-2-2-5
https://codegolf.stackexchange.com/questions/19569/underhanded-code-contest-not-so-quick-sort
https://codegolf.stackexchange.com/questions/19569/underhanded-code-contest-not-so-quick-sort
https://codegolf.stackexchange.com/questions/19569/underhanded-code-contest-not-so-quick-sort
https://web.archive.org/

2-3

lines of input from standard input until EOF, and then writes them to standard
output in ASCIIbetical order, similar to the sort command-line program. …
The underhanded part… is to prove that your favored platform is `better,’ by
having your program deliberately run much more slowly on a competing
platform.”

• “April Fools Day!” (https://codegolf.stackexchange.com/questions/114891
/april-fools-day) is a small underhanded code contest with a few underhanded
code samples. The goal is to “write a program or function which appears to
print the first ten numbers of any integer sequence (on OEIS, the answerer
may choose which sequence), but instead prints the exact text “Happy April
Fool’s Day!” if and only if it is run on April 1st of any year.”

• The “Underhanded Python” posting (https://gist.github.com/L3viathan
/e47d359470d5e18a357c67d9e4328c16) is quite clever. It uses the fact that
“//” opens a comment in other languages to fool the reader. It is revealed by
syntax coloring but even vim syntax coloring was not obvious enough to
immediately reveal the attack.

• The 2003 attack on the Linux kernel source code. An attacker attempted to
subvert the Linux kernel in 2003 through underhanded code that used =
instead of ==. This is discussed in [Corbet 2003] and [Felten 2013].

https://codegolf.stackexchange.com/questions/114891/april-fools-day
https://codegolf.stackexchange.com/questions/114891/april-fools-day
https://gist.github.com/L3viathan/e47d359470d5e18a357c67d9e4328c16
https://gist.github.com/L3viathan/e47d359470d5e18a357c67d9e4328c16

3-1

3. Literature

Many samples of underhanded code are from contests, and those contests often
publish information about their submissions (at least for the winners). In this chapter, I
present other sources that discuss or initially appeared to discuss underhanded code:

• Elaine Ou in [Ou 2016] commented on the Underhanded C Contest:
“Common tactics include triggering an arithmetic overflow, pointer
overwrites, and bad hash values. As a result, the code ends up doing the
opposite of what a user might expect from a visual inspection. Last year’s
winning entry put this line in a single header file:

typedef double float_t; /* Desired precision for floating-point vectors */

By default, float_t is defined as single precision in math.h. The above file
overrides the typedef as double precision. By #include-ing this header file in
some C files but not others, the programmer passes an array of 8-byte numbers
into a function that expects an array of 4-byte numbers. C interprets each 8-
byte number as two 4-byte numbers, leading to an array where every other
value is 0.”

• [Walker 2005] notes that the Underhanded C Contest was “dominated by a
small number of tricks: buffer overflow; arrays bounds violation; and [getting]
= and == the wrong way around.” The article argues that Java counters many
of these problems, and then discusses some approaches to writing
underhanded code in Java.

• The language and compiler developers of Solidity used the Solidity contest
(for underhanded code) to identify shortcomings of the Solidity language.
They have since refined the language and its compiler to help counter
underhanded code. [Reitwiessner 2017] discusses this:

o “Many of the submissions exploited the fact that it was possible to
shadow built-ins like now or msg. We already added warnings in such
situations shortly before the beginning of the contest. The solution is
not yet complete… but we are also working on that.”

o “Another very common theme was to use the fact that it is possible to
send Ether to a contract without triggering the fallback function, and

3-2

thus bypassing any internal accounting that might be done there…
This is a quite tricky problem to tackle by means of the language…”

• [Schrittwieser 2013] discusses covert computation, a related technique for
hiding functionality in side effects of microprocessors to hide malicious code
within harmless-looking executable code. This technique is focused on
fooling automated malware detectors that analyze machine code by exploiting
differences between the detector’s heuristic model of a machine as compared
to the actual machine. Being aware of the difference between the heuristic
model and the real machine is important in this case. However, [Schrittwieser
2013] focuses on analyzing machine code by automated malware detection
systems, whereas this paper focuses on analyzing source code by human
reviewers, so this work is out of scope.

4-1

4. Countermeasures

As creating underhanded code is a potent means of attack, it is important to identify
countermeasures to underhanded code. In this chapter, we discuss the possibility of
countermeasures and list some potential countermeasures.

A. Discussion
In the longer term, it would be valuable to categorize all underhanded code samples

available based on the exploitations that they used and then use that categorization to
develop maximally general countermeasures to prevent recurrences of similar attacks.
Although that would not necessarily prevent all future attacks, it would at least counter
known categories of attacks, and many other kinds of attacks are more likely to be detected
by human reviewers (once the “easy ways to fool reviewers” are prevented). I did not fully
categorize the underhanded code samples; indeed, it was challenging to collect this many
of them.

Nevertheless, a brief review of the information available and the collected samples
made it clear that many underhanded code samples exploited a relatively small number of
issues. In many cases, for example, they exploit known common mistakes that developers
already make in the relevant programming language:

• Joe Walker [Walker 2005] notes that many of the underhanded C contest
entries exploited buffer overflows, array bounds violations, and misuse of =
vs. ==.

• Many samples worked by confusing humans about comments (e.g.,
misleading humans about where the comments started or having active code
embedded in a comment).

As noted earlier, one underhanded Python example involving comments is
especially intriguing. This example contained a misleading comment that
would only be misleading to a programmer who knew a language other than
Python (Python uses “#” to begin a comment, but many other programming
languages use “//”). As most professional programmers know multiple
languages, a professional programmer is very likely to be misled by this
construct. This suggests a need to consider subtle errors based on constructs
in other programming languages.

4-2

• Many attacks on the Solidity language involved shadowing built-ins. Many
programming languages support various kinds of shadowing, but shadowing
can confuse human reviewers. The analysis of Solidity also determined that
the Solidity tools could use a Satisfiability Modulo Theories (SMT) solver to
detect some attacks so that those attacks would be automatically detected
[Reitwiessner 2017].

The Underhanded Crypto Contest had very different kinds of winners where this was
not the case. Many of the winners of the Underhanded Crypto Contest exploited highly
technical weaknesses in cryptography technology. This suggests that in highly technical
and specialized fields, such as cryptography, software reviews must be carried out in depth
by specialists in that field. This should not be terribly surprising, and it is a reasonable
requirement for important and specialized areas like cryptography.

The Underhanded Rust Contest posted an article arguing for the use of fuzz testing,
specifically American Fuzzy Lop (AFL) combined with mechanisms that enable per-
function fuzzing and assertions that check if the assertions were met
(https://underhanded.rs/blog/2017/03/07/mitigating-underhandedness-fuzzing-your-
code.html). However, this advice comes from the only contest without any entrants.

B. Potential Countermeasures
Here are some potential countermeasures:

1. Use syntax highlighting and/or programming fonts that clearly distinguish
characters.

Most text editors and integrated development environments (IDEs) used by
today’s software developers provide syntax highlighting that helps developers
identify (through color and font changes) different kinds of text (e.g., which
text are comments, which are tokens, which are numbers, and so on). This
information can also provide hints to reviewers that something is amiss (e.g.,
that active code is hiding within a comment).

Unfortunately, current syntax highlighting methods may be too subtle for
many software developers to detect some underhanded code, and some
developers are color-blind (making highlighting less likely to be noticed). For
example, I loaded the underhanded Python by L3viathan, which depended on
misleading comments and did not notice the subtle differences in color that
were occurring in the editor. In addition, editor syntax highlighting must be
quick and is usually not written under the assumption that the highlighted code
is malicious; as a result, underhanded code might be designed to cause the
highlighting to work incorrectly.

4-3

Thus, although I recommend syntax highlighting, it is probably not enough;
it’s simply too easy for this measure to fail. If highlighting is to be used as a
security measure, the code that implements highlighting code should be
reviewed for security to reduce the risk of its being misled. The highlighting
should be configured to ensure that previous lines cannot invalidate the
highlighting. For example, some tools only look a fixed number of lines
backwards, and underhanded code might exploit this.

In addition, when syntax highlighting is used, developers should consider
making some distinctions more obvious if they are important. For example,
the text editor vim’s configuration could be modified to make numbers more
distinct with the command: hi Number cterm=reverse term=reverse
gui=reverse. This command instructs vim to highlight all Number tokens for
that language as “reverse video” in all vim display modes, making any
Number token stand out. Such a configuration creates a much greater contrast
between lowercase “l” and the digit “1” than the usual vim default (where they
typically have different colors but those differences might not be as obvious).

Programming fonts (aka coding fonts) are fonts designed for use during
software development. These fonts often strive to clearly distinguish symbols
that are more readily confused in other fonts (e.g., uppercase “O” with the
digit “0” and lowercase “l” with the digit “1”). The same concerns about
syntax highlighting also apply to programming fonts. I recommend using
programming fonts when reviewing source code that may include
underhanded code. However, programming fonts are probably not enough to
detect underhanded code, even in cases where they can reveal some
difference; it is simply too easy for this measure to fail as well.

2. Require all comments to be on separate comment-only lines (via reformatting
or a tool that checks the source code).

This requirement can reveal non-comments masquerading as comments (e.g.,
one of the Underhanded Python examples). This counters code embedded in
comments without the harsher approach of reformatting source code. Some
developers would find this requirement annoying, as it forbids short comments
on the same line as the code it comments on.

3. Reformat source code to a standard format not under the attacker’s control.

Forcible reformatting can reveal attacks such as non-comments hidden in
comments, misleading indentation, and similar problems. More generally, a
reasonable common format can ease later review by others, even when
underhanded code is not considered a risk. In addition, there is at least one
open source software reformatting program available for most widely used

4-4

programming languages. For example, the GNU indent program can
automatically reformat C code.

Such reformatting is common in some software development communities.
For example, one survey found that 70% of all code in the Go programming
language had the format as generated by the “go fmt” code formatter [Gerrand
2013]. [Guest 2016] recommends that software developers using Go should
use the “go fmt” formatter “ideally on save and certainly before submitting
for review.”

A disadvantage of this approach is that some developers may object to the
new format of their code. Part of the problem is that although writing an
automated code formatter that does some kind of reformatting is typically not
difficult to do, writing a good automated code reformatter can be quite
difficult. This matters because most developers and projects will not use a
reformatter on their code unless it is a good one. Bob Nystrom [Nystrom 2015]
reports that the “hardest program I’ve ever written… [was a good] automated
code formatter. … Getting [great] quality [sufficient so people will use it]
means applying pretty sophisticated formatting rules. That in turn makes
performance difficult. I knew balancing quality and speed would be hard, but
I didn’t realize just how deep the rabbit hole went. … [A good formatter must
apply] some fairly sophisticated ranking rules to find the best set of line breaks
from an exponential solution space.”

If getting projects and developers to accept the use of a full reformatter is a
serious problem, an alternative might be a reformatter that only changes the
format in specific cases. For example, a reformatter could forcibly reformat
code so that a line switched to a comment mode will not switch to a non-
comment-mode before the end of that line, but the reformatter would
otherwise leave the format alone.

A potential problem with code reformatting tools is that they are typically not
developed with the assumption that the code they are reformatting is
malicious. As a result, the code reformatters may themselves have bugs, and
some might be exploitable. For example, see the BUGS section of GNU
indent’s manual, which notes some of its known bugs [FSF 2008]. It may be
wise to recompile code before and after reformatting to ensure that the
reformatting did not change its meaning. Note that this can be done even in
language implementations that do not compile to machine code (such as
typical uses of Java, Python, and JavaScript). In these cases the compilation
could be implemented as a translation to bytecode (for Java or Python) or as
minification (for JavaScript).

4-5

4. Use compiler warnings and style checkers that perform static analysis to
detect misleading or dangerous constructs.

Many underhanded code examples depend on common mistakes. Tools such
as compilers (with warnings enabled) and style checkers can warn about many
common mistakes and thus should be useful in countering some kinds of
underhanded code. In some cases, these tools will allow the potentially
dangerous construct without a warning, but only after some marking on the
construct is added to the source code. This marking signals to both developers
and reviewers where a potentially dangerous construct is being used. Many
style guides forbid some error-prone constructs, and their rules forbidding
such constructs can be enforced by compiler warnings and style checkers.

There are many style guides, and widely used programming languages
typically have at least one style guide available. One especially well-known
guide is the set of software development guidelines for the C programming
language by the Motor Industry Software Reliability Association (MISRA).
This set is called MISRA C, and its goal is to aid in the “consistent [and] safe
use of C in critical systems.” [MISRA 2012]. There have been some published
objections to the older 2004 version of MISRA C based on quantitative
analysis. Les Hatton applied the 2004 MISRA C rules to a set of real code and
found that the “real to false positive ratio is not much better in MISRA C 2004
than it was in MISRA C 1998 and it is unacceptably low in both” [Hatton
2005]. [Boogerd 2008] raised similar concerns. A longer discussion of
MISRA C, through its 2012 version, is presented in [Bagnar 2018], which
argues that MISRA C is not intended for “bug finding” but for “error
prevention” in critical applications. This paper states that, “the use of MISRA
C in its proper context is part of an error prevention strategy which has little
in common with bug finding, i.e., the application of automatic techniques for
the detection of instances of some software errors. … The deviation process
is an essential part of MISRA C: the point of a guideline is not ‘You should
not do that’ but ‘This is dangerous: you may only do that if (1) it is needed,
(2) it is safe, and (3) a peer can easily and quickly be convinced of both (1)
and (2).’ [Consider it an effective way] to rule out most C language traps and
pitfalls. The attitude with respect to incompleteness is entirely different
between the typical audience of bug finders and the typical audience of
MISRA C. Bug finders are usually tolerant about false negatives and
intolerant about false positives. ... This is not the right mindset for checking
compliance with respect to MISRA C: false positives are a nuisance and
should be reduced and/or confined as much as possible, but using algorithms
with false negatives implies that those in charge of ensuring compliance will

4-6

have to use other methods. So, compliance to MISRA C is not bug finding
and, of course, finding some, many or even all causes of run-time errors does
not imply compliance to MISRA C.”

Here are a few specific examples of such rules that could help find
underhanded code (some of which are specific to C or C++):

o Require special syntax for easily confused operators (e.g., = vs. == in
C and C++). This can be enforced by the compiler or a style checker.
This is less of an issue in Java (where in most cases only one is
possible), but in languages such as C and C++, this is a significant
issue. One approach, which can be enforced by the compiler, is to
require “extra” parentheses that are not required by the language
syntax when “=” is used instead of “==” inside a conditional, to signal
to the compiler and human reviewers that the “=” is intentional (and
that further review is warranted). This approach is implemented by the
gcc warning flag -Wparentheses (this warning flag is enabled by gcc
warning flag -Wall) and is used by the Linux kernel developers.

o Require enforcement of the Software Engineering Institute (SEI)
CERT C Coding Standard [SEI 2018] rule EXP19-C, “Use braces for
the body of an if, for, or while statement.”5

o Detect and prevent misleading indentation. The Apple “goto fail;
goto fail;” vulnerability has already shown that misleading
indentation can pass review and lead to a dangerous vulnerability
[Wheeler 2017].

o Detect “dead” code, as reviewers might not realize that some of the
code they are reviewing will not be executed.

5. Use static source code analysis security analyzers (e.g., Fortify, Coverity, and
cppcheck).

These tools perform detailed security-related analysis to detect security
problems, such as some buffer overflows and array out-of-bounds access in
languages where these problems can occur.

6. Forbid unnecessary use of dangerous constructs (e.g., C’s #define), or
constrain them to reduce their risks.

5 The exact text of rule EXP19-C, and a list of some of the tools that implement it, is at

https://wiki.sei.cmu.edu/confluence/display/c/EXP19-
C.+Use+braces+for+the+body+of+an+if%2C+for%2C+or+while+statement

https://wiki.sei.cmu.edu/confluence/display/c/EXP19-C.+Use+braces+for+the+body+of+an+if%2C+for%2C+or+while+statement
https://wiki.sei.cmu.edu/confluence/display/c/EXP19-C.+Use+braces+for+the+body+of+an+if%2C+for%2C+or+while+statement

4-7

Here are some examples:

o In C and C++, forbid use of the dangerous #define macro system if
there is some other way to express the construct (e.g., by using
constants or normal functions). When #defines are used, require that
the name must have only uppercase letters (at least one), underscores,
and digits; this is the usual convention (as it makes macros stand out),
and it also makes it impossible for macros to override keywords
(which are lowercase). In addition, require that macros be fully
parenthesized (e.g., every parameter use must be in parentheses to
prevent surprise expansion). To reduce effort, an exception could be
granted to allow macros of simple constants (e.g., #define NAME 0),
as these are harder to exploit in underhanded code. Finally, require that
every #define macro be carefully reviewed by multiple people to
search for errors specifically caused by macro expansion.

o Forbid using the same name in multiple visible scopes. Many
languages allow names in an inner scope to “hide” or “shadow” the
same name present in an outer scope, even when both scopes are
lexically visible. Although doing this has clear semantics, it is easy to
confuse developers and reviewers when the same name has multiple
meanings.

o Forbid the use of keywords or common library built-ins as names for
other constructs (such as variable names), or at least require additional
markings for their use.

o Carefully review any compiler options (especially those other than
warning flags), as such options can change how the source code is
interpreted.

7. Forbid (or at least strongly warn about) the use of characters that can be
confused with other characters.

o For example, prevent the use of lowercase “l” and uppercase “O” as
individual tokens, as they are easily confused with the digits 1 and 0.
It might be useful to warn about tokens where swapping these letters
with digits could result in a different token or legal number.

o This could be generalized further to prevent the use of similar-looking
Unicode characters beyond ASCII characters (e.g., by requiring that
only ASCII characters be used, or that only a certain set of clearly
distinguishable characters are allowed in source code). This would

4-8

prevent, for example, swapping the Greek uppercase character alpha
(“Α”) with the Latin uppercase character “A”.

8. Require that only “good” characters be allowed in source files (or at least
detect when a non-good character occurs).

For example, there could be a rule that requires source code be only UTF-8
(or even only ASCII characters) and that the only control characters allowed
are newline, carriage return, and tab. In many projects, the tab character is
either forbidden or is only allowed as a sequence of zero or more tabs at the
beginning of a line; in such projects, this rule could be enforced by tools.

Many source files are only supposed to contain ASCII characters; if so, that
rule should be enforced. A variant would be to require UTF-8, but only allow
ASCII outside of comments. It would be possible to allow arbitrary UTF-8 in
constant strings, but it might be more challenging to counter underhanded
code if this were allowed. If UTF-8 is allowed outside of comments, it might
be useful to limit which character groups are permitted (e.g., to prevent
swapping the Greek uppercase character alpha (“Α”) with the Latin uppercase
character “A”). If UTF-8 is allowed, the source files should probably be
required to use a single normalization method so that the “same” characters
will have exactly the same sequence of bytes.

9. Use runtime memory corruption detection when handling code from memory-
unsafe languages (e.g., by using address sanitizer (ASAN)).

C and C++ programs are often vulnerable to various memory corruption
problems, such as bounds-checking errors, pointer errors, and double-frees.
Techniques such as ASAN can detect many kinds of memory problems during
program execution. If combined with a good automated test suite, ASAN can
detect memory problems throughout the execution of the test suite. Runtime
memory corruption detection mechanisms can also be used during production;
using ASAN in production can have a significant performance and memory
cost when applied to C/C++ programs (it typically halves execution speed),
but these costs may be acceptable in some cases.

10. Use fuzzing with assertion checking, and also enable ASAN when doing so if
the language (as used) is not memory-safe.

Fuzzing can detect a variety of defects in software. When the language (as
used) is not memory-safe, ASAN can help detect memory safety errors. While
no guarantee, these methods can still detect certain kinds of defects that might
elude other methods.

4-9

11. Test software with good test coverage (at least good branch and statement
coverage).

Testing can detect a variety of problems. Test coverage measures can help
determine if code is untested or poorly tested. Poorly tested code may have
good branch and statement coverage, but code with poor branch and statement
coverage is, by definition, poorly tested (as many parts of the code never get
tested at all).

12. Force undefined or poorly defined constructs to have safer semantics, or at
least detect such constructs.

[Regehr 2010] discusses the often surprising impact of undefined behavior in
C and C++; if undefined behavior is in the program, then the compiler is
allowed to let it do anything—not just produce an unexpected result. This is
not a theoretical problem. [Zdrnja 2009] discusses a vulnerability in the Linux
kernel caused by undefined behavior, where in the construct “struct sock
*sk = tun->sk; … if (!tun) return POLLERR;” the “if …” expression
is silently removed by the compiler. This silent removal might be surprising
to a reviewer, but it is allowed by the C language specification because the
expression “tun->sk” causes the whole program to have undefined behavior
if “tun” is NULL. [Wang 2012] discusses the problem with undefined behavior,
demonstrates some examples, and provides some recommendations.

In some cases, the gcc and clang compilers can detect and report constructs at
compile time if given the flag -fcatch-undefined-behavior. They can also
generate run-time checks to detect some undefined behavior using the option
-fsanitize=undefined, but note that detection is not guaranteed.

This problem can also sometimes be resolved by using compiler flags that
cause normally undefined semantics to have much safer defined semantics.
Examples of this include the gcc and/or clang flags -fwrapv (wrap signed
integer overflow), -fno-strict-overflow, -fno-strict-aliasing, and -
fno-delete-null-pointer-checks. The Linux kernel, for example, enables
several such flags to reduce risks from undefined behavior. I recommend that
programs not be written to depend on such behavior; however, enabling these
options may reduce the impact of a programming error. In some sense, this
could be considered modifying the language specification through an option
to reduce the risks from that language.

13. Modify the programming language and/or its development environment to
counter underhanded code or at least the constructs that some underhanded
code exploits.

4-10

This is the approach taken by Solidity, as discussed in [Reitwiessner 2017].
Modifying a programming language’s specification so that formerly
undefined constructs become officially defined could be considered part of
this category.

14. Use a programming language that has fewer misleading constructs and/or is
harder to write underhanded code in.

[Walker 2005] emphasizes this point, noting that many of the C and C++
constructs exploited by some underhanded code cannot occur in Java. In
particular, switching from a memory-unsafe to a memory-safe language can
prevent a large number of vulnerabilities. It is typically costly to translate or
rewrite substantial code bases into another programming language, but in
some cases it may be worth it.

15. Learn continuously.

There should be continuous efforts to look for new techniques for creating
underhanded code. Continued underhanded code contests can help with this.
These efforts to search for potential problems must be coupled with efforts to
update languages, tools, and configurations to counter underhanded code as
new techniques are discovered. Over time, this learning process should make
it increasingly difficult for attackers to develop underhanded code that can slip
through both human reviewers and other countermeasures.

5-1

5. Examination of Obfuscated V Contest
Entrants

A reasonable first step for determining if some countermeasures would be effective
would be to examine, in more depth, a set of underhanded code. As noted earlier, the first
known public set of underhanded code is from the Obfuscated V Contest in 2004. As this
was the first data set available, it seemed appropriate to start with it. The goal of the
programs from this contest was to miscount votes while appearing to count votes correctly;
some programs even managed to miscount votes only on Election Day while appearing to
be correct. In this chapter, I briefly discuss and analyze the data set. Details are presented
in Appendix B.

A. Obfuscated V Contest Data Set
The Obfuscated V data is a set of underhanded code written in C or C++ (mostly in

C). The data set includes commentary on each program explaining why the contest
organizers believed the program did not work as expected. I used this summary to identify
the specific lines of code that were part of the attack.

Note that I looked at this data set as merely samples of underhanded code. I did not
do an analysis of any real voting system’s security as a whole. For example, it is widely
agreed by experts that mandating the use of voter-verified paper ballots is a necessary
minimum step for secure voting [Gambhir 2019]. However, issues such as the need for
paper ballots were beyond the scope of this paper.

The efforts to find the specific malicious lines of code revealed an interesting
problem: even if a human knows the code is malicious, and has a hint about why it is
malicious, the problem can be hard to find. In four entries, I found that the original contest
summaries were wrong, misleading, or lacking the attack code (I reported these problems
to the contest runner, Daniel Horn):

1. Ryan Cumings: The original summary was “Complex code to hide a simple
O vs 0 swap.” Although the O vs. 0 is present on line 112, this is not the
problem that causes the code to incorrectly count votes. Instead, the primary
problem is the misuse of the modulus operator “%” on lines 130, 135, 140,
and 144, which causes all votes to only apply to rows 0 or 1 of the table “tbl.”

2. Travis Fisher: The original summary was “macro madness... replaces the
unsigned char Vote with a crazy expression that does some vote skewing (this

5-2

is done on the gcc command line).” However, the compiler expression that
caused the attack was not originally documented. After I reported the problem,
Daniel Horn added the following text:

Unfortunately since the exact command line was lost to the sands of
time, this one will need to suffice: gcc -Disspace="'K'=="
macro_tfisher.c

This compiler option subverts the otherwise correct code by redefining isspace
(which normally just returns true if the character given is a space) into a
comparison to the letter “K” (that is, it becomes an expression that returns true
if the character given is a “K”). While this option does subvert the system, it
is extremely obvious. Compilers do support definition of macros, but it is
suspicious to set a macro named with lowercase letters (by convention only
uppercase letters are used), it is very suspicious to use a compiler to define a
non-constant value (any value after an “=” would normally be an integer), and
it is extremely suspicious to redefine a well-known standard name like isspace
through a compiler option.

3. Geir Thomassen: The original summary was “#define of EOF to changing
input to bush using comma operator.” The attack code is missing; there is no
#define of EOF and no use of the comma error.

4. Brad Grzesiak: The original summary was “gets instead of equals.” There is a
function named gets in C, but this sample never calls that function. The word
“gets” is sometimes used informally to refer to assignment (“=”), and that is
probably what was meant. I believe a clearer description of the problem would
be “Use of = instead of the correct == in lines 8-10.”

As the published sample from Geir Thomassen (gthomassen) does not have an attack,
it was excluded from the analysis. The rest were used after their information was corrected.
This left a total of 40 samples of underhanded code for analysis (once the sample by Geir
Thomassen was removed).

B. Brief Examination of the Obfuscated V Contest Data Set
After examining the specific vulnerable lines of code for each of the 40 samples, I

looked for some common patterns. Certain kinds of underhanded code were especially
common. Out of these 40 samples, 5 involved write or read overflow, 9 involved misuse
of the C #define macro mechanism, 7 involved character confusion (confusing lowercase
“l” with the digit “1” or confusing uppercase “O” with the digit “0”), 2 involved code
hidden within a comment, and 2 involved confusion between = (assignment) and ==
(equality). This means that 62.5% (25/40) of the sample attacks are covered by these

5-3

specific problems. This is already encouraging, as it appears that certain kinds of problems
repeat (in some cases, many times).

A related observation is that many of these underhanded code samples exploited
common mistakes that occur in normal code. For example, switching between =
(assignment) and == (equality) is a common well-known mistake many software
developers have made. This means that tools designed to detect common mistakes (such as
compiler warning flags) might be helpful for detecting underhanded code.

I then selected five simple countermeasures, in part based on this simple
categorization:

1. ASN: Is this attack expected to be detected if run using Address Sanitizer
(ASAN)?

2. #d: Is this attack expected to be countered if the use of #define is sharply
curtailed? The idea is to require that #define (which is easy to misuse) may
only be used if the construct cannot be implemented another way (e.g., via
const constants and normal functions), and by imposing limits on #define.
This could be enforced during a code review.

3. L1: Forbid the use of lowercase “l” and uppercase “O” in a name as these are
too similar to the digits “1” and “0.” This includes the use as a variable name,
constant name, or enumerated value. More generally, this rule should ensure
that names in a scope must be distinguishable from each other and from
integer constants if lowercase “l” and the digit “1” and uppercase “O” and the
digit “0” are arbitrarily swapped. This could be implemented by a tool; for this
paper, I simply determined if a tool (if implemented) could find the
underhanded code. This approach could be further generalized to prevent the
use of similar-looking Unicode characters that could lead to confusion.

4. Co: Require developers to use syntax-coloring text editors (which reveal code
in comments) and forcibly reformat code so that once a line has switched to a
comment mode, it may not switch to a non-comment-mode before the end of
that line.

5. gcc: Process the code through various gcc warning flags to detect potential
problems. In particular, run gcc with the options “-Wall -Wextra -pedantic -
Wbad-function-cast -Wstrict-prototypes -Wundef -Wshadow -Wlogical-op –
Wconversion.” This enables a large set of warnings about various potentially
dangerous constructs; in particular, “-Wall” includes many other warnings.

I then examined which samples from the Obfuscated V Contest would be detected by
which countermeasure. For example, for the “gcc” countermeasure, I ran gcc (with the
warning flags as listed above) on each sample to see if gcc provided a relevant warning. I

5-4

found that 75% (30/40) of the samples were detected by at least one of these five simple
countermeasures (see Appendix B for details). I believe this is a remarkably high
percentage of underhanded code that could be caught by such a small set of simple
countermeasures.

In fact, 77.5% (31/40) should have been detected by this set of simple
countermeasures. The sample by Kristian Nielsen knielsen (file knielsen.c) should have
been detected due to its misleading indentation (in this sample, a “while” loop repeated an
“if” statement, but the keyword “if” and “while” had the same indentation). This suggests
that there is a bug in the implementation of the misleading indentation detector in the
version of gcc used. I reported this defect to its developer. This example suggests a larger
lesson: if warning flags are to become an important part of security, it is important to have
robust test suites for these tools that are run on every change so that they are unlikely to
have serious defects. Otherwise, there is a significant risk that the tools will not find the
underhanded code they are supposed to find.

Of the 22.5% (9/40) that were not detected using these countermeasures (if they had
all worked correctly), I judge that over half (6) of them would be suspicious to human
reviewers (e.g., because they use highly nonstandard constructs, unusual formats, or an
unusual amount of repetition). This leaves only 7.5% (3/40) code samples that are neither
suspicious nor detectable using the simple set of countermeasures. These samples are:

1. mrussotto: Line 18 looks like it initializes the “Tallymap” array, but it ranges
over sizeof(Tally) instead of sizeof(Tallymap). As a result, it only initializes
a few values instead of all of the values of Tallymap. The attack depends on
an unusual initialization value of Tallymap to avoid warnings about
uninitialized values, and that could be considered somewhat suspicious. In
short, a reviewer might ask, “Why does this code initialize an array to an
unusual initial value and then run a loop to initialize it to the correct value?”
The answer, of course, is that changing the code to use a correct initial value
from the beginning would make the program work correctly. This
underhanded code might be detected by more advanced checks to warn when
there is a loop over only part of an array or by requiring additional human
review of initialization values other than 0 or 1.

2. rseace: Line 24 performs a bad type conversion. It should be possible to add
additional compiler warnings to detect bad type conversions like this and
report a warning if there is no explicit cast. Underhanded code like this would
be countered by such a warning; once this kind of dangerous cast became
explicit, it would be far more obvious to a reviewer.

3. jsohn: Line 27 incorrectly checks twice that a value is “n,” instead of both “n”
and “N,” in the expression ((Vote == 'n') || (Vote == 'n')). This could be

5-5

detected by a compiler mechanism (or warning) that notices useless operations
such as checking for the same condition twice in an OR expression. This
would be a generally useful warning, as it could even detect some potential
defects in non-underhanded code. In addition, compiler optimizers already
look for common subexpressions, so this check might be relatively easy to add
to optimizing compilers.

In short, the few countermeasures were effective at countering many underhanded
code samples, and I believe additional countermeasures could be developed to counter the
rest of the underhanded code samples that were not already suspicious.

On a more personal note, I found that although it was hard to find some of these
attacks at first, it became easier over time. This effect could simply be because the samples
were sorted from hardest to easiest to find. However, I believe that there is another factor—
once a reviewer reads some underhanded code, it becomes easier to find other underhanded
code (especially when it uses a similar kind of attack). This suggests that training could be
useful. If this effect is valid, then in cases where underhanded code could cause serious
damage, reviewers could be trained to look for underhanded code (using samples), and this
training might dramatically increase the probability of detecting such code.

It could be claimed that this approach is unfair, as I knew what to look for before
selecting countermeasures. However, the goal is to merely demonstrate that it is often
possible to detect underhanded code using a small set of simple general countermeasures.
For that goal, this is a reasonable approach, and I believe I have demonstrated that it is
possible.

6-1

6. Conclusions

Underhanded code is a challenge to counter, but this initial effort to collect samples
and examine them suggests that it is possible. Indeed, the Solidity underhanded contest has
already led to the developers of Solidity to change their system to counter or warn about
dangerous constructs. The Solidity example is instructive; they could not necessarily
counter everything, but they could reveal many attacks, make others hard to exploit, and
document what reviewers should specifically look for.

I performed a simple analysis of the Obfuscated V sample data set. In this analysis, I
found that the five selected simple countermeasures were able to detect 75% (30/40) of the
sample underhanded code. One was not detected due to an error in one of the tools, and I
believe another six would be considered suspicious to reviewers, so only 7.5% (3/40) of
the underhanded code would have slipped through these five simple countermeasures and
initial review. I have also identified potential countermeasures that I believe would address
the remaining underhanded code samples. This suggests that countering underhanded code
is by no means an impossible task. Instead, I believe this provides evidence that a relatively
small set of simple countermeasures can significantly reduce the risk from underhanded
code.

Attackers have an important pair of constraints when creating underhanded code: they
must write code that does a specific wrong thing and the code must look like it is doing the
right thing. That is a challenging pair of constraints. Today, an attacker’s job is much easier
because countermeasures are rarely applied with the purpose of countering underhanded
code. If a set of broadly useful countermeasures is used to counter underhanded code, the
attackers’ task is likely to become much harder and their risk of exposure would
dramatically increase, reducing the risk to end users.

Underhanded code countermeasures need not be perfect. Instead, they simply have to
be good enough to dissuade potential attackers from trying them or, if that fails, good
enough to provide a decent likelihood of detection and/or reduced impact. It would
probably be best if some of the countermeasures were publicly known, whereas the details
of other countermeasures would be kept private. Some countermeasures are obvious, so it
would be impractical to try to make all countermeasures private. The publicly known
countermeasures would also help others be more aware of underhanded code and help
detect many kinds of underhanded code in any software system. Keeping the details of few
countermeasures private (while letting the world know that added countermeasures are
being used) would ensure that adversaries would not know exactly how to work around the

6-2

entire set of countermeasures, increasing the risks to adversaries that they will be
discovered. Ideally, those added risks would dissuade them from creating underhanded
code in the first place.

The countermeasures I examined in this paper focused on countering underhanded
code that exploits issues in programming languages and their environment. Some
underhanded code, such as many of the winners of the Underhanded Crypto Contest,
focused instead on higher-level weaknesses in the algorithms they implemented. I did not
try to examine this underhanded code in detail. However, these winners suggest that at least
in highly technical and specialized fields, such as cryptography, software reviews must be
carried out in depth by specialists in that field. This should not be terribly surprising, and
it is a reasonable requirement for important and specialized areas like cryptography. It may
be possible to develop additional countermeasures for these kinds of underhanded code.
Even if it is not, if other kinds of countermeasures are developed and deployed, they will
reduce the likelihood that a human reviewer would be misled by other tricks and could
instead spend time on deeply understanding what the software does.

The next step would be to examine more attack samples to categorize attacks in more
detail, create a larger list of countermeasures, and create a larger matrix to show which
countermeasure would counter which attack. This would then be used to identify a
recommended set of underhanded code countermeasures that should be applied in
important situations. Where possible, some of these countermeasures should be widely
available (e.g., as extensions to existing open source software compilers), so that those
countermeasures can be applied. Until that time, the short list of countermeasures I have
developed should be considered by reviewers when the risk of underhanded code is
heightened. The final goal would be to ensure that attacks using underhanded code on
important systems are unlikely to pass undetected through the development process to end
users.

A-1

.
Downloading Samples

I created a “makefile” to download and extract many samples of underhanded code. By
creating a makefile, data sets can be re-downloaded if these sources change or if there is
some other problem. One could simply put this information into a file named “makefile”
and run “make” (once “make” is installed). This makefile presupposes that the
subdirectory “raw” exists and that the program wget is installed.

WGET = wget -r --level inf --convert-links --random-wait
WGET_ONE = wget

all: download

tarball:
 tar cvzf underhanded-samples.tar.gz raw/ makefile

The "raw" subdirectory contains the "mostly-raw" original website contents;
we assume "raw/" already exists. The contents of the "raw/" subdirectory
are not *exactly* the same as original websites in all cases
because we use --convert-links to convert the
hyperlinks into a version that will work correctly in a local copy.

To force a reload, just delete the ".t" timestamp file corresponding
to the data source.

The "underhanded C" website only shows winners, not all entries.
raw/www.underhanded-c.org.t:
 cd raw; $(WGET) http://www.underhanded-c.org/
 touch "$@"

raw/obfuscated_v.t:
 mkdir -p raw/obfuscated_v
 cd raw/obfuscated_v ; $(WGET) -nH --cut-dirs=2 --no-parent \
 http://graphics.stanford.edu/~danielh/vote/vote.html
 touch "$@"

raw/underhanded_crypto.t:
 cd raw ; \
 git clone https://github.com/UnderhandedCrypto/entries \
 underhanded_crypto
 touch "$@"

raw/underhanded.rs.t:

A-2

 cd raw; $(WGET) https://underhanded.rs/en-US/
 touch "$@"

raw/misdirect.ion.land.t:
 cd raw; $(WGET) http://misdirect.ion.land/
 touch "$@"

TODO: Not getting the jsfiddle.net files from javahacker, so
don't really have the samples
raw/javahacker.t:
cd raw; $(WGET) --domains=javahacker.com,jsfiddle.net --level 2 \
https://javahacker.com/the-first-javascript-misdirection-contest/
touch "$@"

raw/uscc.t:
 cd raw; git clone https://github.com/Arachnid/uscc
 touch "$@"

This is somewhat odd - maybe we shouldn't include these.
raw/2-2-5.t:
 cd raw; mkdir -p 2-2-5; cd 2-2-5; \
 $(WGET_ONE) https://codegolf.stackexchange.com/questions/28786/write-a-
program-that-makes-2-2-5 ; \
 mv write-a-program-that-makes-2-2-5 write-a-program-that-makes-2-2-
5.html
 touch "$@"

raw/sort.t:
 cd raw; mkdir -p sort; cd sort; \
 $(WGET_ONE)
https://codegolf.stackexchange.com/questions/19569/underhanded-code-contest-
not-so-quick-sort ; \
 mv underhanded-code-contest-not-so-quick-sort underhanded-code-contest-
not-so-quick-sort.html
 touch "$@"

raw/upython.t:
 cd raw; mkdir -p upython; cd upython; \
 $(WGET_ONE)
https://gist.github.com/L3viathan/e47d359470d5e18a357c67d9e4328c16 ; \
 mv e47d359470d5e18a357c67d9e4328c16 upython.html
 echo 'NOTE: Must manually extract'
 touch "$@"

Some of the code was hand-extracted into april-fools
raw/april-fools.t:
 cd raw; mkdir -p april-fools; cd april-fools; \
 $(WGET_ONE) https://codegolf.stackexchange.com/questions/114891/april-
fools-day
 touch "$@"

Linux kernel attack hand-copied from:
https://lwn.net/Articles/57143/

A-3

download: \
 raw/www.underhanded-c.org.t \
 raw/obfuscated_v.t \
 raw/underhanded_crypto.t \
 raw/underhanded.rs.t \
 raw/misdirect.ion.land.t \
 raw/uscc.t \
 raw/2-2-5.t \
 raw/sort.t \
 raw/upython.t \
 raw/april-fools.t

B-1

.
Detailed Analysis of Obfuscated V Entries

This appendix provides a detailed analysis of each entry to the Obfuscated V Contest,
including the specific lines of code that cause the errors and a discussion of how their
attacks could be countered.

This 2004 contest produced helpful commentary on each scored submission
(scores.html). Not all submissions were scored, but as the site only posted code for scored
submissions, that is all I could use. There were two sub-categories, “Date Specific
Programs” (shown first) and “Date Agnostic Programs.” The latter group begins with the
entry for Michal Zalewski (mzalewski) below. All of the “Date Agnostic Programs” could
be exposed by good tests (as they always produce wrong answers in some cases), but these
entries still provide helpful examples of tricks an attacker might try.

The following table examines each entry (where each row is an entry). The first few
columns describe the contest entries as follows:

• Score: Score per the contest organizers (10 is the maximum possible score).

• Author: Author name.

• File: Filename (the extension may be omitted).

• Original Summary: The original summary from the Obfuscated V Contest.

• My Summary: My summary, including identification of the specific line
numbers that cause the code to be malicious.

• SUS: “Suspiciousness.” The original Obfuscated V scoring system preferred
programs “that [look] most correct,” but some of these programs used
constructs that would be highly suspicious to a non-novice developer (even
without hints such as syntax coloring by an editor). If code looks suspicious,
it is not good underhanded code, because suspicious code invites further
review regardless of whether the reviewer can quickly see the problem.
Examples of suspicious code includes code with a large number of nonsense
#define constructs, the use of #define with lowercase names (a nonstandard
practice), and highly nonstandard compiler options that seem almost certain
to cause problems. An “X” means I believe it is suspicious, while a “-” means
I believe it is not. This is a judgment call, but I believe it is an important one;

B-2

even if the error is not apparent, code that looks suspicious is much more likely
to get additional review in cases where its correctness is vital.

The next columns briefly determine if a given entry fits into certain categories:

• Ov?: Does this attack depend on an overwrite out-of-range read/write, such as
a classic buffer overflow?

• #d?: Does this attack depend on misuse of the #define macro?

• L1?: Does the attack depend on confusing lowercase “l” with the digit “1” or
uppercase “O” with the digit “0”?

• Co?: Does the attack depend on misleading comments (code in comments)?

• ==?: Does the attack depend on confusing “=” (assignment) with “==”
(equality)?

The next columns determine if a particular countermeasure will counter that entry:

• ASN: Is this attack expected to be detected if run using ASAN? ASAN works
by monitoring every memory area to determine if it is allowed to be currently
used (read or written); it approximately halves the speed of execution, but it
may be acceptable if the task is important. Note that, due to lack of time, I did
not actually run ASAN on every program, but given how ASAN works, I
believe the results would be as shown.

• #d: Is this attack expected to be countered if the use of #define is sharply
curtailed? The idea is to require that the use of the #define macro (which is
easy to misuse) may only be used if the construct cannot be implemented
another way (e.g., by using const constants and normal functions). The name
of any macro must have only uppercase letters (at least one), underscores, and
digits; this makes macros stand out and also makes it impossible for them to
override keywords. Macros must be fully parenthesized (every parameter use
must be in parentheses to prevent surprise expansion, and non-trivial whole
expressions must also be parenthesized). An exception may be granted for
simple constants (e.g., #define NAME 0). Finally, every #define macro must
be carefully reviewed by multiple people to search for errors specifically
caused by macro expansion.

• L1: Forbid the use of lowercase “l” and uppercase “O” in names as these are
too similar to the digits “1” and “0.” This includes the use as a variable name,
constant name, or enumerated value. More generally, this rule should ensure
that names in a scope must be distinguishable from each other and from
integer constants if lowercase “l” and the digit “1” and uppercase “O” and the
digit “0” are arbitrarily swapped.

B-3

• Co: Require developers to use syntax-coloring text editors (which reveal code
in comments) and forcibly reformat code so that a line switched to a comment
mode may not be switched to a non-comment-mode before the end of that line.

• gcc: Process the code through gcc with many warning flags enabled to detect
potential problems. For these experiments, I ran gcc with the options “-Wall -
Wextra -pedantic -Wbad-function-cast -Wstrict-prototypes -Wundef -
Wshadow -Wlogical-op -Wconversion”. This enables a large set of warnings
about various potentially dangerous constructs; in particular, “-Wall” enables
many other warnings.6

This countermeasure will detect simple misuse of = vs. ==, because “-Wall”
enables “-Wparentheses,” an option that warns “if parentheses are omitted in
certain contexts, such as when there is an assignment in a context where a
truth value is expected…” Put another way, “-Wparentheses” requires extra
parentheses when a = is used where == would normally be used. These extra
parentheses indicate to developers and reviewers that they should look
carefully at the construct.

This countermeasure should also detect misleading indentation, because the
option “-Wall” also enables the option “-Wmisleading-indentation” to detect
misleading indentation. Note that the option “-Wunreachable-code” was not
used; this option no longer works in gcc, so using it would be misleading.

The table results shown below were created by running gcc version 7.5.0 on
Ubuntu 18.

I used gcc because it is a widely used compiler. There are many other
compilers with warning flags (such as clang), and in addition, there are many
other static analysis tools that can also detect various problems in code. If the
task is important, many of those tools might be used together, but due to
limited time, I used only one of them.

• ALL: An “X” (true) is shown in this column if at least one countermeasure
detected this underhanded code (that is, if any of the following columns has
an “X”: ASN:, #d, L1, Co, or gcc).

6 Note that all of the options here have a leading hyphen-minus and embedded hyphen-minus, where

hyphen-minus is ASCII decimal 45 aka Unicode U+002D. Throughout the rest of this appendix only the
hyphen-minus is used; if anything symbol appears to be a related but different symbol, such as the N
dash “–“ or M dash “—,” it is a mistake and should be read as hyphen-minus. This is important because
only the hyphen-minus is accepted by the programs discussed here.

B-4

Many of these underhanded programs make an unrelated common mistake: they use
a printf format of “%d” but pass in a value with a different type, usually long int or long
unsigned int. In many circumstances, it will work anyway, but the correct printf format to
use is “%ld” for a long int and “%lu” for a long unsigned int. The gcc warning flag “-
Wformat” warns of this error. Another common mistake in these entries is a failure to
#include the appropriate header files; in many circumstances, this works anyway, but gcc
would often report a number of warnings (depending on the specifics). I did not count these
(correct) reports as finding the underhanded code, as, in practice, a developer might just
fix those problems and the result would still be underhanded. I only counted gcc as finding
the underhanded code if gcc specifically identified a line with a report that directly revealed
the underhanded code.

B-5

Score Author File Original Summary My Summary SUS Ov? #d? L1? Co? ==? ASN #d L1? Co gcc ALL

7.0 Paul
Parkanzky

pparkanzky Uses the fact that
the string "second"
has more words
than "first" or "third"
to cause a buffer
overrun and skew
results. Just gives
them to Bush, not
uninitialized
memory like Matt
Eastman.

Classic buffer overflow (CWE-120).
Detectable with buffer overflow detectors
(run-time & maybe static), certainly
countered with ASAN.
The key problem is line 48, which is an
sprintf that prints to an array with inadequate
space (as allocated in line 33). Complaining
about sprintf (e.g., requiring snprintf instead
of just using sizeof(LigMesg)) would do
enough to detect it.
Run-time mechanisms that create large "red
zones" between memory allocations inside
the stack would not detect it, but they would
make this exploit fail.
Aside: Function getDay uses malloc() in
some cases and a pointer to constant in
others, making it impossible to deallocate its
results safely (and thus guaranteeing a
memory leak). That's ugly, but by itself that's
not a vulnerability.
This is detected by gcc warning -Wformat-
overflow.

- X - - - - X - - - X X

7.0 Jasvir
Nagra

jnagra Uses the fact that
the string "second"
has more words
than "first" or "third"
and the fact that
the times between
10 and 12am have
2 characters to
cause a buffer
overrun and skew
results. Just gives

Classic buffer overflow (CWE-120). This is a
derived version of Paul Parkanzky's code,
so similar comments about
countermeasures apply. This is detectable
with buffer overflow detectors (run-time &
possibly static ones). This is certainly
countered by ASAN. The key problem is line
68, which is an sprintf that prints to a fixed
buffer allocated on line 44. This is detected
by gcc warning -Wformat-overflow.

- X - - - - X - - - X X

B-6

Score Author File Original Summary My Summary SUS Ov? #d? L1? Co? ==? ASN #d L1? Co gcc ALL
them to Bush, not
uninitialized
memory like Matt
Eastman.
(Submitted past
deadline, no
victory)

6.7 Matthew
Eastman

meastman pointer arithmetic,
stack smashing

CWE-787: Out-of-bounds Write (child of
CWE-119: Improper Restriction of
Operations within the Bounds of a Memory
Buffer). The vulnerability is in function
isElectionDay(). Line 44 passes "&now" to
isElectionDay as the parameter "givenTime",
a pointer to time_t. Line 102 executes
"givenTime--", which does not produce "one
second earlier" as it might appear. This is a
pointer decrement, and thus this decrement
produces a pointer to the *earlier* data. It
calls "struct tm *localtime_r(const time_t
*timer, struct tm *buf);" It's passed
"givenTime", which is valid for the type
(since it's a pointer to a time), but now it
points to the voting data instead of a time.
Line 108 then overwrites the value. The
comments around 102 and 108 do a good
job of fooling the human into believing that
what's being done is reasonable (there's
really no good reason for the write on line
108, but the comment does a decent job of
justifying the code). No problems were found
by gcc -Wall -Wextra, because the types are
valid.

- X - - - - X - - - - X

B-7

Score Author File Original Summary My Summary SUS Ov? #d? L1? Co? ==? ASN #d L1? Co gcc ALL

6.0 Jamie
Strachan

sov.cpp Uses shell script to
compile a file, run
it, morphing it into
another file to run
and skew the
votes.

Shell script manipulation.
Human review is likely to be sufficient to
reveal this underhanded code, or at least
raise significant suspicions, because it uses
an extremely unusual approach for
compilation and the shell script to do so is
obviously obfuscated. In short, this is not
well-hidden underhanded code. Its text says
it's a "script and a source file" but lines 1-8
use a sequence of "set" commands that
don't work on typical command interpreters
like bash or dash. This code appears to
assume that the default script system is csh,
which would be extremely unusual.
Lines 1-8 (the script sequence) looks very
much like obfuscated code, which gives it
away all by itself to a human reviewer. In
addition, lines 136-137 expressly give away
the "Sleight", which would probably be
immediately rejected by a human review.

X - - - - - - - - - - -

5.6 Chris
Ruppert

cruppert pushes bush to
nader after nov2
deadline by
#defining a strange
macro that inserts
itself into a case
statement.
#defining break, a
language keyword,
is pretty giveaway
that something is
up.

Misuse of #define. This requires compilation
to redefine language keyword "break".
Human review is likely to be sufficient to
reveal this underhanded code. Redefinition
of a language keyword is highly unusual and
suspicious. Line 54 detects the
recommended setting of "break" to 1,
undefines it in lines 56-57, and then
redefines it in line 65+ in a multi-line
definition that splits the keyword across
multiple lines to try to hide what it's doing
(but isn't very good at it). The gcc compiler

X - X - - - - X - - - X

B-8

Score Author File Original Summary My Summary SUS Ov? #d? L1? Co? ==? ASN #d L1? Co gcc ALL
warnings might be enough of a hint, but they
are vague enough that I do not count them.

5.3 Michal
Forisek

mforisek 5.3 Michal Forisek:
mforisek: Clever
political messages,
uses #define to
change "another
number" to number
instead of
another_number
,when verifying that
the number of
votes don't exceed
the number of
registered voters.
the call to time
could have been
hidden better.

Misuse of #define. Human review is likely to
be sufficient to reveal this underhanded
code, because this has a huge sequence of
highly suspicious #defines. Usually #define
would be sparing and define names in
UPPERCASE, but these have many lower-
case definitions (which are suspicious all by
themselves). Requiring #define to be
sparing, and all-uppercase, would eliminate
this attack. Line 11 "#define news" means
"news" will be interpreted as empty, line 12
"#define another news" defines "another" as
"news" (thus "another" is also considered
empty). Line 27 defines "arbitrary" as "*" so
the line 39 "arbitrary number" is interpreted
as "*number" instead of the more expected
"arbitrary_number"; Line 44 uses "another
number" instead of the "another_number"
used elsewhere, which becomes "number",
and note that number has been subtly
declared as a *pointer* to an int instead of
an int (because it's been declared as
*number). Line 49 sets "arbitrary number =
0", so this is really *number=0 (an
assignment of the value 0 to whatever the
pointer named number points to). Line 15
defines "prime" as "time news", so the later
call to it on line 60 is really a call to
time().The gcc compiler warnings might be
enough of a hint, but they are vague enough
that I do not count them.

X - X - - - - X - - - X

B-9

Score Author File Original Summary My Summary SUS Ov? #d? L1? Co? ==? ASN #d L1? Co gcc ALL

5.0 Scott
Craver

scraver Local variable l
gets assigned to
104 on the big day.
When l is later used
in place of 1 to
multiply bush's
count by 104.

Confusion of letter "l" with number "1". The
use of the single lowercase letters "l" and "o"
as variable names is suspicious by itself,
since they are easily confused with "1" and
"0". Line 53 says "total = total+l;" – note that
in this line, the variable total is incremented
by lowercase L, not by one. That said, the
entire sequence of lines 51-54 are
suspicious. It's not clear that this would work
on typical systems.

X - - X - - - - X - - X

4.3 Corey
Edwards

cedwards #define madness #define misuse. Human review is likely to be
sufficient to reveal this underhanded code; it
has a huge sequence of bizarre and
unnecessary #defines. Forbidding #define
misuse would certainly counter this. See
lines 4-15.

X - X - - - - X - - - X

3.3 David
Wheeler

dwheeler5 Uses different code
on election day.

Election-day code runs incorrect code. This
shouldn't be too hard for humans to find, but
it isn't trivial because it uses nothing
sophisticated to hide the problem, and thus
will be hard to find with static analysis tools.
That said, this remarkable amount of
duplication – which makes the underhanded
code slightly harder to find – would easily be
considered suspicious by itself. Note that
100% test coverage would trivially find the
problem. Line 50 checks if "is_official", and if
so, uses code on lines 59-60 which use the
wrong tally entries (e.g., "N" for Nader).

X - - - - - - - - - - -

7.3 Michal
Zalewski

mzalewski Gives 1/10 of the
votes to bush.
Relies on macro
pasting to alter the

Misuse of #define that hides another
variable scope with same name. This is an
especially sneaky attack and the attack is
not obvious to human review, so this is an

- - X - - - - X - - X X

B-10

Score Author File Original Summary My Summary SUS Ov? #d? L1? Co? ==? ASN #d L1? Co gcc ALL
apparent meaning
of code (suddenly
locally declared t
hides t in the outer
scope)

especially good example of underhanded
code. That said, it uses a macro in a way
that is totally unjustified; by itself that is a
little suspicious (and would be countered by
discouraging unnecessary macro use), and
any analysis that warned about hiding a
variable of the same name would reveal it.
Lines 55-70 define a lengthy macro
VOTE_AND_CHECK; it is then invoked by
line 78 (match case) and line 83 (unmatched
case). Line 55 and on set up a pointer "t" to
walk the "tally" array of "struct candidates".
However, the macro on line 56 follows a
special branch 1/10 of the time. The macro
on line 57 defines its own pointer "t", so
when line 67 increments the vote, it
increments the first tally entry instead of the
one requested. The gcc warning –Wshadow
warns about the shadowing that is the
essence of this attack.

6.3 Kenneth
Davis

kdavis printf returns 0 or 1
depending on
debug, so if debug
is turned on it
returns correct
values, other
moves values
there.

Complex nested use of terniary operator
“?:”. This is very odd code, and human
review is likely to complain about it. Also:
this doesn't seem to produce wrong answers
regardless of the value of debug, so this
doesn't seem to be a *working* attack as
posted (at least in this test environment).
Line 19 sets variable "debug" to value of
DEBUG (default 1). Line 33 implements the
attack, which is a huge Tally[...] += 1
statement where "..." includes multiple ?:,
calls to printf, and use of debug. printf
returns the number of characters
transmitted, so when nothing is output it

X - - - - - - - - - X X

B-11

Score Author File Original Summary My Summary SUS Ov? #d? L1? Co? ==? ASN #d L1? Co gcc ALL
returns 0, but when it outputs text it will
modify results. The attack is revealed by -
Wunused-value (warning that the left-hand
operand of comma expression has no
effect).

6.0 Michael
Moore

mmoore Comments
obfuscate ?:
statement that
blocks out index.

Misformatted comment (early termination
due to an embedded */). This can be
countered by reformatting comments. Line
108 begins a comment. Line 134 ends the
comment, but it's formatted to obscure this.
Lines 136-144 include live code but
formatted to try to appear as a comment.
Line 146 *appears* to end the comment.
Significant hints about the attack occur in
syntax coloring (lines 136-144 are
immediately revealed to be code not
comments, and line 146 shows a warning in
vim because it ends a comment that has
already closed). The gcc warning -
Wcomment detects this.

- - - - X - - - - X X X

6.0 Jean-
Philippe
Martin

jmartin query-replace 1 l
where l==-1, buffer
overrun

Classic buffer overflow (CWE-120). The
#defines in lines 6-7 are highly suspicious,
and trivially countered by requiring #define
to use uppercase. This uses lowercase "l"
as a token that is easily misunderstood as
"1", counterable by preventing using of
lowercase "o" and "l". Line 6-7 use #define
to define "l" as really "t", and "t" as "-1"; Line
29 allocates space, but instead of allocating
enough with plus one, it uses plus
lowercase-L which is really minus 1. Line 57
assigns to greeting, which is now too short
(it assigns to element 64 and 65, but the

X X - X - - X - X - - X

B-12

Score Author File Original Summary My Summary SUS Ov? #d? L1? Co? ==? ASN #d L1? Co gcc ALL
maximum index allowed is actually 63). Line
58 overwrites greeting[LASTINDEX] with 0,
which is now beyond the array. This is very
dependent on exploiting the overlap
between the "party" array defined on line 27
and the "greeting" array defined on line 29;
inserting extra unused space here destroys
the attack. Note that the definition of "TRUE"
as -1 is very nonstandard in C (bool.h
defines true as 1) and is a little suspicious.
In general, there are a number of
unnecessary #defines. Note: "cromulent"
means "acceptable or adequate" (!).

5.7 Kester
Maddock

kmaddock Arrays begin at 0,
not 1; hence
uninitialized
memory for the
initial bush tally

CWE-125: Out-of-bounds Read (child of
CWE-119: Improper Restriction of
Operations within the Bounds of a Memory
Buffer) and CWE-787: Out-of-bounds Write
(child of CWE-119: Improper Restriction of
Operations within the Bounds of a Memory
Buffer).
Line 11 does a "#define
NUM_CANDIDATES 4". Line 48 declares
"unsigned long Tally[NUM_CANDIDATES] =
{0}" which allocates index values 0..3 (the
legal values) but nothing else. Line 16 does
a "#define BUSH 4"; this means that line 77
that does "Tally[BUSH]++;" probably
increments something, but that value being
increment is outside of the allocated array.
Line 13 "#define OTHER 1" makes line 16
look less suspicious. Line 27+ have a lot of
useless temp* variables, which are
somewhat suspicious. This could be called
CWE-457: Use of Uninitialized Variable,

- X - - - - X - - - - X

B-13

Score Author File Original Summary My Summary SUS Ov? #d? L1? Co? ==? ASN #d L1? Co gcc ALL
though I wouldn't; the *variable* is initialized,
just not at this out-of-bounds index value.

5.7 Fredrick
Oehrstroem

foehrstroe
m

misparenthesized
#define statement
causes ! to cancel
out with !BUSH and
makes it only true if
!!BUSH==input

Misused #define. Line 27 says "#define
OTHER(v) !BUSH(v) && !KERRY(v) &&
!NADER(v)" - note the failure to surround
the replacing #define expression with (...).
Line 33 says "if (!OTHER(input))", however,
this expands to "!!BUSH(v) && !KERRY(v)
&& !NADER(v)". This can quickly countered
by style rules that require parentheses for
macro replacements, and also by forbidding
the use of #define when not required.

- - X - - - - X - - - X

5.7 Adam Barth abarth #define, Order of
Operations

Line 37 (etc.) define macros that are not
properly surrounded with (), e.g., "#define
isKerry(v) v==Kerry". Lines 65, 67, and 69
invoke the macros with "!", E.g., line 65 has
"!isKerry(v)", which would expand to
"!v==Kerry" (a highly improbable construct).
This has a ridiculous number of #define
statements, counterable by limiting their use
to "only when must occur," and can also be
detected by requiring (...) to prevent
unexpected expansions. The gcc warnings
provide adequate hints about the real
problem.

- - X - - - - X - - X X

5.7 Travis
Fisher

tfisher macro madness...
replaces the
unsigned char Vote
with a crazy
expression that
does some vote
skewing (this is

Dangerous compiler options. Note: The
code itself is fine, and the "crazy expression"
was not originally documented. After I
reported the problem, Daniel Horn added
the following text: Unfortunately since the
exact command line was lost to the sands of
time, this one will need to suffice:
 gcc -Disspace="'K'==" macro_tfisher.c

X - X - - - - X - - - X

B-14

Score Author File Original Summary My Summary SUS Ov? #d? L1? Co? ==? ASN #d L1? Co gcc ALL
done on the gcc
command line)

This compiler option is highly suspicious and
would probably be immediately obvious to
any human reviewer.

5.3 John
Waymouth

jwaymouth Exploits the fact
that order in which
arguments are
evaluated is
undefined in C++
(postincrement in
call to doTally)

Undefined order of evaluation.
This occurs on line 33. This violates SEI rule
EXP30-C, “Do not depend on the order of
evaluation for side effects” per
https://wiki.sei.cmu.edu/confluence/display/c
/EXP30-
C.+Do+not+depend+on+the+order+of+evalu
ation+for+side+effects
Note that gcc -Wsequence-point warns
about this, noting that “operation on ‘i’ may
be undefined.”

- - - - - - - - - - X X

5.3 Matthew T
Russotto

mrussotto Uninitialized other
variable could
cause the map
from char to int to
point to zero for the
'Other' category

Failure to process entire range of an array to
be written to. Line 18 *looks* like it initializes
the "Tallymap" array, but it ranges over
sizeof(Tally) instead of sizeof(Tallymap), so
it only initializes a few values instead of all of
them. Lines 22-24 initializes specific values,
but doesn't set "other", which would be okay
if line 18 had a correct range but it didn't. It's
not *uninitialized* nor is it out-of-range
because line 12 does an initialization of the
Tallymap array with an unusual value, the
unusual initialization value does make it look
somewhat suspicious. This is challenging to
find. The attack doesn't always work (the
attack doesn't work on Cygwin).

- - - - - - - - - - - -

5.3 David
Mazieres

dmazieres local macro
variable c hides the
outer c. Pasting

#define and shadowed variable. Lines 84-91
defines macro tabulate(val), which says in
line 86 "ptrdiff_t c = val"; note that this
macro is NOT defined in uppercase (which

- - X - - - - X - - X X

https://wiki.sei.cmu.edu/confluence/display/c/EXP30-C.+Do+not+depend+on+the+order+of+evaluation+for+side+effects
https://wiki.sei.cmu.edu/confluence/display/c/EXP30-C.+Do+not+depend+on+the+order+of+evaluation+for+side+effects
https://wiki.sei.cmu.edu/confluence/display/c/EXP30-C.+Do+not+depend+on+the+order+of+evaluation+for+side+effects
https://wiki.sei.cmu.edu/confluence/display/c/EXP30-C.+Do+not+depend+on+the+order+of+evaluation+for+side+effects

B-15

Score Author File Original Summary My Summary SUS Ov? #d? L1? Co? ==? ASN #d L1? Co gcc ALL
causes this variable
to be shadowed.

would warn a developer). Line 105 says
"tabulate (c);", but since C macros are not
hygienic, this doesn't work as expected, it
just means that it's "initialized" with its unset
value. The gcc warning -Wshadow
specifically warns about this, noting that
“declaration of ‘c’ shadows a previous local”
and pointing out both the use and shadowed
declaration.

5.0 Rachel
ParkeHoub
en

rparke Utilizes the fact that
constructed order
matters. Produces
a warning in gcc

CWE-457: Use of Uninitialized Variable (due
to construction order). On lines 71-74 it
initializes private values, but the later
initializations use the values of m_total, but
m_total itself is being initialized in the same
construct and there is no guarantee m_total
has an assignment when it is loaded, e.g.,
by "m_kerry(m_total)". The gcc warning flag
–Wreorder warns about this.

- - - - - - - - - - X X

5.0 Joshua
Hudson

jhudson Passes in the
number of bytes
read instead of the
byte read, while
obscuring it with
setjmp and other
nasties.

Line 16 says"vcc(read(0, results, 1),
results);" - the function "read" returns the
number of bytes read (which will typically
be 1 since that was the count provided, or 0
on end of file), not the value read. The fact
that “read” returns the number of bytes has
been true since the early 1970s, so it is not
clear how many human reviewers would
miss this. The code has many ugly
constructs that make it hard to understand in
general, though that partial obfuscation
suggests there is a bigger problem and
would almost certainly make this code
suspicious to a reviewer. The gcc warning -
Wconversion warns about this, reporting

X - - - - - - - - - X X

B-16

Score Author File Original Summary My Summary SUS Ov? #d? L1? Co? ==? ASN #d L1? Co gcc ALL
“warning: conversion to ‘int’ from ‘ssize_t
{aka long int}’ may alter its value”

5.0 Ryan
Cumings

rcumings Modulus operator
'%' forces all votes
to go to table rows
0 or 1 in lines 130-
144. Unrelated,
complex code to
hide a simple O vs
0 swap.

Unnecessary modulus operator (%). The
problem is in lines 130, 135, 140, and 144,
which all use the construct "tallyCan(&
tbl[vote % 2], ...)". However, "vote % 2" uses
the modulus operator "%"; the result is that
all the votes can only apply to the address of
table tbl rows 0 or 1. There's a mess of
commented-out code that make the code
this harder to read, which could signal a
problem with the code. The original
summary was wrong; it said “Complex code
to hide a simple O vs 0 swap.” Line 112
does have "0ther" instead of "Other", but
that is not the primary problem.

X - - - - - - - - - - -

4.3 Robert A
Seace

rseace Casts from ulong*
to uchar* and then
accesses it. Also
issues a warning in
gcc with
appropriate
options.

Cast to wrong type. Line 24 is the key
problem, a bad type conversion. That line
says, "uchar vote = arg1, *totals = arg2",
and the second part converts arg2 to the
wrong type. Line 48 declares "ulong
totals[NUM_CANDIDATES]" (an array on
unsigned longs), and line 53 passes a
pointer to that array to function count_vote().
Line 22 defines the count_vote second
parameter as "void*", which accepts
anything and quietly discards the original
type. Line 24 casts "totals" to a new (wrong)
type. While gcc warns about the first part of
line 24, as configured it did not report the
key problem of line 24.

- - - - - - - - - - - -

B-17

Score Author File Original Summary My Summary SUS Ov? #d? L1? Co? ==? ASN #d L1? Co gcc ALL

4.0 Henrik
Abelsson

habelsson #defines to gotos!
Considered
harmful.

Line 11 has a malicious definition with an
embedded goto. This nonsense is unlikely to
pass serious human review and preventing
unnecessary #define use would counter it.
The gcc -pedantic warning flag reports this
problem.

X - X - - - - X - - X X

4.0 Eric Noyau enoyau Uses l instead of 1 Use of variable lowercase letter "l" instead of
the digit "1". Line 23 adds using variable "l"
(lowercase "L") instead of number 1 in
"k=l+k". Line 12 defines variable "l"
(lowercase "L"). This code has ugly
formatting.

- - - X - - - - X - - X

4.0 David
Wheeler

dwheeler1 no break after
Other case.

No expected break (unexpected fall through)
within a case statement. Line 53 is in a case
statement and increments other, but doesn't
have a "break" following, so it falls and
"other" also increments a candidate in lines
54-55. Line 65 does not print the calculated
"other" but instead recalculates an "other"
that hides the attack. The filename is
actually dwheeler1.c. This attack is revealed
by gcc -Wimplicit-fallthrough (which is
enabled by -Wextra).

- - - - - - - - - - X X

3.7 Craig A
Rich

crich Hides a Tally[] = 0
in a comment. Only
works on notepad
users.

Hidden code in a comment. Lines 27 and 33
have embedded code hidden in a comment.
Vim’s syntax highlighting system highlights
part of line 33 in red, hinting at the problem.

- - - - X - - - - X X

3.7 Thiago
Campos

tcampos uses wrong ascii
value in part of
program. Teaches
the value of
constants in code.

Line 15 says "int B = 64;" but B is ASCII 66,
so Bush values won't be displayed. This is
likely to be suspicious to a human and might
not pass human review, because this is a
weird way to handle ASCII values. It is

X - - - - - - - - - -

B-18

Score Author File Original Summary My Summary SUS Ov? #d? L1? Co? ==? ASN #d L1? Co gcc ALL
highly unusual to directly define values in
code instead of using the compiler to look
them up, when simple constructs are
available to do so. Such an unusual
approach would encourage human
reviewers to check it. The values also aren't
set as constants, which isn't part of the
attack but might cause extra scrutiny. Later
in line 32, the values ("constants") are not
used, but integers that don't match are used
instead (75, 66, and 77 are used, but those
don't match the numbers above, and they
also don't match the correct values 75, 66,
and 78).

3.7 Jared Sohn jsohn Typo in nader
section checking if
Vote is 'n' or 'n'
instead of 'n' or 'N':
votes delivered to
Other. Guess its'
writein. Creative
alternative
comments.

Conditional checks for 'n' or 'n' instead of 'n'
or 'N' (capital letter). On line 27, which says
"((Vote == 'n') || (Vote == 'n'))", one of the 'n'
constants here should be 'N'.

- - - - - - - - - - - -

3.7 Philip
Willoughby

pwilloughby Replaces 1 with l Uses variable lowercase "l" instead of
constant digit "1". Line 43 uses lowercase "l"
instead of constant 1 ("BushVotes += l;").
This is enabled through the definition of a
variable named "l" on line 23. Remarkably,
gcc -Wsign-conversion detects this situation
because the “conversion to ‘long unsigned
int’ from ‘int’ may change the sign of the
result”

- - - X - - - - X - X X

B-19

Score Author File Original Summary My Summary SUS Ov? #d? L1? Co? ==? ASN #d L1? Co gcc ALL

3.7 Oleg
Kibirev

okibirev uses l instead of 1
when adding to
bush's tally. (this is
what the ++
operator is for ;-))

Uses variable lowercase "l" instead of
constant "1"; line 16 uses "b+=l;" instead of
"b+=l;".

- - - X - - - - X - - X

3.7 Hacksprint hacksprint Replaces 1 with l Uses variable lowercase "l" instead of
constant "1". Lines 26, 33, 40, 46 use
lowercase "l" instead of constant 1. This
uses lowercase "l" instead of constant "1" in
many places, which is different from
entries such as Oleg Kibirev's (okibirev)
(which uses lowercase "l" in just one place).
The results thus depend greatly on the
ASCII value of characters. The results are
especially different from expected values, so
practically any testing at all (even when the
exact correct answers were not considered)
would reveal the attack.

- - - X - - - - X - - X

3.7 Alan
Krueger

akrueger Replaces 1 with l Uses lowercase 'l' instead of '1'. Line 28
uses "++c[l]" instead of the correct "++c[1]".

- - - X - - - - X - - X

3.7 Kristian
Nielsen

knielsen.c Puts the kerry case
in a while
statement that
looks for spaces.

Misleading indentation, while loop without
{...} following lines 21-26 are a while loop,
but the later lines have the same
indentation, misleading the reader into
thinking that the while loop in line 21 saying
"while(isspace(next = getchar()))" simply
skips spaces. Note that this violates the
recommendation of SEI EXP19-C, "Use
braces for the body of an if, for, or while
statement".
Note: gcc’s -Wmisleading-indentation should
have caught this problem, but for some
reason it did not. This defect in gcc has

- - - - - - - - - - - -

B-20

Score Author File Original Summary My Summary SUS Ov? #d? L1? Co? ==? ASN #d L1? Co gcc ALL
been reported to its developer. This defect
suggests it’s important to have test cases to
verify warning flag functionality if these
warning flags are important to security.

3.3 Derek
Warnick

dwarnick.c Zero instead of O in
the code gives
Other votes to
Kerry

Malicious switch between zero (0) and
isolated letter capital O. Line 27 miscounts
the vote, incrementing index 0 (zero) instead
of index capital O. It is always possible to
use index 0, but this misleading code made
sense only because line 11 defines an
enumerated value capital "O" as well.

- - - X - - - - X - - X

3.3 Matti
Niemenma
a

mniemenm
aa

= instead of == Use of = instead of the correct ==. Line 39
has the error. No matter what the previous
value of "Vote" was, it is forced to "K" and
then counted as "K". This attack is
immediately detected by gcc -Wall, which
includes "-Wparentheses", with the warning
"suggest parentheses around assignment
used as truth value" displayed.

- - - - - X - - - - X X

3.3 Drew Vogel dvogel bitwise and instead
of logical and

Use of "&" instead of the "&&" operator.
More specifically line 16 uses "&" instead of
the "&&" operator. This construct is
suspicious anyway, as it's not in a
conditional and there's no obvious reason to
use either "and" operator in this situation.

X - - - - - - - - - - -

3.3 Brad
Grzesiak

bgrzesiak (OFFICIAL
SUMMARY
INCORRECT) gets
instead of equals

Use of = instead of the correct == in lines 8-
10. The claimed problem in the official
summary is wrong. Detected by gcc –Wall
via -Wparentheses.

- - - - - X - - - - X X

3.0 Jonathan
Drechsler

jdrechsler Uses lower case 'k' Lines 15 and 18 use lowercase 'k' to retrieve
values, when it should have been uppercase
'K'. This sample had the lowest score in the

X - - - - - - - - - - -

B-21

Score Author File Original Summary My Summary SUS Ov? #d? L1? Co? ==? ASN #d L1? Co gcc ALL
contest; it is a relatively obvious mistake to
an experienced developer.

The sample by Geir Thomassen was excluded, since it does not have an attack. It can be summarized as follows:

4.0 Geir
Thomassen

gthomassen #define of EOF to
changing input to bush
using comma operator.

This is an error in the data set. There is no #define of EOF and
no use of the comma operator. The program as posted appears
to work correctly and is not malicious. Note: lines 19-22 use
printf %d format, which uses int, but the arguments passed are
long unsigned int (not always equivalent); this is detected by gcc
-Wall.

R-1

References

[Bagnar 2018] Bagnar, Roberto, Abramo Bagnara, and Patricia M. Hill, “The MISRA
C Coding Standard and its Role in the Development and Analysis of Safety- and Security-
Critical Embedded Software”, 2018-09-04, https://arxiv.org/abs/1809.00821

[Boogerd 2008] Boogerd, C.J., and L. Moonen, “Assessing the Value of Coding
Standards: An Empirical Study, Delft University of Technology”, ICSM 2008 - IEEE
International Conference on Software Maintenance, 2008,
https://repository.tudelft.nl/islandora/object/uuid:646de5ba-eee8-4ec8-8bbc-
2c188e1847ea

[Caudill 2018] Caudill, Adam, and Taylor Horby, “The Underhanded Crypto(graphy)
Contest”, Def Con 26, 2018-11-24, https://www.youtube.com/watch?v=SYUBOLIbxPE

[Corbet 2003] Corbet, Jon, “An attempt to backdoor the kernel”, LWN.net, 2003-11-
06, https://lwn.net/Articles/57135/

[Felten 2013] Felten, Ed, “The Linux Backdoor Attempt of 2003”, 2013-10-09,
https://freedom-to-tinker.com/2013/10/09/the-linux-backdoor-attempt-of-2003/

[FSF 2008] Free Software Foundation (FSF), GNU Indent - beautify C code, 2008-
07-23, https://www.gnu.org/software/indent/manual/

[Gambhir 2019] Gambhir, Raj Karan and Jack Karsten, “Why paper is considered
state-of-the-art voting technology”, Cybersecurity and Election Interference series,
Brookings Institution, 2019-08-14,
https://www.brookings.edu/blog/techtank/2019/08/14/why-paper-is-considered-state-of-
the-art-voting-technology/

[Gerrand 2013] Gerrand, Andrew, “go fmt your code”, The Go Blog, 2013-01-23,
https://blog.golang.org/gofmt

[Guest 2016] Guest, Thomas, “Gofmt knows best”, Word Aligned, 2016-03-07
http://wordaligned.org/articles/gofmt-knows-best

[Hatton 2005] Hatton, Les, Language subsetting in an industrial context: a
comparison of MISRA C 1998 and MISRA C, 2005-11-20,
https://www.leshatton.org/Documents/MISRA_comp_1105.pdf

[Jaric 2015] Jaric, Peter, 2015-09-27, https://javahacker.com/the-first-javascript-
misdirection-contest

https://arxiv.org/abs/1809.00821
https://repository.tudelft.nl/islandora/object/uuid:646de5ba-eee8-4ec8-8bbc-2c188e1847ea
https://repository.tudelft.nl/islandora/object/uuid:646de5ba-eee8-4ec8-8bbc-2c188e1847ea
https://freedom-to-tinker.com/2013/10/09/the-linux-backdoor-attempt-of-2003/
https://www.gnu.org/software/indent/manual/
https://www.brookings.edu/blog/techtank/2019/08/14/why-paper-is-considered-state-of-the-art-voting-technology/
https://www.brookings.edu/blog/techtank/2019/08/14/why-paper-is-considered-state-of-the-art-voting-technology/
https://blog.golang.org/gofmt
http://wordaligned.org/articles/gofmt-knows-best
https://www.leshatton.org/Documents/MISRA_comp_1105.pdf
https://javahacker.com/the-first-javascript-misdirection-contest
https://javahacker.com/the-first-javascript-misdirection-contest

R-2

[Johnson 2017] Johnson, Nick, Announcing the winners of the first Underhanded
Solidity Coding Contest, 2017-09-21, https://medium.com/@weka/announcing-the-
winners-of-the-first-underhanded-solidity-coding-contest-282563a87079

[MISRA 2012] Motor Industry Software Reliability Association (MISRA), MISRA
C : 2012 (description), 2012, https://www.misra.org.uk/

MISRAHome/MISRAC2012/tabid/196/Default.aspx

[Nystrom 2015] Nystrom, Bob, “The Hardest Program I've Ever Written”, Journal
(blog series), http://journal.stuffwithstuff.com/2015/09/08/the-hardest-program-ive-ever-
written/

[Ou 2016] Ou, Elaine, “Obfuscated Obfuscation”, (2016-06-07)
<https://elaineou.com/2016/06/07/obfuscated-obfuscation/>

[Prentice 2015] Prentice, Lynn (lprent), “Scary programmer”, The Standard, 2015-
06-18, https://thestandard.org.nz/scary-programmer/. Note: the author uses the pseudonym
“lprent” in the article; full name shown at https://twitter.com/lprent

[Regehr 2010] Regehr, John, “A Guide to Undefined Behavior in C and C++, Part 1”,
2010-07-09, https://blog.regehr.org/archives/213

[Reitwiessner 2017] Reitwiessner, Christian, “Lessons Learnt from the Underhanded
Solidity Contest”, Medium, 2017-09-22, https://medium.com/@chriseth/lessons-learnt-
from-the-underhanded-solidity-contest-8388960e09b1

[Schrittwieser 2013] Schrittwieser, Sebastian, Stefan Katzenbeisserz, Peter
Kiesebergy, Markus Hubery, Manuel Leithnery, Martin Mulazzaniy, and Edgar Weipply.
“Covert Computation — Hiding code in code through compile-time obfuscation.” ASIA
CCS 2013, Hangzhou, China. https://www.sba-research.org/wp-
content/uploads/publications/p529-schrittwieser.pdf

[SEI 2018] Software Engineering Institute (SEI), SEI CERT C Coding Standard,
2018, https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard

[Walker 2005] Walker, Joe, “Writing malicious code in Java” , 2005-09-28,
http://incompleteness.me/blog/2005/09/28/writing-malicious-code-in-java/

[Wang 2012] Wang, Xi, Haogang Chen, Alvin Cheung, Zhihao Jia, Nickolai
Zeldovich, and M. Frans Kaashoek, “Undefined Behavior: What Happened to My Code?”,
APSys ’12, 2012, Association of Computing Machinery (ACM),
https://pdos.csail.mit.edu/papers/ub:apsys12.pdf

[Wheeler 2009] Wheeler, David A, Fully Countering Trusting Trust through Diverse
Double-Compiling, 2009, PhD Dissertation for George Mason University (GMU),
https://dwheeler.com/trusting-trust/

https://medium.com/@weka/announcing-the-winners-of-the-first-underhanded-solidity-coding-contest-282563a87079
https://medium.com/@weka/announcing-the-winners-of-the-first-underhanded-solidity-coding-contest-282563a87079
https://www.misra.org.uk/MISRAHome/MISRAC2012/tabid/196/Default.aspx
https://www.misra.org.uk/MISRAHome/MISRAC2012/tabid/196/Default.aspx
http://journal.stuffwithstuff.com/2015/09/08/the-hardest-program-ive-ever-written/
http://journal.stuffwithstuff.com/2015/09/08/the-hardest-program-ive-ever-written/
https://thestandard.org.nz/scary-programmer/
https://twitter.com/lprent
https://blog.regehr.org/archives/213
https://medium.com/@chriseth/lessons-learnt-from-the-underhanded-solidity-contest-8388960e09b1
https://medium.com/@chriseth/lessons-learnt-from-the-underhanded-solidity-contest-8388960e09b1
https://www.sba-research.org/wp-content/uploads/publications/p529-schrittwieser.pdf
https://www.sba-research.org/wp-content/uploads/publications/p529-schrittwieser.pdf
https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard
http://incompleteness.me/blog/2005/09/28/writing-malicious-code-in-java/
https://pdos.csail.mit.edu/papers/ub:apsys12.pdf
https://dwheeler.com/trusting-trust/

R-3

[Wheeler 2017] Wheeler, David A, “The Apple goto fail vulnerability: lessons
learned”, Learning from Disaster, 2017-01-27, https://dwheeler.com/essays/apple-goto-
fail.html

[Williams 2016] Williams, Chris, “Winning Underhand C Contest code silently tricks
nuke inspectors” https://www.theregister.co.uk/2016/02/04/underhand_c_2015/

[Zdrnja 2009] Zdrnja, Bojan, A new fascinating Linux kernel vulnerability, 2009-07-
17, https://isc.sans.edu/diary/A+new+fascinating+Linux+kernel+vulnerability/6820

https://dwheeler.com/essays/apple-goto-fail.html
https://dwheeler.com/essays/apple-goto-fail.html
https://www.theregister.co.uk/2016/02/04/underhand_c_2015/
https://isc.sans.edu/diary/A+new+fascinating+Linux+kernel+vulnerability/6820

AA-1

Acronyms and Abbreviations

ASAN Address Sanitizer
FAQ Frequently Asked Questions
IDE Integrated Development Environment
SCRM Supply Chain Risk Management
SEI Software Engineering Institute
SMT Satisfiability Modulo Theories
SwA Software Assurance
USCC Underhanded Solidity Coding Contest

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std, Z39.18

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington
Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a
collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From – To)

00-04-20 Final
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Initial Analysis of Underhanded Source Code HQ0034-14-D-0001
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBERS

6. AUTHOR(S) 5d. PROJECT NUMBER

David A. Wheeler C5206
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES 8. PERFORMING ORGANIZATION REPORT
NUMBER

D-13166 Institute for Defense Analyses
4850 Mark Center Drive
Alexandria, VA 22311-1882
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR’S / MONITOR’S ACRONYM

IDA Institute for Defense Analyses
4850 Mark Center Dr., Alexandria, VA 22311 11. SPONSOR’S / MONITOR’S REPORT

NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

Project Leader: David A. Wheeler
14. ABSTRACT

It is possible to develop software source code, called underhanded code, that appears benign to human review but is actually
malicious. This is not merely an academic concern; in 2003, an attacker attempted to subvert the widely used Linux kernel
by inserting underhanded software. This paper provides a very brief initial look at underhanded source code, with the intent
to eventually help develop countermeasures against it. This paper identifies and summarizes public examples of
underhanded code, briefly summarizes the literature, and identifies promising countermeasures. It then examines one data
set (the Obfuscated V Contest), tries a small set of countermeasures, and measures their effectiveness. This initial work
suggests that a small set of countermeasures can significantly reduce the risks from underhanded code. The paper concludes
with recommendations on how to expand on this work.
15. SUBJECT TERMS

Underhanded code, underhanded source code, maliciously misleading code, security, software security, computer security,
software assurance, malware, subversion, attack, adversary, countermeasures, Obfuscated V, Underhanded C, underhanded,
misdirection, software development, syntax highlighting, reformatter, compiler warnings, style checkers, static analysis,
static source code analysis, security analyzer, C, address sanitizer, ASAN, software testing, undefined behavior, voting
software, elections, software development, DevSecOps, SecDevOps, tools, software tools

16. SECURITY CLASSIFICATION OF:
17. LIMITATION OF

ABSTRACT

Unlimited

18. NUMBER
OF PAGES

56

19a. NAME OF RESPONSIBLE PERSON
Institute for Defense Analyses

a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include Area
Code) Unclassified Unclassified Unclassified

	1. Introduction
	2. Public Samples of Underhanded Code
	3. Literature
	4. Countermeasures
	A. Discussion
	B. Potential Countermeasures

	5. Examination of Obfuscated V Contest Entrants
	A. Obfuscated V Contest Data Set
	B. Brief Examination of the Obfuscated V Contest Data Set

	6. Conclusions
	Appendix A . Downloading Samples
	Appendix B . Detailed Analysis of Obfuscated V Entries

	D-13166 - Cover.pdf
	About This Publication
	For More Information
	Copyright Notice

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

