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Executive Summary 

Turbulent diffusion of disseminated chemical or biological material results in 

fluctuating concentration fields due to chaotic mixing of the air. Direct simulation of 

turbulent diffusion using computational fluid dynamics would produce fluctuating 

concentration fields, but may not be practical for many types of analyses, due to its 

computational intensity and the complexity of integrating meteorological observations. On 

the other hand, many computationally efficient Gaussian puff transport and dispersion 

models provide estimates of the mean concentration field with a basic characterization of 

the release and meteorology, but are unable to replicate concentration fluctuations. While 

the mean concentration field may be sufficient for modeling time-integrated 

concentrations, such as for modeling environmental collectors, it is a poor proxy for a 

fluctuating concentration field when modeling response to instantaneous concentrations, 

which is often needed for modeling chemical and biological detection systems.  

Two methods of simulating concentration fluctuations, termed the “Markov method” 

and “fractal method”, were investigated in an effort to improve the accuracy with which 

detector response can be modeled in conjunction with Gaussian puff transport and 

dispersion models. The Markov method employs a first-order Markov chain process to 

simulate fluctuating concentration time-series at discrete locations. The fractal method is 

founded upon fractal geometry techniques and produces a spatially correlated fluctuating 

concentration field. Both of these methods require three inputs: concentration mean, 

concentration variance, and temporal correlation; the fractal method also requires a spatial 

correlation factor. These two methods were applied to concentration ensembles generated 

from a subset of the field trials conducted during Fusion Field Trial 2007 (FFT 07), limited 

to continuous releases that met certain meteorological criteria, as well as Gaussian puff 

transport and dispersion simulation output produced by the Hazard Prediction and 

Assessment Capability (HPAC). Evaluation metrics were used to compare the simulated 

fluctuating concentrations with the actual fluctuating concentrations from individual field 

trials. For application to the FFT 07 ensembles, the evaluation metrics characterized the 

frequency and duration of upcrossing events, i.e., occurrences in which the concentration 

exceeds a specified threshold. These metrics were evaluated across a range of concentration 

thresholds. For application to HPAC outputs, a simple model of detector operation was 

used to quantify the total number of times a detector would alarm and the number of 

alarming detectors as evaluation metrics. This model of detector operation requires the 

concentration to exceed a given threshold for a specified duration to trigger a detector 

alarm. These evaluation metrics are therefore functions of both the detection threshold and 

detection duration used to parameterize the detector model. To provide additional context 

for evaluating the Markov and fractal methods, the detector model was also applied to a 

concentration field obtained from a large eddy computational fluid dynamics (CFD) 
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simulation. The CFD simulation was carefully created to replicate a specific field trial and 

demonstrates the fidelity of modeled results that may be obtained through considerable 

analytical and computational effort. 

The fractal method performed marginally better than the Markov method when 

applied to the field trial ensembles, but this assessment is highly dependent on the particular 

concentration threshold of interest, and neither method replicated the metrics obtained from 

the actual field trials with exceptional fidelity. When coupled with HPAC, both methods 

yielded metrics that were generally more faithful to the field trial data than the HPAC 

simulation output alone, yet the methods still deviated substantially from the field trials in 

certain concentration threshold regimes, as observed in the following figure. The fractal 

method performed somewhat better than the Markov method for a detection duration of 5 

seconds (typical for chemical agent detectors), but the Markov method performed 

remarkably well for a 60-second detection duration (typical for biological agent detectors) 

for the release modeled. Note that these are not the only operationally relevant detection 

durations, as many different detector algorithms exist. Also note that the rank ordering of 

methods changes with both the detection duration and the concentration threshold, which 

is a concern for overall model performance. Further, the FFT 07 grid is significantly denser 

than a typical biological or chemical sensor network, and thus the number of alarming 

detectors shown in the figure may not be operationally relevant in many cases.  

 

 

Number of Alarming Detectors in the FFT 07 Grid for 5-Second 

and 60-Second Detection Durations 

 

  

5-Second Detection Duration            60-Second Detection Duration
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1. Introduction

A. Background and Motivation

The Hazard Prediction and Assessment Capability’s (HPAC’s) primary transport and

dispersion model, the Second-order Closure Integrated Puff (SCIPUFF), represents the 

concentration field as the superposition of collections of three-dimensional Gaussian 

“puffs.” These Gaussian puffs arise as a solution to the Reynolds-averaged advection-

diffusion equation for instantaneous releases.1 Although Reynolds averaging allows the 

advection-diffusion equation to be solved analytically, information regarding fluctuations 

in the concentration is necessarily lost. As such, this “Gaussian puff” model provides 

estimates of the mean concentration field, but does not attempt to simulate the fluctuations 

in concentration resulting from turbulent diffusive processes. This mean concentration 

field mimics an ensemble mean concentration, i.e., an average over the collection of all 

possible turbulent realizations of the plume.  

The mean concentration field alone may be reasonably adequate for estimating the 

amount of agent collected by equipment, such as dry filter collectors, if the duration of 

exposure is reasonably long, because concentration fluctuations on relatively short time 

scales would be expected to converge to the mean over the entire collection time. In 

contrast, the performance of detectors that respond to nearly instantaneous aerosol 

concentrations may be dramatically affected by concentration fluctuations. Using the 

ensemble mean concentration to model detector operation may either underestimate or 

overestimate the detector performance, depending on the particular scenario. If the 

detection threshold is above the peak ensemble mean concentration at a given detector 

location, then the detector performance might be underestimated because concentration 

fluctuations could increase the peak concentrations above the detections threshold, as 

depicted in Figure 1. Alternatively, the detector performance may be overestimated if the 

detector needs to be exposed to concentrations greater than the detection threshold for some 

minimum contiguous interval of time, termed the “detection duration.” In such a case, rapid 

concentration fluctuations may cause the concentration to exceed the detection limit for 

intervals too short to permit detection, as depicted in Figure 2. To more accurately model 

the operation of such detectors, the atmospheric transport and dispersion model needs to 

incorporate methods to simulate realistic concentration fluctuations. 

1
R. Ian Sykes, Stephen F. Parker, Douglas S. Henn, Biswanath Chowdhury, “SCIPUFF Version 2.7

Technical Documentation,” Sage Management, December 2011.
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Figure 1. Notional Depiction of a Missed Detector Alarm Resulting from the Use of the 

Ensemble Mean Concentration 

Figure 2. Notional Depiction of an Incorrect Detector Alarm Resulting from the Use of the 

Ensemble Mean Concentration 

The Joint Effects Model (JEM) is the atmospheric transport and dispersion (AT&D) 

model currently accredited by the Department of Defense (DOD) for use in Chemical, 

Biological, Radiological, and Nuclear (CBRN) analyses.2 JEM leverages capabilities 

from other models and is mostly based on HPAC.3 HPAC itself has been accredited as a 

2
Stephen V. Reeves, “Class Accreditation for the Joint Effects Model Increment 1,” (memorandum, 

Washington, DC: Joint Project Manager for Information Systems, August 15, 2007). 

3
Naval Surface Warfare Center, Independent Verification and Validation of Joint Effects Model, Final 

Report, (Dahlgren, VA: Naval Surface Warfare Center, March 5, 2007), 56. 
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Science and Technology (S&T) prototype for use by those with subject matter expertise.4 

In addition to the mean concentration field, HPAC, through SCIPUFF, provides an estimate 

of the concentration variance. HPAC obtains the variance estimates by relating fluctuations 

in the scalar concentration field to fluctuations in the wind velocity derived from turbulence 

theory. Together, the concentration mean and variance can be used to estimate fluctuations 

in a concentration field. 

B. Overview of Analysis 

This paper investigates two methods of simulating fluctuating concentration fields 

using only mean concentration and variance fields, and compares the results of those 

methods with actual concentrations from outdoor releases. One method employs a first-

order Markov chain process to independently simulate fluctuating time series at discrete 

locations, as described in Chapter 2; the other method leverages fractal geometry to 

simulate a fluctuating concentration field, as described in Chapter 3. Both methods were 

applied to ensemble mean and variance statistics generated from actual outdoor field trials 

to investigate their ability to produce realistic concentration fluctuations. The generation 

of field trial ensembles is described in Chapter 4, and consists primarily of selecting 

continuous releases with similar meteorology, and translating and rotating them to a 

common coordinate system. In practical use, these methods would be applied to HPAC 

outputs, rather than experimental field trial ensembles. As such, a single release from 

Fusion Field Trial 2007 (FFT 07) was simulated in HPAC, as described in Chapter 5. The 

application of the Markov and fractal methods to the field trial data is described in  

Chapter 6. The simulated fluctuating concentrations generated by each method were then 

characterized by a set of metrics, described in Chapter 7 and compared to the actual 

fluctuating concentrations recorded during the field trials to assess the fidelity with which 

these methods are able to simulate concentration fluctuations. Both methods were applied 

to the HPAC outputs to assess how these methods perform when coupled with HPAC. The 

results of these comparisons are discussed in Chapter 8. 

  

                                                 
4
  Kenneth A. Myers, “Defense Threat Reduction Agency Accreditation of the Joint Effects Model, 

Science and Technology Prototype/Hazard Prediction and Assessment Capability 5.1,” (memorandum, 

Fort Belvoir, VA: DTRA, September 18, 2012). 
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2. Markov Method for Simulating

Concentration Fluctuations

Markov chain models simulate stochastic (random) processes in which the probability 

of a given outcome at a particular time depends only on the previous state of a system.5 

This type of model lends itself intuitively to the generation of concentration fluctuations, 

which are stochastic by nature. This ability of a first-order, or “memoryless,” Markov chain 

method to work with only a single state allows the reduction of a complex natural process, 

which can otherwise be simulated only with exacting parameterization and extensive 

computation, to tenable pieces. The only necessary parameter to enable the creation of 

Markov chains for concentration fluctuation is the choice of the probability density 

function (PDF) (including its functional form and parameters) that will govern the 

amplitude and frequency of the fluctuations. The choice of PDF and the theoretical basis 

of the model presented herein relies heavily on previous theoretical work6,7,8 and lessons 

learned from previous implementations.9 

A. Concentration Probability Density Functions

Multiple competing probability density functions for simulating concentration

fluctuations exist in literature, though they all assume a stationary source and constant 

meteorology. The primary two—a shifted, clipped gamma distribution and a clipped 

lognormal distribution—have been shown to fit some datasets well, and each has been 

5
Richard Serfozo, Basics of Applied Stochastic Processes, (Berlin, Germany: Springer Science & 

Business Media, 2009), 2. 

6
Eugene Yee and R. Chan, “A Simple Model for the Probability Density Function of Concentration 

Fluctuations in Atmospheric Plumes,” Atmospheric Environment 31, no. 7 (1997), 991–1002. 

7
Shuming Du, David J. Wilson, and Eugene Yee, “A Stochastic Time Series Model for Threshold 

Crossing Statistics of Concentration Fluctuations in Non-Intermittent Plumes,” Boundary-Layer 

Meteorology 92, no. 2 (1999), 229–241. 

8
T.L. Hilderman and D.J. Wilson, “Simulating Concentration Fluctuation Time Series with Intermittent

Zero Periods and Level Dependent Derivatives,” Boundary-Layer Meteorology 91, no. 3 (1999), 451-

482.

9
Ajith Gunatilaka, Alex Skvortsov, and Ralph Gailis, “High Fidelity Simulation of Hazardous Plume 

Concentration Time Series Based on Models of Turbulent Dispersion,” (paper presented at the 15th 

International Conference on Information Fusion (FUSION), Singapore, July 9-12, 2012), 1838-1845. 
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touted as better than its competitor for a given dataset.10,11 Many implementations of the 

Markov method for simulating concentration fluctuation use the shifted, clipped gamma 

distribution proposed by Yee and Chan as the PDF for randomly fluctuating concentrations 

at a fixed point from a stationary source.12 Initially, this investigation incorporated such a 

PDF, but it became increasingly ad hoc as numerous issues arose and workarounds were 

implemented. Issues included numerical problems with the transcendental equation solver 

and the necessity of additional mathematical constraints and approximations to prevent the 

Markov chain from diverging when initialized with very large ensemble variances. Further, 

the nature of the shifted gamma distribution required the renormalization of the final 

concentration time series to the known concentration mean, which, especially in the cases 

of high intermittency, artificially dilated the final fluctuations. After some experimentation, 

the clipped lognormal PDF was used instead, as presented by Hilderman and Wilson.13 The 

remainder of this section focuses on the use of the clipped lognormal PDF. 

Hilderman and Wilson (1999) suggest the use of a clipped lognormal distribution, in 

which the formulation of the shifted concentration, �̃� = 𝑐+ − 𝑐𝑏𝑎𝑠𝑒, is implemented prior 

to the calculation of the PDF.14 As such, the lognormal PDF and Markov process are 

calculated from the artificial concentration, c+, and then shifted by cbase to obtain the 

concentration time series, �̃�. This enables the direct calculation of the final concentration 

time series without the need to rescale to the original mean. 

The full derivation of the lognormal PDF and associated variables for the upshifted, 

pre-clipped concentration time series are provided in Hilderman and Wilson (1999).15 The 

pertinent distribution for the implementation used here is 

𝑝(𝑐+) =  
1

√2𝜋𝜎𝑙+𝑐+
exp ( −

(ln(
𝑐+

𝑐50+
))

2

2𝜎𝑙+
2 ) (1) 

where 𝜎𝑙+
2 and 𝑐50+ are the lognormal variance and median of the distribution, respectively.

These are calculated by first calculating the fluctuation intensity, i, 

10
 Du, Wilson, and Yee, “A Stochastic Time Series Model for Threshold Crossing Statistics of 

Concentration Fluctuations in Non-Intermittent Plumes,” 229–241. 

11
 Hilderman and Wilson, “Simulating Concentration Fluctuation Time Series with Intermittent Zero 

Periods and Level Dependent Derivatives,” 451-482. 

12
 Yee and Chan, “A Simple Model for the Probability Density Function of Concentration Fluctuations in 

Atmospheric Plumes,” 991–1002. 

13
 Hilderman and Wilson, “Simulating Concentration Fluctuation Time Series with Intermittent Zero 

Periods and Level Dependent Derivatives,” 451-482. 

14
 Ibid., 451-482. 

15
 Ibid., 458-460, 465. 
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 𝑖2 = 𝜎𝑐
2/𝑐̅2 (2) 

which is dependent on the mean, 𝑐̅, and variance, 𝜎𝑐
2, of the stationary concentration time 

series. The fluctuation intensity can then be applied to the equations given in Wilson 

(1995)16 which describe the empirical relationship between fluctuation intensity; 

conditional fluctuation intensity (fluctuation intensity for only nonzero concentrations), ip; 

and intermittency, γ: 

 𝑖𝑝
2 =  

2𝑖2

2+𝑖2
 (3) 

 𝛾 =  
1+𝑖𝑝

2

1+𝑖2 (4) 

𝑐50+ can then be calculated directly as 

 𝑐50+ =  
𝑐̅

𝛾√1+𝑖2
 (5) 

The final two quantities necessary to implement the clipped lognormal concentration 

fluctuation PDF, 𝜎𝑙+
2  and cbase, are calculable from a system of equations derived by 

Hilderman and Wilson: 17 

 𝛾 = 0.5 ∗ (1 − erf (
ln (𝜑𝑏𝑎𝑠𝑒)

√2𝜎𝑙+
)) (6) 

 𝑖𝑝
2 =  

𝛾𝜑2̅̅ ̅̅

Φ2 − 1 (7) 

 Φ =  
exp(

𝜎𝑙+
2

2
)

2
(1 − erf (

ln(𝜑𝑏𝑎𝑠𝑒)−𝜎𝑙+
2

√2𝜎𝑙+
)) −

𝜑𝑏𝑎𝑠𝑒

2
(1 − erf (

ln(𝜑𝑏𝑎𝑠𝑒)

√2𝜎𝑙+
)) (8) 

 𝜑2̅̅̅̅ =
exp(2𝜎𝑙+

2 )

2
(1 − erf (

ln(𝜑𝑏𝑎𝑠𝑒)−2𝜎𝑙+
2

√2𝜎𝑙+
)) − 𝜑𝑏𝑎𝑠𝑒 exp (

𝜎𝑙+
2

2
) (1 − erf (

ln(𝜑𝑏𝑎𝑠𝑒)−𝜎𝑙+
2

√2𝜎𝑙+
)) +

𝜑𝑏𝑎𝑠𝑒
2

2
(1 − erf (

ln(𝜑𝑏𝑎𝑠𝑒)

√2𝜎𝑙+
))  (9) 

where φ is the pseudo-concentration formed by scaling the concentration time series by its 

stationary mean, with Φ indicating the mean and 𝜑2̅̅̅̅  indicating the total second moment. 

This allows for cbase to then be calculated by simply reversing this scaling for the 

conditional concentrations: 

 𝑐𝑏𝑎𝑠𝑒 =  𝜑𝑏𝑎𝑠𝑒 ∗ 𝑐50+ (10) 

                                                 
16

  David J. Wilson, Concentration Fluctuations and Averaging Time in Vapor Clouds (New York, NY: 

Center for Chemical Process Safety of the American Institute of Chemical Engineers, 1995). 

17
  Hilderman and Wilson, “Simulating Concentration Fluctuation Time Series with Intermittent Zero 

Periods and Level Dependent Derivatives,” 458-460. 
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B. Stochastic Time Series 

A concentration time series is generated via the stochastic differential equation: 

 d𝑐 = 𝑎(𝑐, 𝑡)d𝑡 + 𝑏(𝑐, 𝑡)d𝜉 (11) 

where the first term is the correlated portion of the differential concentration increment, 

and the second term is a random forcing in which dξ is a Wiener process with variance dt 

and zero mean.18 Physically, a(c,t) is the drift coefficient, and b(c,t) is the diffusion 

coefficient. To use this first-order Markov process, the concentration time series at a given 

spatial point must be continuous, with no intermittent zero concentrations (as the 

calculation of b(c,t) requires division by the instantaneous ensemble mean concentration 

as seen in Equation 14), which is assumed here. As described in section 2.A., this 

continuous time series is later shifted and clipped as a whole to create intermittency. 

The drift and diffusion coefficients are related via the Fokker-Planck equation, but 

the choice of either is arbitrary within certain limitations.19 The choice of a mean-centric 

drift coefficient,20 

 𝑎 = −
𝑐−𝑐̅

𝑇𝑐
 (12) 

where Tc is an appropriate time scale for concentration fluctuations, gives a calculable 

diffusion coefficient,21 

 𝑏2 =
2

𝑇𝑐𝑝(𝑐)
∫ (𝑐 − 𝑐̅

∞

𝑐
)𝑝(𝑐) 𝑑𝑐 (13) 

where p(c) is the concentration PDF. Equation 1 can then be substituted into Equation 13 

and the integral solved to obtain a formula for the diffusion coefficient: 

 𝑏2 =
𝐶+

𝑇𝑐+𝑝(𝑐+)
(erf (

ln(
𝑐+

𝑐50+
)

√2𝜎𝑙+
) − erf (

ln(
𝑐+

𝑐50+
)−𝜎𝑙+

2

√2𝜎𝑙+
)) (14) 

These equations for the drift and diffusion coefficients allow discretization of the 

stochastic differential equation into n time steps (tn = nΔt) as,22  

 𝑐𝑛+1 =  𝑐𝑛 + 𝑎(𝑐𝑛)∆𝑡 + 𝑏(𝑐𝑛)√∆𝑡𝑚𝑛 (15) 

where mn is a random Gaussian variate with zero mean and unit variance. 

                                                 
18

  Du, Wilson, and Yee, “A Stochastic Time Series Model for Threshold Crossing Statistics of 

Concentration Fluctuations in Non-Intermittent Plumes,” 229–241. 

19
  Ibid., 231-232. 

20
  Ibid., 232. 

21
  Ibid. 

22
  Ibid. 
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To account for intermittency appropriately, the calculated concentration time series 

is shifted down by cbase and clipped below 0.  

A single input is necessary to determine the parameters from Equations 3 through 10: 

the fluctuation intensity, which is calculated for each sensor using Equation 2. 

To calculate the correlation time scale, Tc, the autocorrelation coefficient of the 

concentration fluctuation from the mean is calculated at each sensor in the ensemble, and 

then averaged across trials in the ensemble. This leaves R(τ), the average autocorrelation 

as a function of lag period. The time correlation scale used is then the e-folding time, which 

is defined as the time at which the autocorrelation function first reaches 1/e, as described 

in Appendix B. 

C. Extending to the Transient Case 

The theoretical basis for the Markov method assumes stationarity: it is only 

empirically valid for a steadily emitting, non-moving source in an invariant wind field. 

Though most of the trial ensembles have a stationary source, the variable meteorology 

violates the condition of stationarity. The Markov method may be extended to transient 

cases by assuming that the condition of stationarity is satisfied across sufficiently short 

time intervals, as described by Gunatilaka et al.23 In this approach, each time step in the 

data is considered a stationary state and is subdivided into shorter intervals (termed 

“transient time steps”) on which the Markov method is applied. This process stabilizes the 

discontinuous steps in the mean concentration across the original time steps, so that the 

mean-centric parameter (Equation 12) remains dominant over the fluctuation parameter 

(Equation 14), as the mean-centric parameter affects the first-order Markov process on the 

order of Δt/T and the fluctuation parameter only affects it as the square root of Δt/T 

(Equation 15). Furthermore, the method from Gunatilaka et al. for creating multiple 

realizations concurrently24 helps to achieve a good spread of variates from the PDF by 

allowing for an increased number of draws within each stationary state, which are then 

shifted and clipped together. 

To maintain appropriate temporal correlation when the transient time steps are smaller 

than the temporal correlation scale, the last value of each realization is extracted, prior to 

shifting and clipping, to use as a seed value for the next time step. After the seed values are 

recorded, each set of subdivided time steps is averaged as necessary to resample the time 

series into the original time steps, which maintains the same temporal resolution for 

comparison to the field trials.  

                                                 
23

  Gunatilaka, Skvortsov, and Gailis, “High Fidelity Simulation of Hazardous Plume Concentration Time 

Series Based on Models of Turbulent Dispersion,” 1838-1845. 

24
  Ibid. 
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Because the fluctuation intensity is not calculable when the mean concentration is 

zero, the mean concentration time series to which the method is applied must be altered for 

use with the Markov method. The mean concentration time series are truncated to include 

only nonzero mean concentrations. Each value for mean concentration and variance 

immediately prior to the zero value is extended across the excised time period to create a 

non-intermittent time series over which the first-order Markov process can continuously 

evolve.  

D. Limitations 

The Markov method separates each geospatial location in the concentration ensemble 

into its own independent entity. Thus, spatial correlation between locations, no matter how 

close together, are not maintained. The lack of spatial correlation prevents a coherent plume 

from being reconstructed from a dense array of individual fluctuating concentration time 

series. If the distance between locations is larger than the spatial correlation scale, then this 

limitation only minimally affects the simulated concentration time series. Due to this 

limitation, the Markov method might be useful for modeling and simulation involving 

independent geospatial points, such as an investigation into optimal detector arrays, but not 

for modeling that requires short-range coherence or plume reconstruction, such as 

development of algorithms for responding to two detector alarms dependent on their 

relative locations. 

The implementation of the Markov method detailed herein extrapolates beyond the 

assumption used to develop it. Approximations involved in the formulation of the equations 

that govern the drift and diffusion coefficients rely on the assumption of stationarity. Due 

to non-stationarity in the present application, the disjointed fusing together of each transient 

time step is non-physical and can produce large fluctuations that defy the PDF, despite 

efforts to smooth these interfaces. 
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3. Fractal Method for Simulating 

Concentration Fluctuations 

Fractal geometry provides an apt framework for describing turbulent phenomena.25 

Fractals are constructs that exhibit some degree of geometric self-similarity across a range 

of scales. Turbulence involves the dissipation of energy in a cascade of eddies at decreasing 

scales terminating at the Kolmogorov length.26 The cascade propagates as instabilities in 

eddies at a particular scale beget eddies at smaller scales. At the Kolmogorov length scale, 

inertial forces are comparable to viscous forces (i.e., the Reynolds number approaches 

unity) and the energy is dissipated as heat, rather than cascading further to smaller eddies. 

While the wide range of relevant spatiotemporal scales makes the direct application of the 

Navier-Stokes equation to solve the fluid dynamics problem computationally infeasible, 

the equations governing the behavior of fractals across spatial scales are comparatively 

simple to apply. Historically, this conception of turbulence as hierarchies of self-similar 

eddy structures has led to the application of fractal theory to characterize various 

atmospheric phenomena.27,28,29 

A. Fractal Sum of Pulses (FSP) Approach 

A method for simulating concentration fluctuations in dispersing plumes based on 

fractal geometry was implemented as described by Sykes et al.30 The concentration 

fluctuations are modeled as the summation of randomly generated pulses, i.e., a fractal sum 

of pulses (FSP) approach. The pulses are located on a series of spatiotemporal grids 

obtained through iterative refinement to yield overlapping pulses with a range of spatial 

                                                 
25

  K.R. Sreenivason and C. Meneveau, “The Fractal Facets of Turbulence,” Journal of Fluid Mechanics 

173 (1986), 382. 

26
  Ibid. 

27
  W.S. Lewellen and R.I. Sykes, “Analysis of Concentration Fluctuations from Lidar Observations of 

Atmospheric Plumes,” Journal of Climate and Applied Meteorology 25, no. 8 (1986).  

28
  S. Lovejoy and B.B. Mandelbrot, “Fractal Properties of Rain, and a Fractal Model,” Tellus 37A, no. 3 

(1985). 

29
  R.I. Sykes and R.S. Gabruk, “Fractal Representation of Turbulent Dispersing Plumes,” Journal of 

Applied Meteorology 33, no. 6 (1994). 

30
  R.I. Sykes, R.S. Gabruk, D.S. Henn, “The Small-scale Structure of Dispersing Clouds in the 

Atmosphere,” A.R.A.P. Report No. 710 (Princeton, NJ: Titan Corporation, July 1994). 
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scales. These fluctuations are superimposed on the mean concentration field to yield a 

fluctuating concentration field.  

To begin, this fractal method requires the specification of the mean concentration and 

variance on an initial coarse grid of locations at regular time intervals. This grid is then 

iteratively refined, dividing the grid spacing in half until the maximum number of 

refinements, 𝑁, has been evaluated. Thus, the grid spacing for each dimension at the nth 

refinement level is given in Equations 16, 17, and 18. 

 Δ𝑥𝑛 = Δ𝑥02−𝑛 (16) 

 Δ𝑦𝑛 = Δ𝑦02−𝑛 (17) 

 Δ𝑡𝑛 = Δ𝑡02−𝑛 (18) 

In this paper, implementation of the FSP model characterized the one-point 

probability distribution at each grid location using a lognormal distribution with mean, 

𝜇𝐿;𝑖,𝑗,𝑘, and variance, 𝜎𝐿;𝑖,𝑗,𝑘 where the indices 𝑖, 𝑗, and 𝑘 denote the grid coordinate in each 

dimension. LIDAR observations of dispersing plumes from industrial exhaust stacks were 

better characterized by a clipped-normal distribution, but large eddy simulations (LES) 

yielded concentration fields that demonstrate a probability distribution closer to a 

lognormal distribution than a clipped-normal distribution.31,32 The clipped-normal 

distribution was not selected because its implementation was complicated by the lack of an 

analytical solution for the underlying Gaussian parameters. In attempts to implement a 

clipped-normal distribution, the numerical solvers used to obtain the underlying Gaussian 

parameters were slow and prone to failure to converge if not very precisely initialized. For 

the lognormal distribution, the parameters of the underlying Gaussian distribution, 𝜇𝐺;𝑖,𝑗,𝑘 

and 𝜎𝐺;𝑖,𝑗,𝑘, at each grid location were calculated by Equations 19 and 20.33 

 𝜇𝐺;𝑖,𝑗,𝑘 = ln (
𝜇𝐿;𝑖.𝑗.𝑘

2

√𝜇𝐿;𝑖,𝑗,𝑘
2 +𝜎𝐿;𝑖,𝑗,𝑘

2
) (19) 

 𝜎𝐺;𝑖,𝑗,𝑘 = √ln ((
𝜎𝐿;𝑖,𝑗,𝑘

2

𝜇𝐿;𝑖.𝑗.𝑘
2 ) + 1)  (20) 

                                                 
31

  Lewellen and Sykes, “Analysis of Concentration Fluctuations from Lidar Observations of Atmospheric 

Plumes.” 

32
  Sykes, Gabruk, and Henn, “The Small-scale Structure of Dispersing Clouds in the Atmosphere,” 

A.R.A.P. Report No. 710. 

33
  Lewellen and Sykes, “Analysis of Concentration Fluctuations from Lidar Observations of Atmospheric 

Plumes.” 



13 

Triangular pulses are then generated for each grid location at each refinement of the 

grid. The triangular pulse functions in each direction are given by Equations 21, 22, and 

23. 

𝑃𝑥(𝑥, 𝑋𝑛,𝑖, Δ𝑥𝑛) = {
1 −

|𝑥−𝑋𝑛,𝑖|

Δ𝑥𝑛
, |𝑥 − 𝑋𝑛,𝑖| < Δ𝑥𝑛

0  , |𝑥 − 𝑋𝑛,𝑖| ≥ Δ𝑥𝑛

(21) 

𝑃𝑦(𝑦, 𝑌𝑛,𝑗, Δ𝑦𝑛) = {
1 −

|𝑦−𝑌𝑛,𝑗|

Δ𝑦𝑛
, |𝑦 − 𝑌𝑛,𝑗| < Δ𝑦𝑛

0  , |𝑦 − 𝑌𝑛,𝑗| ≥ Δ𝑦𝑛

(22) 

𝑃𝑡(𝑡, 𝑇𝑛,𝑘, Δ𝑡𝑛) = {
1 −

|𝑡−𝑇𝑛,𝑘|

Δ𝑡𝑛
, |𝑡 − 𝑇𝑛,𝑘| < Δ𝑡𝑛

0  , |𝑡 − 𝑇𝑛,𝑘| ≥ Δ𝑡𝑛

(23) 

The centroid of each pulse, (𝑋𝑖,𝑛, 𝑌𝑗,𝑛, 𝑇𝑘,𝑛), is drawn from a uniform distribution 

around the associated grid point, as shown in Equations 24, 25, and 26. 

𝑋𝑛,𝑖 ∈ 𝑈 (𝑥𝑛,𝑖 −
Δ𝑥𝑛

2
, 𝑥𝑛,𝑖 +

Δ𝑥𝑛

2
) (24) 

𝑌𝑛,𝑗 ∈ 𝑈 (𝑦𝑛,𝑗 −
Δ𝑦𝑛

2
, 𝑦𝑛,𝑗 +

Δ𝑦𝑛

2
) (25) 

𝑇𝑛,𝑘 ∈ 𝑈 (𝑡𝑛,𝑘 −
Δ𝑡𝑛

2
, 𝑥𝑛,𝑘 +

Δ𝑡𝑛

2
) (26) 

The amplitude of each pulse, 𝐴𝑛,𝑖,𝑗,𝑘, is drawn from a standard normal distribution, as 

shown in Equation 27. 

𝐴𝑛,𝑖,𝑗,𝑘 ∈ 𝑁(0,1) (27) 

To replicate the ensemble statistics, the amplitude of the pulses must scale with 

standard deviation at each grid location. Because overlapping pulses from each refinement 

level are summed, the standard deviation at each refinement level must sum to yield the 

overall standard deviation at each grid location, 𝜎𝐺;𝑖,𝑗,𝑘, i.e., the variance at each location 

can be expressed as a series expansion across the range of spatiotemporal scales. The 

standard deviation of the initial grid, 𝜎𝐺;𝑛=0,𝑖,𝑗,𝑘, is related to the ensemble standard 

deviation, 𝜎𝐺;𝑖,𝑗,𝑘, in Equation 28. 

𝜎𝐺;𝑛=0,𝑖,𝑗,𝑘 = √
3

2
𝜎𝐺;𝑖,𝑗,𝑘

2 1−2−2𝛼

 1−2−2(𝑁+1)𝛼 (28) 

The 𝛼 parameter defines how the amplitude of fluctuations decreases with increasing 

grid resolution and is calculated from the fractal dimension, 𝐷, as shown in Equation 29 

for a three-dimensional grid. Studies of various atmospheric phenomena have suggested 
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that a fractal dimension of 1.30-1.40 is appropriate for describing cloud structures, rainfall 

patterns, and large-eddy simulations of dispersing plumes.34,35,36,37,38  

 𝛼 = 3 − 𝐷 (29) 

The standard deviation at the nth refinement level, 𝜎𝐺;𝑛,𝑖,𝑗,𝑘, can be calculated from the 

standard deviation of the initial grid, 𝜎𝐺;𝑛−1,𝑖,𝑗,𝑘, as shown in Equation 30. With each 

refinement of the grid, each parent cell on the grid is divided into eight daughter cells, half 

of which are randomly selected to have a factor 𝑝 and the other half of which have a factor 

1 − 𝑝. The variable 𝑝′ in Equation 30 represents the factor that is randomly selected from 

the set {𝑝, 1 − 𝑝} for each grid point. 

 𝜎𝐺;𝑛,𝑖,𝑗,𝑘 = 𝜎𝐺;𝑛−1,𝑖,𝑗,𝑘2
1−2𝑛𝛼

2 𝑝′
1

2 (30) 

The concentration fluctuations are evaluated by summing the contribution of each 

pulse with the amplitude of each pulse scaled by the local standard deviation, 𝜎𝐺;𝑛,𝑖,𝑗,𝑘, at 

each grid location. The fluctuating concentration field, 𝐶(𝑥, 𝑦, 𝑡), is then obtained by 

exponentiating the sum of the fluctuations with the Gaussian mean field, 𝜇𝐺;𝑖,𝑗,𝑘, as shown 

in Equation 31. 

 𝐶(𝑥, 𝑦, 𝑡) = 𝑒𝜇𝐺;𝑖,𝑗,𝑘+∑ ∑ ∑ ∑ 𝐴𝑛,𝑖,𝑗,𝑘𝜎𝐺;𝑛,𝑖,𝑗,𝑘𝑃𝑥(𝑥,𝑥𝑖,𝑛,Δ𝑥𝑛)𝑃𝑦(𝑦,𝑦𝑗,𝑛,Δ𝑦𝑛)𝑃𝑡(𝑡,𝑡𝑘,𝑛,Δ𝑡𝑛)𝑘𝑗𝑖𝑛  (31) 

B. Bulk Translation of Dispersing Plume 

By itself, the fractal method does not replicate the bulk translation of coherent 

structures in a dispersing plume. The plume structures directly emerging from the 

fluctuating concentration field generated by the fractal method are stationary in nature. To 

mitigate this limitation, the initial concentration and variance fields may be converted to a 

Lagrangian coordinate system prior to application of the fractal method. This is achieved 

by shifting the plume, such that the centroid of the mean concentration field at each time 

step is fixed at the center of the spatiotemporal grid. The plume is then effectively 

stationary when the fractal method is applied. To revert to an Eulerian coordinate system, 

the shift performed at each time step is then inverted on the fluctuating concentration field 

generated by the fractal method.  

                                                 
34

  Sykes, Gabruk, and Henn, “The Small-scale Structure of Dispersing Clouds in the Atmosphere,” 

A.R.A.P. Report No. 710. 

35
  Sreenivason and Meneveau, “The Fractal Facets of Turbulence,” 382. 

36
  Lewellen and Sykes, “Analysis of Concentration Fluctuations from Lidar Observations of Atmospheric 

Plumes.” 

37
  Lovejoy and Mandelbrot, “Fractal Properties of Rain, and a Fractal Model.” 

38
  Sykes and Gabruk, “Fractal Representation of Turbulent Dispersing Plumes.” 
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C. Limitations 

As implemented, the temporal and spatial correlation scales used to define the initial 

grid resolution of the fractal method are fixed across the entire domain of individual 

simulations. This may be inconsistent with the dynamic nature of an expanding plume, and 

the temporal correlation scales reported by HPAC vary across time and location. Soon after 

release or very near the release location, it is anticipated that the spatiotemporal correlation 

scales of concentration fluctuations would be smaller, as the physical dimensions of the 

plume are relatively small. Long after the release has ended or far downwind, the 

spatiotemporal correlation scales may be much larger because the plume has expanded and 

may have developed relatively large coherent structures. A fine spatiotemporal scale may 

be needed to accurately characterize the fluctuations near the release location, but could 

present a significant computational burden if the scales are fixed across the entire domain 

of the simulation. Conversely, a coarse spatiotemporal scale may be sufficient farther from 

the release and be computationally tractable, but it may lead to inaccurately large 

concentration fluctuation correlation distances very near the release. The fractal method 

could be improved by adapting it for use with variable time scales. Presumably, the mean 

field could be preserved with variable time scales if the pulses are truncated at adjacent 

grid points to prevent a pulse with a long time scale from overlapping multiple adjacent 

temporal grid points; further research must be conducted to verify this presumption. 

The fractal method does not enforce mass conservation. As such, it is possible for the 

concentration across the majority of the spatial domain to simultaneously fluctuate in the 

same direction which would be non-physical, but this is statistically unlikely for domains 

with many grid points. If the fractal method were applied to a full four-dimensional 

concentration field (three spatial dimensions and one temporal dimension), the total mass 

of the plume could be scaled to enforce mass conservation. A three-dimensional con-

centration field (two spatial dimensions and one temporal dimension) does not have a 

requirement for mass conservation; presumably, the plume also fluctuates in the vertical 

dimension, thereby changing the total mass represented in the two-dimensional spatial slice 

as it evolves through time.  

The eddy structures that manifest in turbulent flow exhibit vorticity that is not 

replicated by the fractal method.39 The vorticity of fluctuations result in spatial correlations 

that are a function of both distance and direction. Although the fractal method replicates 

the spatial correlations as a function of distance, spatial correlations that are a function of 

distance and direction may not be accurately represented. This is unlikely to significantly 

affect the modeling of arrays of independent detection systems, but could cause inaccurate 

                                                 
39

  Philip J.W. Roberts and Donald R. Webster, “Turbulent Diffusion,” chap. 1 in Environmental Fluid 

Dynamics: Theories and Applications, eds. Hayley H. Shen, Alexander H.D. Cheng, Keh-Han Wang, 

Michelle H. Teng, Clark C. Liu, (Reston, VA: ASCE Publications, 2002). 
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behavior of linked sensor arrays that have some directional dependence in their response 

algorithms.  

The fractal method can be computationally intensive, particularly when the spatial or 

temporal region of interest is large. Unlike the Markov method, the fractal method 

computations scale linearly with the size of the simulation’s spatiotemporal domain, rather 

than the number of detectors. This limitation may be mitigated if the entire concentration 

field is not needed (for example, when only specific detector locations are of interest). If 

the distance between detectors is greater than the initial grid spacing, the fractal method 

does not permit any spatial correlation in the concentration fluctuations at different 

detectors. In such a case, it is only necessary to simulate the fluctuations in the region local 

to each detector, rather than the entire spatial domain. In such an implementation, the 

computations would scale with the number of detectors. A greater computational problem 

may be presented by the exponential increase in computations with additional 

spatiotemporal grid refinements. If the detector’s sampling rate and detection algorithm 

warrant simulating fluctuations at very short time scales, the computational burden of the 

fractal method may become untenable. 

Detailed information regarding the spatial and temporal correlations in concentration 

fluctuations is needed to parameterize the fractal method. Presumably, experiments 

leveraging a dense grid of high frequency sensors would be needed to adequately 

characterize the spatial and temporal correlations. The correlations in concentration 

fluctuations may be highly dependent on the specific nature of the release, terrain, and 

meteorological conditions, so broad application of generic parameters may not be possible 

and extensive experimental data across a range of conditions may be needed to support the 

parameterization and use of the fractal method. 
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4. Generation of Field Trial Ensembles

Field experiments involving outdoor releases of chemical agent simulants offer a 

wealth of data by which the methods of simulating concentration fluctuations can be 

evaluated. Individual field trials conducted under similar conditions can be grouped to 

construct ensembles from which the concentration mean and variance fields can be 

computed. To be useful for this analysis, the trials must have employed fast-response 

sensors to capture concentration fluctuations. Ideally, the sensor array in the trials would 

be large enough to encompass most of the disseminated plume and dense enough to 

characterize the shape of the plume. Also, having a large number of trials conducted under 

similar release and meteorological conditions allows for the creation of larger ensembles, 

which leads to more meaningful ensemble statistics.  

A. Selection of Field Trial Data

Several field experiment datasets are described in the literature, including Project

Prairie Grass (1956),40,41 CONFLUX experiments (1990s),42 Mock Urban Setting Test 

(2001) (MUST),43 Fusion Field Trial (2007) (FFT 07),44 and Project Sagebrush (2013).45 

Each of these datasets was investigated for use in the evaluation of the Markov and fractal 

methods. 

40
 Morton L. Barad, Project Prairie Grass, A Field Program in Diffusion: Vol. I, AFCRC-TR-58-235(I) 

GRP-59-VOL-1 (Hanscom AFB, MA: Air Force Cambridge Research Labs, 1958), 280. 

41
 Morton L. Barad, Project Prairie Grass, A Field Program in Diffusion: Vol. II, AFCRC-TR-58-235(II) 

GRP-59-VOL-2 (Hanscom AFB, MA: Air Force Cambridge Research Labs, 1958), 209. 

42
 Christopher A. Biltoft, Concentration Fluctuation Modeling of Chemical Hazards (Assess 

Vulnerability), (Dugway, UT: U.S. Army Dugway Proving Ground, 1993). 

43
 Christopher A. Biltoft, Customer Report for Mock Urban Setting Test, DPG Document No. WDTC-FR-

01-121 (Dugway, UT: West Desert Test Center, U.S. Army Dugway Proving Ground, 2001).

44
D.P. Storwald, Detailed Test Plan for the Fusing Sensor Information from Observing Networks

(Fusion) Field Trial (FFT-07), Tech. Rep. Document No. WDTC-TP-07-078 (Dugway, UT:

Meteorology Division, West Desert Test Center, U.S. Army Dugway Proving Ground, 2007).

45
D. Finn et al., “Project Sagebrush Phase 1,” NOAA Technical Memorandum OAR ARL-268 (College

Park, MD: National Oceanic Atmospheric Administration, 2015).
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Project Prairie Grass was conducted in 1956 to determine the rate of diffusion of a 

sulfur dioxide tracer as a function of different meteorological conditions.46 Sensors were 

arranged in arcs at a range of 50, 100, 200, 400, and 800 meters from the release.47 The 

sensors were designed to measure the accumulated dose, from which a single average 

concentration per release was calculated. These data, therefore, have low time resolution, 

and thus are unsuitable for evaluating methods of simulating fluctuating concentrations.48 

Data from the CONFLUX experiments were not available and may be lost.49 

The MUST dataset was designed to test dispersion in an urban environment using 

shipping containers to simulate city blocks.50 The project included 63 continuous releases 

and 5 multiple puff releases, resulting in 16 hours of continuous releases and 4.75 hours of 

puff release data, all timed for relatively similar meteorological conditions.51 Seventy-four 

fast response samplers—48 digital photoionization detectors (DPIDs) and 26 ultraviolet 

ion collectors (UVICs), both at 50 Hz, and 22 sonic anemometers to measure wind speed 

at 20 Hz—were used to sample a propylene tracer.52 To avoid complicating the present 

analysis with the effects of urban dispersion on concentration fluctuations, the MUST 

dataset was not leveraged. 

FFT 07 was designed with the specific goal of providing a data set for the testing and 

evaluation of source term estimation algorithms as part of the Sensor Data Fusion project 

for the Defense Threat Reduction Agency (DTRA). Instantaneous and continuous releases 

were simulated in daytime and nighttime conditions. The use of fast response DPIDs, along 

with the minimal variation of release parameters—including flow rate, height of release, 

and duration of release—between many of the numerous trials in the project make this 

dataset particularly suitable for evaluating the methods for simulating concentration 

fluctuations. Hence, the FFT 07 data were deemed acceptable for this analysis. 

Project Sagebrush was designed to revisit Project Prairie Grass and included 60 two-

hour trials, including 150 bag samplers (10-minute sampling intervals) and 6 fast response 

samplers (0.5 second intervals) using a SF6 tracer.53 Wind data and stability categories were 

                                                 
46

  Barad, Project Prairie Grass, A Field Program in Diffusion: Vol. I, AFCRC-TR-58-235(I) GRP-59-

VOL-1, 1-3. 

47
  Ibid., 62. 

48
  Ibid., 57. 

49
  Eugene Yee, email communication to the authors, 6 July 2017. 

50
  Christopher A. Biltoft, Customer Report for Mock Urban Setting Test, DPG Document No. WDTC-FR-

01-121 (Dugway, UT: West Desert Test Center, U.S. Army Dugway Proving Ground, 2001). 

51
  Biltoft, Customer Report for Mock Urban Setting Test, DPG Document No. WDTC-FR-01-121. 

52
  Ibid. 

53
  Finn et al., “Project Sagebrush Phase 1,” NOAA Technical Memorandum OAR ARL-268. 
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measured every five minutes.54 The small number of fast response samplers limits the 

utility of this dataset, so it was not leveraged for this analysis. 

Among the field campaigns considered in this analysis, only FFT 07 had sufficient 

fast-response concentration sensor data for open-terrain (i.e., not urban) dispersion. Hence, 

the FFT 07 data were selected to evaluate the Markov chain and fractal methods of 

simulating concentration fluctuations. 

B. Fusion Field Trial 2007 Data Description

The FFT 07 project included 82 15-20 minute trials using a 475 meter x 450 meter

grid of 100 high-frequency (50 Hz) DPID samplers for a propylene tracer, as well as 20 

UVIC detectors.55 For this analysis, only the data from the DPIDs were available. High-

frequency wind, humidity, and temperature data were measured every 10 seconds from 50 

meteorological stations. Figure 3 shows the locations of the concentration samplers (left 

pane) and meteorological sensors (right pane). 

Figure 3. Sensor Grid Layout for Fusion Field Trial; Left Pane: Concentration 

Sensors; Right Pane: Meteorological Sensors 

Although the FFT 07 release locations were changed from one trial to the next to 

satisfy the original purpose of creating a dataset to test source-locating algorithms, the 

release locations were all near one another on the same side of the grid, due to the prevailing 

54
 Finn et al., “Project Sagebrush Phase 1,” NOAA Technical Memorandum OAR ARL-268. 

55
 Nathan Platt, Steve Warner, and Steve M. Nunes, “Evaluation Plan for Comparative Investigation of 

Source Term Estimation Algorithms Using FUSION Field Trial 2007 Data,” Hrvatski Meteorološki 

Časopis 43, no. 43/1 (2008), 224-229. 
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winds in the area. Figure 4 shows an illustrative wind rose with a typical arc of wind 

directions over the course of a single FFT 07 release. All of the average wind vectors for 

the trials used herein are included in Table A–1 in Appendix A. 

Concentration data are included for one minute before the beginning of each release 

and for five minutes after the end of each release. All continuous releases were 10 minutes 

long, so 16 minutes of data at 50 Hz are available for each DPID sensor in each continuous 

release trial. Note that some data are missing, because some sensors malfunctioned during 

some releases. Logs are also included and detail the location, flow rate, and number of 

individual release locations, among other parameters, for each trial. 

All of the data from FFT 07 underwent an intensive quality control (QC) process and 

QC flags are included for each data point, both for concentrations and meteorology.56 These 

flags differentiate good data from suspect, bad, or missing data. 

 

 

Figure 4. An Illustrative Wind Rose from FFT 07: Trial 54 

 

                                                 
56

  Platt, Warner, and Nunes, “Evaluation Plan for Comparative Investigation of Source Term Estimation 

Algorithms Using FUSION Field Trial 2007 Data,” 224-229. 
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C.    Standardizing Fusion Field Trial 2007 Data

Data from FFT 07 consist of release logs, meteorological sensor readings, and

concentration sensor readings. Together, these data sources constitute the full trial data that 

are then aggregated into ensembles. Any trials that were aborted prematurely, are missing 

a significant portion of concentration data, or lack a release log were eliminated from 

consideration. Also, the wind during each continuous release (10 minutes) was examined 

for each trial to ensure that the wind vector at each time step, averaged across all of the 

meteorological sensor stations, pointed toward the sensor field for the entire duration of 

the release. The trials that were removed from consideration for one or more of the reasons 

listed above are 1, 2, 4, 13, 14, 15, 17, 61, and 64, leaving a total of 73 trials for the analysis. 

Next, concentrations and meteorology were read and formatted appropriately for each 

trial. The release log was used to determine the starting time for each release, and that time 

was used to reset the time series for both concentration and meteorological sensors so that 

the release time corresponded to 00:00:00. Note that the times for concentration and 

meteorological data were in Coordinated Universal Time (UTC) and release logs were in 

local time (UTC-6). Meteorological sensor readings occurred once every 10 seconds, but 

many of these readings were deemed suspicious or possibly erroneous. To rectify this, any 

readings that were marked with any of the project’s rigorous quality control flags, including 

suspect data, bad data, or missing data, were removed from the data set. Concentration 

sensor readings were output every 20 milliseconds, which were averaged to 1 second 

intervals to create a more manageable dataset. The necessary temporal resolution depends 

on the detector algorithm that will ultimately be modeled. One-second resolution is 

adequate for this analysis because, as described in section 7.B, this analysis used detectors 

that required upcrossing durations of 5 or 60 seconds. 

To accurately represent intermittency in the concentration data, it is necessary to 

remove any background concentration or sensor bias in the DPID sensors. The sensor 

readings for the minute before each release were used as a baseline for that sensor’s output 

for zero concentration for the given release. The mean and standard deviation of this 

baseline were calculated, and any sensor readings lower than the low end of the operational 

range of the DPID sensors (6 x 10-8 kg/m3)57 or lower than three standard deviations above 

the mean of the baseline were set to zero. Finally, although some concentration sensors in 

some trials continued recording for more than 15 minutes after the beginning of the release, 

the majority of sensors shut down at that point; hence, all sensor readings were truncated 

at the 15-minute mark so that each trial was equal in length across every sensor. 

57
 Storwald, Detailed Test Plan for the Fusing Sensor Information from Observing Networks (Fusion) 

Field Trial (FFT-07), Tech. Rep. Document No. WDTC-TP-07-078. 
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D. Grouping Fusion Field Trial 2007 Trials into Ensembles 

Trials are grouped into ensembles based on their release characteristics and 

meteorological conditions.58 Only continuous release trials were leveraged in this analysis. 

First, the trials were split into four groups corresponding to the number of simultaneous 

release locations used in the trial. A mean wind vector was then determined for each trial 

by first averaging wind speed and direction (speed averaged as a scalar, direction as a 

vector) across all sensors at each time step, then taking the time average to get an overall 

mean wind vector for the 15-minute trial. The trials are grouped into ensembles, such that 

the mean wind values differ no more than about 1.5 m/s and are within a 90 degree or 

smaller directional arc.59 In this way, five ensembles were determined, which are briefly 

described in Table 1. Appendix A includes the properties of every release in each ensemble. 

As shown in Table 1, the number of trials in each ensemble is limited. 

 

Table 1. Description of Ensembles Created Using FFT 07 Data 

Ensemble 

Number of 
Release 

Locations 
Number of 

Trials 

Range of Wind 
Speeds 

(meters/second) 

Range of Wind 
Directions (degrees 

from North) 

1 1 14 1.39–2.88 105–167 

2 2 5 1.19–2.33 120–147 

3 2 6 2.70–3.24 128–157 

4 3 8 1.60–2.82 110–172 

5 4 3 1.52–2.84 122–144 

 

In trials with multiple releases, the release locations are fixed relative to one another, 

but the coordinates of the releases relative to the sensor grid may vary between trials. 

Hence, the sensor grid for each trial was shifted to align the release locations within each 

ensemble. The necessary offset was found by averaging the latitude and longitude of the 

west-most release location in each trial and determining the difference vector required to 

bring the release location to that coordinate. The sensor grid for each trial was shifted by 

the respective difference vector, and was then overlaid onto the static ensemble grid, which 

was based on the mean release location. This process is illustrated for two trials in  

Figure 5. Each sensor in the ensemble grid then uses the average of the nearest four trial 

grid sensor readings, inversely weighted by distance, as its concentration. If data were 

                                                 
58

  Ideally, all meteorological conditions would be considered when creating ensembles. Due to the limited 

number of continuous trials in FFT 07 with the same number of releases, only wind speed and wind 

direction were considered. 

59
  These constraints, especially the acceptable directional arc, allow a significant amount of variation 

within an ensemble. Ideally, this would be more limited, but to have a reasonable number of trials in 

each ensemble, the similarity of the trials had to be sacrificed to some degree. 
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missing at one or more of the nearest four trial grid sensors and that sensor or sensors would 

not contain more than 25% of the ensemble grid sensor’s concentration data according to 

the weighting scheme, then the closest three, or even two, nearest trial grid sensors were 

averaged instead. This process ensures that each trial’s concentration data is translated into 

a single ensemble coordinate system with minimal loss of data. 

 

 

Note: The grid is shifted for each release, such that initial release points A and B (top left and bottom left) 

are shifted to the same release location at point C (top right and bottom right). 

Figure 5. Illustration of Plume Shifting to Average Release Coordinate for Ensemble 

Generation  
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Because the disseminator flow rate may differ between trials within an ensemble, the 

concentration data for each trial was normalized to the mean flow rate across all of the 

trials in the ensemble. This scaling assumes that the increase of concentration at each point 

is linearly dependent on the release mass, which is consistent with various solutions to the 

advection-diffusion equation.60 Finally, for each of the 100 sensors and each time step, the 

concentration mean and variance are calculated across all trials in an ensemble. As variance 

requires at least two trials, any sensor that had its mean concentration calculated from only 

a single trial at any time, due to malfunction or loss of data, is excluded from the ensemble 

data set for those times.61 

  

                                                 
60

  T. Tirabassi, “Solutions of the Advection-Diffusion Equation,” Transactions on Ecology and the 

Environment 21, (1997). 

61
  Preferably, many trials would be used to calculate the mean and variance, but given sensor malfunctions 

or loss of data and the small number of trials in each ensemble, this analysis included the mean and 

variance for any sensor location and time that had data from at least two sensors. 
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5. Simulation of a Field Trial in HPAC 

In the absence of field trial data for a scenario, the methods of simulating 

concentration fluctuations would be applied to mean and variance data calculated by 

HPAC, through SCIPUFF, at discrete detector locations. As such, the ability of HPAC to 

accurately represent mean and variance data directly affects the fidelity of simulated 

concentration fluctuations. A single trial from FFT 07 was emulated in an HPAC 

simulation to produce outputs on which methods for simulating concertation fluctuations 

were then applied. 

Trial 54 from the FFT 0762 data set was chosen based on several factors: (1) the trial 

uses only a single release location; (2) the trial has a middling mass release rate; (3) sensors 

on the crosswind edges of the grid reported no nonzero concentration data, indicating that 

the plume was completely bounded by the grid in the crosswind direction; and (4) 20 

realizations of the trial had already been calculated on large-eddy computational fluid 

dynamics (CFD) software for a previous study.63 Selecting this specific field trial to 

simulate in HPAC allows the results from the Markov and fractal methods to be evaluated 

in the context of results from the significantly more complex large-eddy CFD model. 

HPAC simulations were performed, in which concentration samplers and release locations 

were initialized at the locations of the DPID sensors and releases reported in the FFT 07 

literature. All parameters for the release that were changed from their defaults in HPAC 

are listed in Table 2. The disseminator flow rate was determined by converting the given 

flow rate for the trial (in standard liters per minute) to kilograms per second using 

propylene’s density and the air pressure recorded at the site: 

𝑚𝑎𝑠𝑠 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 = 𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 ∗ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ∗ 𝑙𝑜𝑐𝑎𝑙 𝑎𝑖𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 

with density = 1.81 kg/m3 64 and local air pressure in atmospheres. The above calculation 

assumes, based on the units of measure given in the data, that standard liters per minute are 

                                                 
62

  Storwald, Detailed Test Plan for the Fusing Sensor Information from Observing Networks (Fusion) 

Field Trial (FFT-07), Tech. Rep. Document No. WDTC-TP-07-078. 

63
  Nathan Platt, Dennis DeRiggi, Steve Warner, Paul Bieringer, George Bieberbach, Andrzej 

Wyszogrodzki, and Jeffrey Weil, “Method for Comparison of Large Eddy Simulation Generated Wind 

Fluctuations with Short-Range Observations,” International Journal of Environment and Pollution 48, 

no. 1-4 (2012). 

64
  PubChem, “Propylene,” accessed August 31, 2018, 

https://pubchem.ncbi.nlm.nih.gov/compound/Propene. 
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recorded at standard temperature and pressure and that the change in temperature from 

standard at the release site is negligible. 

 

Table 2. HPAC Parameters Used To Recreate FFT 07 Trial 54 

Parameter Value 

Maximum time step 30 seconds 

Surface roughness 0.03 metersA 

Material PROPYLENE_GAS 

Release duration 600 seconds 

Flow rate 0.0095 kg/s 

Release height 2 meters 

Active fraction 1 

Droplet distribution Vapor Phase 

Conditional averaging 600 seconds 

A  Christopher A. Biltoft, Shayes D. Turley, T. B. Watson, G. H. Crescenti, and R. G. 

Carter, Over-Land Atmospheric Dispersion (OLAD) Test Summary and Analysis, 

WDTC-FR-99-016 (Dugway, UT: U.S. Army Dugway Proving Ground, 1999). 

 

The meteorological data, taken from the 40 meteorological stations used in FFT 07 at 

10-second intervals, was used in its entirety65 over the 15-minute HPAC simulation by 

setting the weather observations time bin and SWIFT wind field update interval parameters 

to match the meteorological sampling rate of 10 seconds. Accordingly, Large Scale 

Variability was turned off in the weather settings in HPAC, as turbulent velocity 

fluctuations should already be accounted for in the well-resolved meteorological data. 

Finally, the Bowen ratio and albedo of the terrain were set to the HPAC defaults for a dry 

desert, and the surface roughness was set to 0.03 meters to mimic the flat desert terrain. 

Instantaneous concentration samplers were instantiated in HPAC at each of the DPID 

sensor locations used for FFT 07 at a height of 2 meters to match their real counterparts. 

These samplers output mean concentration, concentration variance, and the temporal 

correlation scale for each sampler at each time step. A brief analysis of various HPAC time 

steps, from 1 to 30 seconds, revealed little difference in the evaluation metrics for this 

release, as long as the basic structure of the concentration time series was preserved, so the 

HPAC time step was set to 30 seconds for expedience. 

  

                                                 
65

  The meteorological data included wind speed, wind direction, temperature, relative humidity, and 

pressure. 
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6. Application of Concentration Fluctuation 

Models 

The Markov chain method and the fractal method for calculating concentration 

fluctuations were directly applied to the concentration mean and variance calculated from 

five field trial ensembles. The application to field trial ensembles allows these methods to 

be directly evaluated without complications introduced by the involvement of transport and 

dispersion models, though it does introduce possible complications and uncertainties from 

other sources. Because these methods would be coupled with atmospheric transport and 

dispersion models in practice, they were also applied to mean and variance estimates from 

an HPAC simulation of an individual field trial. Numerous fluctuating concentration 

realizations were simulated with each method, so that the evaluation of the methods could 

be based on their limiting behavior and not the specific random outcome of a single 

realization. 

A. Application of Markov Method 

One hundred realizations were created via the Markov chain process for both the field 

trial ensembles and HPAC outputs. The values of the metrics showed negligible change 

when increasing from 90 to 100 realizations. A constant temporal correlation scale was 

used across the entire duration of the simulation when applied to field trial ensembles, 

whereas the variable HPAC temporal correlation scale output was used for application to 

HPAC outputs.66 

For application to the HPAC outputs, each of the 30-second output intervals was 

assumed to be a quasi-stationary state. The transcendental equations that stem from the 

concentration PDF were solved once for each HPAC time step, and the individual 

realizations at each HPAC sampler were allowed to evolve at a smaller fixed time step 

within each HPAC time step. Intervals between 200 milliseconds and 1 second were 

considered for the smaller time steps within each quasi-stationary HPAC time step with 

little observed difference. As such, the Markov process was simulated over one-second 

time steps within each quasi-stationary HPAC time step to more closely approximate the 

minimum time scale of fluctuations that was used in the fractal method.  

                                                 
66

  While a dynamic temporal correlation scale is preferable, only a constant temporal correlation scale is 

calculable for the field data because its empirical calculation requires leveraging the entire empirical 

concentration time series. (See Appendix B). 



28 

B. Application of Fractal Method 

One hundred realizations were simulated using the fractal method for both the field 

trial ensembles and the HPAC outputs. As with the Markov method, 100 realizations were 

deemed sufficient because the values of the computed metrics were negligibly different 

from those computed across only 90 realizations. The spatial and temporal correlation 

scales for each field trial ensemble were used to initialize the spatiotemporal grid spacing. 

The calculation of the spatial and temporal correlation scales used for each field trial 

ensemble is described in Appendix B. The spatiotemporal grid was iteratively refined four 

times until the temporal grid spacing was one to two seconds. Although additional grid 

refinements simulate higher frequency fluctuations, further refinements presented a 

significant computational burden. The fractal dimension was selected to be 1.35 because 

that is the middle of the range, 1.30-1.40, found to characterize various atmospheric 

phenomena.67,68,69,70,71 

Although HPAC provides a variable temporal correlation scale output, the current 

implementation of the fractal method can only use a constant temporal correlation scale to 

initialize the temporal spacing of the grid. For application to HPAC outputs, the initial 

spatial grid spacing was 25.84 meters and the initial temporal grid spacing was 23.71 

seconds. This initial spatiotemporal grid spacing reflects the average spatial and temporal 

correlation scales across the five field trial ensembles. Again, the spatiotemporal grid was 

iteratively refined four times until the temporal grid spacing was one to two seconds. 

No attempt was made to model the bulk translation of coherent structures using the 

fractal method. Due to the sensor array not completely encompassing the plume and the 

relatively low numbers of field trials in each ensemble, the mean concentration centroids 

of the field trial ensembles did not travel in a direction that was consistent with the mean 

wind field. Hence, the erratic movements of the mean field centroid were not considered 

representative of the bulk movement of the dispersed material in the plume. A sensor grid 

larger than the dimensions of the plume is needed to accurately replicate the bulk 

translation of the plume using this method. If the sensor grid were large enough to fully 

encompass the plume, then inclusion of this approach to handling the bulk translation is 

expected to increase the frequency and decrease the duration of the modeled fluctuations 

                                                 
67

  Sykes, Gabruk, and Henn, “The Small-scale Structure of Dispersing Clouds in the Atmosphere,” 

A.R.A.P. Report No. 710. 

68
  Sreenivason and Meneveau, “The Fractal Facets of Turbulence,” 382. 

69
  Lewellen and Sykes, “Analysis of Concentration Fluctuations from Lidar Observations of Atmospheric 

Plumes.” 

70
  Lovejoy and Mandelbrot, “Fractal Properties of Rain, and a Fractal Model.” 

71
  Sykes and Gabruk, “Fractal Representation of Turbulent Dispersing Plumes.” 
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at any given stationary sensor location. Further, application of this method may increase 

the spatial correlation between sensors in the direction of the wind. 
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7. Evaluation Metrics

The metrics used to evaluate each method of simulating concentration fluctuations 

were selected to be directly relevant to modeling detector response. Simple models of 

detector response are often characterized by a threshold concentration and required 

duration that the concentration must exceed the threshold.72 Therefore, the metrics in 

section 7.A focus on quantifying upcrossing events that occur for a given threshold, i.e., 

events in which the concentration rises above a specified threshold. Section 7.B provides 

results for operational metrics that emulate analyses of detector performance. 

In the calculation of each of the following metrics, the concentration time series at 

each sensor in the ensemble is truncated at the first and last nonzero value. Consequently, 

each sensor has a different length time series. This was performed to exclude times in which 

the plume was not physically present in the general vicinity of a sensor, i.e., before the 

plume traveled far enough to reach a given sensor location, and times after the plume is no 

longer present at that sensor location. This also effectively excluded sensors that did not 

record concentrations above the DPID detection limit. 

A. Evaluation Metrics for Comparison with Field Trial Ensembles

For the application to field trial ensembles, the intermittency, upcrossing frequency,

and upcrossing duration were the metrics used to evaluate the methods of simulating 

concentration fluctuations. For these metrics, all concentration time series in the ensemble 

for all sensor locations were included in the summations. Intermittency was selected as a 

metric because it is ubiquitous in the literature. Upcrossing frequency and duration were 

employed because they directly examine the fluctuations that need to be reproduced when 

modeling detector operation. 

1. Intermittency

Intermittency is the fraction of time at each point within the agent cloud that

concentration is nonzero.73 

72
 Alison E. Lawrence, Forrest R. Smith, John Alex Vig, and Charles E. Snyder, User Manual for the 

Chemical and Biological Attack Consequence Estimator Version 1.1, IDA Document D-8505 

(Alexandria, VA: Institute for Defense Analyses, November 2017). 

73
 Albert A. Townsend, The Structure of Turbulent Shear Flow (Cambridge, UK: Cambridge University 

Press, 1980), 211. 
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𝑖 =  
∑ 𝑡𝑐≠0

∑ 𝑡𝑎𝑙𝑙
(32) 

Here, 𝑡𝑐≠0 is the total time that the concentration is nonzero and 𝑡𝑎𝑙𝑙 is the total time of the 

between the first and last nonzero concentration. Recall that all recorded concentrations 

were clipped at the DPID detection limit, so the intermittency properly represents the 

fraction of the time that the concentration was actually measurable by a given DPID sensor 

while the agent cloud was present in its general vicinity.74 Intermittency has been used to 

quantitatively characterize concentration fluctuations.75,76 

2. Concentration Upcrossing Frequency

The upcrossing frequency, which has been used as a metric to characterize

concentration fluctuations previously, is the average rate at which the concentration at a 

given sensor location rises above a threshold.77,78,79,80,81 For a given location, the upcrossing 

frequency, f, can be expressed as: 

𝑓 =  
𝑛𝑢𝑝𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔

∑ 𝑡𝑎𝑙𝑙
. (33) 

As before, 𝑡𝑎𝑙𝑙 is the total time of the truncated time series and 𝑛𝑢𝑝𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔 is the total 

number of times the concentration rises above a particular concentration threshold, i.e., the 

number of upcrossings. The number of upcrossings is directly dependent on the 

74

75

76

77

78

79

80

81

 Here, the DPID detection threshold is considered the maximum of the nominal detection threshold and 

three standard deviations greater than the mean recorded concentration over the interval one minute 

prior to the release. 

 Steven R. Hanna, “Concentration Fluctuations in a Smoke Plume,” Atmospheric Environment (1967) 

18, no. 6 (1984), 1091-1106. 

 Hilderman and Wilson, “Simulating Concentration Fluctuation Time Series with Intermittent Zero 

Periods and Level Dependent Derivatives,” 451-482. 

L. Kristensen, J. C. Weil, and J. C. Wyngaard, “Recurrence of High Concentration Values in a 
Diffusing, Fluctuating Scalar Field,” Boundary Layer Studies and Applications (Dordrecht,  
Netherlands: 1989), 263-276.

 Eugene Yee, P. R. Kosteniuk, G. M. Chandler, C. A. Biltoft, and J. F. Bowers, “Recurrence Statistics of 

Concentration Fluctuations in Plumes within a Near-Neutral Atmospheric Surface Layer,” Boundary-

Layer Meteorology 66, no. 1-2 (1993), 127-153. 

 Eugene Yee, R. Chan, P.R. Kosteniuk, G.M. Chandler, C.A. Biltoft, and J.F. Bowers, “Measurements 

of Level-Crossing Statistics of Concentration Fluctuations in Plumes Dispersing in the Atmospheric 

Surface Layer,” Boundary-Layer Meteorology 73, no. 1-2 (1995), 53-90. 

 Shuming Du, David J. Wilson, and Eugene Yee, “A Stochastic Time Series Model for Threshold 

Crossing Statistics of Concentration Fluctuations in Non-Intermittent Plumes.” Boundary-Layer 

Meteorology 92, no. 2 (1999), 229-241. 

 Hilderman and Wilson, “Simulating Concentration Fluctuation Time Series with Intermittent Zero 

Periods and Level Dependent Derivatives,” 451-482. 
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concentration threshold used to define an upcrossing event. Therefore, the upcrossing 

frequency at each sensor location is a function of the concentration threshold. 

3. Concentration Upcrossing Duration

The upcrossing duration is the average length of time that the concentration remains

above a given concentration threshold and has been used as a metric characterizing 

concentration fluctuations previously.82 A high upcrossing frequency and low upcrossing 

duration would indicate a quickly fluctuating concentration, while a low upcrossing 

frequency with a low upcrossing duration would indicate a few spikes in concentration. A 

very high upcrossing duration is expected only with a low upcrossing frequency, and would 

indicate that the concentration infrequently falls below the given threshold. The upcrossing 

duration, d, is calculated as: 

𝑑 =  
∑ 𝑡𝑐>𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑛𝑢𝑝𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔
(34) 

Here, 𝑡𝑐>𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is the total time that the concentration exceeds a given threshold. 

Hence, the upcrossing duration at each sensor location is also a function of the 

concentration threshold.  

B. Evaluation Metrics for Applying the Models to an HPAC

Simulation

A simple model of detector response was implemented to obtain the evaluation

metrics for the application of the methodologies to the HPAC simulation outputs. These 

evaluation metrics relate to detector alarm events in which a threshold concentration is 

exceeded for a specified duration, termed the “detection duration.” This approach is 

particularly informative because the metrics are directly relevant to analyses in which 

models of detector response are used to evaluate detector performance in operational 

environments.  

1. Total Alarm Count

The total alarm count reflects the total number of upcrossing events in which the

upcrossing exceeded the detection duration. Multiple alarms from the same detector count. 

This metric is summed across all detector locations and was calculated for two detection 

durations: 5 seconds and 60 seconds. The 5-second detection duration is consistent with 

82
 Yee et al., “Measurements of Level-Crossing Statistics of Concentration Fluctuations in Plumes 

Dispersing in the Atmospheric Surface Layer,” 53-90. 
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the sampling rate of typical chemical detectors,83 while the 60-second detection duration is 

intended to typify biological detectors.84 

2. Number of Alarming Detectors 

The number of alarming detectors reflects the number of detector locations at which 

an upcrossing event exceeded the detection duration at least once. In contrast to the total 

alarm count metric, only one alarm from a given detector is counted. Operationally, 

repeated alarms over a short interval from the same detector are not regarded as any more 

informative than a single alarm from a given detector, as personnel would presumably 

respond to the first detector alarm. Thus, this metric is more relevant to how personnel may 

respond to detector alarms than the total number of alarms metric. Because the detectors 

are located on a grid, this metric is proportional to the land area over which detectors might 

detect a release. This metric was also calculated for two detection durations: 5 seconds and 

60 seconds. 

  

                                                 
83

  The Joint Chemical Agent Detector (JCAD) has a requirement for a five-second sampling rate while in 

monitor mode. Capability Production Document for Joint Chemical Agent Detector Increment: I 

(Washington, DC: Joint Requirements Office for CBRN Defense, 4 June 2008). 

84
  In chamber experiments, many detectors alarm within 60 seconds of exposure to agent. As a result, 

biological detectors have been previously modeled with a 60-second detection duration.  

 Alison E. Lawrence, Scott L. Weinrich, Robert L. Cubeta, and John A. Vig, Interpretation of Joint 

Biological Tactical Detection System (JBTDS) Requirements, IDA Paper P-4870 (Alexandria, VA: 

Institute for Defense Analyses, 2013). SECRET//NOFORN (Only Unclassified Data Used Herein). 

 Alison E. Lawrence, Scott L. Weinrich, Jeffrey H. Grotte, Douglas P. Schultz, Nafis J. Upshur, W.M. 
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Joint Biological Tactical Detection System Analysis of Materiel Alternatives: Phase II, IDA Paper  

P-4624 (Alexandria, VA: Institute for Defense Analyses, March 2011). SECRET//NOFORN (Only 
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8. Results

As a basis for assessing the fidelity of each concentration fluctuation simulation 

method, the evaluation metrics were computed for the simulated fluctuating concentration 

time-series compared to the actual field trial time series, using the metrics described in 

section 7.A. This comparison provides insight into the nature of the simulated 

concentration fluctuations, but does not directly indicate how incorporation of these 

methods may affect analyses in which they are coupled with transport and dispersion 

models. Hence, evaluation metrics were obtained from applying these methods to HPAC 

outputs, as described in section 7.B, to give a practical sense of how these methods 
may perform in analyses in which detector response is modeled. 

A. Results of Applying the Models to Field Trial Ensembles

The concentration intermittency was computed for each sensor location

independently across each of the 100 realizations that were simulated by each method. 

After intermittency had been calculated for each simulated data set, the intermittency was 

similarly computed independently from the FFT 07 data for each location across all of the 

field trials in a given ensemble. Figure 6 and Figure 7 directly compare each sensor’s 

demonstrated intermittency from the field trials with its simulated counterpart. Thus, for 

the ideal model, each point would lie on the diagonal, depicted with a dotted line in the 

figures. Note that these plots are intended to be exploratory, and later results, which employ 

a factor of two criterion, provide a more critical evaluation of the ability of these methods 

to reproduce various metrics of the field trial data. Results produced for Ensembles 1 and 

3 are featured, because Ensemble 1 is composed of the most trials, and meteorological 

conditions were the most similar across the trials in Ensemble 3. Results for Ensembles 2, 

4, and 5, which follow similar trends to those shown here, can be found in Appendix C. 

Overall, these results show that the Markov method generally under predicts intermittency, 

while the fractal method has less bias but a lot of scatter, though Figure 7 shows that the 

fractal method has a tendency to erroneously predict intermittencies between 0.8 and 1 for 

many of the sensors in Ensemble 3. 
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Figure 6. Intermittency Comparison for Ensemble 1 
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Figure 7. Intermittency Comparison for Ensemble 3 

 

Table 3 provides a summary of the difference between the modeled and observed 

intermittency (i.e., the error) for selected percentiles. Negative error values indicate model 

under prediction of intermittency, while positive error values indicate over-prediction. 

Table 3 shows that, for all five ensembles, the Markov method under predicts 

intermittency. For many cases, even the 90th percentile values are slightly negative, 

indicating that the Markov method under predicts intermittency at more than 90 of the 100 

sensors. The fractal method has less overall bias. 
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Table 3. Error Percentiles for Intermittency for the Markov and Fractal Methods 

Ensemble 
Simulation 

Method Minimum 
10th 

Percentile 
50th 

Percentile 
90th 

Percentile Maximum 

1 
Markov -0.573 -0.438 -0.190 -0.004 0.220 

Fractal -0.723 -0.268 0.014 0.217 0.358 

2 
Markov -0.616 -0.335 -0.147 0.069 0.403 

Fractal -0.562 -0.097 0.124 0.287 0.585 

3 
Markov -0.455 -0.332 -0.165 0.033 0.300 

Fractal -0.612 -0.095 0.019 0.258 0.789 

4 
Markov -0.589 -0.400 -0.217 -0.069 0.136 

Fractal -0.492 -0.122 0.032 0.155 0.277 

5 
Markov -0.995 -0.389 -0.172 -0.058 0.074 

Fractal -0.995 -0.259 0.017 0.149 0.276 

Note: Error = Predicted Value from Model – Observed Value from Field Trial; negative values indicate model 

under-prediction of intermittency; positive values indicate model over-prediction of intermittency. 

 

Concentration upcrossing frequency and upcrossing duration were calculated at each 

sensor location across a range of concentration thresholds. Selected results are summarized 

in two ways: 1) upcrossing metrics averaged over sensor locations at each concentration 

threshold, and 2) fraction of sensors with upcrossing metrics within a factor of two of the 

field trial at each concentration threshold. Figure 8 and Figure 9 show the results for 

Ensembles 1 and 3, respectively.85 As the concentration threshold increases, fewer sensors 

exceed the threshold to be included in the comparison. The small number of sensors at high 

concentration thresholds leads to the erratic behavior of this metric at those high thresholds. 

The Markov and fractal methods show similar trends in their upcrossing metrics for 

Ensembles 1 and 3. Both tend to over predict upcrossing frequency for lower concentration 

thresholds and under predict it at higher concentration thresholds. Overall, the fractal 

method yields upcrossing frequencies somewhat closer to that of the field trial ensembles 

across much of the range of concentration thresholds, though neither method is 

exceptionally accurate.  

Both models under predict the upcrossing duration at lower concentration thresholds. 

The average upcrossing duration of the fractal method is more accurate than the Markov 

method for concentration thresholds below approximately 10-5 kg/m3, but over predicts the 

upcrossing duration at higher concentration thresholds. The upcrossing duration produced 

by the Markov method is relatively flat across the range of concentration thresholds, but 

approaches that of the field trial ensembles for concentration thresholds above 

approximately 10-5 kg/m3. 

                                                 
85

  The literature did not provide a performance criterion applicable to upcrossing frequency or duration. A 

factor of two analysis allowed us to visually interpret error across different threshold concentrations. 
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Figure 8. Upcrossing Frequency and Duration Summary Statistics for Ensemble 1 
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Figure 9. Upcrossing Frequency and Duration Summary Statistics for Ensemble 3 

 

Overall, these results leave significant room for future improvement—being within a 

factor of two of the field data is only a modest marker of success at best, and it was not 

consistently met by either method. While both models are able to roughly approximate the 

general trends in the field trial metrics, a significant proportion of the predicted upcrossing 

frequencies and durations were more than a factor of two different from the observed 

values. Based on these three metrics, neither method adequately characterizes the 

concentration fluctuations seen in the field trial data. Some of these issues may be due to 

the limited amount of data supporting the ensembles themselves—even the largest 

ensemble had only 13 trials and the meteorology varied distinctly between trials, due to the 

choice to prioritize the number of trials per ensemble over the goodness of fit of the trial 

within the ensemble. The small numbers of releases available for each ensemble may have 
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artificially limited the concentration variance calculated at each sensor, especially where 

the ensemble mean was near zero. 

B. Results of Applying the Models to HPAC Simulation Output  

For trial 54 of the FFT 07 data, the Markov and fractal methods applied to HPAC 

output were compared with the field trial data, HPAC mean output alone, and a large-eddy 

CFD simulation (modeled with the VTHREAT software86) designed and run to match trial 

54 as closely as possible. The CFD simulation was performed as part of an analysis by Platt 

et al., which includes further details on both the VTHREAT software and the parameters 

and resolution of the simulations in section 3.87 The CFD results are compared with the 

results of the two methods examined in this paper to provide context regarding the quality 

of results that may be obtained through considerably more analytical and computational 

effort than that required to run HPAC. To allow direct comparison to trial 54, only a single 

realization of each of the Markov and fractal methods, chosen at random, was used in the 

comparison. Similarly, a single CFD realization was selected at random for use in the 

comparison. Figure 10 displays results for a 5-second detection duration, which is 

consistent with the sampling rate of typical chemical detectors, and Figure 11 uses a  

60-second detection duration, which is intended to typify biological detectors. 

                                                 
86

  G. Bieberbach, P. E. Bieringer, A. Wyszogrodzki, J. Weil, R. Cabell, J. Hurst, and J. Hannan, “Virtual 

chemical and biological (CB) agent data set generation to support the evaluation of CB contamination 

avoidance systems,” The Fifth Symposium on Computational Wind Engineering (CWE 2010), 2010. 

87
  Christopher Czech, Nathan Platt, Jeffry Urban, Paul Bieringer, George Bieberbach, Andrzej 

Wyszogrodzki, and Jeffrey Weil, “A comparison of hazard area predictions based on the ensemble-

mean plume versus individual plume realizations using different toxic load models, Paper 2.5 at the 

Special Symposium on Applications of Air Pollution Meteorology,” 91st Annual American 

Meteorological Society Meeting, Seattle, Washington. 2011. 
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Figure 10. Detector Alarms for Various Models with 

5-second Required Upcrossing Duration 
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Figure 11. Detector Alarms for Various Models with 

60-Second Required Upcrossing Duration 
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For a five-second detection duration, HPAC alone over predicts the number of 

alarming detectors for lower concentrations, but under predicts at higher concentrations, 

due to a lack of fluctuations above the ensemble mean. However, when HPAC is used in 

conjunction with either the Markov method or the fractal method, the number of alarming 

detectors show better correspondence with the field trials. Both models over predict the 

number of alarming detectors (lower plots, Figure 10 and Figure 11), though both get quite 

close to the field data at higher concentration thresholds, with the fractal method 

performing slightly better in this regime. The two models show opposite trends for total 

alarm count (upper plots, Figure 10 and Figure 11), with the Markov method over 

predicting and the fractal method under predicting compared to the field data. For the total 

alarm count, the Markov outperforms the fractal method for concentration thresholds 

greater than approximately 10-6 kg/m3. Overall, the CFD simulation performs better than 

either the Markov or fractal methods for the five-second detection duration and provides 

remarkably accurate estimates of the number of alarming detectors for concentration 

thresholds above approximately 4×10-6 kg/m3. 

When a 60-second detection duration is required (Figure 11), both the total detector 

alarms and number of alarming detector metrics obtained from the use of HPAC alone are 

substantially greater than the field trial data across almost the entire range of concentration 

thresholds, approaching the field trial data results for the largest concentration thresholds. 

The Markov method matches the field data remarkably well for a 60-second detection 

duration. For some concentration thresholds, it even matches the field trial metrics better 

than the CFD simulation. The fractal method significantly under predicts by both metrics. 

This under prediction is likely because the initial temporal grid spacing of 23.71 seconds, 

selected to match the temporal correlation scale, was much smaller than the detection 

duration. The initial temporal grid defines the maximum time/distance between sensor 

readings in which the fluctuations are correlated in any way. For the concentration to 

exceed the threshold for the entire 60-second detection duration, none of the random 

amplitudes drawn for multiple consecutive pulses can be substantially negative. A longer 

initial temporal grid spacing might improve these metrics. When the initial temporal grid 

resolution is finer than the detection duration, multiple pulses necessarily span the detection 

duration. This requires that the multiple random draws that define the pulse amplitude 

throughout the detector duration be above the concentration threshold for a modeled 

detector to alarm. A longer initial temporal grid resolution requires fewer consecutive 

pulses to have randomly drawn amplitudes above the threshold. 

These results, though more promising than those seen above for the FFT 07 

ensembles, still leave something to be desired. The CFD marker shows what can currently 

be done with increased computational complexity and detailed input data. The CFD results 

mirror the field trial data reasonably well. The Markov and fractal methods do seem to be 

an improvement over HPAC alone, but only match the field trial data sporadically across 
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both metrics. There is no clear pattern of over or underestimation, and no clear rank 

ordering of results, indicating that the close matching seen in the Markov method may not 

be robust. Testing of the methods over more field trials is needed to determine if there is 

any consistency to these results. 
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Appendix A. 

Ensembles from Fusion Field 

Trial 2007 Data 

This appendix provides, in Table A–1, information on each trial of Fusion Field Trial 

2007 (FFT 07) that was used to create each ensemble of similar trials. 
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Table A–1. Characteristics of FFT 07 Trials by Ensemble 

Ensemble Trial 

Number of 
Release 

Locations 

Release Flow 
Rate (liters per 

minute) 

Wind Speed 
(meters per 

second) 
Wind Direction 

(degrees from North) 

1 

22 1 175 1.39 151.75 

63 1 150 1.69 166.91 

46 1 175 1.71 104.96 

20 1 200 1.85 144.23 

39 1 150 2.29 132.28 

7 1 200 2.39 156.60 

42 1 200 2.39 140.15 

53 1 125 2.41 136.70 

34 1 200 2.65 146.60 

30 1 125 2.72 144.16 

11 1 200 2.74 156.04 

29 1 175 2.85 141.21 

54 1 150 2.88 144.52 

Averages: 2.30 143.55 

2 

18 2 150 1.13 124.80 

19 2 175 1.19 119.60 

62 2 150 1.71 146.39 

40 2 150 2.18 145.64 

27 2 150 2.33 146.66 

Averages: 1.71 136.62 

3 

52 2 175 2.70 139.28 

32 2 175 2.78 127.97 

8 2 200 2.79 155.38 

12 2 200 2.85 146.25 

48 2 175 3.01 141.61 

24 2 175 3.24 157.46 

Averages: 2.90 144.66 

4 

47 3 175 1.60 109.70 

41 3 150 1.61 121.84 

26 3 150 2.16 147.53 

10 3 200 2.41 172.28 

49 3 200 2.74 136.21 

51 3 200 2.74 153.38 

28 3 175 2.79 141.42 

6 3 200 2.82 154.07 

Averages: 2.36 142.03 

5 

31 4 150 1.52 121.97 

43 4 200 2.01 133.22 

50 4 200 2.84 143.88 

Averages: 2.12 133.02 
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Appendix B. 

Derivation of Spatial and 

Temporal Correlation Scales  

The spatial/temporal correlations in the fluctuating concentration field generated by 

the fractal method are determined by the grid spacing. Locations more distant than the 

coarsest grid spacing will exhibit no correlation in the concentration fluctuations, though 

the concentration may still be correlated due to correlations in the mean field. To 

parameterize the fractal method, the pairwise spatial correlation of the concentration 

fluctuations was calculated for every combination of sampler locations in the ensemble. 

An exponential model was then fit to the spatial correlations as a function of distance. An 

exponential model was selected because it was a simple functional form that yielded unity 

at zero distance and converges to zero correlation at large distances, as would be expected 

for a spatial correlation function. Following conventions in the literature, the spatial 

correlation scales were taken as the 𝑒- folding distance,88 i.e., the distance at which the 

exponential fit of the correlation coefficient falls below 
1

𝑒
≈ 0.37. Although the spatial 

correlation scales obtained in this manner are less than the minimum distance between 

sensors (50 meters), there is still an appreciable positive correlation between sensors up to 

approximately 100 meters apart that allowed the exponential model to be fit to the data. A 

denser grid of sensors would have allowed for a better characterization of the spatial 

correlation at closer distances. 

Similar to the calculation of the spatial correlation scale, the temporal scale, 𝑇𝑥, was 

directly computed from the autocorrelation coefficient, 𝑅(𝜏), as a function of the time lag, 

𝜏:89 

 𝑇𝑥 = ∫ 𝑅(𝜏)𝑑𝜏
𝜏𝑒

0
 (B-1) 

where 𝜏𝑒 is 𝑒- folding time, i.e., the time lag at which the autocorrelation function falls 

below 
1

𝑒
≈ 0.37.  

                                                 
88

  Eugene Yee, R. Chan, P.R. Kosteniuk, G.M. Chandler, C.A. Biltoft, and J.F. Bowers, “Experimental 

Measurements of Concentration Fluctuations and Scales in a Dispersing Plume in Atmospheric Surface 

Layer Obtained Using a Very Fast Response Concentration Detector,” Journal of Applied Meteorology 

and Climatology 33, no. 8 (August 1994), 1012. 

89
  Ibid. 
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Stemming from a desire to maintain a consistent methodology for parameterizing 

each method, the 𝑒- folding scheme was used to define the spatial and temporal scales as 

used by both the Markov and fractal methods. Using the 𝑒- folding scheme to define the 

coarsest grid resolution in the fractal method results in no correlation in fluctuations beyond 

the 𝑒- folding time/distance. In reality, positive autocorrelation occurs over significantly 

longer temporal and spatial scales, up to approximately 100 seconds and 100 meters in the 

field trial data. Therefore, this 𝑒- folding scheme artificially reduced the correlation 

distance of simulated concentration fluctuations generated by the fractal method. 

Figures B-1 through B-10 depict the determination of the spatial correlation scales 

and temporal correlation scales for each of the ensembles generated from Fusion Field Trial 

07 (FFT 07). 
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A. FFT 07 Ensemble #1 

 

Note: m = meters. 

Figure B-1. Spatial Correlations for FFT 07 Ensemble #1  

 

 

Note: s = seconds. 

Figure B-2. Temporal Correlations for FFT 07 Ensemble #1  
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B. FFT 07 Ensemble #2 

 

 

Figure B-3. Spatial Correlations for FFT 07 Ensemble #2  

 

 

Figure B-4. Temporal Correlations for FFT 07 Ensemble #2  
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C. FFT 07 Ensemble #3 

 

 

Figure B-5. Spatial Correlations for FFT 07 Ensemble #3  

 

 

Figure B-6. Temporal Correlations for FFT 07 Ensemble #3 
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D. FFT 07 Ensemble #4 

 

 
Figure B-7. Spatial Correlations for FFT 07 Ensemble #4 

 

 

Figure B-8. Temporal Correlations for FFT 07 Ensemble #4 
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E. FFT 07 Ensemble #5 

 

 

Figure B-9. Spatial Correlations for FFT 07 Ensemble #5 

 

 

Figure B-10. Temporal Correlations for FFT 07 Ensemble #5  



B-8 

 

This page is intentionally blank. 

 



C-1

Appendix C. 

Results for Other Ensembles 

This appendix includes the intermittency and upcrossing statistics for Fusion Field 

Trial 07 (FFT 07) Ensembles 2, 4, and 5. They are presented here for completeness, and 

similar trends to those discussed in section 8.A are visible throughout. The results for 

Ensemble 2 were not included in the main body of the paper because the results for 

Ensemble 2 and Ensemble 3 are somewhat redundant, and Ensemble 3 was the more 

coherent and consistent of the two ensembles. Results for Ensembles 4 and 5 are relegated 

to this appendix because the inclusion of more release locations in each trial of Ensembles 

4 and 5 caused a more uniform and widespread plume, which in turn decreased the range 

of intermittency and concentration fluctuations. Furthermore, Ensembles 4 and 5 included 

fewer trials, because they were limited to only those trials that used three and four release 

locations, respectively. 
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A. Metrics for FFT 07 Ensemble 2 

 

 

Figure C-1. Intermittency Comparison for Ensemble 2 
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Figure C-2. Upcrossing Frequency and Duration 

Summary Statistics for Ensemble 2 
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B. FFT 07 Ensemble 4 

 

 

Figure C-3. Intermittency Comparison for Ensemble 4 
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Figure C-4. Upcrossing Frequency and Duration 

Summary Statistics for Ensemble 4 
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C. FFT 07 Ensemble 5 

 

 

Figure C-5. Intermittency Comparison for Ensemble 5 
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Figure C-6. Upcrossing Frequency and Duration Summary Statistics for Ensemble 5 
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Appendix D. 

Markov Method Implementation  

The Markov method was implemented in Python 3.6.0 and has dependencies on 

numpy 1.11.3, scipy 1.1.0, and matplotlib 2.0.0 libraries. The python code used in this 

implementation is provided in this appendix. 

 

  



1. markov method.py

import numpy as np

import scipy as sp

from Transcendental_Solver import find_parameters

from lognorm_solver import lognorm_parameters

import warnings

def main():

#example of usage at a single geographic point

#numpy and pandas get ornery about taking the log of 0,

#but the output is accounted for appropriately

with warnings.catch_warnings():

warnings.filterwarnings("ignore", category=RuntimeWarning)

#read in ensemble mean and variance

mean, var = read_ensemble(path)

#markov method for input with 30 second timesteps, output with 1 second timesteps

realizations = combo_method_transient(mean, var, timestep=30, dt=1)

#realizations will be an array with dimensions realizations x time

save_and_plot_concentrations(realizations)

def read_ensemble(path):

pass

def save_and_plot_concentrations(realizations):

pass

def combo_method_transient(mean, var, timestep=1., tcorr=22., runs=1000, dt=None,

dtsteps=10, pdf='lognormal'):↪→

'''

<mean> (array-like): concentration means (time series)

<var> (array-like): concentration variances (time series)

<timestep> (float -or- array-like): length of a timestep -or- length of each timestep

<tcorr> (float -or- array-like): time correlation scale -or- time correlation scale

at each timestep↪→

<runs> (int): number of individual realizations to produce

<dt> (float): timestep to use for steady-state markov method

<dtsteps> (int): number of steps to break each timestep into for steady-state markov

method↪→

NOTE: <dt> and <dtsteps> cannot be used at the same time. If specified, dt takes

precendence over <dtsteps>↪→

<pdf> ("lognormal" or "gamma"): specifies which concentration fluctuation probability

density function↪→

to use for steady-state markov method

'''

#time and tcorr lists, should be same length as mean and var

try: len(timestep)

except TypeError: timestep = [timestep] * mean.shape[0]

try: len(tcorr)
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except TypeError: tcorr = [tcorr] * mean.shape[0]

if dt is not None:

assert all((round(t%dt,5)==0.) or (round(t%dt,5)==round(dt,5)) for t in

timestep), \↪→

'dt must divide evenly into time.'

#dt = [dt] * mean.shape[0]

#dtsteps=[int(round(t/dt,0)) for t, dt in zip(time, dt)]

#else:

#try: len(dtsteps)

#except TypeError: dtsteps = [dtsteps] * mean.shape[0]

#dt = [t/dtsteps for t, dtsteps in zip(time, dtsteps)]

assert (len(mean)==len(var)) and (len(mean)==len(timestep)) and

(len(mean)==len(tcorr)), \↪→

'The mean, variance, time, and correlation time need to be the same length.'

#Creates a steady-state time series for each time step has a length of

#dtstep * number of runs (therefore dtsteps timesteps for each single instantiation).

#After the first timestep, each realization is seeded with the last value of the

#previous timestep in order to maintain appropriate temporal correlations

C = []

for tstep in range(mean.shape[0]):

if tstep==0: seed=None

else: seed = raw_seed

if dt is not None:

Ci, raw_seed = combo_method_steady(mean[tstep], var[tstep], timestep[tstep],

tcorr=tcorr[tstep], dt=dt, runs=runs, seed=seed, pdf=pdf,

return_seed=True)

↪→

↪→

else:

Ci, raw_seed = combo_method_steady(mean[tstep], var[tstep], timestep[tstep],

tcorr=tcorr[tstep], dtsteps=dtsteps, runs=runs, seed=seed, pdf=pdf,

return_seed=True)

↪→

↪→

C.append(Ci)

C = np.concatenate(C, axis=1)

return C

def combo_method_steady(mean, var, time, tcorr=22., runs=1000, seed=None, dt=None,

dtsteps=100, pdf='lognormal', return_seed=False):↪→

'''

<mean> (float): concentration means (time series)

<var> (float): concentration variances (time series)

<time> (float): length of the final timeseries

<tcorr> (float): time correlation scale

<runs> (int): number of individual realizations to produce

<seed> (float -or- array-like): specifies the starting concentration for the runs

<dt> (float): timestep to use

<dtsteps> (int): number of steps to break time into

NOTE: <dt> and <dtsteps> cannot be used at the same time. If specified, dt takes

precendence over <dtsteps>↪→

<pdf> ("lognormal" or "gamma"): specifies which concentration fluctuation probability

density function to use↪→
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return_seed (boolean): whether or not to also return the last timestep of

concentration unshifted and unclipped (intended for interoperability with

combo_method_transient)

↪→

↪→

'''

# Timestep length (seconds) and count

#NOTE: dt takes precedence over dtsteps if both are specified

if dt is None:

dt = time/float(dtsteps)

tsteps = int(round(time / dt))

if seed is not None:

try:

assert len(seed)==runs, "The seed provided does not correlate to the number

of realizations requested."↪→

except TypeError:

seed = np.full(runs, seed)

else:

seed = np.full(runs, mean)

#Concentration mean and variance

c = mean

v = var

T = float(tcorr) # Correlation time

if pdf=='gamma':

# Normalized mean square concentration

nmsc = v/(c*c) + 1

#k and s dependence on nmsc roughly linear for nmsc>2, asymptotic as nmsc

approaches 1↪→

#so if you're getting non-finite values, you'll need to increase nmsc_bound

nmsc_lower_bound = 1.2

# nmsc_upper_bound = 20.

if nmsc < nmsc_lower_bound: nmsc = nmsc_lower_bound

# elif nmsc > nmsc_upper_bound: nmsc = nmsc_upper_bound

# Solve system of transcendental equations for clipped-gamma parameters

k, s, l, gamma = find_parameters(nmsc)

elif (pdf=='lognorm') or (pdf=='lognormal'):

#solve system of transcendental equations for lognormal parameters

c50, sig, cbase, gamma = lognorm_parameters(c, v)

#adjust mean upward to account for intermittancy

c /= gamma

else:

raise ValueError("pdf must be 'gamma' or 'lognormal'")

#Concentration time series instantiation

C = np.empty([len(seed), tsteps+1])

#first value is either seeded based on last timestep, or set to mean

#this value will be removed after markov process is completed

C[:,0] = seed

for i in range(1, tsteps+1):

a = -(C[:,i-1]-c)/T
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if pdf=='gamma':

pc = k * np.power(np.abs(C[:,i-1]/c)*k,k-1) * np.exp(-np.abs(C[:,i-1]/c)*k) /

(c*sp.special.gamma(k))↪→

#parameter to shift concentration semi-randomly (based on concentration pdf)

b21 = 2./(T*pc*sp.special.gamma(k))

b2 = b21*c*((1./k) * sp.special.gammaincc(k+1,np.abs(C[:,i-1]/c)*k) *

sp.special.gamma(k+1) - sp.special.gammaincc(k,np.abs(C[:,i-1]/c)*k) *

sp.special.gamma(k))

↪→

↪→

b = np.sqrt(b2)

#if b goes infinite, use L'Hopitals rule

if not np.isfinite(b).any():

b = np.sqrt(2*(c - np.abs(C[:,i-1])) / (T*((k-1)*(s/np.abs(C[:,i-1])) -

(1/s))))↪→

#if b still goes infinite, use inst_conc >> mean_conc approximation

if not np.isfinite(b).any():

b = np.sqrt(2*np.abs(C[:,i-1])*c / (T*k))

elif (pdf=='lognorm') or (pdf=='lognormal'):

term1 = np.log(np.abs(C[:,i-1])/c50) / (np.sqrt(2)*sig)

b2 = (c*np.sqrt(2*np.pi)*sig*np.abs(C[:,i-1])/T)*np.exp(term1**2) *

(sp.special.erf(term1)-sp.special.erf(term1-(sig**2/(np.sqrt(2)*sig))))↪→

b = np.sqrt(b2)

else:

raise ValueError("pdf must be 'gamma' or 'lognormal'")

r = np.random.normal(size=len(seed))

C[:,i] = C[:,i-1] + a*dt + b*np.sqrt(dt)*r

if np.isnan(C[:,i]).any():

raise RuntimeError('Time series has become non-finite (either NaN or Inf).')

#remove initial seed

C = C[:,1:]

if return_seed: seed = C[:,-1].copy()

if pdf=='gamma':

#shift and clip to create intermittency

if np.mean(C) != 0.:

C = (C/np.mean(C) - l).clip(min=0.)

#renormalize

if np.mean(C) != 0.:

C = C/np.mean(C) * c

elif (pdf=='lognorm') or (pdf=='lognormal'):

#shift and clip to create intermittency

if np.mean(C) != 0.:

C = (C - cbase).clip(min=0)

if return_seed: return C, seed

return C

if __name__ == '__main__':

main()
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2. lognorm solver.py

"""

@author: stsmith

"""

from scipy.optimize import fsolve

import scipy as sp

import numpy as np

import matplotlib.pyplot as plt

import warnings

def eqn_system(params, ip2, gamma):

'''

the equations themselves, which are run through scipy's solver

'''

ip2 = float(ip2)

gamma = float(gamma)

phi, sig = params

if phi <= 0:

return np.nan, np.nan

term1 = 1-sp.special.erf(np.log(phi)/(np.sqrt(2)*sig))

term2 = 1-sp.special.erf((np.log(phi)-(sig**2))/(np.sqrt(2)*sig))

term3 = 1-sp.special.erf((np.log(phi)-2*(sig**2))/(np.sqrt(2)*sig))

residualA = 0.5*term1 - gamma

bigphi = (0.5*np.exp(0.5*(sig**2))*term2) - (0.5*phi*term1)

phi2bar = (0.5*np.exp(2*(sig**2))*term3) - (phi*np.exp(0.5*(sig**2))*term2) +

(0.5*(phi**2)*term1)↪→

residualB = gamma*phi2bar/(bigphi**2) - 1 - ip2

return residualA, residualB

def lognorm_parameters(mean, var, param_test=False):

'''

takes mean and variance for concentration and computes

relevant lognormal parameters for non-intermittent concentration series

'''

#inputs to system of eqns

i2 = float(var)/(float(mean)**2)

if i2 < 0.887: i2 = 0.887 #internal cutoff based on phi function minimum

#if i2 < 3.56: i2 = 3.56 #internal cutoff based on phi(i2)=1

ip2 = (2*i2)/(2+i2)

gamma = (1+ip2)/(1+i2)

#initial guesses based on empirical continuity of functions

if i2 <= 0.3:

phi_guess, sig_guess = 0.9, 0.1

elif i2 <= 1:

phi_guess, sig_guess = 0.7, 0.4

elif i2 <= 10:

phi_guess, sig_guess = 1., 1.
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elif i2 <= 30:

phi_guess, sig_guess = 2., 1.

elif i2 <= 100:

phi_guess, sig_guess = 10, 1.1

elif i2 <= 1e3:

phi_guess, sig_guess = 20, 1.2

#the below were found by fitting to initially calculated values

elif (i2 > 1e3) and (i2<=1e4):

a,b,c = 0.019587784159339417, 6.9849176149662497, 2.274841402556921

phi_guess, sig_guess = c*(np.log(a*i2))**2+b, 1.3

elif (i2 > 1e4) and (i2<=8e4):

a,b,c = 8.8735303782044926e-05, 107.28967892260884, 18.105801201005235

phi_guess, sig_guess = c*(np.log(a*i2))**2+b, 1.3

else:

a,b,c = 8.8735303782044926e-05, 107.28967892260884, 18.105801201005235

phi_guess, sig_guess = c*(np.log(a*i2))**2+b, 1.4

#solve system

phi, sig = fsolve(eqn_system, (phi_guess, sig_guess), args=(ip2,gamma), maxfev=1000)

#calculate pre-shifted parameters and shift itself

c50 = float(mean)/(gamma*np.sqrt(ip2+1))

cbase = phi*c50

#return median, sigma, shift, and intermittency factor

if param_test==True: return phi, sig

return c50, sig, cbase, gamma

if __name__ == '__main__':

'''

call this script to test the lognorm_parameters() function

only recommended for values of var/(mean**2) on the order of 1e5 or less

'''

#normalized mean square concentration values

testvar = np.linspace(1e-1, 1e5, num=10001)

testmean = np.ones_like(testvar).astype(float)

#run for each value

params = []

for mean, var in zip(testmean, testvar):

with warnings.catch_warnings():

warnings.filterwarnings("ignore", category=RuntimeWarning)

phi, sig = lognorm_parameters(mean, var, True)

params.append([phi, sig])

params = np.array(params)

#prep figures

fig = plt.figure(figsize=(8,12))

ax0 = fig.add_subplot(211)

ax1 = fig.add_subplot(212)

#plot phi

l0,=ax0.plot(testvar/(testmean**2), params[:,0], 'b', label='phi')

plt.sca(ax0)

plt.xscale('log')

plt.yscale('log')
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#plot sig

l1,=ax1.plot(testvar/(testmean**2), params[:,1], 'g', label='sig')

plt.sca(ax1)

plt.xscale('log')

# plt.yscale('log')

#add niceties and show

plt.legend([l0,l1], ['phi','sig'], fontsize=20)

plt.tight_layout()

plt.show()

3. gamma solver.py

# -*- coding: utf-8 -*-

"""

Created on Wed Oct 25 09:50:03 2017

@author: sweinric

"""

from __future__ import division

from scipy.optimize import fsolve

import scipy as sp

import numpy as np

import math

import clipped_gamma as cg

import matplotlib.pyplot as plt

import warnings

def transcendentalSystem(params,mu,gamma):

'''

the equations themselves, which are run through scipy's solver

'''

k,r=params

residualA = sp.special.gammaincc(k,r)-gamma

residualB =

(((gamma*r)+(1+k-r)*((gamma*(k-r))+(math.exp(-r)*(r**k)/sp.special.gamma(k)))) /

(((gamma*(k-r))+(math.exp(-r)*(r**k)/sp.special.gamma(k)))**2))-mu

↪→

↪→

return residualA,residualB

def find_parameters(mu):

'''

computes relevant pdf parameters for non-intermittent concentration series

(shifted-clipped gamma pdf)

'''

#compute intermittency parameter (gamma)

gamma=min(1.,3./mu)

#trivial case

if gamma==1:

r = 0

k = 1/(mu - 1)

D-8



#run solver for all other input values

else:

try: guess = cg.param_solve(0,0, mu, gamma)

except: guess = [1,1,1]

k_guess = guess[0]

r_guess = guess[2] / guess[1]

warnings.filterwarnings('error')

try:

k,r = fsolve(transcendentalSystem,(k_guess,

r_guess),args=(mu,gamma),maxfev=1000)↪→

except:

upper, lower = find_edges(mu)

k0,s0,l0,g0 = find_parameters(upper)

k1,s1,l1,g1 = find_parameters(lower)

k = np.interp(mu, [upper,lower], [k0,k1])

s = np.interp(mu, [upper,lower], [s0,s1])

l = np.interp(mu, [upper,lower], [l0,l1])

gamma = np.interp(mu, [upper,lower], [g0,g1])

return k, s, l, gamma

warnings.resetwarnings()

#calculate s and lambda based on k and r (lambda/s)

s=1/((gamma*(k-r))+(math.exp(-r)*(r**k)/sp.special.gamma(k)))

l=r*s

return k, s, l, gamma

def find_edges(initial_mu, initial_step=0.001):

'''

finds bounds of troublesome function areas which break the solver.

these bounds are used to linearly interpolate values for each parameter.

'''

warnings.filterwarnings('error')

mu = initial_mu

step = initial_step

while True:

gamma = min(1.,3./mu)

try: guess = cg.param_solve(0,0, mu, gamma)

except: guess = [1,1,1]

k_guess = guess[0]

r_guess = guess[2] / guess[1]

try: k,r = fsolve(transcendentalSystem,(k_guess,

r_guess),args=(mu,gamma),maxfev=1000)↪→

except:

mu-=step

step*=1.1

continue

break

lower_bound = mu
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mu = initial_mu

step = initial_step

while True:

gamma = min(1.,3./mu)

try: guess = cg.param_solve(0,0, mu, gamma)

except: guess = [1,1,1]

k_guess = guess[0]

r_guess = guess[2] / guess[1]

try: k,r = fsolve(transcendentalSystem,(k_guess,

r_guess),args=(mu,gamma),maxfev=1000)↪→

except:

mu+=step

step*=1.1

continue

break

upper_bound = mu

warnings.resetwarnings()

return lower_bound, upper_bound

if __name__ == '__main__':

'''

call this script to test the find_parameters() function

outputs a plot of k, s, and lambda for 1000 inputs with values

between 1.2 and 8 (relevant for FUSION07 ensembles)

'''

#normalized mean square concentration values

tester = np.linspace(1.2, 8, num=1001)

dt = tester[1]-tester[0]

#run for each value

params = []

flag = 0

for value in tester:

k, s, l, gamma = find_parameters(value)

# except:

# if flag==0:

# print(value-dt)

# flag = 1

# continue

# if flag==1:

# print('{}\n'.format(value))

# flag = 0

params.append([k, s, l, gamma])

params = np.array(params)

#prep figures

fig = plt.figure(figsize=(8,16))

ax0 = fig.add_subplot(311)

ax1 = fig.add_subplot(312)

ax2 = fig.add_subplot(313)

D-10



#plot k

l0,=ax0.plot(tester, params[:,0], 'b', label='k')

plt.sca(ax0)

plt.xscale('log')

plt.yscale('log')

#plot s

l1,=ax1.plot(tester, params[:,1], 'g', label='s')

plt.sca(ax1)

plt.xscale('log')

plt.yscale('log')

#plot lambda

l2,=ax2.plot(tester, params[:,2], 'r', label='l')

plt.sca(ax2)

plt.xscale('log')

#make the plot pretty and show it

plt.sca(ax0)

plt.legend([l0,l1,l2], ['k','s','lambda'], fontsize=20)

plt.tight_layout()

plt.show()

4. clipped gamma.py

# -*- coding: utf-8 -*-

"""

Created on Tue Jun 13 09:59:00 2017

@author: jwillert

"""

# This function is described in a multitude of papers.

# See either of the Gunatilaka papers.

# This function includes the nonlinear solver required

# in order to compute the parameters for the clipped

# gamma distribution. Computation of the nonlinear

# residual and Jacobian are included in this file

# as well.

import scipy.special as special

import numpy as np

import math

def param_solve(c,v,nmsc,gamma):

[k,w] = newton(gamma,nmsc,c)

[s,l] = get_s_lambda(k,w,gamma)

return k, s, l, gamma

def get_s_lambda(k,w,gamma):

sinv = (-w + k)*gamma + (1/special.gamma(k+1))*pow(w,k)*np.exp(-w)
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s = 1.0/sinv

l = w*s

return [s,l]

def residual(k,w,gamma,nmsc):

# Here, w = lambda / s

# Equation 1 residual

#print k, s, l

sinv = (-w + k)*gamma + (1/special.gamma(k))*pow(w,k)*np.exp(-w)

# Equation 2 residual

num = (w*gamma + (-w + k + 1)*sinv)

r1 = num/pow(sinv,2.0) - nmsc

# Equation 3 residual

#r2 = special.gammaincc(k,w)/special.gamma(k+1) - gamma

r2 = special.gammaincc(k,w) - gamma

#print gamma

return [r1, r2]

def compute_jacobian(k,w,gamma,nmsc,delta,res):

J = np.zeros([2,2])

c0 = residual(k+delta,w,gamma,nmsc)

c1 = residual(k,w+delta,gamma,nmsc)

#print "res\n",res,"c0\n",c0, "c1\n",c1

J[0][0] = (c0[0]-res[0])/delta

J[1][0] = (c0[1]-res[1])/delta

J[0][1] = (c1[0]-res[0])/delta

J[1][1] = (c1[1]-res[1])/delta

return J

def newton(gamma,nmsc,mean):

if gamma == 1:

w = 0

k = 1/(nmsc - 1)

x_new = [k, w]

else:

x_cur = np.matrix.transpose(np.matrix([1.00,0.00]))

r_0 = residual(x_cur.item(0),x_cur.item(1),gamma,nmsc)

r_0_norm = np.linalg.norm(r_0)

delta = 0.0001

r_new_norm = r_0_norm
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for i in range(100):

#print i, r_new_norm,"\n"

#print x_cur

r_cur = residual(x_cur.item(0),x_cur.item(1),gamma,nmsc)

J = compute_jacobian(x_cur.item(0),x_cur.item(1),gamma,nmsc,delta,r_cur)

r = np.matrix.transpose(np.matrix(r_cur))

#print "J\n", J

try: Jinv = np.linalg.inv(J)

except:

if r_new_norm < 2e-13: break

else: raise ValueError('Not really converging.')

#print "RES\n", r, "\njac\n", J, "\nJinv\n", Jinv, "\nxcur\n", x_cur

r_cur_norm = np.linalg.norm(r_cur)

r_new_norm = r_cur_norm + 1.0

step = 2.0

#print "step\n", Jinv*r

while r_new_norm > 0.99*r_cur_norm:

#print "steplen\n", step

step = step/2

x_new = x_cur - step*Jinv*r

#(stuart) I added this to prevent a possible infinite loop case

if step < 1e-15:

break

if math.isnan(x_new.item(0)) or math.isnan(x_new.item(1)):

continue

if x_new.item(0) < 0 or x_new.item(1) < 0 :

continue

try: r_new = residual(x_new.item(0),x_new.item(1),gamma,nmsc)

except OverflowError: continue

if math.isnan(r_new[0]) or math.isnan(r_new[1]):

continue

#print x_cur, "\n", x_new, "\n", r_new

r_new_norm = np.linalg.norm(r_new)

#print step

if step < 0.001:

break

#print r_new, r_new_norm, x_new
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#print r_new_norm, r_new, x_new

x_cur = x_new

r_cur = r_new

#NOTE: This isn't necessarily the tolerance. I added a couple

#of lines above which gives a tolerance of 2e-13 if Jinv is no longer

#calculable. Which means the below is more of a tolerance goal than a rule.

if r_new_norm < 1e-15:

break

delta = np.min([0.000001, 0.01*r_new_norm/r_0_norm])

#print J

[k, w] = x_new

k = k.max()

w = w.max()

x_new = [k, w]

return x_new
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Appendix E. 

Fractal Method Implementation  

The fractal method was implemented in Python 2.7.14 and has dependencies on 

numpy 1.11.3, scipy 0.19.1, pandas 0.20.3, and numba 0.35.0 libraries. The python code 

used in this implementation is provided in this appendix. 

 

  



# -*- coding: utf-8 -*-

"""

Created on Thu Jun 01 11:50:49 2017

@author: sweinric

"""

from __future__ import division

import numpy as np

import pandas as pd

import math

import scipy.interpolate as spi

import time

import os

import re

from numba import guvectorize, float64

#Define simulation parameters

suffix = '_lognormal_test'

numRefine = 4 #4

numRealizations = 100 #100

firstInterpResolution = 30 #30

ensembleNum=1

#Assign initial spatial and temporal grid spacing

if ensembleNum==1:

initialSpatialResolution=26.66 # m ensemble#1

initialTemporalResolution=22.60 # s ensemble#1

elif ensembleNum==2:

initialSpatialResolution=25.37 # m ensemble#2

initialTemporalResolution=24.30 # s ensemble#2

elif ensembleNum==3:

initialSpatialResolution=29.66 # m ensemble#3

initialTemporalResolution=23.79 # s ensemble#3

elif ensembleNum==4:

initialSpatialResolution=26.11 # m ensemble#4

initialTemporalResolution=22.96 # s ensemble#4

elif ensembleNum==5:

initialSpatialResolution=21.41 # m ensemble#5

initialTemporalResolution=24.90 # s ensemble#5

#Path to ensemble mean and variance data

ensemblePath = 'C:\\Users\\sweinric\\Documents\\HPAC_Variance\\Ensemble\\'

ensembleFilename = 'ensemble_' + str(ensembleNum) + '.csv'

fieldFilename = re.sub('\.csv$','',ensembleFilename)

startTime = time.time()

#Assign fractal dimension

fractalDimension = 1.3

alpha = 3-fractalDimension

ensembleMeasureFilename=

'\\\\corp-proj\\archive\\3250\\325027_HPAC_Variance\\4_data\\FUSION_07\\measures\\ensemble_'

+ str(ensembleNum) + '_1s\\upc_frequency.csv'

↪→

↪→

ensembleMeasure = pd.read_csv(ensembleMeasureFilename)

concentrationLevels = ensembleMeasure['conc'].tolist()
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outputDirectory = 'C:\\Users\\sweinric\\Documents\\HPAC_Variance\\3D_Plots\\' +

fieldFilename + '_' + str(numRefine) + '_Refinements_' + str(numRealizations) +

'_Realizations_Multifractal_vectorized' + suffix + '\\'

↪→

↪→

if not os.path.exists(outputDirectory):

os.makedirs(outputDirectory)

###############################################################################

#Function to relate the mean and variance field to gaussian parameters

@guvectorize([float64(float64[:],float64[:],float64[:],float64[:,:])],'(n),(n),(p)->(n,p)')

def parameterSolver(meanC,sdC,dummy, result):

for i in range(meanC.shape[0]):

if (meanC[i] > 0) and (sdC[i] > 0):

squareMean = meanC[i]**2

variance = sdC[i]**2

meanG=np.log(squareMean/np.sqrt(variance+squareMean))

sdG=np.sqrt(np.log((variance/squareMean)+1))

else:

meanG=0

sdG=0

result[i,0]=meanG

result[i,1]=sdG

result[i,2]=meanC[i]

result[i,3]=sdC[i]

###############################################################################

#Function the pulse shape, i.e. triangular pulses

def pulseFunc(dist,spacing):

if dist<spacing:

pulse = 1-(dist/spacing)

else:

pulse=0

return pulse

###############################################################################

#Function obtain field of gaussian parameters at the finest grid refinement.

#Interpolation is split into an initial course interpolation because direct triangulation

#of irregular data onto a fine grid is computationally expensive. The first interpolation

#interpolates the irregular data onto a course regular grid which is then interpolated

#again onto the finest grid refinement

def getEnsembleData(ensembleFilename):

global xRegularGrid

global yRegularGrid

global tRegularGrid

global pointData

global meanData

global interpGridXvals

global interpGridYvals

global outputAxisT

global meanGridInterpData

global nativeTimeResolution

global sensorIDs

global refLat

global refLon
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ensembleData = pd.read_csv(ensembleFilename,header=0)

timeList = [sum(x * int(t) for x, t in zip([3600, 60, 1], timeCode.split(":"))) for

timeCode in ensembleData['time']]↪→

ensembleData['time'] = timeList

lonValues = ensembleData['long']

latValues = ensembleData['lat']

refLon = sum(lonValues)/len(lonValues)

refLat = sum(latValues)/len(latValues)

lenLon = (math.pi/180)*6371000*math.cos(math.radians(refLat))

xValues = [(value-refLon)*lenLon for value in lonValues]

yValues = [(value-refLat)*111132 for value in latValues]

ensembleData['long']=xValues

ensembleData['lat']=yValues

sensorIDs = ensembleData['sensor'].unique()

meanData = ensembleData['mean'].as_matrix()

sdData = np.sqrt(ensembleData['var'].as_matrix())

pointData = ensembleData[['time','long','lat']].as_matrix()

samplerLocs = ensembleData[['long','lat']].drop_duplicates().reset_index()

tValues = ensembleData['time']

uniqueTimeList=sorted(tValues.unique())

nativeTimeResolution = uniqueTimeList[1]-uniqueTimeList[0]

xDomain =

[min(xValues)-initialSpatialResolution,max(xValues)+initialSpatialResolution]↪→

yDomain =

[min(yValues)-initialSpatialResolution,max(yValues)+initialSpatialResolution]↪→

tDomain = [min(tValues)-nativeTimeResolution,max(tValues)+nativeTimeResolution]

interpGridXvals = np.linspace(xDomain[0],xDomain[1],num=firstInterpResolution)

interpGridYvals = np.linspace(yDomain[0],yDomain[1],num=firstInterpResolution)

interpGridTvals =

np.arange(tDomain[0],tDomain[1]+nativeTimeResolution,nativeTimeResolution)↪→

initialAxisX,initialXSpacing = np.linspace(xDomain[0], xDomain[1],

round((xDomain[1]-xDomain[0])/initialSpatialResolution), retstep=True)↪→

initialAxisY,initialYSpacing = np.linspace(yDomain[0], yDomain[1],

round((yDomain[1]-yDomain[0])/initialSpatialResolution), retstep=True)↪→

initialAxisT,initialTSpacing = np.linspace(tDomain[0], tDomain[1],

round((tDomain[1]-tDomain[0])/initialTemporalResolution), retstep=True)↪→

outputAxisX,outputXResolution =

np.linspace(xDomain[0],xDomain[1],(2+(len(initialAxisX)-1)*(2**(numRefine+1)))/2,

retstep=True)

↪→

↪→

outputAxisY,outputYResolution =

np.linspace(yDomain[0],yDomain[1],(2+(len(initialAxisY)-1)*(2**(numRefine+1)))/2,

retstep=True)

↪→

↪→

outputAxisT,outputTResolution =

np.linspace(tDomain[0],tDomain[1],(2+(len(initialAxisT)-1)*(2**(numRefine+1)))/2,

retstep=True)

↪→

↪→
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tRegularGrid,xRegularGrid,yRegularGrid =

np.meshgrid(interpGridTvals,interpGridXvals,interpGridYvals)↪→

outputGridT,outputGridX,outputGridY =

np.meshgrid(outputAxisT,outputAxisX,outputAxisY)↪→

outputCoordinates =

np.array(zip(outputGridX.flatten(),outputGridT.flatten(),outputGridY.flatten()))↪→

startTime = time.time()

if os.path.isfile(outputDirectory+'firstInterpFieldMean.npy') and

os.path.isfile(outputDirectory+'firstInterpFieldSD.npy'):↪→

meanGridInterpData = np.load(outputDirectory+'firstInterpFieldMean.npy')

sdGridInterpData = np.load(outputDirectory+'firstInterpFieldSD.npy')

else:

meanGridInterpData =

spi.griddata(pointData,meanData,(tRegularGrid,xRegularGrid,yRegularGrid),

method='linear', fill_value=0)

↪→

↪→

sdGridInterpData =

spi.griddata(pointData,sdData,(tRegularGrid,xRegularGrid,yRegularGrid),

method='linear', fill_value=0)

↪→

↪→

np.save(outputDirectory+'firstInterpFieldMean.npy',meanGridInterpData)

np.save(outputDirectory+'firstInterpFieldSD.npy',sdGridInterpData)

endTime = time.time()

print 'Time to convert to a regular grid: ' + str(endTime-startTime)

resolution = (outputXResolution,outputYResolution,outputTResolution)

if os.path.isfile('C:\\Users\\sweinric\\Documents\\HPAC_Variance\\Field_Data\\' +

fieldFilename + '_refinements_' + str(numRefine) + suffix + '.npy'):↪→

fieldData = np.load('C:\\Users\\sweinric\\Documents\\HPAC_Variance\\Field_Data\\'

+ fieldFilename + '_refinements_' + str(numRefine) + suffix + '.npy')↪→

else:

startTime = time.time()

if os.path.isfile(outputDirectory+'secondInterpFieldMean.npy') and

os.path.isfile(outputDirectory+'secondInterpFieldSD.npy'):↪→

meanFieldData = np.load(outputDirectory+'secondInterpFieldMean.npy')

sdFieldData = np.load(outputDirectory+'secondInterpFieldSD.npy')

else:

meanFieldData =

spi.interpn((interpGridXvals,interpGridTvals,interpGridYvals),

meanGridInterpData, outputCoordinates, fill_value=0)

↪→

↪→

sdFieldData = spi.interpn((interpGridXvals,interpGridTvals,interpGridYvals),

sdGridInterpData, outputCoordinates, fill_value=0)↪→

fieldData = np.reshape(meanFieldData,

(len(outputAxisX),len(outputAxisT),len(outputAxisY)), order='C')↪→

np.save(outputDirectory+'secondInterpFieldMean.npy',meanFieldData)

np.save(outputDirectory+'secondInterpFieldSD.npy',sdFieldData)

fieldData = parameterSolver(meanFieldData,sdFieldData,[0,0,0,0])

fieldData = np.reshape(fieldData,

(len(outputAxisX),len(outputAxisT),len(outputAxisY),4), order='C')↪→

fieldData = np.moveaxis(fieldData,0,2)
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endTime = time.time()

print 'Solve parameters: ' + str(endTime-startTime)

np.save('C:\\Users\\sweinric\\Documents\\HPAC_Variance\\Field_Data\\' +

fieldFilename + '_refinements_' + str(numRefine) + suffix + '.npy',

fieldData)

↪→

↪→

meanCdata = fieldData[:,:,:,2]

sdCdata = fieldData[:,:,:,3]

return initialAxisX, initialAxisY, initialAxisT, outputAxisX, outputAxisY,

outputAxisT, resolution, fieldData, meanCdata, sdCdata, samplerLocs,

set(timeList)

↪→

↪→

###############################################################################

startTime=time.time()

initialAxisX, initialAxisY, initialAxisT, outputAxisX, outputAxisY, outputAxisT,

resolution, fieldData, concGridData, sdGridData, samplerLocs, timeList =

getEnsembleData(ensemblePath + ensembleFilename)

↪→

↪→

outputGridT,outputGridX,outputGridY =

np.meshgrid(outputAxisT[1:-1],outputAxisX[1:-1],outputAxisY[1:-1])↪→

meanGdata = np.where(fieldData[:,:,:,0]==0,-np.inf,fieldData[:,:,:,0])

sdGdata = fieldData[:,:,:,1]

meanCdata = fieldData[:,:,:,2]

sdCdata = fieldData[:,:,:,3]

fieldGenerationEnd = time.time()

sumConcField =

np.zeros((len(outputAxisT[1:-1]),len(outputAxisY[1:-1]),len(outputAxisX[1:-1])))↪→

initialSDArray =

np.sqrt(((sdGdata[1:-1,1:-1,1:-1])**2)/(((2/3)**3)*(1-(2**(-2*(numRefine+1)*alpha)))

/ (1-(2**(-2*alpha)))))

↪→

↪→

singleRlznIntrmtcy=list()

singleRlznUpFreq=list()

singleRlznUpDur=list()

ensembleTotalTime=0

ensembleTotalPeakTime=0

ensemblePeakCount=0

#Iterate over realizations to be simulated

for realization in range(numRealizations):

concFluc =

np.zeros((len(outputAxisT[1:-1]),len(outputAxisY[1:-1]),len(outputAxisX[1:-1])))↪→

pulseGenerationStart = time.time()

#Iterate over refinement levels in a given realization

for refineLevel in range(numRefine):

print 'Working on refinement #' + str(refineLevel)

refineLevelStart=time.time()

xAxis,xSpacing = np.linspace(initialAxisX[0], initialAxisX[-1],

(2+(len(initialAxisX)-1)*(2**(refineLevel+1)))/2, retstep=True)↪→

yAxis,ySpacing = np.linspace(initialAxisY[0], initialAxisY[-1],

(2+(len(initialAxisY)-1)*(2**(refineLevel+1)))/2, retstep=True)↪→
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tAxis,tSpacing = np.linspace(initialAxisT[0], initialAxisT[-1],

(2+(len(initialAxisT)-1)*(2**(refineLevel+1)))/2, retstep=True)↪→

#Obtain p-factors used in the multifractal p-model implementation

if refineLevel>0:

p=0.8

stdDev = initialSDArray

xPlist=list()

for xParent in range(len(prevXaxis)):

yPlist=list()

for yParent in range(len(prevYaxis)):

tPlist=list()

for tParent in range(len(prevTaxis)):

daughter=totalParray[tParent,yParent,xParent] *

np.random.choice([p,p,p,p,1-p,1-p,1-p,1-p],(2,2,2),replace=False)↪→

tPlist.append(daughter)

tParray = np.concatenate(tPlist)

yPlist.append(tParray)

yParray = np.concatenate(yPlist,axis=1)

xPlist.append(yParray)

totalParray = np.concatenate(xPlist,axis=2)

totalParray = np.sqrt(totalParray[:-1,:-1,:-1])

else:

totalParray = 1+np.zeros((len(tAxis),len(yAxis),len(xAxis)))

stdDev = initialSDArray*(2**(0.5-refineLevel*alpha))

prevXaxis=xAxis

prevYaxis=yAxis

prevTaxis=tAxis

xAxis = xAxis[1:-1]

yAxis = yAxis[1:-1]

tAxis = tAxis[1:-1]

#Create array of random pulse amplitudes

pulseRandArray = np.multiply(np.random.normal(loc=0.0, scale=1,

size=(len(tAxis),len(yAxis),len(xAxis))),totalParray[1:-1,1:-1,1:-1])

#multiply this random array elementwise by multifractal p-model

↪→

↪→

#Calcualte random pulse offsets from gridpoints

pulseOffsetXList=np.random.uniform(-(xSpacing/2),(xSpacing/2),size=len(xAxis))

pulseOffsetYList=np.random.uniform(-(ySpacing/2),(ySpacing/2),size=len(yAxis))

pulseOffsetTList=np.random.uniform(-(tSpacing/2),(tSpacing/2),size=len(tAxis))

pulseCenterXList=pulseOffsetXList + xAxis

pulseCenterYList=pulseOffsetYList + yAxis

pulseCenterTList=pulseOffsetTList + tAxis

#Calcualte the pulse shape scaling at the gridpoint locations

interpXfunc = np.array([[pulseFunc(abs(outputGridpoint - pulseCenter),xSpacing)

for pulseCenter in pulseCenterXList] for outputGridpoint in

outputAxisX[1:-1]])

↪→

↪→

interpYfunc = np.array([[pulseFunc(abs(outputGridpoint - pulseCenter),ySpacing)

for pulseCenter in pulseCenterYList] for outputGridpoint in

outputAxisY[1:-1]])

↪→

↪→

E-7



interpTfunc = np.array([[pulseFunc(abs(outputGridpoint - pulseCenter),tSpacing)

for pulseCenter in pulseCenterTList] for outputGridpoint in

outputAxisT[1:-1]])

↪→

↪→

randomPulse =

interpTfunc.dot(interpYfunc.dot(pulseRandArray.dot(interpXfunc.transpose())))↪→

#Multiply the standard deviation by the pulse scaling at the gridpoint locations

concFlucLayer = np.multiply(stdDev,randomPulse)

concFluc = concFluc + concFlucLayer

refineLevelEnd = time.time()

print 'Time to process refinement #' + str(refineLevel) + ': ' +

str(refineLevelEnd-refineLevelStart)↪→

#Add fluctuations to Gaussian mean field

concField=concFluc+meanGdata[1:-1,1:-1,1:-1]

#Exponentiate fluctuating gaussian field to obtain lognormal distribution

concField = np.exp(concField)

pulseGenerationEnd = time.time()

print 'Time to process a single realization: ' +

str(pulseGenerationEnd-pulseGenerationStart)↪→

print 'Total time: ' + str(pulseGenerationEnd-startTime)

#Create interpolation function for the simulated fluctuating concentration field

flucFieldFunc = spi.RegularGridInterpolator((outputAxisT[1:-1], outputAxisY[1:-1],

outputAxisX[1:-1]), concField)↪→

minLat=outputAxisY[1]

maxLat=outputAxisY[-2]

minLon=outputAxisX[1]

maxLon=outputAxisX[-2]

coreTime = [elem for elem in timeList if (elem >= outputAxisT[1]) and (elem <=

outputAxisT[-2])]↪→

coreSamplerLocs = np.array([samplerLocs.ix[index,['lat','long']].tolist() for index

in range(samplerLocs.shape[0]) if (samplerLocs.ix[index,'lat'] >= minLat) and

(samplerLocs.ix[index,'lat'] <= maxLat) and (samplerLocs.ix[index,'long'] >=

minLon) and (samplerLocs.ix[index,'long'] <= maxLon)])

↪→

↪→

↪→

timeGrid,latGrid = np.meshgrid(coreTime,coreSamplerLocs[:,0])

timeGrid,lonGrid = np.meshgrid(coreTime,coreSamplerLocs[:,1])

coreInterpPoints = zip(timeGrid.flatten(),latGrid.flatten(),lonGrid.flatten())

#interpolate the fluctuating concentration field at the sampler locations

flucSamplerData = flucFieldFunc(coreInterpPoints)

flucSamplerData =

np.reshape(flucSamplerData,(len(coreTime),samplerLocs['lat'].shape[0]))↪→

np.save(outputDirectory + 'Fluc_Grid_Data_Realization_' + str(realization) + '.npy',

concField)↪→

np.save(outputDirectory + 'Fluc_Sampler_Data_Realization_' + str(realization) +

'.npy', flucSamplerData)↪→
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AT&D atmospheric transport and dispersion 
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FFT 07 Fusion Field Trial 2007 

HPAC Hazard Prediction and Assessment Capability 
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m 
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