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The Problem

Expensive flight tests often cannot be conducted a sufficient 
number of times to yield estimates of system reliability with low 
uncertainty. 

One of the challenges for DoD in developing and fielding the 
Ground-Based Midcourse Defense (GMD) system is testing the per-
formance and reliability of the Ground-Based Interceptors (GBIs). 
(The GMD system is described below.) Because GBI flight tests are 
expensive (on the order of $250 million each), the Missile Defense 
Agency (MDA) can conduct only a limited number of them—typi-
cally one flight test per year. Such infrequent testing would yield 
considerable uncertainty in estimates of GBI reliability—and 
therefore in assessments of whether the interceptors are meeting 
requirements. In the past, similar challenges have arisen in assess-
ments of the reliability of nuclear power plants, nuclear weapons, 
and some other weapon systems due to limited system-level test-
ing. These situations helped drive the development of the Bayesian 
methodology for estimating reliability.

IDA examined the use of the Bayesian methodology as a way 
to estimate GBI reliability given limited flight testing and to 
reduce the uncertainty and risks associated with these estimates. 
A Bayesian approach quantifies a starting state of knowledge us-
ing a probability distribution (called the “prior distribution”), uses 
data as they become available to modify the state of knowledge 
(using the formalism of Bayes’ Theorem), and summarizes the 
resulting state of knowledge with a refined probability distribution 
(the “posterior distribution”).

	 In determining the starting state of knowledge for estimating 
GBI reliability, the GBIs can be divided into components (or sub-
systems), and the reliability of each component can be modeled 
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The GMD system is intended to engage limited intermediate- and long-range ballistic 
missile threats in the midcourse phase of flight to protect the United States. The GMD 
system, which employs GBIs, is supported by multiple sensors that detect and track the 
ballistic missile threats. The GBI is a three-stage, solid-fuel rocket carrying a 230-pound 
Exo-atmospheric Kill Vehicle (EKV) toward the target’s predicted location in space. Once 
released from the booster, the EKV uses data received in-flight from ground-based 
radars and its own on-board sensors to attempt to close with and, using the kinetic 
energy from a direct hit, destroy the target outside Earth’s atmosphere. 
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with its own probability distribution. 
For illustration, one can make the 
initial simplifying assumptions that 
the starting state of knowledge of each 
component is identical; the initial reli-
ability of each component is unknown; 
and the components have independent 
reliabilities. The product of the com-
ponent reliabilities, therefore, is the 
system reliability. Given these assump-
tions, the prior distribution can be pro-
duced for GBI reliability, and as new 
data become available, the reliability 
distribution for each component—and 
thus the GBI system—can be updated 
using Bayes’ Theorem (see the callout 
box for details). 

	 In general, the Bayesian methodol-
ogy is flexible enough to capture other 
(more useful) starting states of knowl-
edge and to incorporate many differ-
ent kinds of data. Regarding the for-
mer, different prior distributions could 
be specified for each component, for 
example, rather than assuming that all 
components start with the same 
uncertainty about reliability. Regarding 
the incorporation of different kinds of 
data, appropriate models could allow 
the use of data obtained from mod-
eling and simulation, ground tests, 
bench tests, and correlated failures. 
Through these methods, an initial 
prior distribution can be constructed 
that would enable more certain reli-
ability estimates given a limited num-
ber of system-level tests (see Figure 1).

	 Thus, the use of the Bayesian 
methodology and other sources of 
data in addition to infrequent flight 
tests can reduce uncertainty in the 
estimates of GBI reliability and help 
identify and fix failure modes more 
rapidly. This analytic process provides 
a pathway to help reduce risk and 
enable assessments of whether the 

The reliability of each GBI component can be 
modeled with a two-parameter (a, b ) distribu-
tion called a beta distribution. The beta distri-
bution gives the probability density of a value x 
(here reliability) on the interval [0, 1]:

 
 
 
where a > 0, b  > 0, and B(a, b ) is the beta 
function (which serves as a normalizing con-
stant to ensure that the total area under the 
density curve equals 1). 
 
The choice of parameter values for the GBI 
beta prior distribution depends on the assump-
tions regarding the starting state of knowl-
edge (see main text) and the number of GBI 
components (n). If the initial reliability of each 
component is assumed to be unknown, the 
initial values of the two parameters would be 
chosen to fit a uniform distribution between 0 
and 1 (roughly, all values between 0 and 1 are 
equally likely). The actual parameter values, 
as derived by Redd and Reese [1], following 
Goodman [2], are:
   
 

This starting state of knowledge is updated 
with new data using Bayes’ Theorem, which 
shows that the posterior distribution is equal 
to the prior times a factor that is dependent on 
the data. If we make the simplifying assump-
tion that each trial is successful with the same 
probability, this implies that the number of suc-
cessful trials for a particular component can be 
described by a binomial distribution. Using the 
beta distribution to describe the prior distribu-
tion and a binomial distribution to describe the 
data leads to a posterior distribution that is also 
a beta distribution.
 
Sources: 
1	 Redd, T. and S. Reese, Brigham Young University, 	
	 personal communication.
2	 Goodman, L., “The Variance of the Product of K 	
	 Random Variables,” Journal of the American 		
	 Statistical Association, Vol. 57 No. 297, March 1962.
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GBIs are meeting reliability require-
ments. In addition, projections of 
future reliability can also be made by 
employing additional assumptions 
involving, for example, the degradation 
of GBI reliability due to age, the occur-
rence of unforeseen failure modes, and 
the effectiveness of repairs.

	 IDA researchers are also employ-
ing Bayesian methods to estimate reli-

ability for other military systems. For 
example, since there are many similari-
ties among the vehicles in the Stryker 
family, we used Bayesian hierarchical 
models to estimate the reliability of 
the family based on data obtained for 
the different vehicles and across both 
developmental and operational tests. 
These models let the data determine 
the appropriate weighting of informa-
tion across vehicle variants and test 

A   provides a notional depiction of the reduction in uncertainty. The solid lines represent 
estimates based only on data from the system-level tests, and the dashed lines represent 
estimates that also include other suitable sources of data using the Bayesian 
methodology.   B   shows a similar set of results obtained for a simple problem* and 
contains noise and asymmetric behavior (the lower bound increases more rapidly than 
the upper bound decreases due to the nature of the problem). In these illustrations, the 
uncertainty estimates for a limited number of system-level tests are smaller when one 
incorporates a starting state of knowledge (based, for example, on component-level 
testing and/or modeling and simulation) prior to the onset of system-level testing. Over a 
su�cient number of system-level tests, the solid and dashed lines approach similar 
estimates of uncertainty. However, in practice, conducting a su�cient number of tests 
might not be possible, and thus the inclusion of other suitable sources of data can provide 
smaller uncertainty for a limited number of system-level tests.
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* For  B  , results were randomly generated for 30 “tests” (observation of 1 for “success” and 0 for “fail”) with 
probability of success equal to 0.75. For the estimates using the Bayesian methodology, the starting prior 
had 90 percent probability that the probability of success was between 0.5 and 0.95. The solid lines are the 
upper and lower classical 90 percent con�dence interval. The dashed lines are the upper and lower bound of 
a Bayesian credible interval. These intervals, con�dence and credible, correspond to our “uncertainty 
estimates.” [Acknowledgment:  IDA Research Sta� Member Alyson Wilson]
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Figure 1. Reduction in Uncertainty of Reliability Estimates with 
Increasing Number of System-level Tests 
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phases. The combination of informa-
tion improves estimation and reduces 
uncertainty. 

	 IDA is also examining the use of 
Bayesian methods for improving the 
estimation of reliability for the Ground 
Combat Vehicle. These methods are 
particularly well suited to integrating 
heterogeneous information sources. 
We are starting by considering infor-
mation obtained from modeling and 
simulation to develop prior distribu-
tions that summarize what we antici-
pate seeing in subsequent testing. This 
will help with test design and poten-
tially reduce uncertainty in the reliabil-
ity estimates.

	 For many military systems, con-
ducting a sufficient amount of system-
level testing in operational environ-
ments to provide reliability estimates 
with low uncertainty can be quite 
expensive. The use of Bayesian meth-
ods can allow researchers to design 
test strategies involving a limited num-
ber of tests and to incorporate other 
sources of data—such as modeling and 
simulation, ground tests, and bench 
tests—that could help reduce uncer-
tainty and risk.
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