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CONVERGENCE BEHAVIOR OF SERIES 
SOLUTIONS OF THE LAMBERT PROBLEM
James Thorne

Lambert’s problem, to find the unique conic trajectory that 
connects two points in a spherical gravity field in a given 
time, is represented by a set of transcendental equations 
due to Lagrange. The associated Lagrange equations for the 
orbital transfer time can be expressed as series expansions 
for all cases. Power series solutions have been published 
that reverse the functionality of the Lagrange equations to 
provide direct expressions for the unknown semi-major axis 
as an explicit function of time. The convergence behavior of 
the series solutions is examined over the range of possible 
transfer angles and flight times. The effect of arbitrary 
precision calculations is shown on the generation of the series 
coefficients. 

	

	 Lagrange derived a set of transcendental equations 
that determine the time of flight on an orbital trajectory as 
a function of the semi-major axis of the conic section that 
connects two points in a spherical gravity field. However, 
in the Lambert problem, the semi-major axis is desired as a 
function of the given time of flight rather than the reverse, so 
Lagrange’s equations (or other reformulations of them) must 
be supplemented by some sort of root-finding technique to 
form a complete solution. Alternatively, power series have 
been published (Thorne 2004) that algebraically reverse the 
functionality of the Lagrange equations to provide a direct 
solution for the unknown semi-major axis as an explicit function 
of the given time of flight. 

	 The article examined the convergence behavior of the series 
solutions to the Lambert problem over the range of possible 
transfer angles and flight times that approach the full period of 
the orbit. Also, the effect of arbitrary precision arithmetic was 
shown for the calculation of the series coefficients.

BACKGROUND – SERIES SOLUTIONS OF THE 
LAMBERT PROBLEM

	 For convenience, the series solutions of the Lambert problem 
(Thorne 2004) are repeated here for the discussion of convergence 
properties. Lambert’s theorem states that the orbital transfer time 
(t) between two known positions in the 2-body orbital problem 
is dependent only on the semi-major axis (a), given two fixed 
position vectors and a known gravitational constant. Lagrange 
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proved this theorem and derived elegant 
equations that show this functional 
dependence (Battin 1987, 287). Apart 
from the limiting cases of straight-line 
and parabolic transfers, the possible 
orbital paths fall into three categories: 
Hyperbolic, A-type elliptical, or B-type 
elliptical. Hyperbolic transfers take 
less time than the unique parabolic 
solution, A-type elliptical transfers take 
longer than the parabolic time but less 
than minimum-energy time, and B-type 
elliptical transfers take longer than 
minimum-energy time. Also, a leading 
number 1 or 2 will indicate whether the 
transfer angle is less than 1 or greater 
than 2 π radians. Thus, the possible 
transfer types (1H, 2H; 1A, 2A; and 1B, 
2B) are apart from the exact parabolic 
and minimum-energy cases that can 
be calculated from the given inputs to 
the Lambert problem. Typically, A-type 
elliptical transfers involve orbital arcs 
that connect position vectors going the 
“short way” around the ellipse, while 
B-type transfers generally go the “long 
way” around the ellipse. Although this 
language is commonly used to describe 
elliptical orbit arcs, care should be 
used to select the correct version of the 
Lagrange equations based on time and 
transfer angle as explained above. The 
basic problem geometry is shown in 
Figure 1.

	 If the transfer angle is less 
or more than π radians, there is a 
corresponding sign change (±) in the 
Lagrange equation, as shown in Eq. 1:

Eq.1

 
where 

 
Eq. 2

	 In Eq. 2, c is the chord, which is 
a line segment connecting the two 
observed position vectors, and s is 
one-half the sum of the lengths of the 
position vectors and the chord,  
s = (r1 + r2 + c)/2 as shown in  
Figure 1. The gravitational constant 
is k. These quantities are known from 
the given observations and are not 
dependent on the transfer time, tp.  
The unique parabolic flight time for a 
given geometry, tp, is given by Eq. 3, 
and the unique minimum-energy flight 
time can be found from Eqs. 1 and 2 
by letting a = s/2.

 
Eq.3

	 Many excellent iterative 
techniques exist to solve the Lagrange 
equations. (Thorne and Bain 1995). 
However, since a is the unknown 
quantity to be found, it would be quite 
useful to find a direct solution to avoid 
the need for any type of root-finding 
technique. Series reversion may be 
used to solve Eq. 2 as follows:

Figure 1. Lambert Problem Geometry
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Eq.4

	 However, series reversion may 
result in a small radius of convergence 
as well as numerical errors in the 
calculation of high-order terms. Next, 
we address the effect of machine 
precision on the evaluation of Eq. 4.

EFFECT OF MACHINE 
PRECISION ON THE 
HYPERBOLIC AND  
SHORT-WAY ELLIPTIC  
SERIES

	 The series solution for the 
hyperbolic and short-way elliptic 
cases, Eq. 4, originally appeared to be 
asymptotically convergent (Vallado 
2001, 476–485). As described by Dr. 
Richard H. Battin in conversations 
with the author in 1990, asymptotic 
convergence occurs when a divergent 
series can produce useful results 
at limited orders because the initial 
behavior is convergent prior to later 
growth of the series terms, which was 
the case for Eq. 4. However, based on 
recent numerical experiments using 
arbitrary precision, the series appears 
to behave in a convergent manner 
because the growth in higher order 
terms was apparently a result of 
machine precision limitations based on 
the technology of the time and not due 
to asymptotic convergence.

	 As a numerical example of the 
Lambert problem using earth-based 
physical units, consider an object in 
earth orbit with two known position 
observations and a transfer time. 
Suppose that the magnitudes of the 

position vectors are r1 = 8000 km 
and r2 = 8010 km, the transfer angle 
is 140º, and the earth’s gravitational 
constant is 398600.44144982 km3/s2. 
If the observed time of flight of the 
orbital transfer is exactly  
2550 s, the goal is to determine the 
semi-major axis of the unknown 
orbit. This is an example of a short-
way elliptical transfer, which can 
be solved using Eq. 4 with arbitrary 
precision calculations to demonstrate 
the improvement over finite precision 
calculations. 

	 Table 1 shows the cumulative 
effect of numerical precision of using 
finite precision (FP) calculations vs. 
arbitrary precision (AP) calculations 
to determine the values of the 
series coefficients, series terms, 
and partial sums. In this case, finite 
precision calculations maintained 
17 digits based on an extended real 
variable declaration in the original 
Pascal programming language. 
Using arbitrary precision with a 
symbolic manipulation program such 
as Mathematica (MMA) effectively 
removes the limit on the precision 
level of the calculations by setting it to 
any level desired.

	 The first column in Table 1 shows 
the index in the series, the second 
and third show the series coefficients, 
the fourth and fifth show the value 
of the full series term with the time 
argument, and the sixth and seventh 
show the partial sums that are the 
calculated value of semi-major axis 
in kilometers. The series coefficients, 
Bn, show good agreement through 
an index value of 23. Under finite 
precision, the Bn begin to diverge 
above an index value of 23, whereas 
they continue to converge indefinitely 
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Table 1. Example History of Series Behavior – Comparison of Finite Precision (FP) vs. 
Arbitrary Precision (AP) Results to Order 35

I nd e x FP b[n] AP b[n] FP term[n] AP term[n] FP s um (km) AP s um (km)

1 2341.5257009 2341.5257009 3021.9126260 3021.9126260 3021.9126260 3021.9126260

2 4159.7690280 4159.7690280 4159.7690280 4159.7690280 7181.6816540 7181.6816540

3 1549.5393497 1549.5393497 1200.6588744 1200.6588744 8382.3405283 8382.3405283

4 -167.2452322 -167.2452322 -100.4125041 -100.4125041 8281.9280242 8281.9280242

5 51.1296198 51.1296198 23.7861219 23.7861219 8305.7141462 8305.7141462

6 -21.2401119 -21.2401119 -7.6564051 -7.6564051 8298.0577411 8298.0577411

7 10.3514416 10.3514416 2.8912521 2.8912521 8300.9489932 8300.9489932

8 -5.6117878 -5.6117878 -1.2145164 -1.2145164 8299.7344768 8299.7344768

9 3.3174596 3.3174596 0.5563202 0.5563202 8300.2907970 8300.2907970

10 -2.1288137 -2.1288137 -0.2766138 -0.2766138 8300.0141832 8300.0141832

11 1.4838952 1.4838952 0.1494020 0.1494020 8300.1635852 8300.1635852

12 -1.1208531 -1.1208531 -0.0874418 -0.0874418 8300.0761434 8300.0761434

13 0.9078658 0.9078658 0.0548793 0.0548793 8300.1310228 8300.1310228

14 -0.7747516 -0.7747516 -0.0362883 -0.0362883 8300.0947344 8300.0947344

15 0.6827783 0.6827783 0.0247800 0.0247800 8300.1195144 8300.1195144

16 -0.6102833 -0.6102834 -0.0171621 -0.0171621 8300.1023524 8300.1023524

17 0.5453631 0.5453631 0.0118834 0.0118834 8300.1142358 8300.1142358

18 -0.4819197 -0.4819210 -0.0081367 -0.0081367 8300.1060991 8300.1060991

19 0.4174042 0.4174044 0.0054607 0.0054607 8300.1115598 8300.1115597

20 -0.3514535 -0.3514281 -0.0035627 -0.0035624 8300.1079971 8300.1079973

21 0.2850735 0.2848903 0.0022391 0.0022377 8300.1102362 8300.1102350

22 -0.2205273 -0.2193769 -0.0013422 -0.0013352 8300.1088941 8300.1088999

23 0.1621976 0.1567467 0.0007649 0.0007392 8300.1096590 8300.1096391

24 -0.1279172 -0.0988385 -0.0004674 -0.0003612 8300.1091916 8300.1092779

25 0.1347753 0.0472689 0.0003816 0.0001338 8300.1095732 8300.1094117

26 -0.3354922 -0.0032989 -0.0007360 -0.0000072 8300.1088371 8300.1094045

27 0.6277174 -0.0322417 0.0010671 -0.0000548 8300.1099042 8300.1093497

28 -0.8371108 0.0589831 -0.0011026 0.0000777 8300.1088016 8300.1094274

29 4.1027220 -0.0770060 0.0041873 -0.0000786 8300.1129889 8300.1093488

30 -37.2049232 0.0868005 -0.0294223 0.0000686 8300.0835665 8300.1094174

31 305.7985549 -0.0892027 0.1873826 -0.0000547 8300.2709491 8300.1093628

32 -2017.8173395 0.0853155 -0.9580598 0.0000405 8299.3128893 8300.1094033

33 8919.4675674 -0.0764208 3.2814571 -0.0000281 8302.5943464 8300.1093752
34 0.0638904 0.0000182 8300.1093934
35 -0.0490998 -0.0000108 8300.1093825
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using arbitrary precision. At index 
value 35, the last partial sum using 
arbitrary precision results in a 
8300.1093825 km for semi-major 
axis, which is correct to less than 
1 meter. Substituting this value for 
the semi-major axis in the original 
Lagrange time-of-flight Eq. 1 as a 
check, the resulting transfer time is 
2550.000002 s. The data from  
Table 1 can also be graphed to show the 
beneficial effect of arbitrary machine 
precision, as seen in Figure 2.

	 In Figure 2, the magnitude of 
the series terms is plotted against 
the index value. The first curve, 
denoted “Pascal,” was generated with 
a finite precision Pascal compiler, 
and the numerical results were 
included in Table 1 based on the 
previous discussion. The second 
curve, denoted “MMA” was generated 
in Mathematica with no limit on 
arithmetic precision, and those 

data were also included in Table 1. 
The two curves are shown with the 
same vertical scale to emphasize 
the dramatic difference in their 
behavior, and very significantly to 
show the important result that the 
power series solution is convergent 
rather than divergent, as had been 
previously assumed based on earlier 
numerical research using finite 
precision arithmetic. In short, this 
result confirms the numerical utility 
of the power series solution for the 
Lambert Problem of initial orbit and 
trajectory determination. 

	 The magnitude of the 
coefficients continues to decrease 
uniformly out to 150 terms as shown 
in Figure 2 and to more than 300 
terms based on additional numerical 
experiments, making the series 
solution much more useful at high 
order. As the index value gets near 
to the number digits of machine 

 Figure 2. Effect of Arbitrary Precision on Convergence
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precision, the calculations can lose 
significance because the algorithm 
produces small differences between 
very large numbers. Arbitrary 
precision arithmetic addresses 
this problem, so there is no loss 
in precision during the arithmetic 
calculations.

	 In Figure 3, the series 
coefficients are shown at a much 
smaller scale than in Table 1 in 
order to see the convergence 
behavior in detail. It can be seen 
that the series coefficients have 
alternating signs and exhibit a beat 
phenomenon in the sinusoidal decay 
of their magnitudes.

CONCLUSIONS

	 The series solutions for the 
Lambert problem show good 
convergence properties near their 
expansion points, as would be 
expected. The first series solution 
to the Lagrange equations uses an 

expansion about the region where 
the semi-major axis approaches 
infinity on a parabolic transfer, so 
the accuracy of the series solution 
is best near the parabolic time. The 
second series solution to the Lagrange 
equations uses an expansion about 
the point where the semi-major 
axis reaches its minimum positive 
value, which corresponds physically 
to a minimum-energy transfer arc. 
This series solution provides a 
reasonably accurate solution for the 
range from the minimum-energy 
transfer time up to a transfer time 
that is approximately 1.5 times the 
minimum-energy transfer time, based 
on numerical investigation. The 

third series solution to the Lagrange 
equations uses an expansion about 
the region where the semi-major axis 
approaches infinity as the transfer 
time also approaches infinity. 
Physically, this means that the transfer 
time approaches the period of the 
closed orbit.

Figure 3. Detail of Series Convergence Behavior
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	 For the series solution for the 
hyperbolic and short-way elliptic cases, 
a combination of series reversion and 
inversion results in better convergence 
properties than reversion alone. 
However, this series will appear to 
be asymptotically convergent if the 
coefficients are calculated using 

finite precision arithmetic. Based on 
numerical investigation, this divergent 
behavior completely disappears out 
to 300 terms when using arbitrary 
precision calculations, which would 
suggest that the series solution is 
actually convergent.




