

I N S T I T U T E F O R D E F E N S E A N A L Y S E S

A Technical Review of Software
Defined Radios: Vision, Reality,

and Current Status

Lawrence N. Goeller
David M. Tate

May 2013
Approved for public release;

distribution is unlimited.
IDA Document NS D-4878

Log: H 13-000555/1

INSTITUTE FOR DEFENSE ANALYSES
4850 Mark Center Drive

Alexandria, Virginia 22311-1882

About this Publication
The views, opinions, and findings should not be construed as representing the official position of either the
Department of Defense or the sponsoring organization.

Copyright Notice
© 2013 Institute for Defense Analyses, 4850 Mark Center Drive, Alexandria, Virginia 22311-1882 •
(703) 845-2000

The Institute for Defense Analyses is a non-profit corporation that operates
three federally funded research and development centers to provide objective
analyses of national security issues, particularly those requiring scientific and
technical expertise, and conduct related research on other national challenges.

I N S T I T U T E F O R D E F E N S E A N A L Y S E S

IDA Document NS D-4878

A Technical Review of Software
Defined Radios: Vision, Reality,

and Current Status

Lawrence N. Goeller
David M. Tate

A Technical Review of Software Defined Radios:
Vision, Reality, and Current Status

Lawrence Goeller and David Tate
Cost Analysis and Research Division

Institute for Defense Analyses
Alexandria, VA

Abstract— Since the 1980s, the US military has been seeking a
way to improve the ease and flexibility of communications within
and between the Services. Forces deployed at that time used
dozens of different radios, most of which could only communicate
with other radios of the same type. Software Defined Radio
(SDR) offered the promise of not only interoperating with all
existing radios, but also allowing those legacy radios to
communicate with each other. Just as important, SDR would
enable future communications systems to be implemented on
already-deployed hardware. This vision of interoperability and
forward compatibility has not been realized, despite billions of
dollars of investment in the Joint Tactical Radio System (JTRS).
The authors reviewed JTRS program archives and studied the
hardware and software architectures to determine whether there
are fundamental technical reasons behind this failure. Our
findings, which invoke the familiar tradeoff between
performance and power consumption, are summarized in this
paper. We identify three different architectural approaches used
by the JTRS community over the years, and discuss why none
has been able to realize the program’s goals.

Keywords— Software defined radio, joint tactical radio system,
waveform portability, field programmable gate array, software
communications architecture

I. THE SDR VISION
The Office of the Secretary of Defense (OSD) has taken a

strong interest in facilitating interoperable tactical
communications within and between the Services since the
1980s. At that time, more than 30 “stove piped” waveforms1
were supported by traditional hardware-based radios
throughout the Department. This was also the dawn of the
personal computer (PC) era. These devices were crude but
flexible; they could perform a wide variety of tasks, from word
processing to database searches to e-mail. New capabilities
could be added after purchase simply by loading new software.
At the same time, tasks that had always been accomplished
using analog physical processes (e.g., photography and sound
recording) were being replaced by digital processes. It occurred
to several people that the solution to radio interoperability

This effort was sponsored in part by the Office of the Under Secretary of
Defense for Acquisition, Technology and Logistics/Performance Assessments
and Root Cause Analyses (PARCA).

1 In this paper, we will define waveform as the techniques used to
imprint user information onto a radio wave, including but not limited to
modulation, channel encoding, and multiplexing.

might be to use a PC-like machine to synthesize waveforms
using software-controlled digital logic, in much the same way
that modern keyboards can synthesize acoustic waveforms to
mimic analog musical instruments. This led to the vision of the
software defined radio (SDR): a single box of software-
controlled digital hardware that could emulate any radio
waveform, with the groundbreaking concept that new
waveforms could be added as required simply by loading new
software.

After the apparent success of the Defense Advanced
Research Projects Agency (DARPA) SPEAKeasy software
radio, initiated in 1990 with a follow-on second phase in 1995,
the Army initiated a program to develop and field tactical
software radios. Originally called the Programmable Modular
Communications System (PMCS), this program eventually
sired the several programs of the Joint Tactical Radio System
(JTRS). Both the Services and OSD intended that, over the
next few decades, JTRS radios would replace all legacy radios
in the Services’ inventories. This would give all radio users the
physical ability to communicate with any other user, resolving,
at least in large part, the interoperability problem.
Unfortunately, all of the JTRS programs struggled in
development. Despite a series of reorganizations, the contract
for the Ground Mobile Radio (GMR) JTRS program was
terminated in 2011 after a Nunn-McCurdy breach, and the
Airborne, Maritime, and Fixed (AMF) JTRS contract ended in
2012 without producing any fielded hardware. Those JTRS
programs that are still producing hardware have had their
requirements and scopes reduced drastically since 2002, and
often struggle in operational tests.

What went wrong? Many argue that the problems were
entirely management-related; others suggest that the trouble
started when the Net-Centric Warfare requirements (such as
the Wideband Networking Waveform, or WNW) were
emphasized after 2000. However, the ubiquity of practical
problems across different Services and contractors hints that
there might be unresolved technical problems inherent in the
SDR vision itself. What are they—if they exist—and can the
still-attractive SDR vision be salvaged with newer technology
or a different approach? These are the questions that the Office
of the Under Secretary of Defense for Acquisition, Technology
and Logistics’ Performance Assessments and Root Cause
Analyses (PARCA) organization asked the Institute for
Defense Analyses to investigate.

II. WHAT A RADIO DOES
With few exceptions, the function of any radio is to use a

baseband signal to modulate a higher-frequency sine wave (a
carrier), convert this modulated signal into a radio frequency
(RF) wave, and then transmit it via an antenna. The receiving
radio reverses the process. The baseband signal, encoding user
voice, data, or video, may be analog or digital. The carrier
wave can be at almost any frequency. In traditional radio
technology, this modulation/ demodulation process is
performed via non-linear mixing and amplification of the
baseband and carrier signals; hence, such devices are often
called mixers. Other operations may be performed on the
baseband signal—before modulation, such as channel encoding
(if the signal is digital); during modulation, such as frequency-
hopping; and after modulation, such as multiplexing this signal
with others transmitted on the same carrier. The combination
of channel encoding, modulation, multiplexing, and other
processes is the waveform.

Waveforms can be analog or digital. These terms refer to
whether the baseband information is processed as a
continuously-varying voltage (analog) or as a quantized series
of discrete values at regular time intervals (digital). To
demodulate an analog signal in the traditional way, the receiver
uses another mixer to combine the incoming modulated signal
with an internally-generated copy of the (un-modulated) carrier
wave. Baseband information can be recovered from digital
signals via the mixing process, albeit via a different
methodology. It is a common fallacy to assume that digital
signals can only be recovered with a “digital” radio, where this
term is used to refer to a logic-based transceiver (discussed
next). For the rest of this paper, we will refer to radios as either
mixer-based or logic-based, and not by the misleading terms
analog or digital; either radio type can transmit and receive
both analog and digital waveforms.

III. SYNTHESIZING WAVEFORMS
Waveform synthesis and recovery are techniques that fall

under the general heading of digital signal processing (DSP).
Logic-based devices that convert analog to digital signals are
called analog-to-digital converters, or ADCs; devices that do
the reverse process are called digital-to-analog converters, or
DACs. Analog-to-digital conversion is typically done by
sampling: the amplitude of a continuously-varying signal is
rapidly but carefully measured many times per second, and
each value is converted into a discrete quantity. The reverse
process uses a reconstruction filter to create an output voltage
that is proportional to each discrete quantity. Both ADCs and
DACs fall into a category of devices called digital signal
processors. To distinguish the acronym for digital signal
processing from that of a digital signal processor, we will refer
to the former as DSP and the latter as a pDSP, where the
lower-case “p” stand for “programmable.”

In practice, most of what pDSPs do is multiply and/or add
binary numbers. To multiply two numbers, high and low
voltage values associated with the logical 1s and 0s propagate
through a hardwired circuit. The calculation is complete when
the output voltages in the product register stabilize. Dealing
efficiently with the large number of “carries” that occur when

binary numbers are added and multiplied leads to complex
physical designs. Every change of state of a transistor in a logic
circuit draws some power, and produces some heat. For tactical
radios, in which the source of power is a battery, these effects
drive the fundamental performance tradeoff. More complex
processing requires more electrical power, which both drains
the battery and produces heat that must be dissipated.

To synthesize a waveform, one begins with digital
representations of both the baseband signal to be transmitted
and the carrier wave. Because the carrier wave repeats exactly,
sampled values can be stored in a lookup table. The radio uses
a dedicated multiplier circuit and a DAC to combine the
baseband and carrier, producing a signal that closely resembles
what would have been produced by a traditional mixing circuit.
Note that despite the use of a DAC in this circuit, the device
can emulate both digital and analog waveforms.

Demodulation of a transmitted waveform in a logic-based
radio is similar. The received signal is first sampled and
digitized; note that this sampling occurs even if the received
waveform is “digital.” The digitized samples are then fed into
another multiplier circuit, where the other input is once again a
series of numbers that represent the value of the carrier wave at
various points in its cycle. The output is equivalent to what
would have come out of the multiplier-based demodulator in
the mixer-based design.

Virtually all modern military radios (as well as commercial
smart phones) use a logic-based, rather than a mixer-based
approach for both analog and digital waveforms. However,
such devices are not software defined radios; the logic core is
simply a specially-designed pDSP. This device can be changed
via software only to a limited degree; for example, a different
set of values can be loaded into a lookup table to represent a
different carrier frequency. These devices are customized for
specific waveforms, and this constraint is hardwired into the
digital logic itself. In general, it is not possible to install a new
or different waveform onto such a device after it has been
fabricated. (One can download “apps” to a smart phone, but
one cannot convert a 3G phone to a 4G phone via a software
upgrade alone.)

IV. TECHNICAL APPROACHES TO SDRS OVER TIME
In trying to understand why all of the JTRS programs have

struggled, the authors have pored over a great deal of archival
documentation on the early years of the program. We have
found strong circumstantial evidence that the fundamental
technological path that was being used to implement the SDR
vision within the JTRS programs changed twice, reflecting
three fundamentally different architectural approaches. The
first approach assumed that waveform processing would be
performed by general purpose processors (GPPs), similar to the
core chips in desktop computers. The second approach was
based on an early generation of field-programmable gate arrays
(FPGAs) comprising large numbers of small, identical logic
blocks. The third approach took advantage of a later generation
of FPGAs with extensive embedded proprietary intellectual
property (IP), often referred to as System-on-a-Chip (SOC).
Both the GMR and AMF JTRS programs were planning to use
this third approach at the time their contracts were terminated.

A. SDR via General Purpose Processor
Archived JTRS-related documents from the late 1990s

through at least 2001 explicitly refer to the processor at the
heart of the proposed SDR as “Pentium,” “PowerPC,” or other
examples of well-known GPPs of the time. Early JTRS
program briefings describe waveform development purely in
terms of high-level programming languages and commercial
middleware designed to run on GPPs. The software archiving
and maintenance plan for the waveforms to be shared among
programs made no provision (at first) for lower-level code.
Early estimates of the amount and type of software that would
be required to implement the waveforms did not include any
additional effort for low-level programming. By the time the
Cluster 1 (later JTRS GMR) contract was awarded, the
program’s Operational Requirements Document (ORD) [1]
defined a waveform application as “a re-useable, portable,
executable software application that is independent of the JTR
System operating system, middleware, and hardware.” The
incremental proof-of-concept activities funded by the JTRS
program2 were all implemented using GPPs for the waveform
synthesis. These references strongly suggest that it was
originally assumed that the JTRS programs would implement
their SDR designs using GPP technology.

The advantage of using a GPP is that any program can run
on any computer, once a suitable compiler has been
implemented. In the case of software radio waveforms, this
creates the potential for waveform portability. Portable
waveforms would be written like other applications in a high-
level language such as Ada or C++. These high-level programs
would then be translated into a mid-level assembler language
by a compiler. The resulting “object code” is specific to the
underlying hardware, but the “source code” is not—hence its
designation as portable. GPPs all use a similar architecture: an
arithmetic-logical unit (ALU) supported by a data path that
includes a number of memory elements for storing instructions
and data (called registers), as well as an instruction-decoder
circuit and a control store that holds the information needed to
process each instruction. The entire system is tied to a clock
that maintains synchronization across all of the elements of this
central processing unit, or CPU.

CPU functionality includes simple operations such as “add”
and “shift,” but not more complex arithmetic operations such
as “multiply”—the most common task in digital signal
processing. When the CPU is directed to multiply two
numbers, it performs it via an extended sequence of shifts and
adds that requires many clock cycles. This is very different
from the fast but inflexible pDSP approach described earlier.
Further, the pDSP, unlike a GPP, performs multiplications in
the same amount of time every time, a critical factor in real-
time processing. Not only is there a risk that a GPP might not
always be fast enough to handle the real-time requirements of
waveform synthesis and interpretation; there is also a risk that
the GPP will require too much power and/or generate too much
heat. These problems exacerbate each other, since more
powerful (faster) processors draw more power and generate
more heat.

2 These activities are referred to in program documents as Step 1,
Step 2A, Step 2B, and Step 2C.

As part of the risk mitigation process for the JTRS
program, the Army funded development of a series of
prototype radios. These radios demonstrated portable software
implementing relatively simple RF waveforms and networking
capabilities using GPPs. However, the actual military
waveforms required by the JTRS program were significantly
more complex and demanding in their processing
requirements, and the radio sets on which they were to be
deployed were strictly limited in their permitted size and
thermal emissions. No JTRS radio uses a GPP as the
modulator/demodulator device today.

B. SDR via Field Programmable Gate Arrays
In the 1980s, a company called Xilinx had developed what

they called a Field Programmable Gate Array (FPGA) as a test
bed for large circuits composed of pDSPs and other design
elements. Its architecture was quite different from a
conventional pDSP; instead of logic gates wired together on a
chip to form hardware multipliers or shift registers, an FPGA is
composed of many small identical logic elements, each
typically consisting of a small lookup table and some memory.
These logic blocks do not connect to each other, but rather to
one or more of a series of parallel wires (called routing
channels) that surround each block. Connections between the
internal logic of each block and the routing channels are
controlled by transistors that can be opened or closed on
command.

The essential SDR-related feature of the FPGA was that, by
configuring the logic blocks and properly selecting values for
the lookup tables, the resulting circuit could emulate virtually
any other digital logic element. Best of all, these connecting
transistors could be controlled by a software program. Mid-
level programming languages called hardware description
languages (HDLs), originally used to emulate circuits in
computer-aided design tools, could also be used to “write
circuits” on a given FPGA. In principle, these configured
circuits could emulate a hardware pDSP that itself emulates a
mixer-based radio waveform. Then, when desired, that FPGA
could be reconfigured to emulate a different waveform.

By 2003, it was clear to the developers of the JTRS radios
that it would be impossible to implement all waveform features
on GPPs, for the reasons discussed above. FPGAs seemed like
the ideal alternative: they could preserve the necessary
programmability of the radio set and most of the portability,
while using less power than a GPP. However, there were two
significant consequences of this approach. The first is that the
FPGA-based emulated circuit used many times the number of
transistors that a dedicated pDSP would have used to perform
the same function; one study in 2006 [2] found the difference
to be more than a factor of ten. As a result, they still draw
considerably more power (and generate more heat) than pDSP
implementations. The second is that HDL code is not really
portable the way C++ is. Since the resulting “circuit diagram”
is completely dependent on the physical layout of the
underlying hardware, the HDL “source code” only works on
one specific FPGA type. This conflicts with the fundamental
vision of the SDR as a system in which the software (the
waveform) is independent of the hardware. In principle, the
HDL code could be “recompiled” separately for each

individual FPGA type. In practice, the limitations of the HDL
circuit layout capabilities, coupled with the demands of real-
time processing, meant that time-consuming hand-tweaking of
the code was invariably required when moving from one
hardware platform to another.

The SDR community maintained its commitment to the
separation of waveform software and underlying hardware by
proposing to expand the standard for the interface between
them. These efforts are discussed in Section V.

C. SDRs via System on a Chip
The “sea of logic blocks” FPGAs performed poorly

compared to a pDSP. Manufacturers realized that they would
have to improve their performance if they were to be
successful in the commercial marketplace, where portability
and forward-compatibility are less important. Xilinx (and their
new competitors) chose to add more configurable logic blocks
to their designs, and also to embed a large number of
proprietary special-purpose hardware memory circuits,
hardware multipliers, other pDSPs, and even microprocessors
into the newer generations of chips. Collectively, these
embedded elements are referred to as Intellectual Property, or
IP. The trend has been for more and more DSP functionality to
be offloaded to specialized IP, leaving the configurable logic
blocks to implement generic memory and “glue logic” among
the IP modules. While these devices are still technically
FPGAs, they are also starting to be referred to as System on a
Chip (SOC).

SOCs are much more capable and, in general, more power-
efficient than their “sea of logic blocks” precursors. Even so,
the previous problems remain. The embedded IP elements are
no more flexible than other pDSPs; only the ability to change
how they are connected to each other has been added. Despite
all the advancements, SOCs still draw significantly more
power and produce more heat than non-reconfigurable pDSPs.
Embedded IP is in fundamental conflict with the goal of
waveform portability; code written to take advantage of the
efficient IP of a specific SOC will be useless when porting to a
radio that uses a different SOC. Both the GMR and AMF JTRS
designs were using the SOC approach when their contracts
ended.

V. SOFTWARE COMMUNICATIONS ARCHITECTURE
In early 1999, the program office contracted with a

consortium of radio vendors for a series of proof-of-concept
activities in support of the JTRS ORD. This Modular Software-
defined Radio Consortium3 (MSRC) was tasked to develop a
JTRS program management plan, design an architecture for the
JTRS radios and software, demonstrate software-based
waveform implementation and porting, and demonstrate
software-based wireless networking. The ORD at that time
specified certain shortcomings of existing systems that were to
be addressed by the JTRS program:

3 The original members of the MSRC were Raytheon Systems, ITT
Aerospace/Communications, Rockwell-Collins, Marconi Aerospace Systems,
and Rooftop Communications.

• [Current systems] “do not employ an open systems
architecture.

• require extensive depot level equipment and/or
component changes to implement new capabilities in
installed platforms.

• do not allow incremental or modular upgrades to
increase the choices of waveforms and the bandwidth
within those waveforms, or modify message system
standards.”

The vision for remedying these shortcomings promoted by
OSD was that any existing or future waveform could be
implemented in software without reference to the radio
hardware. Waveforms would be implemented as portable
software modules, reusable with minimal reconfiguration on
any JTR radio with the proper power amplifiers, user interface,
and antenna. The mechanism for achieving this portability was
to be a software architecture standard that would enforce
defined interfaces between the waveform software and the
radio hardware. This standard, the Software Communications
Architecture (SCA), was developed with input from OSD, the
MSRC, and the commercially-focused Software Radio Forum
(SWRF). The goal was to have a specification that ensured that
any SCA-compliant waveform could be adapted to run
successfully on any SCA-compliant radio set with only
minimal customization. As Raytheon senior vice president
Frank Marchilena said, “It works like a laptop—point, click,
and download a waveform. The black box no longer limits
battlespace communication.”[3]

The SCA as implemented used the commercial standards
CORBA (for object/device virtualization) and POSIX (for real-
time control) as its key interface standards. This choice
effectively assumed that all waveform software would be
running on GPPs, or (at minimum) that pDSPs and FPGAs
were, or would become, as flexible as GPPs. This turned out to
be an invalid assumption, with terrible consequences for the
programs. The space and power restrictions, thermal
constraints, and real-time processing requirements of military
radios made it impossible to process even simple waveforms
without widespread use of hand-coded FPGA and pDSP
modules. This hand-coded software was not SCA compliant; it
had to bypass the CORBA middleware in order to directly
control the low-level hardware. As a result, the code was not
portable. Since this low-level coding was the hardest part of
implementing a waveform, having working waveform software
for one radio set was not much of a head start toward
implementing that waveform on a different radio set. All
parties—government, contractors, and SWRF—were aware of
these problems by 2004.

In the mid-2000s, some in the JTRS community proposed
extensions to the SCA that would establish standards for direct
control of low-level hardware, with the intent of making
portable waveform software possible again. By this time,
however, several of the JTRS programs had already committed
to radio designs that would not be compliant with this new
standard, and those programs were under intense external
schedule pressure already; they could not start over with new
designs. It is possible that this approach could have succeeded,
but it must be recognized that any choice of interface standard
would impose significant constraints on future generations of

hardware, which the commercial community might not be
interested in supporting. Standards are generally only
successful in performance domains that are no longer cutting-
edge.

VI. CONCLUSIONS
The SDR vision is a single box of software-controlled

digital hardware that can emulate any radio waveform,
including new and ported waveforms, simply by updating
software. The three key goals are:

• Forward compatibility of radio hardware, so that new
waveforms or capabilities can be implemented
through software upgrades alone.

• Portability of waveform software, so that new
software does not have to be developed for every new
radio set.

• Open architecture, so that third-party vendors can
bring new waveforms to market without the traditional
high barriers to entry.

This vision remains very alluring. However, it appears safe
to conclude at this point that achieving this vision for military
radios will be very difficult, if not impossible, especially given
the cutting-edge performance requirements of military systems.
A review of history shows that at least three different technical
approaches have been tried—the first two were quietly
abandoned by the industry some time ago; the third approach
has produced some useful radios, but does not realize the goals
of forward-compatibility and waveform portability.

Can the SDR vision ever be implemented? Perhaps, but it
must be concluded that the programmability vs. power
consumption tradeoff remains huge. SDR advocates should
also acknowledge that, since FPGA/SOCs are inherently
commercial products and will only be on the market for a few
years, dependence on them for interoperability will require
porting legacy waveforms to new systems (as the old ones
become obsolete and unsupported), independent of whether
porting gets any easier.

We also note that the current FPGA/SOC product line is
highly diverse; each vendor produces dozens of different
configurations optimized for different needs. The SDR vision
was implicitly based on the assumption that one underlying
piece of hardware could be used to support any waveform; buy
any FPGA-based system now, and you could use it forever (so
the original vision went), keeping it current via software
upgrades only. The actual technological trend clearly shows

that this “one size fits all” paradigm does not apply, at least in
the commercial world.

The current generation of SCA is, by all accounts, not up to
the task. Proposed extensions to standardize low-level
hardware control have never been ratified by all parties.
Discussions have taken place about replacing the current
version of SCA with a more specialized approach designed
from the ground up to focus on communications, with system
calls optimized accordingly. This may be worth pursuing, but it
remains an open question as to whether the separation of
software from hardware in a non-GPP-based system with real-
time requirements will ever be practical.

Moore’s Law also remains in effect; a vision that sees
hardware staying in service for years or decades, upgraded
only via software, is nothing like the path that personal
computers and cellular telephones have taken. In light of this,
we note that a different approach to the problem of waveform
interoperability has grown up in the past few decades. New
generations of radios have taken advantage of improved
hardware to fit a dozen or more different hardwired waveforms
into a box. Each waveform has its own pDSP, or a portion of a
larger device. These radios are operationally effective and
relatively power efficient, but cannot support additional
waveforms via a software upgrade alone; to add a waveform,
new digital electronics must be inserted. If the vision of
waveform upgradability is to be realized via this strategy, the
relevant standards will not be software architecture standards
like the SCA, but rather hardware interface standards
describing the connections between the digital processing
segment (the “motherboard”) and the rest of the radio. In this
vision, a waveform would be more like a graphics or network
card in a personal computer—proprietary hardware performing
well-specified processing functions that the CPU cannot do
efficiently, according to a well-defined interface standard. This
would be nothing like SDR, but it might be the only way to
realize the vision of SDR.

REFERENCES

[1] Operational Requirements Document (ORD) for Joint Tactical Radio
(JTR), 23 March 1998.

[2] Kuon, I. and J. Rose. “Measuring the gap between FPGAs and ASICs.”
Proceedings of the 2006 ACM/SIGDA 14th international symposium on
field programmable gate arrays (‘FPGA ’06), 21–30.

[3] Raytheon Company press release, 23 February 1999. Retrieved from
http://www.thefreelibrary.com/Raytheon+Consortium+to+Define+
21st+Century+Digital+Radio+Architecture.-a053930229 on 15 April
2013.

Standard Form 298 (Rev. 8/98)

REPORT DOCUMENTATION PAGE

Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

	I. The SDR Vision
	II. What a Radio Does
	III. Synthesizing Waveforms
	IV. Technical Approaches to SDRs Over Time
	A. SDR via General Purpose Processor
	B. SDR via Field Programmable Gate Arrays
	C. SDRs via System on a Chip

	V. Software Communications Architecture
	VI. Conclusions
	References

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

	1_REPORT_DATE_DDMMYYYY: xx-05-2013
	2_REPORT_TYPE: Final
	3_DATES_COVERED_From__To:
	4_TITLE_AND_SUBTITLE: A Technical Review of Software Defined Radios: Vision, Reality, and Current Status
	5a_CONTRACT_NUMBER: DASW01-04-C-0003
	5b_GRANT_NUMBER:
	5c_PROGRAM_ELEMENT_NUMBER:
	5d_PROJECT_NUMBER:
	5e_TASK_NUMBER: C7112
	5f_WORK_UNIT_NUMBER:
	6_AUTHORS: Goeller, Lawrence, N.
Tate, David M.
	7_PERFORMING_ORGANIZATION: Institute for Defense Analyses
4850 Mark Center Drive
Alexandra, VA 22311-1882
	8_PERFORMING_ORGANIZATION: IDA Document NS D-4878
	9_SPONSORINGMONITORING_AG: Institute for Defense Analyses
4850 Mark Center Drive
Alexandra, VA 22311-1882
	10_SPONSORMONITORS_ACRONY: IDA
	1_1_SPONSORMONITORS_REPOR:
	12_DISTRIBUTIONAVAILABILI: Approved for public release; distribution is unlimited.
	13_SUPPLEMENTARY_NOTES:
	15_SUBJECT_TERMS: Software defined radio, joint tactical radio system, waveform portability, field programmable gate array, software communications architecture
	a_REPORT: Unclassified
	bABSTRACT: Unclassified
	c_THIS_PAGE: Unclassified
	17_limitation_of_abstract: Same as Report
	number_of_pages: 9
	19a_NAME_OF_RESPONSIBLE_P: Goeller, Lawrence, N.
	19b_TELEPHONE_NUMBER_Incl: (703) 575-4678
	Reset:
	14ABSTRACT: Since the 1980s, the US military has been seeking a way to improve the ease and flexibility of communications within and between the Services. Forces deployed at that time used dozens of different radios, most of which could only communicate with other radios of the same type. Software Defined Radio (SDR) offered the promise of not only interoperating with all existing radios, but also allowing those legacy radios to communicate with each other. Just as important, SDR would enable future communications systems to be implemented on already-deployed hardware. This vision of interoperability and forward compatibility has not been realized, despite billions of dollars of investment in the Joint Tactical Radio System (JTRS). The authors reviewed JTRS program archives and studied the hardware and software architectures to determine whether there are fundamental technical reasons behind this failure. Our findings, which invoke the familiar tradeoff between performance and power consumption, are summarized in this paper. We identify three different architectural approaches used by the JTRS community over the years, and discuss why none has been able to realize the program’s goals.

