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Abstract— Since the 1980s, the US military has been seeking a 
way to improve the ease and flexibility of communications within 
and between the Services. Forces deployed at that time used 
dozens of different radios, most of which could only communicate 
with other radios of the same type. Software Defined Radio 
(SDR) offered the promise of not only interoperating with all 
existing radios, but also allowing those legacy radios to 
communicate with each other. Just as important, SDR would 
enable future communications systems to be implemented on 
already-deployed hardware. This vision of interoperability and 
forward compatibility has not been realized, despite billions of 
dollars of investment in the Joint Tactical Radio System (JTRS). 
The authors reviewed JTRS program archives and studied the 
hardware and software architectures to determine whether there 
are fundamental technical reasons behind this failure. Our 
findings, which invoke the familiar tradeoff between 
performance and power consumption, are summarized in this 
paper. We identify three different architectural approaches used 
by the JTRS community over the years, and discuss why none 
has been able to realize the program’s goals. 

Keywords— Software defined radio, joint tactical radio system, 
waveform portability, field programmable gate array, software 
communications architecture 

I. THE SDR VISION 
The Office of the Secretary of Defense (OSD) has taken a 

strong interest in facilitating interoperable tactical 
communications within and between the Services since the 
1980s. At that time, more than 30 “stove piped” waveforms1 
were supported by traditional hardware-based radios 
throughout the Department. This was also the dawn of the 
personal computer (PC) era. These devices were crude but 
flexible; they could perform a wide variety of tasks, from word 
processing to database searches to e-mail. New capabilities 
could be added after purchase simply by loading new software. 
At the same time, tasks that had always been accomplished 
using analog physical processes (e.g., photography and sound 
recording) were being replaced by digital processes. It occurred 
to several people that the solution to radio interoperability 

This effort was sponsored in part by the Office of the Under Secretary of 
Defense for Acquisition, Technology and Logistics/Performance Assessments 
and Root Cause Analyses (PARCA). 

1  In this paper, we will define waveform as the techniques used to 
imprint user information onto a radio wave, including but not limited to 
modulation, channel encoding, and multiplexing. 

might be to use a PC-like machine to synthesize waveforms 
using software-controlled digital logic, in much the same way 
that modern keyboards can synthesize acoustic waveforms to 
mimic analog musical instruments. This led to the vision of the 
software defined radio (SDR): a single box of software-
controlled digital hardware that could emulate any radio 
waveform, with the groundbreaking concept that new 
waveforms could be added as required simply by loading new 
software.  

After the apparent success of the Defense Advanced 
Research Projects Agency (DARPA) SPEAKeasy software 
radio, initiated in 1990 with a follow-on second phase in 1995, 
the Army initiated a program to develop and field tactical 
software radios. Originally called the Programmable Modular 
Communications System (PMCS), this program eventually 
sired the several programs of the Joint Tactical Radio System 
(JTRS). Both the Services and OSD intended that, over the 
next few decades, JTRS radios would replace all legacy radios 
in the Services’ inventories. This would give all radio users the 
physical ability to communicate with any other user, resolving, 
at least in large part, the interoperability problem. 
Unfortunately, all of the JTRS programs struggled in 
development. Despite a series of reorganizations, the contract 
for the Ground Mobile Radio (GMR) JTRS program was 
terminated in 2011 after a Nunn-McCurdy breach, and the 
Airborne, Maritime, and Fixed (AMF) JTRS contract ended in 
2012 without producing any fielded hardware. Those JTRS 
programs that are still producing hardware have had their 
requirements and scopes reduced drastically since 2002, and 
often struggle in operational tests.  

What went wrong? Many argue that the problems were 
entirely management-related; others suggest that the trouble 
started when the Net-Centric Warfare requirements (such as 
the Wideband Networking Waveform, or WNW) were 
emphasized after 2000. However, the ubiquity of practical 
problems across different Services and contractors hints that 
there might be unresolved technical problems inherent in the 
SDR vision itself. What are they—if they exist—and can the 
still-attractive SDR vision be salvaged with newer technology 
or a different approach? These are the questions that the Office 
of the Under Secretary of Defense for Acquisition, Technology 
and Logistics’ Performance Assessments and Root Cause 
Analyses (PARCA) organization asked the Institute for 
Defense Analyses to investigate.  



II. WHAT A RADIO DOES 
With few exceptions, the function of any radio is to use a 

baseband signal to modulate a higher-frequency sine wave (a 
carrier), convert this modulated signal into a radio frequency 
(RF) wave, and then transmit it via an antenna. The receiving 
radio reverses the process. The baseband signal, encoding user 
voice, data, or video, may be analog or digital. The carrier 
wave can be at almost any frequency. In traditional radio 
technology, this modulation/ demodulation process is 
performed via non-linear mixing and amplification of the 
baseband and carrier signals; hence, such devices are often 
called mixers. Other operations may be performed on the 
baseband signal—before modulation, such as channel encoding 
(if the signal is digital); during modulation, such as frequency-
hopping; and after modulation, such as multiplexing this signal 
with others transmitted on the same carrier. The combination 
of channel encoding, modulation, multiplexing, and other 
processes is the waveform.  

Waveforms can be analog or digital. These terms refer to 
whether the baseband information is processed as a 
continuously-varying voltage (analog) or as a quantized series 
of discrete values at regular time intervals (digital). To 
demodulate an analog signal in the traditional way, the receiver 
uses another mixer to combine the incoming modulated signal 
with an internally-generated copy of the (un-modulated) carrier 
wave. Baseband information can be recovered from digital 
signals via the mixing process, albeit via a different 
methodology. It is a common fallacy to assume that digital 
signals can only be recovered with a “digital” radio, where this 
term is used to refer to a logic-based transceiver (discussed 
next). For the rest of this paper, we will refer to radios as either 
mixer-based or logic-based, and not by the misleading terms 
analog or digital; either radio type can transmit and receive 
both analog and digital waveforms.  

III. SYNTHESIZING WAVEFORMS 
Waveform synthesis and recovery are techniques that fall 

under the general heading of digital signal processing (DSP). 
Logic-based devices that convert analog to digital signals are 
called analog-to-digital converters, or ADCs; devices that do 
the reverse process are called digital-to-analog converters, or 
DACs. Analog-to-digital conversion is typically done by 
sampling: the amplitude of a continuously-varying signal is 
rapidly but carefully measured many times per second, and 
each value is converted into a discrete quantity. The reverse 
process uses a reconstruction filter to create an output voltage 
that is proportional to each discrete quantity. Both ADCs and 
DACs fall into a category of devices called digital signal 
processors. To distinguish the acronym for digital signal 
processing from that of a digital signal processor, we will refer 
to the former as DSP and the latter as a pDSP, where the 
lower-case “p” stand for “programmable.”  

In practice, most of what pDSPs do is multiply and/or add 
binary numbers. To multiply two numbers, high and low 
voltage values associated with the logical 1s and 0s propagate 
through a hardwired circuit. The calculation is complete when 
the output voltages in the product register stabilize. Dealing 
efficiently with the large number of “carries” that occur when 

binary numbers are added and multiplied leads to complex 
physical designs. Every change of state of a transistor in a logic 
circuit draws some power, and produces some heat. For tactical 
radios, in which the source of power is a battery, these effects 
drive the fundamental performance tradeoff. More complex 
processing requires more electrical power, which both drains 
the battery and produces heat that must be dissipated. 

To synthesize a waveform, one begins with digital 
representations of both the baseband signal to be transmitted 
and the carrier wave. Because the carrier wave repeats exactly, 
sampled values can be stored in a lookup table. The radio uses 
a dedicated multiplier circuit and a DAC to combine the 
baseband and carrier, producing a signal that closely resembles 
what would have been produced by a traditional mixing circuit. 
Note that despite the use of a DAC in this circuit, the device 
can emulate both digital and analog waveforms.  

Demodulation of a transmitted waveform in a logic-based 
radio is similar. The received signal is first sampled and 
digitized; note that this sampling occurs even if the received 
waveform is “digital.” The digitized samples are then fed into 
another multiplier circuit, where the other input is once again a 
series of numbers that represent the value of the carrier wave at 
various points in its cycle. The output is equivalent to what 
would have come out of the multiplier-based demodulator in 
the mixer-based design.  

Virtually all modern military radios (as well as commercial 
smart phones) use a logic-based, rather than a mixer-based 
approach for both analog and digital waveforms. However, 
such devices are not software defined radios; the logic core is 
simply a specially-designed pDSP. This device can be changed 
via software only to a limited degree; for example, a different 
set of values can be loaded into a lookup table to represent a 
different carrier frequency. These devices are customized for 
specific waveforms, and this constraint is hardwired into the 
digital logic itself. In general, it is not possible to install a new 
or different waveform onto such a device after it has been 
fabricated. (One can download “apps” to a smart phone, but 
one cannot convert a 3G phone to a 4G phone via a software 
upgrade alone.) 

IV. TECHNICAL APPROACHES TO SDRS OVER TIME 
In trying to understand why all of the JTRS programs have 

struggled, the authors have pored over a great deal of archival 
documentation on the early years of the program. We have 
found strong circumstantial evidence that the fundamental 
technological path that was being used to implement the SDR 
vision within the JTRS programs changed twice, reflecting 
three fundamentally different architectural approaches. The 
first approach assumed that waveform processing would be 
performed by general purpose processors (GPPs), similar to the 
core chips in desktop computers. The second approach was 
based on an early generation of field-programmable gate arrays 
(FPGAs) comprising large numbers of small, identical logic 
blocks. The third approach took advantage of a later generation 
of FPGAs with extensive embedded proprietary intellectual 
property (IP), often referred to as System-on-a-Chip (SOC). 
Both the GMR and AMF JTRS programs were planning to use 
this third approach at the time their contracts were terminated.  



A. SDR via General Purpose Processor 
Archived JTRS-related documents from the late 1990s 

through at least 2001 explicitly refer to the processor at the 
heart of the proposed SDR as “Pentium,” “PowerPC,” or other 
examples of well-known GPPs of the time. Early JTRS 
program briefings describe waveform development purely in 
terms of high-level programming languages and commercial 
middleware designed to run on GPPs. The software archiving 
and maintenance plan for the waveforms to be shared among 
programs made no provision (at first) for lower-level code. 
Early estimates of the amount and type of software that would 
be required to implement the waveforms did not include any 
additional effort for low-level programming. By the time the 
Cluster 1 (later JTRS GMR) contract was awarded, the 
program’s Operational Requirements Document (ORD) [1] 
defined a waveform application as “a re-useable, portable, 
executable software application that is independent of the JTR 
System operating system, middleware, and hardware.” The 
incremental proof-of-concept activities funded by the JTRS 
program2 were all implemented using GPPs for the waveform 
synthesis. These references strongly suggest that it was 
originally assumed that the JTRS programs would implement 
their SDR designs using GPP technology.  

The advantage of using a GPP is that any program can run 
on any computer, once a suitable compiler has been 
implemented. In the case of software radio waveforms, this 
creates the potential for waveform portability. Portable 
waveforms would be written like other applications in a high-
level language such as Ada or C++. These high-level programs 
would then be translated into a mid-level assembler language 
by a compiler. The resulting “object code” is specific to the 
underlying hardware, but the “source code” is not—hence its 
designation as portable. GPPs all use a similar architecture: an 
arithmetic-logical unit (ALU) supported by a data path that 
includes a number of memory elements for storing instructions 
and data (called registers), as well as an instruction-decoder 
circuit and a control store that holds the information needed to 
process each instruction. The entire system is tied to a clock 
that maintains synchronization across all of the elements of this 
central processing unit, or CPU.  

CPU functionality includes simple operations such as “add” 
and “shift,” but not more complex arithmetic operations such 
as “multiply”—the most common task in digital signal 
processing. When the CPU is directed to multiply two 
numbers, it performs it via an extended sequence of shifts and 
adds that requires many clock cycles. This is very different 
from the fast but inflexible pDSP approach described earlier. 
Further, the pDSP, unlike a GPP, performs multiplications in 
the same amount of time every time, a critical factor in real-
time processing. Not only is there a risk that a GPP might not 
always be fast enough to handle the real-time requirements of 
waveform synthesis and interpretation; there is also a risk that 
the GPP will require too much power and/or generate too much 
heat. These problems exacerbate each other, since more 
powerful (faster) processors draw more power and generate 
more heat. 

2  These activities are referred to in program documents as Step 1, 
Step 2A, Step 2B, and Step 2C. 

As part of the risk mitigation process for the JTRS 
program, the Army funded development of a series of 
prototype radios. These radios demonstrated portable software 
implementing relatively simple RF waveforms and networking 
capabilities using GPPs. However, the actual military 
waveforms required by the JTRS program were significantly 
more complex and demanding in their processing 
requirements, and the radio sets on which they were to be 
deployed were strictly limited in their permitted size and 
thermal emissions. No JTRS radio uses a GPP as the 
modulator/demodulator device today.  

B. SDR via Field Programmable Gate Arrays 
In the 1980s, a company called Xilinx had developed what 

they called a Field Programmable Gate Array (FPGA) as a test 
bed for large circuits composed of pDSPs and other design 
elements. Its architecture was quite different from a 
conventional pDSP; instead of logic gates wired together on a 
chip to form hardware multipliers or shift registers, an FPGA is 
composed of many small identical logic elements, each 
typically consisting of a small lookup table and some memory. 
These logic blocks do not connect to each other, but rather to 
one or more of a series of parallel wires (called routing 
channels) that surround each block. Connections between the 
internal logic of each block and the routing channels are 
controlled by transistors that can be opened or closed on 
command.  

The essential SDR-related feature of the FPGA was that, by 
configuring the logic blocks and properly selecting values for 
the lookup tables, the resulting circuit could emulate virtually 
any other digital logic element. Best of all, these connecting 
transistors could be controlled by a software program. Mid-
level programming languages called hardware description 
languages (HDLs), originally used to emulate circuits in 
computer-aided design tools, could also be used to “write 
circuits” on a given FPGA. In principle, these configured 
circuits could emulate a hardware pDSP that itself emulates a 
mixer-based radio waveform. Then, when desired, that FPGA 
could be reconfigured to emulate a different waveform.  

By 2003, it was clear to the developers of the JTRS radios 
that it would be impossible to implement all waveform features 
on GPPs, for the reasons discussed above. FPGAs seemed like 
the ideal alternative: they could preserve the necessary 
programmability of the radio set and most of the portability, 
while using less power than a GPP. However, there were two 
significant consequences of this approach. The first is that the 
FPGA-based emulated circuit used many times the number of 
transistors that a dedicated pDSP would have used to perform 
the same function; one study in 2006 [2] found the difference 
to be more than a factor of ten. As a result, they still draw 
considerably more power (and generate more heat) than pDSP 
implementations. The second is that HDL code is not really 
portable the way C++ is. Since the resulting “circuit diagram” 
is completely dependent on the physical layout of the 
underlying hardware, the HDL “source code” only works on 
one specific FPGA type. This conflicts with the fundamental 
vision of the SDR as a system in which the software (the 
waveform) is independent of the hardware. In principle, the 
HDL code could be “recompiled” separately for each 



individual FPGA type. In practice, the limitations of the HDL 
circuit layout capabilities, coupled with the demands of real-
time processing, meant that time-consuming hand-tweaking of 
the code was invariably required when moving from one 
hardware platform to another.  

The SDR community maintained its commitment to the 
separation of waveform software and underlying hardware by 
proposing to expand the standard for the interface between 
them. These efforts are discussed in Section V.  

C. SDRs via System on a Chip 
The “sea of logic blocks” FPGAs performed poorly 

compared to a pDSP. Manufacturers realized that they would 
have to improve their performance if they were to be 
successful in the commercial marketplace, where portability 
and forward-compatibility are less important. Xilinx (and their 
new competitors) chose to add more configurable logic blocks 
to their designs, and also to embed a large number of 
proprietary special-purpose hardware memory circuits, 
hardware multipliers, other pDSPs, and even microprocessors 
into the newer generations of chips. Collectively, these 
embedded elements are referred to as Intellectual Property, or 
IP. The trend has been for more and more DSP functionality to 
be offloaded to specialized IP, leaving the configurable logic 
blocks to implement generic memory and “glue logic” among 
the IP modules. While these devices are still technically 
FPGAs, they are also starting to be referred to as System on a 
Chip (SOC).  

SOCs are much more capable and, in general, more power-
efficient than their “sea of logic blocks” precursors. Even so, 
the previous problems remain. The embedded IP elements are 
no more flexible than other pDSPs; only the ability to change 
how they are connected to each other has been added. Despite 
all the advancements, SOCs still draw significantly more 
power and produce more heat than non-reconfigurable pDSPs. 
Embedded IP is in fundamental conflict with the goal of 
waveform portability; code written to take advantage of the 
efficient IP of a specific SOC will be useless when porting to a 
radio that uses a different SOC. Both the GMR and AMF JTRS 
designs were using the SOC approach when their contracts 
ended.  

V. SOFTWARE COMMUNICATIONS ARCHITECTURE 
In early 1999, the program office contracted with a 

consortium of radio vendors for a series of proof-of-concept 
activities in support of the JTRS ORD. This Modular Software-
defined Radio Consortium3 (MSRC) was tasked to develop a 
JTRS program management plan, design an architecture for the 
JTRS radios and software, demonstrate software-based 
waveform implementation and porting, and demonstrate 
software-based wireless networking. The ORD at that time 
specified certain shortcomings of existing systems that were to 
be addressed by the JTRS program: 

3  The original members of the MSRC were Raytheon Systems, ITT 
Aerospace/Communications, Rockwell-Collins, Marconi Aerospace Systems, 
and Rooftop Communications. 

• [Current systems] “do not employ an open systems 
architecture. 

• require extensive depot level equipment and/or 
component changes to implement new capabilities in 
installed platforms. 

• do not allow incremental or modular upgrades to 
increase the choices of waveforms and the bandwidth 
within those waveforms, or modify message system 
standards.” 

The vision for remedying these shortcomings promoted by 
OSD was that any existing or future waveform could be 
implemented in software without reference to the radio 
hardware. Waveforms would be implemented as portable 
software modules, reusable with minimal reconfiguration on 
any JTR radio with the proper power amplifiers, user interface, 
and antenna. The mechanism for achieving this portability was 
to be a software architecture standard that would enforce 
defined interfaces between the waveform software and the 
radio hardware. This standard, the Software Communications 
Architecture (SCA), was developed with input from OSD, the 
MSRC, and the commercially-focused Software Radio Forum 
(SWRF). The goal was to have a specification that ensured that 
any SCA-compliant waveform could be adapted to run 
successfully on any SCA-compliant radio set with only 
minimal customization. As Raytheon senior vice president 
Frank Marchilena said, “It works like a laptop—point, click, 
and download a waveform. The black box no longer limits 
battlespace communication.”[3] 

The SCA as implemented used the commercial standards 
CORBA (for object/device virtualization) and POSIX (for real-
time control) as its key interface standards. This choice 
effectively assumed that all waveform software would be 
running on GPPs, or (at minimum) that pDSPs and FPGAs 
were, or would become, as flexible as GPPs. This turned out to 
be an invalid assumption, with terrible consequences for the 
programs. The space and power restrictions, thermal 
constraints, and real-time processing requirements of military 
radios made it impossible to process even simple waveforms 
without widespread use of hand-coded FPGA and pDSP 
modules. This hand-coded software was not SCA compliant; it 
had to bypass the CORBA middleware in order to directly 
control the low-level hardware. As a result, the code was not 
portable. Since this low-level coding was the hardest part of 
implementing a waveform, having working waveform software 
for one radio set was not much of a head start toward 
implementing that waveform on a different radio set. All 
parties—government, contractors, and SWRF—were aware of 
these problems by 2004.  

In the mid-2000s, some in the JTRS community proposed 
extensions to the SCA that would establish standards for direct 
control of low-level hardware, with the intent of making 
portable waveform software possible again. By this time, 
however, several of the JTRS programs had already committed 
to radio designs that would not be compliant with this new 
standard, and those programs were under intense external 
schedule pressure already; they could not start over with new 
designs. It is possible that this approach could have succeeded, 
but it must be recognized that any choice of interface standard 
would impose significant constraints on future generations of 



hardware, which the commercial community might not be 
interested in supporting. Standards are generally only 
successful in performance domains that are no longer cutting-
edge. 

VI. CONCLUSIONS  
The SDR vision is a single box of software-controlled 

digital hardware that can emulate any radio waveform, 
including new and ported waveforms, simply by updating 
software. The three key goals are: 

• Forward compatibility of radio hardware, so that new 
waveforms or capabilities can be implemented 
through software upgrades alone. 

• Portability of waveform software, so that new 
software does not have to be developed for every new 
radio set. 

• Open architecture, so that third-party vendors can 
bring new waveforms to market without the traditional 
high barriers to entry. 

This vision remains very alluring. However, it appears safe 
to conclude at this point that achieving this vision for military 
radios will be very difficult, if not impossible, especially given 
the cutting-edge performance requirements of military systems. 
A review of history shows that at least three different technical 
approaches have been tried—the first two were quietly 
abandoned by the industry some time ago; the third approach 
has produced some useful radios, but does not realize the goals 
of forward-compatibility and waveform portability.  

Can the SDR vision ever be implemented? Perhaps, but it 
must be concluded that the programmability vs. power 
consumption tradeoff remains huge. SDR advocates should 
also acknowledge that, since FPGA/SOCs are inherently 
commercial products and will only be on the market for a few 
years, dependence on them for interoperability will require 
porting legacy waveforms to new systems (as the old ones 
become obsolete and unsupported), independent of whether 
porting gets any easier.  

We also note that the current FPGA/SOC product line is 
highly diverse; each vendor produces dozens of different 
configurations optimized for different needs. The SDR vision 
was implicitly based on the assumption that one underlying 
piece of hardware could be used to support any waveform; buy 
any FPGA-based system now, and you could use it forever (so 
the original vision went), keeping it current via software 
upgrades only. The actual technological trend clearly shows 

that this “one size fits all” paradigm does not apply, at least in 
the commercial world.  

The current generation of SCA is, by all accounts, not up to 
the task. Proposed extensions to standardize low-level 
hardware control have never been ratified by all parties. 
Discussions have taken place about replacing the current 
version of SCA with a more specialized approach designed 
from the ground up to focus on communications, with system 
calls optimized accordingly. This may be worth pursuing, but it 
remains an open question as to whether the separation of 
software from hardware in a non-GPP-based system with real-
time requirements will ever be practical.  

Moore’s Law also remains in effect; a vision that sees 
hardware staying in service for years or decades, upgraded 
only via software, is nothing like the path that personal 
computers and cellular telephones have taken. In light of this, 
we note that a different approach to the problem of waveform 
interoperability has grown up in the past few decades. New 
generations of radios have taken advantage of improved 
hardware to fit a dozen or more different hardwired waveforms 
into a box. Each waveform has its own pDSP, or a portion of a 
larger device. These radios are operationally effective and 
relatively power efficient, but cannot support additional 
waveforms via a software upgrade alone; to add a waveform, 
new digital electronics must be inserted. If the vision of 
waveform upgradability is to be realized via this strategy, the 
relevant standards will not be software architecture standards 
like the SCA, but rather hardware interface standards 
describing the connections between the digital processing 
segment (the “motherboard”) and the rest of the radio. In this 
vision, a waveform would be more like a graphics or network 
card in a personal computer—proprietary hardware performing 
well-specified processing functions that the CPU cannot do 
efficiently, according to a well-defined interface standard. This 
would be nothing like SDR, but it might be the only way to 
realize the vision of SDR. 
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