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Executive Summary 

The 2019 Covid-19 pandemic is the most data-rich pandemic in human history to date, offering us an unprecedented chance to 
learn from it and prepare for future pandemics. Here, we report on our work studying SARS-CoV-2 genetic samples from fall 2019 to 
summer 2021. Along with this real-world data, we created a pandemic simulator, Simdemic, to model foundational principles of genome 
changes during a pandemic. Using our simulator along with the SARS-CoV-2 genetic data, we found that sub-sampling below 1% of 
the true case count gives a skewed estimate of viral diversity, offering decision makers in the government an actionable lower bound for 
future sampling methods. We also examined the use of canonical principles of population genetics applied to a viral population. When 
this was unsuccessful, we found success in alternate methods, which we present here as recommendations for a path forward to better 
quantify future pandemics. Finally, we tested a combination of methods to predict future SARS-CoV-2 mutations, explaining roughly 
two-thirds of the Delta strain’s mutations, and we discuss methods that could help refine these predictions in future studies. 
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I’m going to tell you about my CRP from this year, where I analyzed the genomics of the Covid-19 pandemic.  

In honor of this occasion, my zoom background is a transmission electron microscope image showing SARS-CoV-2, the virus that 
causes COVID-19. Virus particles are emerging from the surface of human cells cultured in the lab. This image is from the National 
Institute of Allergy and Infectious Diseases (NIAID). 

I’d also like to mention that Izzy Chaiken from ITSD worked with me on this CRP. 

Finally, please do ask questions throughout this presentation. You have all been with me during this pandemic, watching cutting-edge 
science emerge in real time. It’s been frustrating and it’s been tough and sad, but it’s also been an interesting example of how science 
works. 
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High throughput genomic sequencing has resulted 
in unprecedented insights into how SARS-CoV-2 is 
evolving 

This is the most data-rich pandemic that has ever existed.

deltaset.intersection(alphaset)deltaset.intersection(alphaset)
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High-throughput genomic sequencing has resulted in unprecedented insights into how SARS-CoV-2 is evolving. In short, we are 
witnessing the most data-rich pandemic that has ever existed. 

So, I decided to see what I could do with all of the viral genetic sequences that were being collected. Specifically, I wanted to know if 
the genetic sequences could help tell us how many cases of Covid-19 there truly were in the United States, and whether we could predict 
worrisome future variants. 
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Background: genes and function
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Let me start with a little bit of background. If you recall from my past talks, in organisms like us, genes in the DNA are transcribed into 
RNA, which are then translated into proteins. So, genes ultimately code for proteins, and proteins do most of the “stuff” in the organism. 
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Background: SARS-CoV-2 genes and function

vchal / Shutterstock

SARS-CoV-2

Human

In our cells

In 
our 
cells
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SARS-CoV-2 is a virus whose genes are made of RNA. It gains access to our cells and then inserts its RNA with ours. This RNA along 
with ours is translated, by our cellular machinery, into proteins. These proteins then assemble into more viral particles, as the cell is 
essentially cannibalized into a zombie viral factory. 
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Background: the SARS-CoV-2 genome

• The genome has been sequenced (we know the 
genome sequence)

• We know which parts of the genome are genes
• We have a reasonable idea about what these genes 

do

Example: gene S (Spike; turquoise) makes a surface protein on 
the virus that it uses to gain access to human cells via our 
Ace2 receptors. This is the protein the vaccines are made against.

Moderna, Pfizer, and J&J all encode/are the full-length spike mRNA with modifications to stabilize its shape 
(Baden et al. 2021; Polack et al. 2020)
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The SARS-CoV-2 genome is sequenced, which means that we know all of its genetic material.  

We also know, partially from work in this virus and partially from studying SARS1 and MERS in the early 2000s, what most of the 
genome encodes for.  

Here, I am showing you the short SARS-CoV-2 genome in the bottom left. It is only 30,000 bases in length and only has 12 genes. The 
functions of four of these genes are shown in the viral diagram in the upper left. 

For example, notice the turquoise spike gene and protein. This is a gene I’ve been keeping an eye on because it makes the protein that 
the virus uses to get into our cells—and this is what all of the vaccines we’ve taken are against. This was a good choice for a vaccine 
because it will be hard for the virus to mutate away from the vaccine without mutating away from its ability to infect us. 

References: Baden, Lindsey R. et al. 2021. “Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine.” The New England 
Journal of Medicine 2021, 384: 403–416. https://doi.org/10.1056/NEJMoa2035389; Polack, F. P. et al. 2020. “Safety and 
Efficacy of the BNT162b2 mRNA Covid-19 Vaccine.” The New England Journal of Medicine 2020, 383: 2603–2615. 
https://doi.org/10.1056/NEJMoa2034577. 
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Metadata: 
collection/processing 
of the sample

RNA sequence
(here, written as DNA 
after sequencing)

Background: the data (GISAID: 2M samples as of August 2021)
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And for my fellow data enthusiasts, this is a look at what my raw data look like. I have metadata for the collection and processing of the 
sample. Then I have the RNA sequence (here, converted to DNA because of how it is sequenced), which with modern bioinformatics 
tools and some ingenuity, I can compare to other viral sequences. Bioinformatics is a lot of substring matching, really. 
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Motivating questions

• Can we use genetic sequences to determine the 
number of Covid-19 cases in the United States?

• Can we predict emerging variants?
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I’m going to break this talk down into two parts. For the first part, I attempt to use the genetic sequences to find the true case count of 
Covid-19 in the United States. For the second part, I attempt to use the genetics of the pandemic to predict emerging SARS-CoV-2 
variants. 
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Motivating questions

• Can we use genetic sequences to determine the 
number of Covid-19 cases in the United States?

• Can we predict emerging variants?
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Don’t get too excited about this first part—I ultimately failed at this, but learned some valuable lessons that are generalizable to viral 
genomics and the state of sequencing in the United States.  
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Background: Population Genetics Analysis

The number of mutations in a population increases with the population size 

Simulated mutation rate: 2 per 2 new sequences
Every generation, the population doubles

Population size: 2
differences: 2

Population size: 4
differences: 4

Population size: 8
differences: 7
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The reason I pursued this line of research was because of the field of population genetics. An underlying principle of this field is that 
the number of mutations in a population increases with the population size. In this simple family tree, you can see that with a steady 
random mutation rate, the number of different mutations, which are colored, are growing at a proportionate rate as the population size 
itself.  

An analysis that is frequently performed in vertebrate species, for example, is to go into an area with a population you don’t know much 
about, sample animals at random, and use their genetic diversity to determine how many members of a population there are in the area. 
So, I was hoping to do the same with viral diversity and Covid-19 case numbers. 

For more information about population genetics, you can read: Okazaki, Atsuko, Satoru Yamazaki, Ituro Inoue, and Jurg Ott. 2021. 
“Population Genetics: Past, Present, and Future.” Human Genetics 140 (2), pp. 231–240. https://doi.org/10.1007/s00439-020-02208-5. 
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Background: Population Genetics Analysis

S: number of segregating sites (places that have a mutation somewhere in the population)
n: number of samples
μ: mutation rate (for the bounds of the whole region or genome in question)
N: population size
i (left): index of summation (which sample you are on)
i, j (right): frequency of two (ith and jth) sequences
πij: number of differences between the two sequences (i and j)

𝜃 =  
𝑆𝑆

∑ 1
𝑖

𝑛−1
𝑖=1

𝜃 = 2𝑁𝜇

Theta
(number of sites with a difference 
~normalized by population size)

Pi 
(average pairwise differences)

𝜋 =  �𝑥𝑖𝑥𝑗𝜋𝑖𝑗
𝑖𝑗

𝜋 =  
𝑠𝑠𝑢𝑚 𝑜𝑓 𝑝𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑠𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑛𝑐𝑒𝑠𝑠

𝑛𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑝𝑎𝑖𝑟𝑠𝑠

There are multiple ways to measure the number of mutations
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I don’t want to get too bogged down in the math here, but after studying several different population genetics estimators, I settled on 
two. Theta is a canonical genetic diversity estimator that appears most commonly used to estimate population size, and pi is a second 
method that I settled upon because it makes different underlying assumptions. This work was aided by Felicia Sallis-Peterson and Isaac 
Chappelle, both of STD. 

For more information about using mutations to estimate population size (historically in mammals), you can read: Fu, Yun-Xin. 1994. 
“Estimating Effective Population Size or Mutation Rate Using the Frequencies of Mutations of Various Classes in a Sample of DNA 
Sequences.” Genetics 138, pp. 1375–1386. 

…and this paper: Wang, Jinliang. 2005. “Estimation of Effective Population Sizes from Data on Genetic Markers.” Philosophical 
Transactions of the Royal Society of London. Series B, Biological sciences 360 (1459), pp. 1395–1409. 
https://doi.org/10.1098/rstb.2005.1682. 

You can further explore the math and ideas behind the pi estimator here:  Nei, Masatoshi, and Fumio Tajima. 1981. “DNA Polymorphism 
Detectable By Restriction Endonucleases.” Genetics 97, pp. 145–163. 

You can further explore the math and ideas behind the theta estimator here: Watterson, G. A. 1975. “On the Number of Segregating 
Sites in Genetical Models without Recombination.” Theoretical Population Biology 7, pp. 256–276. 

… here: Ferretti, Luca, and Sebástian E. Ramos-Onsins. 2015. “A Generalized Watterson Estimator for Next-Generation Sequencing: 
From Trios to Autopolyploids.” Theoretical Population Biology 100C, pp. 79–87. https://doi.org/10.1016/j.tpb.2015.01.001. 

…and here, to understand coalescent theory, which is behind the Wu-Watterson theta estimator: McVean, Gil; Philip Awadalla, and 
Paul Fearnhead. 2002. “A Coalescent-Based Method for Detecting and Estimating Recombination from Gene Sequences. Genetics 160, 
pp. 1231–1241. 
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New tool: Simdemic pandemic simulator

https://code.ida.org/projects/FDEM/repos/simdemic/browse
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Now I’d also like to introduce you to one of the main products of my CRP: the Simdemic software package. With help from Izzy 
Chaiken, I built a pandemic simulator in order to study simplified elements of a pandemic with control that we could never find in the 
real world. 
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New tool: Simdemic pandemic simulator 
software tool

Simulated mutation rate: 2 per 2 new sequences
Every generation, the population doubles

Population size: 2
differences: 2

Population size: 4
differences: 4

Population size: 8
differences: 7

Simdemic’s algorithm, simplified:
1. Ingest a DNA sequence provided by the 

user.
2. Use one of several growth models to 

calculate the number of sequences 
there will be in the next “generation”

3. Create “mutations” in the next 
generation randomly, or based on a 
provided model specifying which 
positions would cause deleterious, 
beneficial, or neutral mutations 
(probability score).

4. Continue these steps until the user-
provided number of generations has 
passed.

5. Return the final “population” to the 
user for further analysis.
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Single Community 
Simdemic – Sequence 
Counts
The original sequence, AAAAAAAAAA, is 
eventually dominated by the sequence 
AAAAAAGGAA

Simdemic evolutionary tree
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This simulator allows you to specify a starting “genomic sequence,” a growth model, and a mutation model. We also added in different 
abilities as the CRP progressed and we explored other elements of pandemics. Here, I am showing one simple pandemic simulation. On 
the left is an evolutionary tree visualization of the pandemic, and on the right is the prevalence of different mutations that occur during 
this simulation over the generations. 
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Pi vs. Theta

Mutation rate: 
1 every 2 sequences

Mutation rate: 
1 every 5 sequences

Mutation rate: 
1 every 10 sequences

In a small genome, the number of locations with mutations saturate very quickly, meaning that the 
infinite sites assumption and resulting metrics, like theta, are inappropriate – but pi is useful.  
(SARS-CoV-2 is 30,000 bp – vertebrate genomes are in the Billions of bp)

Pandemic simulator 1.0
Seed: AAAAAAAAAA
Growth: exponential, 2
Generations: 10
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Using the Simdemic software, I was able to analyze how the two different population genetics estimators, theta and pi, performed in a 
small genome. In short, theta fails and pi succeeds. These three different rows show three simulated pandemics with different variability 
of sequences—at the top is the population with the highest rate of variability and at the bottom is the lowest rate of variability. An 
appropriate estimator will be sensitive to variation.  

When measuring the final population of 1,000 entities, theta is the same in each of the three populations, meaning it is no good. However, 
pi does vary, suggesting it is sensitive to the amount of variability. When we drilled down on the reasons for this difference, it turned 
out that theta essentially makes an assumption that mutations can occur at an infinite number of sites. This makes sense for vertebrate 
species with huge genomes (ours is 3 billion base pairs), but it makes no sense for a tiny viral genome—or this ludicrously tiny simulated 
example. 
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Motivating questions

• Can we use genetic sequences to determine the number of 
Covid-19 cases?
• MAYBE: but population genetics tools need to be adapted 

to small genomes

• Can we predict emerging variants?
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So, the answer to the first part is a bold “maybe” except for the fact that…. 
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The U.S. sequenced relatively few SARS-CoV-2 samples
(data shown for 2020)

SARS-CoV-2 
sequences

Population 
size ratio

USA 80 K 328 M 1 : 4,100

UK 184 K 67 M 1 : 364

Denmark 32 K 6 M 1 : 188
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We had a data problem in the United States for the duration of the pandemic. Especially in the first two thirds of the pandemic, the 
United States was woefully under-sampled in terms of the number of viral sequences it collected.  

If you look at the rate of sample collection compared to population size on the right, you will see what our rate of sample collection 
looks like compared to two countries that really did have a good effort during the pandemic. 

If you look at these line graphs, you will see, state by state, the number of samples collected each month in 2020. Many states had fewer 
than 100 samples collected for all of 2020, and some had none at all. There are a few spikes of sample collection here and there, and 
they are associated with a handful of individual academic papers. Each paper did a good job of collecting samples in a particular city or 
state to measure whatever they were trying to get a handle on—for example, one measured an early superspreader event in Manhattan. 
These sequences were shared with the community, which is how I obtained them, but they of course do not tell us about the pandemic 
as a whole in the United States. 

For me, this was particularly annoying because this is NOT a matter of capability—scientists from this country invented the modern 
DNA sequencers and most modern genomics algorithms. We have capable people in academic institutions and biotech throughout the 
country, and anyone who is trained in any sort of genomics analysis, like me, can learn how to do this type of analysis. There are even 
more people who know how to collect samples and sequence them. There must be thousands or tens of thousands of people who can do 
this. But we just didn’t—there was no country-wide organized effort to collect fairly distributed viral samples. 
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Motivating questions

• Can we use genetic sequences to determine the number of 
Covid-19 cases?
• MAYBE: but population genetics tools need to be adapted 

to small genomes
• NO: sampling in the U.S. throughout the pandemic has 

been sporadic at best 
• There are also some more unknowns (viruses per patient, 

variation within a patient, etc.)

• Can we predict emerging variants?
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So, unfortunately for me, even though I learned how to adapt population genetics metrics to a smaller genome, this was a nonstarter 
because of under-sampling in the United States. I will also point out that there are some other unknowns that would also have made this 
difficult, such as knowing how many copies of SARS-CoV-2 are in the average patient. I hold out hope that we might be able to, with 
better sequencing, pursue this method in future pandemics because having a new method to determine the true number of cases in a 
pandemic would be invaluable. Current methods rely on testing the population, and generally that is done in a very biased way (i.e., 
waiting for sick patients coming in). A method that operates based on genetic variation would not be as biased by this problem, assuming 
enough samples were collected and the samples were taken from geographically/socially different sources. 

Ultimately, our colleagues at IDA and elsewhere in the community used different methods like antibody titers to better estimate how 
many true cases of Covid-19 there were relative to the official case counts in the United States. So, in the end, we got the answers we 
needed and learned something valuable about pandemic genomics, during the first time in the world we were able to truly study them. 
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Simdemic: Biased Sampling

• We have added an ability to down-sample 
and create biased samples of a simulated 
pandemic.

• The simulation provides us the ability to truly 
know the “ground truth” of every sequence 
and its prevalence, which is lacking in a true 
pandemic situation.

In the future, this can be used to estimate how undersampled a population is, and 
how many more samples would be necessary to get a fair assessment of a 
pandemic.  Early estimates suggest a drop in proper estimating capacity at 1%.

• Sample n percent of sequences from one 

• Compute loss:

S is the set of all sequences in the population, 𝑛𝑛𝑠 is the count of sequence 
s in the sample, n is the sample size, and 𝑝𝑝𝑠 is the true proportion of 
sequence s in the population.

• Create a test statistic by taking unbiased samples, then counting how 
many of those have higher loss

 

��
𝑛𝑛𝑠𝑠
𝑛𝑛
− 𝑝𝑝𝑠𝑠�

2

𝑠𝑠∈𝑆𝑆
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Since we have very fine control over every element of our simulated pandemic, this includes knowing the entire population and its entire 
evolutionary history. We decided to exploit this by adding a down-sampling and biased sampling ability to the Simdemic software. We 
ran out of time before we could fully analyze it, but we roughly estimate that it is safe to sample as little as 1% of a pandemic without 
getting too biased a determination of the true pandemic’s genomics. Note that this is roughly what the UK and Denmark ended up doing 
during 2020, while we were several logs worse than that in terms of our sample collection.  

I would like to follow up on this work in the future to help determine whether a pandemic is under-sampled and if so, how much more 
data needs to be collected to get a fair measure of the pandemic. 
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Conclusions, part 1
• Many current population genetics estimators are not suited for 

analysis of small genomes (like viruses)
• The pi metric is the only one we studied that was useful

• Sequencing efforts in the U.S. were insufficient for genomics analysis

• We present “Simdemic”: a pandemic simulator to aid in the further 
study of these principles

• Specifiable genomes
• Multiple growth models
• Multiple mutation rates and viability estimators
• Tree and graph-based visualizations
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So, for part 1, I found that although many classic population genetics estimators are not suitable for use on small viral genomes, pi is 
worth pursuing in the future. I also found that the lack of a centralized sequencing effort really hurt the United States in terms of 
understanding how the pandemic was unfolding here. 

Finally, we produced what I hope will be a useful teaching and exploratory tool for analyzing pandemics and population genetics 
principles in the future. 
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Motivating questions

• Can we use genetic sequences to determine the 
number of Covid-19 cases in the U.S.?

• Can we predict emerging variants?
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The second half of this talk will concern emerging variants. This is all near and dear to all of us, because all of you, my friends, are stuck 
here with me watching cutting-edge science emerge in real time. Right now, we are all familiar with the Delta variant, and before that, 
there was the “UK variant” (now alpha) the “Brazil variant” (now gamma) and so on and so forth. 

So, I was interested to see if I could use a different aspect of the genome to determine which types of characteristics might emerge in 
the future. 
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Background: conservation
High “conservation” means that, compared to related species, a particular nucleotide is the same. Low 
conservation means that the nucleotide changes over evolutionary history.

Gene (spike)

known functions

High and low overall 
conservation

Conservation of 
specific related 
species
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Let me start with some background information. First is the concept of conservation, which is very central to genomics analysis. A 
conserved region is one that is not observed to vary over the course of evolutionary history. In humans, for example, we share 99% of 
our genome with chimpanzees. However, as you go back along our evolutionary tree and start looking at the genomes of organisms that 
are more and more distantly related to us, you will still find some genes that are the same. RNA polymerase II, the enzyme that is 
required for converting our genes into RNA, is very similar, not just throughout the animal kingdom, but also down through plants, 
fungus, even bacteria. So, we would say that the gene for RNA polymerase II is extremely highly conserved. For another example, there 
are some regions of the genome that are unique to humans. Many of these relate to brain size and characteristics. These regions of the 
genome would be called unconserved because they are not shared with any species, even closely related ones. 

Now with those analogies out of the way, observe this section of the SARS-CoV-2 genome. At the top, I am showing the gene for spike, 
and below it, I am showing some areas within spike that have a known function. Below that is conservation. In the individual green 
density plots, I am showing 56 different viruses that affect a variety of different species, from SARS1, to bat viruses, to turkey 
coronavirus, to a type of viral bronchitis. Each of these viral genomes has been lined up against SARS-CoV-2 and then their conservation 
scores are shown at each nucleotide location. Basically, where you see a lot of green is where these viruses stay the same over the course 
of evolution. You can see that this covers the right half of the spike protein. Notably, there is less conservation, or more differences, 
under the ACE2 binding domain. This is presumably because each species has a slightly different structure of ACE2 receptor and the 
virus has to change to adapt to its current species. 

Just above all of the green tracks is a red and blue track. This is a metric that combines all of the below green tracks, nucleotide by 
nucleotide, and gives an overall conservation score for SARS-CoV-2. 

To review the concept of conservation, you can read one of the seminal founding discussions of the concept here: Zuckerandl, Emile, 
and Linus Pauling. 1965. “Evolutionary Divergence and Convergence in Proteins.” Evolving Genes and Proteins. A Symposium Held at 
the Institute of Microbiology of Rutgers: the State University with Support from the National Science Foundation, edited by Vernon 
Bryson and Henry J. Vogel, New York, Academic Press Inc., pp. 97–166. 

… and these two more recent publications: 

Asthana, Saurabh; Mikhail Roytberg, John Stamatoyannapoulos, and Shamil Sunyaev. 2007. “Analysis of Sequence Conservation at 
Nucleotide Resolution.” PLOS Computational Biology 3 (12), Article e257, pp. 2559–2568. https://doi.org/ 
10.1371/journal.pcbi.0030254.g001. 
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Cooper, Gregory M., and Christopher D. Brown. 2008. “Qualifying the Relationship between Sequence Conservation and Molecular 
Function.” Genome research 18 (2), pp. 201–205. https://doi.org/10.1101/gr.7205808. 

… as well as a specific discussion of SARS-CoV-2 conservation here: Srinivasan, Suhas, Hongzhu Cui, Ziyang Gao, Ming Liu, Senbao 
Lu, Winnie Mkandawire, et al. 2020. “Structural Genomics of SARS-CoV-2 Indicates Evolutionary Conserved Functional Regions of 
Viral Proteins.” Viruses 12 (4). https://doi.org/10.3390/v12040360. 

To learn more about the SARS-CoV-2 genome as well as this genome browser, you can read: Fernandes, Jason D., Angie S. Hinrichs, 
Hiram Clawson, Jairo Navarro Gonzalez, Brian T. Lee, Luis R. Nassar, et al. 2020. The UCSC SARS-CoV-2 Genome Browser. 
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Background: entropy
High “entropy” means that, within a population, a particular nucleotide is highly variable.  
An entropy of zero means that the nucleotide is never observed to vary.

Gene (spike)

known functions

High and low overall 
conservation

Entropy of SARS-
CoV-2 as of 
August 2021

Measures of observed nucleotide variance….

over evolution: conservation

within a species: entropy
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The second piece of background information concerns the concept of entropy. I can only assume that this is an embarrassing use of the 
term, so I apologize—I didn’t come up with it myself. In this particular biological case, “entropy” means “variance,” which is sort of 
like disorder, I suppose. 

Similar to the pi metric from the previous section, entropy measures variation within a population. However, while pi is a number that 
is applied to the whole population regardless of where the differences occur, entropy measures variation nucleotide by nucleotide along 
the entire genome. A high entropy score means that a base pair is observed to have high variability. It basically doesn’t matter what 
nucleotide occurs at that position. A low entropy score, however, means that variation is rarely observed—that nucleotide is so important 
to the survival of the virus that it is rarely able to change. 

So, both conservation and entropy are different measures of observed changes at specific positions in a genome. Conservation measures 
changes over evolution, and entropy measures observed changes within a current population of the same species. 

You can read more about the concept of entropy in genomics here: Schmitt, A. O., and H. Herzel. 1997. “Estimating the Entropy of 
DNA Sequences.” Journal of Theoretical Biology (1888), pp. 369–377. 

…and here, relating to SARS-CoV-2 earlier in the pandemic: Ghanchi, Najia Karim, Asghar Nasir, Kiran Iqbal Masood, Syed Hani 
Abidi, Syed Faisal Mahmood, Akbar Kanji, et al. 2021. “Higher Entropy Observed in SARS-CoV-2 Genomes from the First COVID-
19 Wave in Pakistan.” PloS one 16 (8), e0256451. https://doi.org/10.1371/journal.pone.0256451. 
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Entropy vs. conservation for the entire genome

(5,042)

(33)
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The reason these concepts are important is because they can both help us predict what is likely to change in the future. Conserved 
elements can tell us what seems to be generally required for being a coronavirus. Elements with low entropy can tell us what the current 
human SARS-CoV-2 appears to require for survival. 

In this plot, I am showing for each position in the SARS-CoV-2 genome what the conservation and entropy scores. Naively, we expect 
to see conservation and entropy track each other. Positions that have high conservation are important for viral survival over evolution, 
and should generally have low entropy because they will not have much variation in the current pandemic. The blue boxes represent 
these expected cases. 

In the red square, conversely, are 33 elements with high conservation and high entropy. This means that although these positions are 
very important to viral survival historically, they have had a lot of changes in the current pandemic. These represent areas where the 
virus lacks the selective pressure its ancestors had. 

In the yellow square are roughly 5,000 positions where there is low conservation and low entropy. This means that although these 
positions are not vital to viral survival historically, they nevertheless do not tend to vary in the current pandemic. These locations might 
represent new SARS-CoV-2 adaptations. 

Finally, entropy and conservation are ignorant to what the actual nucleotides are. It is possible for an element to be both highly conserved 
during evolution and invariant in the current pandemic—and yet also be a different element in the current pandemic compared to what 
it was in history. These elements represent a third group where SARS-CoV-2 has made an important adaptation. 
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Trying to predict the Delta variant

1. Pull all observed instances of Delta variant from GISAID data (B.1.617.2)

2. Align the sequences with each other
3. Calculate the “consensus” (average) genome of Delta, including deletion of base pairs

4. Determine where Delta differs from the current canonical sequence of SARS-CoV-2

This results in 46 mutations that characterize Delta

Genes

known functions

High and low overall 
conservation

Entropy of SARS-
CoV-2 as of 
August 2021

Delta mutations
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Now, since it is near and dear to us, so to speak, I am going to focus on the Delta variant for this section. 

To find all of the elements that make Delta what it is, I pulled all observed instances of the Delta variant from the GISAID data, which 
amount to 344,845 individual viral sequences. I aligned these sequences with each other and then created a ‘consensus genome’ for 
Delta by taking the most prevalent base pair at each location, including deletions. Then I compared the Delta consensus sequence with 
the current canonical sequence of SARS-CoV-2 that the genomics community has agreed on. 

This results in 46 nucleotides that characterize Delta. I am showing them here across the entire SARS-CoV-2 genome. The Delta 
mutations are in red at the top. The 12 SARS-CoV-2 genes are below that, and then are the known functional regions of each protein. 
Below that are the conservation and entropy scores for SARS-CoV-2. At first glance, you’ll see that there are a reasonable number of 
mutations in the spike gene – yikes! A highly mutated Spike protein could cause the virus to evade our vaccine immunity. 
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Trying to predict the Delta variant

If we went back in time to before Delta existed, how many of the 46 
mutations would we have been able to predict?

Genes

known functions

High and low overall 
conservation

Entropy of SARS-
CoV-2 as of 
August 2021

Delta mutations
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So, let’s go back in time, data-wise, and see if we could have predicted the 46 mutations that make Delta what it is. Here, I am using a 
combination of entropy, conservation, and knowledge of mutations that occurred in past major strains. To do this, I first made a 
consensus sequence of Delta by computing the most prevalent base for each position for each Delta-strain sequence in GISAID. Next, 
I took all of the SARS-CoV-2 sequences that occurred before Delta emerged and computed the entropy of these pre-Delta sequences. 
Finally, I made a consensus sequence for each past significant strain and calculated the mutations that had already occurred in them. I 
would predict the most likely places for future mutations would be regions with high entropy as well as regions that had previously 
mutated. I would also predict that some, but not all, of the places where SARS-CoV-2 shows conservation with related viruses would 
not be mutated. 
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Entropy/conservation predicts 2-10 Delta mutations 
(there would have been 0 overpredictions for the 2 / 5,065 overpredictions for the 10)

23604
spike 
CG

28881
nucleocapsid 

GU

26767
membrane 

UC

24410
spike
GA

29402
nucleocapsid 

GU

29742
intergenic 

GU

28253
Orf8 3’end 

Cdel
3037
Orf1a 
CU

22033
spike 

Cdel 22034
spike 

Adel
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Using entropy and conservation, we would have predicted two mutations with high accuracy based on their extremely high entropy 
scores.  

We might also have been able to predict 8 other Delta mutations in the red and yellow squares, although those would have had a very 
high over-prediction or “false positive” rate because there were 5,000 other locations in the yellow box for the whole genome. 

The blue boxes are particularly interesting to keep an eye on in the future. They may represent places where selective pressure on SARS-
CoV-2 has changed, causing mutations to occur in regions that were previously conserved. 

 
 

  



56 

Using past variants predicts 9 Delta mutations
(there would have been 87 overpredictions for these 9)

Location Gene Mutation variants Identified 
previously?

241 intergenic C  U α, β, ɣ

3037 Orf1a C  U α, β, ɣ Y

14408 Orf1b C  U α, β, ɣ

23403 spike A  G α, β, ɣ

28253 Orf8 C  del β Y

28881 nucleocapsid G  U α, ɣ Y

23604 spike C  G α Y

28271 Intergenic/Orf9 A  del α

22917 spike U  G B.1.429
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If we looked at past variants of SARS-CoV-2 to predict new variants, we would have predicted an additional four (or six) Delta 
mutations. There are 87 total mutations between the alpha, beta, and gamma variants, and nine of these are shared with the Delta variant. 

However, this only explains 14 of the 46 Delta mutations. Is there anything we could have done to predict the rest? 
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27/37 remaining 
mutations are here and 
have no precedent prior 

to Delta.
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Going back to the conservation vs. entropy plot, 27 of the 37 remaining mutations are in the lower right quadrant. This was the place 
where the nucleotide identity itself had to be analyzed on top of the conservation and entropy scores. 

I looked to see if there was any hint prior to Delta that these mutations would crop up, and so far, I have failed to find them. So far, it 
looks like these 27 mutations occurred spontaneously and were retained because they happened to be extremely advantageous to SARS-
CoV-2. 
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Viability is a parameter built into each 
sequence that determines how likely a 
sequence is to infect people. 

Computing growth rate in the case counts 
from one generation to the next allows us to 
approximate these viabilities.

Simdemic: Viability scores
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In order to better understand the spread of mutations with both positive and negative selective pressure, we have encoded a viability 
score for a Simdemic’s mutations. This can be randomly generated or specified by the user. 

Here, we show that Simdemic’s encoded viability scores correlate with the subsequent viral growth rates. This mimics the real-life 
example of Delta evolving a set of highly beneficial mutations and then taking over the SARS-CoV-2 population. 
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Simdemic: “Multidemic” system for understanding 
founder effects and viral spread
• We want to be able to simulate multiple 

communities with their own dynamics of 
case spread and counts of different 
sequences

• Solution: Run multiple simdemics in 
parallel

• Each timestep, each community transmits 
a predefined proportion of cases to other 
communities

• Some shared info, such as viability of each 
sequence and evolution history

• Simdemic A sees the first rise of AAAAAACGAA.

• Sequence AAAAAAGCGAG becomes dominant in Simdemic B, but not 
Simdemic A.

• Examining viability scores plus evolutionary history tells us how much effect a 
mutation has compared to chance in determining why a particular variant 
predominates.
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Finally, we have added a “multidemic” capability to the Simdemic software. This capability mimics the spread of random entities to a 
new self-contained area. This mimics superspreader events and founding events, but it also allows us the ability to decouple the effects 
of random chance from viability in whether a particular mutation will predominate in a population.  

Here, I am showing that in two different linked Simdemic simulations, different strains predominate in each case, even though they have 
the same viability scores as each other. 

 

  



64 

Conclusions, part 2
• High entropy, but not low conservation, predicts some upcoming mutations with high accuracy.

• One third of Delta’s mutations can be explained by having previously evolved in SARS-CoV-2 variants.

• Two thirds of Delta’s mutations appear to have evolved in highly conserved, highly invariant regions with no 
prior precedent in other variants. Constantly monitoring a pandemic via sequencing may be the only way 
currently to detect the emergence of mutations like this.  

• We present “Simdemic”: a pandemic simulator to aid in the further study of these principles
• Specifiable genomes
• Multiple growth models
• Subsampling/biased sampling
• Tree and graph-based visualizations
• Multiple mutation rates and viability estimators
• Outbreak events/founder effects

 

 

  



65 

In conclusion, high entropy, but not low conservation, predicts some upcoming mutations with high accuracy. 

A third of Delta’s mutations can be explained by having previously evolved in other SARS-CoV-2 variants. As far as predictive biology 
goes, this is probably fairly good. 

However, the remaining two thirds of Delta’s mutations appear to have evolved with no prior precedent either in evolutionary history 
or in the history of the Covid-19 pandemic. Constantly monitoring a pandemic via sequencing may be the only way currently to detect 
the emergence of mutations like this. Given the lack of sequencing in the United States during the bulk of the pandemic, we are lucky 
that other countries did this, or we would not have noticed the emergence of Delta at all. 

Finally, we have added capabilities to the Simdemic software to study emerging mutations, both beneficial and detrimental. This is done 
in a way to enable decoupling of the effects of mutations and the effects of chance from founder effects. 
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Future directions
• Use genomic data to predict case number (would rely on future research)

• Finding the number of viruses on average per person.
• Knowing virus variability per person – and understanding to what extent a SARS-CoV-

2 sequence is a consensus sequence of all of a person’s variants. (Dr. Elodie Ghedin at 
the NIH is working on this.)

• Predicting mutations with combinatorics  
• Some mutations will only be beneficial if other mutations have occurred.  
• Since we have data from the beginning of the pandemic, we could examine which 

pairs of sequences show this behavior. 
• Add useful features to Simdemic

• Outbreak/bottleneck simulation (requires two populations that only occasionally 
interact).

• Add additional useful metrics and visualizations.
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In the future, I would love to be able to predict the number of cases using genomic data. However, this will rely on some laboratory 
research. First, I would need to know the number of virus that are present in each patient, as well as the variability of this number. 
Second, I would need to know how much variance occurs within a patient. The sequences we are analyzing likely correspond to a 
consensus sequence of a group of variants that occur within a single patient rather than a single viron’s genome. I have spoken with 
academics who mentioned working on some of these problems, so I am hopeful that I will have more information in the future to improve 
my predictive capabilities. 

I would also like to predict mutations using combinatorics. Some mutations will only be beneficial once other mutations have occurred, 
meaning that the likelihood of mutation of a particular place in the genome is contingent on mutations first occurring in other places. 
For example, if a virus jumps into a species with a faster immune system then its current host, it might then mutate to reproduce faster, 
allowing it to evade the new immune system. This would be an example of the mutations coding for quicker replication becoming more 
likely once the mutations allowing the virus to jump species occurred. Another example is that one mutation might be disadvantageous 
since it would change the structure of the protein it codes for, but having a specific second mutation in combination with the first might 
allow the original protein structure to be preserved. These two mutations would only be beneficial when they co-occur. Since we have 
data from the beginning of the pandemic, we could determine whether there are any pairs of sequences which show this behavior. In 
addition to better helping us to predict future mutations, knowing which mutations rely on others might tell us more about the ultimate 
function these genomic regions code for. 

Finally, I would like to work on a Simdemic 2.0 to add additional capabilities and continually improve it. 
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Backup slides
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Background: SARS-CoV-2 genes and function

mRNA vaccine

Human

In our cells

In 
our 
cells

Spike protein is expressed on the surface of a 
few of our cells.  These cells are killed off by 
our immune system, teaching it how to 
recognize spike.  The mRNA disappears 
within a few hours to days.
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Background: Population Genetics Analysis

• It is possible to use genetic variation to estimate overall population size in vertebrate species (Wang 
2005 Philosophical transactions of the Royal Society of London B, 360, 1459)

• Similar types of estimations have been attempted in viruses (Rousseau et al. 2017)
• Is it possible to apply these methods to the Covid-19 pandemic, and if not, what are the 

bottlenecks?

 

 

  



71 

Reference: Rousseau, Elsa et al. 2017. “Estimating Virus Effective Population Size and Selection without Neutral Markers.” PLOS 
Pathogens 13 (11). https://doi.org/10.1371/journal.ppat.1006702 

 
 

  



72 

Computational challenges

• Source of data
• Large, continuously updating
• Permission-locked

• Exploratory analytic tools 
• Memory-intensive
• Long-running 
• Must be validated for viral datasets

• Tool and pipeline development
• Need to understand the implications of using tools for viruses; pandemics

Addressed in 2020

Addressed in 2020

This CRP
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Scientific challenges
• Sampling biases?

• Any analysis only tells you about the characteristics of your dataset.  Whether this is generalizable 
depends on how representative the data are.

• Known unknowns/unknown unknowns due to this 
being the first data-rich pandemic of this type

• How many viruses per person?
• How much genetic variation of viruses within a person?  
• Can we predict upcoming variants?
• Staying open-minded for other surprises 

This CRP

This CRP
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Y-axis changes from plot to plot

The U.S. sequenced relatively few SARS-CoV-2 samples
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Variation across 
geographic 

regions
Expect larger 

regions to have 
greater diversity 

Different number of sequences Different number of sequences

Variation in time
Expect longer time to have greater diversity

29
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Observation: Theta is unstable to sample number
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Observation: Pi is stable to sample number
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Pi vs. Theta

S: number of segregating sites (places that have a mutation somewhere in the population)
n: number of samples
μ: mutation rate (for the bounds of the whole region or genome in question)
N: population size
i (left): index of summation (which sample you are on)
i, j (right): frequency of two (ith and jth) sequences
πij: number of differences between the two sequences (i and j)

𝜃 =  
𝑆𝑆

∑ 1
𝑖

𝑛−1
𝑖=1

𝜋 =  
𝑠𝑠𝑢𝑚 𝑜𝑓 𝑝𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑠𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑛𝑐𝑒𝑠𝑠

𝑛𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑝𝑎𝑖𝑟𝑠𝑠

This quickly saturates: every nucleotide in a small genome will 
soon have a difference in at least one sample

This takes a long time to saturate

AAAATAAAAA
ACAAAAAAAA
AATAAAACAA
AAAAAAGAAA
AAAAAAAAAA
AAAAAAAAAC
AAACAAAAAA
GAAAAAAAAA
AAAAATAAAA
AAAAAAAATA

Number of nucleotides: 10
Sites with a difference: 10
Average pairwise difference: 2
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Simdemic Population Simulator

• We want to generate data to test our methodologies
• Develop a program to simulate steps of a pandemic
• Given an initial sequence, population, and growth model, track 

evolution over time
• Produce genomes, their populations over time, and evolution history
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Single Community 
Simdemic – Sequence 
Counts
The original sequence, AAAAAAAAAA, is 
eventually dominated by the sequence 
AAAAAAGGAA

 

 

  



81 

Computing Growth 
Rates Approximates 
Viability
Viability is a parameter built into each 
sequence that determines how likely a 
sequence is to infect people. 

Computing growth rate in the case counts 
from one generation to the next allows us to 
approximate these viabilities
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Single Simdemic Evolution Tree
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Multidemic

• We want to be able to simulate multiple communities with their own 
dynamics of case spread and counts of different sequences

• Solution: Run multiple simdemics in parallel
• Each timestep, each community transmits a predefined proportion of 

cases to other communities
• Some shared info, such as viability of each sequence and evolution 

history
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Two Community 
Sequence Counts
Longer timeframe allows for third set of 
sequences to dominate at the end
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Top Sequences by 
Community
Simdemic A sees the first rise of 
AAAAAACGAA

Sequence AAAAAAGCGAG becomes 
dominant in Simdemic B, but not Simdemic A
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Multidemic Evolution Tree

AAAAAGCGAG later mutates into two sequences, AAAAAGCGTG and AAAAAGCCAG
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Simdemic A Most 
Populous Sequences
We see that these two sequences dominate 
AAAAAACGAA at the end of the simulation

Both have the same viability as their parent 
sequence, but they become dominant in 
Simdemic A because of random chance
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Biased Sampling

• Want to know how bad a biased sampling is
• Sample n percent of sequences from one 
• Compute loss:

S is the set of all sequences in the population, 𝑛𝑛𝑠 is the count of 
sequence s in the sample, n is the sample size, and 𝑝𝑝𝑠 is the true 
proportion of sequence s in the population.
• Create a test statistic by taking unbiased samples, then counting how 

many of those have higher loss

 

��
𝑛𝑛𝑠𝑠
𝑛𝑛
− 𝑝𝑝𝑠𝑠�

2

𝑠𝑠∈𝑆𝑆
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Biased Sampling Results
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Past work: Variant analysis (2020)
• Viruses mutate relatively quickly 

• SARS-Cov-2 is mutating at a rate of ~2 nucleotides a month (half the rate of influenza) (reviewed by 
Callaway 2020). 

• Viral mutations may or may not affect infectivity and 
pathogenicity

• Tracking mutations may help predict which strains will become 
worrisome

• Analyzing strains can help us understand viral diversity, spread, 
etc.

• There is not a consistent methodology for identifying and 
declaring new SARS-CoV-2 strains
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Reference: Callaway, Ewen. 2020. “The Coronavirus Is Mutating – Does It Matter?” Nature 585: 174-177 (2020). 
https://doi.org/10.1038/d41586-020-02544-6.  
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Preliminary Variant Analysis

• This phylogenetic tree shows the genetic (nucleotide) similarities between all SARS-Cov-2 samples that were sequenced 
in VA in spring 2020 (March 6 – May 29).  

• Of the 433 samples sequenced in VA, there are 365 unique entities.   

• Each black entity is a single sample.  
• The sequences that are closest together at the right are most closely related to each 

other.  
• Higher-order branches (at the left) reflect major dissimilarity.
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Strains vs. lineages
• Early on, NextStrain/GISAID defined several SARS-

CoV-2 “strains” based on specific, studied 
mutations.
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Strains vs. lineages

PANGO (Rambaut et al. 2020), is the algorithm behind the new 
lineages making the news e.g., “the UK variant” 

Lineages reflect:
1) A virus’s lineage
2) A local outbreak
3) A new mutation (in 

that lineage)

Lineages DO NOT reflect:
1) Whether a mutation is meaningful
2) Whether a mutation is unique (the 

same mutation can occur in 
different lineages)
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Reference: Rambaut, A. et al. 2020. “A Dynamic Nomenclature Proposal for SARS-CoV-2 Lineages to Assist Genomic 
Epidemiology.” Nature Microbiology 5(11), November 2020: 1403-1407. https://doi.org/10.1038/s41564-020-0770-5. 
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Strains vs. lineages

Like the field, we have chosen to focus on PANGO lineages

GISAID strains PANGO lineages

Hypothesis-driven 
“I think this mutation is 

special, so it gets a 
name”

Agnostic 
“I see evidence of a 

new mutation 
spreading locally, so 

it gets a name”

One or two mutations
define strain

Ancestry + mutation 
+ local outbreak 
defines lineage

Tens total Thousands total
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Lineages over time in the U.S. 
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SARS-CoV-2 lineages have ebbed and flowed over the course of the 
pandemic in the U.S. 

• It is easy to determine what a virus’s genetic sequence is.  It is more difficult to tell what the sequence means. 
Lineage names reflect sequence, not meaning

• Things that may cause a lineage to be come predominant: 
o Founder effect  ̶  the reduction in genetic variation when a small subset of a large population is used to 

establishes a new population 
o One or repeated superspreader events with that lineage
o Small number statistics/undersampling/biased sampling
o A mutation with a biological mechanism that facilitates higher infectivity/spread
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Past analysis: SARS-CoV-2 variant analysis conclusion (2020)

• Variants are numerous. This is okay and expected.

• PANGO provides a useful syntax for identifying emerging variants. Variants can 
be tracked to determine with follow-up experiments whether they are 
concerning.

• Variants come and go in the U.S. as they have in different countries and have for 
the entire pandemic. We weren’t looking for variants in the U.S. for most of the 
pandemic like countries with named lineages were.
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Past analysis: SARS-CoV-2 variant analysis conclusion (2020)

• Public concern about variants is a byproduct of watching science in progress

• The general public – and people spreading the news – are not used to watching science 
in progress

• The scientists doing the research are not used to having the public so interested in their 
work and are not used to explaining the process

• Watching a typically messy scientific process leads to odd conclusions from the public

Behavior Clarification

Naming variants has completely changed 
during the pandemic

Science develops organically, especially on the cutting edge.  This 
does not mean the scientific community is incompetent or that 

the problem is intractable

Many lineages are being tracked Tracking a variant/mutation does not necessarily mean anything 
scary about the effects of the mutation

Agnostic categories are getting names: 
“B.1.1.17” “the UK variant” A name does not confer danger
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