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Executive Summary 

DARPA’s Causal Exploration in Complex Environments (CausX) program involves 
extracting information on events and causal relationships between events from natural-
language documents. Four companies participate in this extraction process: BBN, ISI, 
LCC, and Lum.AI.1 They are termed TA1 performers, with the numeral “1” indicating their 
early role in the processing pipeline. 

The Institute for Defense Analyses (IDA) team’s 2020 assessment of TA1 performer 
product quality required selecting causal assertions and events from the data sets created 
by the performers’ extraction applications. The IDA team divided the assessment into four 
comparison categories: 

1. Causal assertions found by exactly one TA1 performer (BBN, ISI, LCC, or 
Lum.AI). 

2. Causal assertions found by exactly two performers (BBN, ISI, and LCC). 
(Lum.AI, a relative latecomer, was not included.) 

3. Causal assertions found by BBN, ISI, and LCC. (Lum.AI was not included.)  

4. Events, both from and not from causal assertions. (Lum.AI extracts no events in 
the latter category.) 

To ensure that performers would be evaluated by their best work, the IDA team 
developed an approach to select the highest-quality causal assertions and events. The team 
based quality on the degree to which TA2s (the set of performers in the processing pipeline 
after TA1s) find events and causal assertions useful. So-called generic events—those at the 
highest level of the CausX event ontology’s event class hierarchy—were considered less 
desirable than events lower in the hierarchy. An event with factors, actors, or locations was 
considered higher quality than an event without them, and an event with all was considered 
better still. A causal assertion’s quality was judged based on the quality of its events. 

The IDA team obtained the TA1 data sets in the form of SQLite databases. The 
process of selecting causal assertions and events for assessment was complex and time 
consuming. The team wanted other parties to be able to review selection quality and 
therefore wanted to make the process repeatable. This document describes the process, 

                                                
1 See, respectively, https://www.raytheon.com/ourcompany/bbn, https://www.isi.edu/, 

http://www.languagecomputer.com/, and https://lum.ai/. 

https://www.raytheon.com/ourcompany/bbn
https://www.isi.edu/
http://www.languagecomputer.com/
https://lum.ai/
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which is presented as a sequence of Linux commands. Each command is presented and 
explained. Executing these commands will re-generate the assessment data to the extent 
possible. (There is some use of random numbers, so re-generating the exact data set the 
IDA team used is unlikely.) The commands require a Linux environment running Python 
3.6 or higher and the mysql database server.  
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1. Introduction 

This document describes how the Institute for Defense Analyses (IDA) team 
generated the data used to assess the TA1 performers: BBN, ISI, LCC, and (to a lesser 
extent) Lum.AI. It discusses how the IDA team converted the data from the format in which 
it was delivered to them into spreadsheets used by the IDA team’s coders. 

The process, such as it was, often arose in response to immediate needs. Thus, it was 
never optimized and is sometimes redundant. It includes code that, like most code, has 
documentation that could be improved. However, it is effective, in the sense that it 
produced the necessary outputs and is repeatable. 

A. Objective 
The IDA team’s objective was to assess the quality of causal assertions and events 

extracted from a sample corpus of 8,000 documents. By comparing and contrasting the 
causal assertions, IDA hoped to discover each performer’s strengths and weaknesses. 

B. Inputs 
The IDA team received databases from Two Six Labs in the SQLite format. Two Six 

Labs supplied one database for each performer. Each database contained the performer’s 
results of processing the sample corpus. 

All databases used a schema established by Two Six Labs. BBN, ISI, and LCC 
submitted data in an established JavaScript Object Notation (JSON) format; Two Six Labs 
processed this data and converted it to the SQLite format (among others). The data bears 
some resemblance to the format used in previous triple store representations. 

• Assertions and events are identified by URLs. 

• Class hierarchies used in the triple store are used in the database. For example, 
as in the triple store, an event has a type, and this type is one of the subclasses of 
class EventOrFactor. 

The significant structural difference, of course, is the absence of predicates. In the 
triple store, an attribute of an individual is specified through a triple with the individual as 
the subject, the attribute value as the object, and a predicate defining which attribute the 
triple is specifying. In the database, each row has primary key columns and one or more 
additional columns. The primary key columns correspond to the subject. Additional 
columns correspond to attributes. Each column name corresponds to a predicate. Two 
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tables may also be related, either explicitly or implicitly; this is analogous to triples whose 
subject and object are both individuals rather than literal values. 

The SQLite databases also lack the provenance information that was present in the 
triple store, where every causal assertion, event, actor, and location individual was part of 
a triple that indicated the sentence from which the individual was extracted. In the SQLite 
databases, this information is represented in the table for events by including the complete 
sentence, with the text of the event enclosed in double square brackets. Everything has a 
relationship to an event. An assertion has an antecedent event and a consequent event. 
Events have actors and locations, as well as factors. The SQLite database only locates 
where in a sentence an extraction occurred for assertions and events. If a sentence contains 
multiple instances of “Russia” (and, for one performer, 1,267 of them do), it is not possible 
to determine which one triggered the extraction. This information was not judged necessary 
for the assessment, and the IDA team did not ask Two Six Labs to include it. 

C. Environment 
The IDA team generated the assessment data on a Windows 10 platform and used 

some free, open-source tools to generate the data: 

• We used MySQL version 8.0.20 (community edition) as the database 
management system. 

• We created a Python application to convert the SQLite databases to MySQL. 
We used Python version 3.6, and the application used the sqlite3 package built 
into the standard library. 

• Many of the steps were performed using command-line tools. We used the bash 
shell, running in the Cygwin environment.2 

Examples in this document are presented using bash. This is an arbitrary decision—
the cmd shell in Windows could also have been used. For that matter, MySQL and Python 
both run on Linux, macOS, and Windows, so the steps can be carried out on any of those 
platforms. The process has also been executed on an Ubuntu Linux 18.04 platform. Some 
of the scripts contain absolute file names; these may need to be modified even if run on 
Windows (see Appendix A). 

 

                                                
2 See https://cygwin.com/. 

http://www.mysql.com/
https://www.python.org/
https://docs.python.org/3/library/sqlite3.html
https://www.cygwin.com/
https://cygwin.com/
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2. Process 

This section provides a step-by-step description of the process the IDA team followed 
to generate assessment data from the inputs supplied by Two Six Labs. In a nod to rational 
design processes,3 we admit that we did not strictly adhere to the process below. What is 
presented is a repeatable process that, in hindsight, is better organized than what we 
actually did and produces the same results. 

A. Step 1: Obtain Data 
Two Six Labs made the data available on the U.S. Air Force’s Virtual Distributed 

Laboratory (VDL)4 in the following directory: 
/programs/CauseEx/CauseEx Performers/TA5_SI/TA1 Experiments/  

Download the following files: 

• bbn_8k_20200518.db.gz 

• isi_8k_20200601.db.gz 

• lcc_8k_20200716.db.gz 

• lum_8k_20200608.db.gz 

B. Step 2: Uncompress Data 
The database files Two Six Labs delivers are large and often exceed 1GB, so Two Six 

Labs compressed them prior to upload. In the directory to which you downloaded the files, 
execute the following commands: 

$ gunzip bbn_8k_20200518.db.gz 
$ gunzip isi_8k_20200601.db.gz 
$ gunzip lcc_8k_20200716.db.gz 
$ gunzip lum_8k_20200608.db.gz 

Your directory should contain these four files with the “.gz” suffix removed. These 
files are interpretable as SQLite data. 

                                                
3 D. Parnas and S. Clements, “A Rational Design Process: How and Why to Fake It.” IEEE Transactions 

on Software Engineering Vol. SE-12, Issue 2, February 1986. 
4 https://restricted.vdl.afrl.af.mil/ 
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C. Step 3: Convert Databases from SQLite to MySQL 
Python’s sqlite3 package provides the capability to dump the contents of an SQLite 

database into a text file containing a series of SQL INSERT INTO statements. These 
statements are not standard SQL format (or, at any rate, are not accepted by MySQL). 

The IDA team developed a simple Python application to convert the four databases 
from SQLite to MySQL. This script, dump-db.py, is executed as follows:5 

$ python3 dump-db.py sqlite-database script-file 
The sqlite-database parameter is one of the databases provided by Two Six Labs, 

and script-file is the file into which the output is written. 

The commands to execute are as follows: 
$ python3 dump-db.py bbn_8k_20200518.db bbn-data.sql 
$ python3 dump-db.py isi_8k_20200601.db isi-data.sql 
$ python3 dump-db.py lcc_8k_20200716.db lcc-data.sql 
$ python3 dump-db.py lum_8k_20200608.db lum-data.sql 

D. Step 4: Create a MySQL Database for Each Performer 
Data for each performer is placed in a separate MySQL database. Execute the 

following commands:6 
$ mysqladmin --user=user --password create bbn8k create isi8k \ 
 create lcc8k create lum8k 

Here, user must be the name of a user with the right to create databases on your 
MySQL server. The command will prompt for a password, which will have been set by the 
MySQL administrator (i.e., whoever installed MySQL). 

This and subsequent MySQL commands assume you are running a MySQL server on 
the same platform as these shell commands. If you are not, you need to use the --host flag. 
Furthermore, this and subsequent MySQL commands assume the specified user has 
adequate access rights. 

E. Step 5: Create Schemas 
Each database created in Step 4 should contain the set of tables into which data will 

be uploaded. These tables are structurally similar to those in the SQLite databases, but they 
are optimized for MySQL. 

Execute the following commands: 

                                                
5 As mentioned in Section 1.C, we used Python version 3.6. Elsewhere, we used 3.8. On some systems, 

there is no minor version number; “python3” accesses the latest version of Python 3. In this section, 
“python3” means version 3.6 or higher. 

6 The backslash at the end of the first line means the command continues on the next line. 
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$ mysql --user=user --password bbn8k < schema-myisam.sql 
$ mysql --user=user --password isi8k < schema-myisam.sql 
$ mysql --user=user --password lcc8k < schema-myisam.sql 
$ mysql --user=user --password lum8k < schema-myisam.sql 

The IDA team used MySQL’s MyISAM table format rather than the newer InnoDB. 
We found we could execute queries faster with MyISAM. MyISAM does not support 
transactions or foreign keys and is not well suited to situations in which multiple 
individuals are simultaneously querying and modifying tables. If the latter describes your 
work environment, you should consider switching to InnoDB. 

F. Step 6: Populate Schemas 
Load the data created in Step 3 into your MySQL databases: 
$ mysql --user=user --password bbn8k < bbn-data.sql 
$ mysql --user=user --password isi8k < isi-data.sql 
$ mysql --user=user --password lcc8k < lcc-data.sql 
$ mysql --user=user --password lum8k < lum-data.sql 

Do not be surprised if some of these commands take time to complete. The IDA team 
observed them requiring the better part of two days. 

G. Step 7: Create Supporting Databases 
Although it is possible to create queries that retrieve data in a single step, it would be 

highly inefficient. Storing intermediate results greatly reduce both query complexity and 
processing time.  

Create two databases using the following command: 
$ mysqladmin --user=user --password create analysis create sentences 

The sentences database contains information on causal assertions, events, and the 
sentences from which they are extracted. The analysis database partitions these causal 
assertions and events into categories useful for generating assessments. It also contains 
weighting tables useful in judging causal assertion and event quality. 

Placement of sentence-related tables in the analysis database is, frankly, somewhat 
arbitrary. The sentences database was created with the intent to populate its tables early in 
the assessment process and to ensure its contents would not change thereafter. The analysis 
database was intended to be more mutable, although many of its sentence-related tables 
remained unchanged as well. 

H. Step 8: Create Schema for the Sentences Database 
As in Step 5, you need to create the tables in the sentence database. These tables are 

highly indexed in an attempt to shorten query times. Execute the following command: 
$ mysql --user=user --password sentences < sentences-myisam.sql 
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I. Step 9: Populate the Sentences Database 
Execute the following commands: 
$ mysql --user=user --password < pt-01a-populate-ca-sentences.sql 
$ mysql --user=user --password < pt-01b-populate-event-sentences.sql 
$ mysql --user=user --password < \ 
 pt-01c-populate-ca-sentences-lum.sql 
$ mysql --user=user --password < \ 
 pt-01d-populate-event-sentences-lum.sql 

These commands aggregate the causal assertion tables in all four performer databases 
into a single table and do likewise for the event tables. Furthermore, although it is useful 
to create an index on sentence text, some sentences exceed MySQL’s maximum permitted 
index length. These queries work around this by generating an SHA1 hash of the sentence 
text and indexing that. 

J. Step 10: Identify 30 Sentences for Coder Calibration 
The IDA team began its coding activities with a short guidebook of coding standards. 

We assumed these standards, which had never been exercised, were a prototype that needed 
to be tried and adjusted prior to the full assessment. We had six coders analyze the same 
set of 30 sentences. These sentences were chosen by executing the following command: 

$ mysql --user=user --password < pt-02-30-sentences.sql 
This creates and populates a table, thirty_sentences_with_ca_s, in the analysis 

database. Each row of the table identifies a sentence and the document containing it. Each 
of these sentences has the following characteristics: 

1. BBN, ISI, and LCC all extracted at least one causal assertion from it. (At the 
time we performed this step, we had not been directed to include Lum.AI in our 
assessment.) 

2. None of the causal assertions have generic antecedent or consequent events.  

3. The sentence occurred in exactly one document. 

Characteristic 2 was determined by testing whether the value in the event_type 
column was http://ontology.causeex.com/ontology/odps/Event#Event, the most 
general kind of event and one that TA2 performers generally consider of little or no value. 
The databases allow an event to have an optional second type, specified in the event_type2 
column. The three performers all used this second type (although not often), and sometimes 
the value of this column is the general event. BBN and LCC provide a more specific kind 
of event in event_type, and the reason for using event_type2 is unclear. ISI only uses the 
general event in event_type2 when event_type is a collection of events. ISI, then, is 
sometimes able to identify an event as a collection without being able to determine the 
nature of elements in the collection. 
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The sentences were selected randomly from the set that met these criteria. That is, 
187 sentences met the criteria, and a random number generator was used to select 30 of 
them. This step is therefore not entirely repeatable. Executing the query always yields 30 
sentences, but it is unlikely to yield the same set. This randomization is necessary because 
MySQL retrieves rows in the order in which they were entered, and the data given to the 
IDA team had the rows grouped by document. Without randomization, the sentences would 
have been from a small set of documents, not randomly chosen from the entire set. 

When this query was written, we knew that some sentences occur in multiple 
documents, but we had not realized that some documents contain multiple instances of the 
same sentence. Fortunately, the sample set did not include any duplicate sentences. 

K. Step 11: Identify 30 Causal Assertions from the 30 Sentences 
The next step is to choose causal assertions from the 30 sentences identified in Step 

10. A performer may extract more than one causal assertion from a single sentence; we 
wanted to assess exactly one. Execute the following command: 

$ mysql --user=user --password < pt-03-cas-from-30-sentences.sql 
This creates a table, thirty_cas_from_thirty_sentences, containing all the 

sentences from the table in Step 10, plus three randomly chosen causal assertion IDs (one 
for each performer).  

L. Step 12: Produce Causal Assertion and Event Data for Coders 
IDA coders were presented with Excel spreadsheets containing causal assertions and 

events to assess. Creating those spreadsheets was a multi-step process. The first step was 
to extract information on the causal assertions and events. Execute the following 
commands: 

$ mysql --user=user --password < pt-04a-assertions-data-bbn.sql 
$ mysql --user=user --password < pt-04b-assertions-data-isi.sql 
$ mysql --user=user --password < pt-04c-assertions-data-lcc.sql 

Each of these commands causes the MySQL server to produce a comma-separated 
value (CSV) file containing results for a single performer. Each query file specifies the 
name and location of that file. The value given is server-specific. In the query files 
distributed, the files are placed in folder C:\ProgramData\MySQL\MySQL Server 
8.0\Uploads. 

 
Different versions of MySQL, or versions installed on different platforms, may place 

the files in different folders. These three query files, and other such files, may need editing 
to run on other computers. 

After executing these queries, the folder in which the files are placed should contain 
three files whose names begin with 04.  
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M. Step 13: Produce Event Factor and Location Data for Coders 
Some events have associated locations, and associated causal factors. To generate this 

data, execute the following commands: 
$ mysql --user=user --password < pt-05a-factors-locations-bbn.sql 
$ mysql --user=user --password < pt-05b-factors-locations-isi.sql 
$ mysql --user=user --password < pt-05c-factors-locations-lcc.sql 

These commands cause the MySQL server to produce CSV files whose names begin 
with 05. 

When the queries in Steps 12–14 were written, we were still making sense of the data 
and were keeping queries simple. It is possible to combine these three steps; in fact, we did 
so later. 

N. Step 14: Produce Event Actor Data for Coders 
Some events have associated actors. To generate this data, execute the following 

commands: 
$ mysql --user=user --password < pt-06a-actors-bbn.sql 
$ mysql --user=user --password < pt-06b-actors-isi.sql 
$ mysql --user=user --password < pt-06c-actors-lcc.sql 

These commands produce CSV files whose names begin with 06. The files will be 
created in directory C:\Program Data\MySQL\MySQL Server 8.0\Uploads. The three 
query files (the ones whose names begin with pt-06) each specify this location; if it is not 
valid on your computer, change the query files. 

O. Step 15: Stitch Together Data from Steps 12–14 
Performing Steps 12–14 yields nine files, three each for BBN, ISI, and LCC. In a 

folder containing these files (either the folder from the previous step or one into which you 
have copied those files), execute the following commands: 

$ python3 merge-csvs.py 0[456]a* > bbn-30-calib-sents.csv 
$ python3 merge-csvs.py 0[456]b* > isi-30-calib-sents.csv 
$ python3 merge-csvs.py 0[456]c* > lcc-30-calib-sents.csv 

Files bbn-30-calib-sents.csv, isi-30-calib-sents.csv, and lcc-30-calib-
sents.csv now contain the assertion, event, factor, location, and actor data for BBN, ISI, 
and LCC, respectively. 

Be careful about opening these files in Excel. The files use the UTF-8 character set 
encoding, whereas Excel, especially older versions, uses Microsoft’s Windows-1252 
encoding. You may find that text is not translated properly and contains nonsensical 
characters. (Be forewarned that there are some nonsensical characters anyway, but you will 
encounter more if you use an encoding other than UTF-8.) To use the files, follow these 
steps: 
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1. Open Excel and either create a new workbook or open an existing one. 

2. On the Data ribbon, in the Get & Transform Data section, click From Text/CSV. 
A window will pop up. 

3. In the File Origin menu, select 65001: Unicode (UTF-8). 

4. Click the Load button. 

Excel will load data in your file into a new tab with the characters correctly encoded. 

P. Step 16: Find Sentences that Occur in Only One Document 
This step generates a table identifying sentences that occur in only one document. It 

was defined because of the realization of the prevalence of such sentences. The more often 
a sentence occurs in multiple documents, the more likely it is boilerplate like the following 
statement: 

In particular, the content of this site may not be disseminated, copied, made 
available to third parties, saved, used or altered without prior consent from 
dpa. 

Execute the following command: 
$ mysql --user=user --password < pt-07-sentences-not-shared.sql 

This yields a table called unshared_sentences. The table identifies sentences not in 
any other document, the document they are in, and the sentence’s offset within the 
document. If a sentence occurs more than once in a document, the first occurrence is 
chosen. Sentences used in calibration (Step 10) are not considered. 

Q. Step 17: Find Sentences from Which BBN, ISI, and LCC Have 
Extracted Causal Assertions 
This step creates a table containing a subset of the sentences identified in Step 16, 

those from which BBN, ISI, and LCC have all extracted causal assertions. These causal 
assertions are unique to a document and are not from the set of sentences identified in Step 
10. Execute the following command: 

$ mysql --user=user --password \ 
 < pt-08-sentences-with-CAs-from-3-performers.sql 

R. Step 18: Produce Assessment Data for Sentences in Which BBN, 
ISI, and LCC All Found Causal Assertions 
IDA coders were assigned 70 sentences in which all three performers identified causal 

assertions. This step generates those sentences. Execute the following commands: 
$ mysql --user=user --password < pt-09a-nongeneric-CAs-bbn.sql 
$ mysql --user=user --password < pt-09b-nongeneric-CAs-isi.sql 
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$ mysql --user=user --password < pt-09c-nongeneric-CAs-lcc.sql 
The MySQL server will create three CSV files, one for each performer, whose names 

begin with 09.  

Like Step 10, the queries in this step discriminate against general events, but they use 
a more sophisticated approach. The IDA team discovered that there were not enough causal 
assertions to eliminate general events entirely. Moreover, it was agreed that events with 
associated factors were preferred to those without. The causal assertions in the sentences 
were ranked as follows: 

• The event types were scored as follows: 

– A causal assertion whose antecedent and consequent events were both 
general had a score of 0. 

– A causal assertion whose antecedent or consequent event (but not both) was 
general had a score of 2. 

– A causal assertion whose antecedent and consequent events were not 
general had a score of 4. 

• If a causal assertion’s antecedent event had one or more factors, it received an 
additional point. 

• If a causal assertion’s consequent event had one or more factors, it received an 
additional point. 

Causal assertions were thus ranked on a scale of 0 to 6. Within groups of identical 
scores, causal assertions were selected randomly. 

S. Step 19: Identify Shared Sentences and Select a Representative 
Queries began to overlap. They all had to account for sentences that occurred in 

multiple documents and multiple times within the same document. We solved this problem 
by identifying for each sentence a single document and a single place in text (an integer 
offset of characters from the start) within that document and then creating a table containing 
the sentence, a representative document, and a representative place in text. To create and 
populate this table, execute the following command: 

$ mysql --user=user --password \ 
 < pt-10-representative-shared-sentences.sql 

This command creates a table called representative_shared_sentences. It also 
creates a view, candidate_sentences, that retrieves the union of unshared_sentences 
(Step 16) and representative_shared_sentences. Together, these tables supply all the 
sentences used in subsequent analysis. 



 

2-9 

T. Step 20: Identify Sentences with Causal Assertions from Two 
Performers 
Coders assessed sentences with causal assertions from two of the three performers in 

an attempt to understand whether the third performer was more discriminating or 
insufficiently selective. This step generates a table of those sentences. Execute the 
following command: 

$ mysql --user=user --password \ 
 < pt-11-sentences-with-CAs-from-2-performers.sql 

The result is a table named sentences_with_ca_s_from_two in the analysis database. 
This table contains all sentences from which exactly two of the performers (BBN, ISI, and 
LCC) extracted causal assertions. Each row identifies the two performers. 

U. Step 21: Identify Two-Performer Sentences to Assess 
Step 20 identified all sentences from which two performers extracted causal 

assertions. Step 21 selects 100 sentences for each performer combination. Execute the 
following commands: 

$ mysql --user=user --password \ 
 < pt-12a-create-selected-two-performer-sentences-table.sql 
$ mysql --user=user --password \ 
 < pt-12b-selected-two-performer-sentences-bbn-isi.sql 
$ mysql --user=user --password \ 
 < pt-12c-selected-two-performer-sentences-isi-lcc.sql 
$ mysql --user=user --password \ 
 < pt-12d-selected-two-performer-sentences-bbn-lcc.sql 

These commands create a table, selected_two_performer_sentences, and populate 
it with 300 rows, 100 for each of commands 2, 3, and 4. Sentences are selected by 
weighting each performer combination based on the number of general events in all 
assertions extracted from a sentence divided by the total number of assertions extracted 
from the sentence. 

V. Step 22: Produce Assessment Data for Two-Performer Sentences 
Each IDA coder was assigned 100 sentences from which exactly two performers had 

extracted causal assertions. This step uses the results from Step 21 to produce CSVs 
containing those sentences. Execute the following commands: 

$ mysql --user=user --password \ 
 < pt-13a-create-assertion-functions.sql 
$ mysql --user=user --password \ 
 < pt-13b-2-performer-CAs-bbn-isi.sql 
$ mysql --user=user --password \ 
 < pt-13c-2-performer-CAs-isi-lcc.sql 
$ mysql --user=user --password \ 
 < pt-13d-2-performer-CAs-bbn-lcc.sql 
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The upload directory will contain three CSV files whose names begin with 13. 

Regarding the first command, the queries developed so far, particularly those used to 
download data, had some patterns that would reoccur in yet-to-be-developed queries. They 
were encapsulated in MySQL user-defined functions. The first command adds 11 functions 
to the analysis database. Nine of these functions encapsulate how to extract assertion-
related text: cues, antecedents, and consequents. Each performer used their own variations 
on the standard. We needed separate functions for BBN, ISI, and LCC. 

W. Step 23: Create Table of Sentences from Which Only One 
Performer Extracted Causal Assertions 
IDA coders assessed sentences from which exactly one of the performers (BBN, ISI, 

or LCC) extracted one or more causal assertions. The intent was to determine if one of the 
performers has a comparative advantage in identifying extractable information. This step 
creates and populates a table of such sentences. Execute the following command: 

$ mysql --user=user --password \ 
 < pt-14-sentences-with-CAs-from-1-performer.sql 

The analysis database now contains table sentences_with_ca_s_from_one. Each 
row identifies a sentence and the performer who extracted causal assertions from it. 

X. Step 24: Produce Assessment Data for One-Performer Sentences 
Each IDA coder was assigned 100 sentences from which exactly one performer had 

extracted causal assertions. This step uses the table from Step 23 to produce CSVs 
containing those sentences. Execute the following commands: 

$ mysql --user=user --password < pt-15a-1-performer-CAs-bbn.sql 
$ mysql --user=user --password < pt-15b-1-performer-CAs-isi.sql 
$ mysql --user=user --password < pt-15c-1-performer-CAs-lcc.sql 

The upload directory will contain three files whose names begin with 15. These files 
contain all sentences from which only one performer extracted causal assertions, as well as 
information about the causal assertions extracted. 

Each row of the CSV describes a single causal assertion. If a performer extracts 
multiple causal assertions from a single sentence, all causal assertions will appear in 
separate rows. Some IDA coders noted that they were repeatedly asked to analyze 
extractions from the same sentence. The queries return the rows in random order, and (in 
practice) the number of times a coder had to assess results from the same sentence was 
small. 

Y. Step 25: Load Class Depth Data 
This step loads data needed to improve the quality of event and causal assertion 

assessment. Execute the following command: 
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$ mysql --user=user --password < pt-16-load-depth-data.sql 
Previous steps assessed event quality based on whether or not the event was generic—

that is, whether column event_type in an event table had the value 
http://ontology.causeex.com/ontology/odps/Event#Event. There are two problems 
with this approach. First, it is incomplete. Class Event is a subtype of class 
EventOrFactor, and the value of the event_type column can be any subtype of 
EventOrFactor. Event is not the only generic class to consider.  

Second, the approach is coarse. The hierarchy of possible event types is six layers 
deep. It is better for a performer to assign a type that is a leaf of the hierarchy tree rather 
than the leaf’s parent or grandparent. 

The IDA team ultimately used the following approach in subsequent steps. Figure 2-1 
shows a portion of the hierarchy of types that may be assigned to an event. Each class in 
the picture has a depth from the root, EventOrFactor, measured by the length of the path 
(number of arrows) from the root to that class. EventOrFactor has depth 0. Event, Factor, 
and Loan have depth 1. Accident and classes in its row have depth 2. Collision and classes 
in its row have depth 3. 

 

 
Figure 2-1. Event-or-Factor Hierarchy (Simplified) 

Each class receives a weight, which is its depth divided by the maximum path length 
that passes through it. In Figure 2-1, Event has weight 1/3, Accident 2/3, and Collision 
1. AgriculturalEvent also has weight 1, because it is a leaf class, and the maximum path 
length through it is also its depth. Loan, despite being rather high in the hierarchy, has 
weight 1. The rationale is that a TA1 performer that assigns type Loan has found the best 
possible match, as the ontology does not further categorize loans. 

This step creates a table, class_depth_weighting, in the analysis database. Each 
row of the table lists a class (a URL) and its weight. 

Z. Step 26: Produce Assessment Data for Lum.AI 
Each IDA coder was assigned three kinds of data to assess from Lum.AI: 
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1. Causal assertions from the 30 sentences used for calibration (Steps 10–15).  

2. Causal assertions from the sentences in which BBN, ISI, and LCC all found 
causal assertions (Steps 17 and 18). 

3. Causal assertions from sentences in which only Lum.AI found causal assertions. 

Execute the following commands to produce this data: 
$ mysql --user=user --password \ 
 < pt-17a-lum-assertions-from-30-sentences.sql 
$ mysql --user=user --password \ 
 < pt-17b-lum-assertions-from-sentences-with-CAs-from-3.sql 
$ mysql --user=user --password \ 
 < pt-17c-lum-assertions-not-found-elsewhere.sql 

The upload directory will contain three CSV files whose names start with 17. 

As it happened, Lum.AI found causal assertions in only 13 of the 30 calibration 
sentences. Lum.AI found 17 causal assertions in those sentences. The query IDA used to 
produce data for those sentences, pt-17a-lum-assertions-from-30-sentences.sql, 
extracts only one causal assertion per sentence. 

AA. Step 27: Select Sentences for Event Assessment (Related to Causal 
Assertions) 
Each IDA coder assessed 200 events. Half of these events were drawn from sentences 

containing causal assertions—more specifically, half of these events were associated with 
causal assertions. Execute the following commands to select the sentences: 

$ mysql --user=user --password \ 
 < pt-18a-generate-assertion-scores.sql 
$ mysql --user=user --password \ 
 < pt-18b-sentences-with-cas-from-4.sql 
$ mysql --user=user --password \ 
 < pt-18c-event-weighting.sql 

This produces a table, event_analysis_sentences, containing 100 sentences from 
which BBN, ISI, LCC, and Lum.AI all extracted causal assertions. The final command 
defines a function used in subsequent steps. 

The first query does something that, in retrospect, should have been done earlier. It 
creates a table containing every causal assertion along with a numeric score of that causal 
assertion’s quality. Score is based on the considerations described earlier: the absence of 
general events, the presence of factors, and the presence of actors and locations. Absence 
of general events is weighted much higher than the others, which offsets one performer 
having up to nine factors for an event. The weights make a causal assertion with two non-
generic events better than a causal assertion with one generic event and nine factors. 
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BB.  Step 28: Produce Assessment Data for Events 
This step produces CSVs containing all the information needed to assess events from 

the sentences in Step 26. Execute the following commands: 
$ mysql --user=user --password \ 
 < pt-19a-events-from-100-sentences-bbn.sql 
$ mysql --user=user --password \ 
 < pt-19b-events-from-100-sentences-isi.sql 
$ mysql --user=user --password \ 
 < pt-19c-events-from-100-sentences-lcc.sql 
$ mysql --user=user --password \ 
 < pt-19d-events-from-100-sentences-lum.sql 
$ mysql --user=user --password \ 
 < pt-19e-80-more-lum-events.sql 

The upload directory will contain five CSV files whose names begin with 19. 

These events are associated with causal assertions. The events are evenly divided 
between antecedent and consequent events. The antecedent events allow for the possibility 
of a causal assertion having antecedents other than causes. The queries do not attempt to 
represent all kinds of antecedent. In practice, antecedents other than causes have appeared 
in the results. 

Step 29 yields events that are not associated with causal assertions. Lum.AI does not 
extract an event unless it is associated with a causal assertion. The query in pt-19e-80-
more-lum-events.sql downloads extra Lum.AI-extracted events for coding. These events 
are not any of the ones extracted by the query in pt-19d-events-from-100-sentences-
lum.sql. 

CC. Step 29: Produce Assessment Data for Events Not Associated with 
Causal Assertions 
Coders also assessed 25 events that were not associated with causal assertions. This 

step creates the necessary data. Execute the following commands: 
$ mysql --user=user --password < pt-20a-unassociated-events-bbn.sql 
$ mysql --user=user --password < pt-20b-unassociated-events-isi.sql 
$ mysql --user=user --password < pt-20c-unassociated-events-lcc.sql 

The upload directory will contain three CSV files whose names begin with 20. 
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3. Script-Based Execution 

Appendix B summarizes the commands in Section 2. The commands have also been 
collected into a single script, generate-coder-data.sh, which is included with this 
distribution. It has been tested in a Linux environment. Invoke it as follows: 

$ generate-coder-data.sh data-directory admin-user user 
where: 

• data-directory is a directory containing the four uncompressed SQLite 
databases downloaded from VDL. That is, the script does not perform Steps 1 
and 2. 

• admin-user is the name of a MySQL user with administrative privileges. This 
user must be able to create databases. 

• user is the name of a MySQL user with privileges to create tables, views, and 
functions, and select and update data. The user must also have the FILE and 
SUPER privileges. It can be the same as admin-user, although many MySQL 
installations often grant administrative privileges to specific users. If you do not 
have these privileges, ask your administrator to execute the mysqladmin 
commands. 

The script does not perform Step 15, which requires copying files from a platform-
specific location. 

The script repeatedly invokes the mysql command. Each time it does, it asks for a 
password. Using the script requires entering a password 56 times. There are ways around 
this (e.g., MySQL’s mysql_config_editor command), but they are not portable. The IDA 
team is not delivering professional-quality software for CausX and does not have the time 
or resources to develop a general-purpose password management approach. The technique 
in the script, though painful to use, is secure. Users are welcome to customize the script. 

To use this script, you may have to modify the query files that specify the path in 
which the MySQL server exports data. For example, pt-04a-assertions-data-bbn.sql 
contains the path: 

C:/ProgramData/MySQL/MySQL Server 8.0/Uploads/04a-30-sentences-bbn.csv 
Modify this path to the location where your MySQL server exports files. See 

Appendix A for the full list of files to modify. To determine the path, run the mysql client 
and execute the following command: 

mysql> SHOW VARIABLES LIKE 'secure_file_priv'; 
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The output from this command will show the directory into which files are exported.



 

A-1 

Appendix A. 
Files Included in This Distribution 

Table A-1 lists all the files you should have received with this document. You can use 
these files to follow the process in Section 2 and to run the shell script described in 
Section 3. 

If an asterisk appears in the Path column, the files in that row have hardwired file 
paths. You may need to modify them to make them work on your platform. 

Table A-1. Files Included in Distribution 
File Description Path? 
databases.txt The SQLite databases used as 

inputs. 
 

generate-coder-data.sh Shell script to perform most of the 
commands in Section 2. 

 

pt-01a-populate-ca-sentences.sql Populate tables in the sentences 
database with information on 
sentences and the events and 
causal assertions extracted from 
them. 

 
pt-01b-populate-event-sentences.sql  
pt-01c-populate-ca-sentences-lum.sql  
pt-01d-populate-event-sentences-lum.sql 
pt-02-30-sentences.sql Create a table containing 30 

sentences from which all performers 
have extracted causal assertions. 

 

pt-03-cas-from-30-sentences.sql Select, for each performer, 30 causal 
assertions from the 30 sentences. 

 

pt-04a-assertions-data-bbn.sql Download the selected causal 
assertions CSVs. 

* 
pt-04b-assertions-data-isi.sql 
pt-04c-assertions-data-lcc.sql 
pt-05a-factors-locations-bbn.sql Download the factors and locations 

for the selected causal assertions. 
* 

pt-05b-factors-locations-isi.sql 
pt-05c-factors-locations-lcc.sql 
pt-06a-actors-bbn.sql Download the actors for the selected 

causal assertions. 
* 

pt-06b-actors-isi.sql 
pt-06c-actors-lcc.sql 
pt-07-sentences-not-shared.sql Identify causal-assertion-containing 

sentences that occur exactly once in 
the corpus. 

 

pt-08-sentences-with-CAs-from-3-
performers.sql 

Find all sentences from which all 
performers have extracted causal 
assertions. 
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pt-09a-nongeneric-CAs-bbn.sql Download data on sentences from 
which all performers have extracted 
causal assertions. 

* 
pt-09b-nongeneric-CAs-isi.sql 
pt-09c-nongeneric-CAs-lcc.sql 
pt-10-representative-shared-sentences.sql Identify sentences that appear in 

multiple documents, or more than 
once in the same document, and 
select one instance of each of the 
sentences for subsequent analysis. 

 

pt-11-sentences-with-CAs-from-2-
performers.sql 

Identify sentences from which 
exactly two of the three TA1 
performers have extracted causal 
assertions. 

 

pt-12a-create-selected-two-performer-
sentences-table.sql 

Select causal assertions from the 
sentences from which exactly two of 
the three TA1 performers have 
extracted causal assertions. 

 

pt-12b-selected-two-performer-sentences-
bbn-isi.sql 
pt-12c-selected-two-performer-sentences-isi-
lcc.sql 
pt-12d-selected-two-performer-sentences-
bbn-lcc.sql 
pt-13a-create-assertion-functions.sql Download data on sentences from 

which two performers have extracted 
causal assertions. 

* 
pt-13b-2-performer-CAs-bbn-isi.sql 
pt-13c-2-performer-CAs-isi-lcc.sql 
pt-13d-2-performer-CAs-bbn-lcc.sql 
pt-14-sentences-with-CAs-from-1-
performer.sql 

Identify sentences from which 
exactly one performer has extracted 
causal assertions. 

 

pt-15a-1-performer-CAs-bbn.sql Download data on sentences from 
which exactly one performer has 
extracted causal assertions. 

* 
pt-15b-1-performer-CAs.isi.sql 
pt-15c-1-performer-CAs-lcc.sql 
pt-16-load-depth-data.sql Upload data used to compute event 

quality. 
 

pt-17a-lum-assertions-from-30-sentences.sql Identify causal assertions from 
Lum.AI to be used in assessment. 

 
pt-17b-lum-assertions-from-sentences-with-
CAs-from-3.sql 

 

pt-17c-lum-assertions-not-found-
elsewhere.sql 

 

pt-18a-generate-assertion-scores.sql Select 100 sentences from which all 
four performers have extracted 
causal assertions. 

 
pt-18b-sentences-with-cas-from-4.sql 
pt-18c-event-weighting.sql 

 

pt-19a-events-from-100-sentences-bbn.sql Download events from the 100 
sentences. 

* 
pt-19b-events-from-100-sentences-isi.sql  
pt-19c-events-from-100-sentences-lcc.sql  
pt-19d-events-from-100-sentences-lum.sql 
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Pt-19e-80-more-lum-events.sql Download 80 more Lum.AI events, 
compensating for the absence of 
events not associated with a causal 
assertion. 

* 

pt-20a-unassociated-events-bbn.sql Download data on 250 events not 
associated with a causal assertion. 

 
pt-20b-unassociated-events-isi.sql 
pt-20c-unassociated-events-lcc.sql 
required-files.txt A list of all files in this table. The 

generate-coder-data.sh script uses it 
for error checking. 

 

schema-myisam.sql Defines a MySQL schema for TA1 
performer databases. 

 

sentences-myisam.sql Defines a MySQL schema for 
information on sentences. 
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Appendix B. Command Summary 

This appendix summarizes the commands used to generate the assessment data. 
Execute these commands in the order they appear. Be aware that (1) the first command 
corresponds to Step 3—downloading data from VDL and uncompressing it is not 
automated, and (2) Step 15, stitching together CSVs, is not included, as the location of 
CSV files generated by the MySQL server is not portable. 

 

 
$ python3 dump-db.py bbn_8k_20200518.db bbn-data.sql 
$ python3 dump-db.py isi_8k_20200601.db isi-data.sql 
$ python3 dump-db.py lcc_8k_20200716.db lcc-data.sql 
$ python3 dump-db.py lum_8k_20200608.db lum-data.sql 
$ mysqladmin --user=admin-user --password \ 
 create bbn8k create isi8k create lcc8k create lum8k 
$ mysql --user=user --password bbn8k < schema-myisam.sql 
$ mysql --user=user --password isi8k < schema-myisam.sql 
$ mysql --user=user --password lcc8k < schema-myisam.sql 
$ mysql --user=user --password lum8k < schema-myisam.sql 
$ mysql --user=user --password bbn8k < bbn-data.sql 
$ mysql --user=user --password isi8k < isi-data.sql 
$ mysql --user=user --password lcc8k < lcc-data.sql 
$ mysql --user=user --password lum8k < lum-data.sql 
$ mysqladmin --user=admin-user --password create analysis create sentences 
$ mysql --user=user --password sentences < sentences-myisam.sql 
$ mysql --user=user --password < pt-01a-populate-ca-sentences.sql 
$ mysql --user=user --password < pt-01b-populate-event-sentences.sql 
$ mysql --user=user --password < pt-01c-populate-ca-sentences-lum.sql 
$ mysql --user=user --password < pt-02-30-sentences.sql 
$ mysql --user=user --password < pt-03-cas-from-30-sentences.sql 
$ mysql --user=user --password < pt-04a-assertions-data-bbn.sql 
$ mysql --user=user --password < pt-04b-assertions-data-isi.sql 
$ mysql --user=user --password < pt-04c-assertions-data-lcc.sql 
$ mysql --user=user --password < pt-05a-factors-locations-bbn.sql 
$ mysql --user=user --password < pt-05b-factors-locations-isi.sql 
$ mysql --user=user --password < pt-05c-factors-locations-lcc.sql 
$ mysql --user=user --password < pt-06a-actors-bbn.sql 
$ mysql --user=user --password < pt-06b-actors-isi.sql 
$ mysql --user=user --password < pt-06c-actors-lcc.sql 
$ mysql --user=user --password < pt-07-sentences-not-shared.sql 
$ mysql --user=user --password \ 
 < pt-08-sentences-with-CAs-from-3-performers.sql 
$ mysql --user=user --password < pt-09a-nongeneric-CAs-bbn.sql 
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$ mysql --user=user --password < pt-09b-nongeneric-CAs-isi.sql 
$ mysql --user=user --password < pt-09c-nongeneric-CAs-lcc.sql 
$ mysql --user=user --password < pt-10-representative-shared-sentences.sql 
$ mysql --user=user --password \ 
 < pt-11-sentences-with-CAs-from-2-performers.sql 
$ mysql --user=user --password \ 
 < pt-12a-create-selected-two-performer-sentences-table.sql 
$ mysql --user=user --password \ 
 < pt-12b-selected-two-performer-sentences-bbn-isi.sql 
$ mysql --user=user --password \ 
 < pt-12c-selected-two-performer-sentences-isi-lcc.sql 
$ mysql --user=user --password \ 
 < pt-12d-selected-two-performer-sentences-bbn-lcc.sql 
$ mysql --user=user --password < pt-13a-create-assertion-functions.sql 
$ mysql --user=user --password < pt-13b-2-performer-CAs-bbn-isi.sql 
$ mysql --user=user --password < pt-13c-2-performer-CAs-isi-lcc.sql 
$ mysql --user=user --password < pt-13d-2-performer-CAs-bbn-lcc.sql 
$ mysql --user=user --password \ 
 < pt-14-sentences-with-CAs-from-1-performer.sql 
$ mysql --user=user --password < pt-15a-1-performer-CAs-bbn.sql 
$ mysql --user=user --password < pt-15b-1-performer-CAs-isi.sql 
$ mysql --user=user --password < pt-15c-1-performer-CAs-lcc.sql 
$ mysql --user=user --password < pt-16-load-depth-data.sql 
$ mysql --user=user --password \ 
 < pt-17a-lum-assertions-from-30-sentences.sql 
$ mysql --user=user --password \ 
 < pt-17b-lum-assertions-from-sentences-with-CAs-from-3.sql 
$ mysql --user=user --password \ 
 < pt-17c-lum-assertions-not-found-elsewhere.sql 
$ mysql --user=user --password < pt-18a-generate-assertion-scores.sql 
$ mysql --user=user --password < pt-18b-sentences-with-cas-from-4.sql 
$ mysql --user=user --password < pt-18c-event-weighting.sql 
$ mysql --user=user --password < pt-19a-events-from-100-sentences-bbn.sql 
$ mysql --user=user --password < pt-19b-events-from-100-sentences-isi.sql 
$ mysql --user=user --password < pt-19c-events-from-100-sentences-lcc.sql 
$ mysql --user=user --password < pt-19d-events-from-100-sentences-lum.sql 
$ mysql --user=user --password < pt-19e-80-more-lum-events.sql 
$ mysql --user=user --password < pt-20a-unassociated-events-bbn.sql 
$ mysql --user=user --password < pt-20b-unassociated-events-isi.sql 
$ mysql --user=user --password < pt-20c-unassociated-events-lcc.sql 
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Appendix C. Ranking Criteria 

Selecting the set of causal assertions and events to assess proved to be one of the most 
significant and challenging tasks. Table C-1 shows the number of causal assertions and 
events each performer extracted. The IDA team lacked the resources to assess everything 
in the limited time available to meet the DARPA requirement. Choosing which events to 
evaluate was vital.  

Table C-1. Selected Extraction Quantities 

Performer # of Causal Assertions # of Events 

BBN 401,087 4,614,493 
ISI 46,255 1,545,711 
LCC 59,737 2,062,786 
Lum.AI 39,862 73,423 

Early on, the IDA team made the decision to select high-quality causal assertions and 
events for coding. The team wanted to give each TA1 performer the opportunity to 
showcase their best work. 

TA2 performers were clear that certain kinds of events and causal assertions were 
more useful than others. In particular, they could not use causal assertions in which both 
the antecedent and consequent were generic.7 They preferred events with associated 
factors, locations, and times. 

The IDA team initially used the confidence scores each performer assigned. Each 
causal assertion, event, and location has an associated confidence—a real number between 
0 and 1 that expresses “the probability that the referenced individual is correct.”8 This 
approach did not yield useful results. There was little uniformity in how TA1 performers 
assigned confidence (Table C-2). Furthermore, high confidence values did not correspond 
to the TA2 needs stated above. The IDA team decided not to base selection on confidence. 

                                                
7 A generic event is one whose primary type is http://ontology.causex.com/ontology/odps/Event#Event. If 

the secondary type has this value, the event is not considered generic. 
8 Taken from the definition of the numeric_confidence property in the CausX ontology. 
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Table C-2. Causal Assertion Confidence Ranges 

Performer Minimum Average Maximum 

BBN 0.65 0.80 1 
ISI 0.2 0.59 1 
LCC 0 0.37 0.80 
Lum.AI 0.23 0.51 1 

The IDA team therefore devised its own selection approach. The objective of this 
approach was to provide coders with each TA1 performer’s high-quality events and causal 
assertions, where quality is judged based on perceived usefulness to TA2 performers. 
Coders could then assess the accuracy of information used by TA2s.  

The nature of quality changed as coding continued. The details of judging quality 
differed for each comparison. The differences reflected the IDA team’s growing 
knowledge of database content and the relative strengths and weaknesses of each TA1 
performer. This appendix describes each comparison quality in a separate section. There is 
one quality criterion shared among all comparisons, and it is considered the most 
significant: the presence or absence of generic events. 

1. Comparison 1 Quality Criteria 
In Comparison 1, quality 𝑞𝑞 of a performer’s causal assertion is determined by the 

following formula: 

𝑞𝑞 = 2 × 𝑒𝑒 + 𝑓𝑓 

where: 

𝑒𝑒 =  �
2 if neither antecedent nor consequent event is generic
1 if antecedent or consequent event is generic
0 if both antecedent and consequent event are generic

 

𝑓𝑓 =  �
2 if both antecedent and consequent events have factors
1 if either antecedent or consequent event has factors
0 if neither antecedent nor consequent event has factors

 

Quality is therefore an integer between 0 and 6. A causal assertion with non-generic 
antecedent and consequent events that both have factors is ranked most highly. A causal 
assertion with non-generic antecedent and consequent events without factors is ranked 
equally to a causal assertion in which one of the antecedent or consequent is generic and 
both have factors. 

This ranking system yields many more highly ranked causal assertions than 
necessary. Coders were asked to assess 70 causal assertions per TA1 performer. BBN had 
over 5,000 causal assertions with 𝑞𝑞 = 6. Causal assertions were selected from the candidate 
set using a random number generator. 
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By the time the IDA team was asked to assess Lum.AI extractions, we had devised 
the more sophisticated ranking system, discussed in Section 2.Y, based on distance along 
the path from root to leaf. We opted to determine the quality of Lum.AI causal assertions 
using the simple formula: 

𝑞𝑞 = 𝑤𝑤𝑎𝑎 + 𝑤𝑤𝑐𝑐  

where 𝑤𝑤𝑎𝑎 is the weighting of the antecedent event and 𝑤𝑤𝑐𝑐 is the weighting of the consequent 
event. We did not use the number of factors. We planned to do a separate evaluation of 
events and decided that, with this improved event-type ranking scheme, class depth weight 
would suffice. 

2. Comparison 2 Quality Criteria 
In Comparison 2, quality was based solely on event genericity. However, the 

evaluation function differed. Comparison 2 concerns sentences from which exactly two of 
the performers (BBN, ISI, and LCC) have extracted causal assertions. TA1 performers, 
and especially BBN, often extract many causal assertions from a single sentence (as many 
as 72). These do not tend to be meaningful causal assertions, so we limit candidate 
sentences to those with a maximum of five causal assertions. For each performer, we then 
judge sentence quality according to the genericity of all causal assertion events in the 
sentence: 

𝑠𝑠 = � 𝑒𝑒𝑖𝑖
𝑛𝑛

𝑖𝑖=1
𝑛𝑛�  

where 𝑛𝑛 is the number of causal assertions in a sentence, and 𝑒𝑒𝑖𝑖 is the genericity of the ith 
causal assertion. The assertion score is then the sum of the two performers’ scores. Under 
this weighting system, a sentence with multiple non-generic causal assertions is preferred 
to a sentence with a single non-generic causal assertion. The approach favors these 
sentences under the assumption that identifying specific kinds of events likely means being 
able to identify more factors.  

3. Comparison 3 Quality Criteria 
Comparison 3 used the same formula as Comparison 1. In Comparison 3, every 

sentence was unique and could be assessed independently. There was no need to balance 
one performer’s quality against another’s, as in Comparison 2. This might seem 
counterintuitive. Comparison 1 considers sentences in which BBN, ISI, and LCC all found 
causal assertions, but the formula above does not consider multiple performers’ results. 
The explanation is that sentences used for Comparison 1 were not (necessarily) the same 
for all performers. The starting criterion for sentence selection was that each performer had 
extracted a causal assertion from the sentence, but a given performer’s selection from that 
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set was independent of other performers’ results. The sentences selected for BBN, then, 
were largely different from those selected for ISI and LCC. Any overlap was coincidental. 

As in Comparison 1, quality for Lum.AI causal assertions was based on class depth. 

4. Comparison 4 Quality Criteria 
Comparison 4 assessed events, not causal assertions. To qualify, an event could not 

have more than five factors, actors, locations, or topics. The IDA team imposed this 
restriction in consideration of the assessment time constraints. 

Coders were given two categories of events: those associated with causal assertions 
(i.e., the antecedent or consequent of a causal assertion), and those not associated. 

a. Criteria for Events Associated with Causal Assertions 
 To select the events associated with causal assertions, the IDA team found all 

sentences from which BBN, ISI, LCC, and Lum.AI had each extracted a single causal 
assertion. These sentences were then scored and ranked as follows. A score was computed 
for each causal assertion based on the completeness of the antecedent and consequent 
events, including whether or not the events were generic. Furthermore, if the event had 
actors, the team assessed whether the performers had adhered to the definition of an actor: 
a person, group of persons, or organization. Some performers included monetary amounts, 
physical locations, and measurements as actors. These types of actors lowered a causal 
assertion’s score. 

The sentences were then sorted according to the sum of each performer’s assertion 
score. This favored the sentences from which every performer had extracted something 
reasonable, and penalized those in which one performer had done exceptionally well and 
others had done poorly. The IDA team wanted to select sentences in which every performer 
has done good, if not their best, work. 

From these sentences, the IDA team extracted the better of the two events associated 
with the sentence’s causal assertion. (Remember that each sentence had one causal 
assertion per performer.) Event selection was again based on completeness, with weights 
assigned: the more factors, actors, locations, and topics, the better. 

The IDA team had planned to extract 100 events. Unfortunately, there were not 100 
sentences across the entire corpus from which each performer had extracted only one causal 
assertion without at least one generic event. Results varied, but performers had about 70 
non-generic events meeting this criterion. Furthermore, it was not possible to limit the set 
to complete events. 
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b. Criteria for Events Not Associated with Causal Assertions 
The IDA team first tried selecting unassociated events using the same criteria as 

associated events (Section 4.a). This approach tended to produce groups of identically 
typed events. Apparently, event types correlate with the presence or absence of factors, 
actors, or locations; this holds true for all performers. 

In an effort to increase the number of event types present for assessment, the IDA 
team opted for a different and simpler approach to select unassociated events. Each event 
is assigned a score from 0 to 4.5. If an event is generically typed, its score is always 0. 
Otherwise, its score is: 

𝑓𝑓 + 𝑎𝑎 + 𝑙𝑙 + 𝑡𝑡
2� + 𝑠𝑠 

where: 
𝑓𝑓 = 1 if the event has factors, 0 if not
𝑎𝑎 = 1 if the event has actors, 0 if not
𝑙𝑙 = 1 if the event has locations, 0 if not
𝑡𝑡 = 1 if the event has topics, 0 if not
𝑠𝑠 = 1 if the event has a start time, 0 if not

 

The presence of a topic is not as significant as the presence of other properties and is 
weighted accordingly. 
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Abbreviations and Acronyms 

BBN Bolt Beranek and Newman 
CSV Comma Separated Value 
CausX Causal Exploration 
DARPA Defense Advanced Research Projects Agency 
IDA Institute for Defense Analyses 
ISI Information Sciences Institute 
JSON JavaScript Object Notation 
LCC Language Computer Corporation 
SHA Secure Hash Algorithm 
URL Uniform Resource Locator 
UTF-8 Unicode Transformation Format 
VDL Virtual Distribution Laboratory 
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