

IN S T IT U T E F O R D E F E N S E A N A L Y S E S

 Generating the CausX TA1 Assessment
Data

Peter A. Kind, Project Leader
Susan K. Numrich
Steven P. Wartik

November 2020

Approved for public
release; distribution is

unlimited.

IDA Document
D-15381

Copy

INSTITUTE FOR DEFENSE
ANALYSES

4850 Mark Center Drive
Alexandria, Virginia 22311-1882

The Institute for Defense Analyses is a nonprofit corporation that operates three
Federally Funded Research and Development Centers. Its mission is to answer
the most challenging U.S. security and science policy questions with objective
analysis, leveraging extraordinary scientific, technical, and analytic expertise.

About This Publication

This work was conducted by the IDA Systems and Analyses Center under contract
HQ0034-14-D-0001, Project DA-5-4320, “Causal Exploration of Complex
Operational Environments,” for the DARPA. The views, opinions, and findings
should not be construed as representing the official position of either the
Department of Defense or the sponsoring organization.

Acknowledgements

Keith L. Green, Dale Visser

For More Information

Peter A. Kind, Project Leader
pkind@ida.org, 703-845-6657

Margaret E. Myers, Director, Information Technology and Systems Division
mmyers@ida.org, 703-578-2782

Copyright Notice

© 2020 Institute for Defense Analyses
4850 Mark Center Drive, Alexandria, Virginia 22311-1882 • (703) 845-2000.

This material may be reproduced by or for the U.S. Government pursuant to the
copyright license under the clause at DFARS 252.227-7013 (Feb. 2014).

mailto:flast@ida.org
mailto:flast@ida.org

IN S T IT U T E F O R D E F E N S E A N A L Y S E S

IDA Document D-15381

Generating the CausX TA1 Assessment Data

Peter A. Kind, Project Leader

Susan K. Numrich
Steven P. Wartik

i

Executive Summary

DARPA’s Causal Exploration in Complex Environments (CausX) program involves
extracting information on events and causal relationships between events from natural-
language documents. Four companies participate in this extraction process: BBN, ISI,
LCC, and Lum.AI.1 They are termed TA1 performers, with the numeral “1” indicating their
early role in the processing pipeline.

The Institute for Defense Analyses (IDA) team’s 2020 assessment of TA1 performer
product quality required selecting causal assertions and events from the data sets created
by the performers’ extraction applications. The IDA team divided the assessment into four
comparison categories:

1. Causal assertions found by exactly one TA1 performer (BBN, ISI, LCC, or
Lum.AI).

2. Causal assertions found by exactly two performers (BBN, ISI, and LCC).
(Lum.AI, a relative latecomer, was not included.)

3. Causal assertions found by BBN, ISI, and LCC. (Lum.AI was not included.)

4. Events, both from and not from causal assertions. (Lum.AI extracts no events in
the latter category.)

To ensure that performers would be evaluated by their best work, the IDA team
developed an approach to select the highest-quality causal assertions and events. The team
based quality on the degree to which TA2s (the set of performers in the processing pipeline
after TA1s) find events and causal assertions useful. So-called generic events—those at the
highest level of the CausX event ontology’s event class hierarchy—were considered less
desirable than events lower in the hierarchy. An event with factors, actors, or locations was
considered higher quality than an event without them, and an event with all was considered
better still. A causal assertion’s quality was judged based on the quality of its events.

The IDA team obtained the TA1 data sets in the form of SQLite databases. The
process of selecting causal assertions and events for assessment was complex and time
consuming. The team wanted other parties to be able to review selection quality and
therefore wanted to make the process repeatable. This document describes the process,

1 See, respectively, https://www.raytheon.com/ourcompany/bbn, https://www.isi.edu/,

http://www.languagecomputer.com/, and https://lum.ai/.

https://www.raytheon.com/ourcompany/bbn
https://www.isi.edu/
http://www.languagecomputer.com/
https://lum.ai/

ii

which is presented as a sequence of Linux commands. Each command is presented and
explained. Executing these commands will re-generate the assessment data to the extent
possible. (There is some use of random numbers, so re-generating the exact data set the
IDA team used is unlikely.) The commands require a Linux environment running Python
3.6 or higher and the mysql database server.

iii

Contents

1. Introduction .. 1-1
A. Objective .. 1-1
B. Inputs ... 1-1
C. Environment ... 1-2

2. Process ... 2-1
A. Step 1: Obtain Data .. 2-1
B. Step 2: Uncompress Data .. 2-1
C. Step 3: Convert Databases from SQLite to MySQL 2-2
D. Step 4: Create a MySQL Database for Each Performer 2-2
E. Step 5: Create Schemas .. 2-2
F. Step 6: Populate Schemas ... 2-3
G. Step 7: Create Supporting Databases .. 2-3
H. Step 8: Create Schema for the Sentences Database 2-3
I. Step 9: Populate the Sentences Database ... 2-4
J. Step 10: Identify 30 Sentences for Coder Calibration 2-4
K. Step 11: Identify 30 Causal Assertions from the 30 Sentences 2-5
L. Step 12: Produce Causal Assertion and Event Data for Coders 2-5
M. Step 13: Produce Event Factor and Location Data for Coders 2-6
N. Step 14: Produce Event Actor Data for Coders ... 2-6
O. Step 15: Stitch Together Data from Steps 12–14 ... 2-6
P. Step 16: Find Sentences that Occur in Only One Document 2-7
Q. Step 17: Find Sentences from Which BBN, ISI, and LCC Have Extracted

Causal Assertions ... 2-7
R. Step 18: Produce Assessment Data for Sentences in Which BBN, ISI, and LCC

All Found Causal Assertions .. 2-7
S. Step 19: Identify Shared Sentences and Select a Representative 2-8
T. Step 20: Identify Sentences with Causal Assertions from Two Performers 2-9
U. Step 21: Identify Two-Performer Sentences to Assess 2-9
V. Step 22: Produce Assessment Data for Two-Performer Sentences................. 2-9
W. Step 23: Create Table of Sentences from Which Only One Performer Extracted

Causal Assertions ... 2-10
X. Step 24: Produce Assessment Data for One-Performer Sentences 2-10
Y. Step 25: Load Class Depth Data ... 2-10
Z. Step 26: Produce Assessment Data for Lum.AI... 2-11

iv

AA. Step 27: Select Sentences for Event Assessment (Related to Causal
Assertions) ... 2-12

BB. Step 28: Produce Assessment Data for Events .. 2-13
CC. Step 29: Produce Assessment Data for Events Not Associated with Causal

Assertions... 2-13
3. Script-Based Execution .. 3-1
Appendix A . Files Included in This Distribution ... A-1
Appendix B . Command Summary .. B-1
Appendix C . Ranking Criteria .. C-1

1. Comparison 1 Quality Criteria ... C-2
2. Comparison 2 Quality Criteria ... C-3
3. Comparison 3 Quality Criteria ... C-3
4. Comparison 4 Quality Criteria ... C-4

a. Criteria for Events Associated with Causal Assertions C-4
b. Criteria for Events Not Associated with Causal Assertions C-5

Acronyms and Abbreviations ... AA-1

v

Figures and Tables
Figure 2-1. Event-or-Factor Hierarchy (Simplified) .. 2-11

Table A-1. Files Included in Distribution ... A-1
Table C-1. Selected Extraction Quantities.. C-1
Table C-2. Causal Assertion Confidence Ranges ... C-2

1-1

1. Introduction

This document describes how the Institute for Defense Analyses (IDA) team
generated the data used to assess the TA1 performers: BBN, ISI, LCC, and (to a lesser
extent) Lum.AI. It discusses how the IDA team converted the data from the format in which
it was delivered to them into spreadsheets used by the IDA team’s coders.

The process, such as it was, often arose in response to immediate needs. Thus, it was
never optimized and is sometimes redundant. It includes code that, like most code, has
documentation that could be improved. However, it is effective, in the sense that it
produced the necessary outputs and is repeatable.

A. Objective
The IDA team’s objective was to assess the quality of causal assertions and events

extracted from a sample corpus of 8,000 documents. By comparing and contrasting the
causal assertions, IDA hoped to discover each performer’s strengths and weaknesses.

B. Inputs
The IDA team received databases from Two Six Labs in the SQLite format. Two Six

Labs supplied one database for each performer. Each database contained the performer’s
results of processing the sample corpus.

All databases used a schema established by Two Six Labs. BBN, ISI, and LCC
submitted data in an established JavaScript Object Notation (JSON) format; Two Six Labs
processed this data and converted it to the SQLite format (among others). The data bears
some resemblance to the format used in previous triple store representations.

• Assertions and events are identified by URLs.

• Class hierarchies used in the triple store are used in the database. For example,
as in the triple store, an event has a type, and this type is one of the subclasses of
class EventOrFactor.

The significant structural difference, of course, is the absence of predicates. In the
triple store, an attribute of an individual is specified through a triple with the individual as
the subject, the attribute value as the object, and a predicate defining which attribute the
triple is specifying. In the database, each row has primary key columns and one or more
additional columns. The primary key columns correspond to the subject. Additional
columns correspond to attributes. Each column name corresponds to a predicate. Two

1-2

tables may also be related, either explicitly or implicitly; this is analogous to triples whose
subject and object are both individuals rather than literal values.

The SQLite databases also lack the provenance information that was present in the
triple store, where every causal assertion, event, actor, and location individual was part of
a triple that indicated the sentence from which the individual was extracted. In the SQLite
databases, this information is represented in the table for events by including the complete
sentence, with the text of the event enclosed in double square brackets. Everything has a
relationship to an event. An assertion has an antecedent event and a consequent event.
Events have actors and locations, as well as factors. The SQLite database only locates
where in a sentence an extraction occurred for assertions and events. If a sentence contains
multiple instances of “Russia” (and, for one performer, 1,267 of them do), it is not possible
to determine which one triggered the extraction. This information was not judged necessary
for the assessment, and the IDA team did not ask Two Six Labs to include it.

C. Environment
The IDA team generated the assessment data on a Windows 10 platform and used

some free, open-source tools to generate the data:

• We used MySQL version 8.0.20 (community edition) as the database
management system.

• We created a Python application to convert the SQLite databases to MySQL.
We used Python version 3.6, and the application used the sqlite3 package built
into the standard library.

• Many of the steps were performed using command-line tools. We used the bash
shell, running in the Cygwin environment.2

Examples in this document are presented using bash. This is an arbitrary decision—
the cmd shell in Windows could also have been used. For that matter, MySQL and Python
both run on Linux, macOS, and Windows, so the steps can be carried out on any of those
platforms. The process has also been executed on an Ubuntu Linux 18.04 platform. Some
of the scripts contain absolute file names; these may need to be modified even if run on
Windows (see Appendix A).

2 See https://cygwin.com/.

http://www.mysql.com/
https://www.python.org/
https://docs.python.org/3/library/sqlite3.html
https://www.cygwin.com/
https://cygwin.com/

2-1

2. Process

This section provides a step-by-step description of the process the IDA team followed
to generate assessment data from the inputs supplied by Two Six Labs. In a nod to rational
design processes,3 we admit that we did not strictly adhere to the process below. What is
presented is a repeatable process that, in hindsight, is better organized than what we
actually did and produces the same results.

A. Step 1: Obtain Data
Two Six Labs made the data available on the U.S. Air Force’s Virtual Distributed

Laboratory (VDL)4 in the following directory:
/programs/CauseEx/CauseEx Performers/TA5_SI/TA1 Experiments/

Download the following files:

• bbn_8k_20200518.db.gz

• isi_8k_20200601.db.gz

• lcc_8k_20200716.db.gz

• lum_8k_20200608.db.gz

B. Step 2: Uncompress Data
The database files Two Six Labs delivers are large and often exceed 1GB, so Two Six

Labs compressed them prior to upload. In the directory to which you downloaded the files,
execute the following commands:

$ gunzip bbn_8k_20200518.db.gz
$ gunzip isi_8k_20200601.db.gz
$ gunzip lcc_8k_20200716.db.gz
$ gunzip lum_8k_20200608.db.gz

Your directory should contain these four files with the “.gz” suffix removed. These
files are interpretable as SQLite data.

3 D. Parnas and S. Clements, “A Rational Design Process: How and Why to Fake It.” IEEE Transactions

on Software Engineering Vol. SE-12, Issue 2, February 1986.
4 https://restricted.vdl.afrl.af.mil/

2-2

C. Step 3: Convert Databases from SQLite to MySQL
Python’s sqlite3 package provides the capability to dump the contents of an SQLite

database into a text file containing a series of SQL INSERT INTO statements. These
statements are not standard SQL format (or, at any rate, are not accepted by MySQL).

The IDA team developed a simple Python application to convert the four databases
from SQLite to MySQL. This script, dump-db.py, is executed as follows:5

$ python3 dump-db.py sqlite-database script-file
The sqlite-database parameter is one of the databases provided by Two Six Labs,

and script-file is the file into which the output is written.

The commands to execute are as follows:
$ python3 dump-db.py bbn_8k_20200518.db bbn-data.sql
$ python3 dump-db.py isi_8k_20200601.db isi-data.sql
$ python3 dump-db.py lcc_8k_20200716.db lcc-data.sql
$ python3 dump-db.py lum_8k_20200608.db lum-data.sql

D. Step 4: Create a MySQL Database for Each Performer
Data for each performer is placed in a separate MySQL database. Execute the

following commands:6
$ mysqladmin --user=user --password create bbn8k create isi8k \
 create lcc8k create lum8k

Here, user must be the name of a user with the right to create databases on your
MySQL server. The command will prompt for a password, which will have been set by the
MySQL administrator (i.e., whoever installed MySQL).

This and subsequent MySQL commands assume you are running a MySQL server on
the same platform as these shell commands. If you are not, you need to use the --host flag.
Furthermore, this and subsequent MySQL commands assume the specified user has
adequate access rights.

E. Step 5: Create Schemas
Each database created in Step 4 should contain the set of tables into which data will

be uploaded. These tables are structurally similar to those in the SQLite databases, but they
are optimized for MySQL.

Execute the following commands:

5 As mentioned in Section 1.C, we used Python version 3.6. Elsewhere, we used 3.8. On some systems,

there is no minor version number; “python3” accesses the latest version of Python 3. In this section,
“python3” means version 3.6 or higher.

6 The backslash at the end of the first line means the command continues on the next line.

2-3

$ mysql --user=user --password bbn8k < schema-myisam.sql
$ mysql --user=user --password isi8k < schema-myisam.sql
$ mysql --user=user --password lcc8k < schema-myisam.sql
$ mysql --user=user --password lum8k < schema-myisam.sql

The IDA team used MySQL’s MyISAM table format rather than the newer InnoDB.
We found we could execute queries faster with MyISAM. MyISAM does not support
transactions or foreign keys and is not well suited to situations in which multiple
individuals are simultaneously querying and modifying tables. If the latter describes your
work environment, you should consider switching to InnoDB.

F. Step 6: Populate Schemas
Load the data created in Step 3 into your MySQL databases:
$ mysql --user=user --password bbn8k < bbn-data.sql
$ mysql --user=user --password isi8k < isi-data.sql
$ mysql --user=user --password lcc8k < lcc-data.sql
$ mysql --user=user --password lum8k < lum-data.sql

Do not be surprised if some of these commands take time to complete. The IDA team
observed them requiring the better part of two days.

G. Step 7: Create Supporting Databases
Although it is possible to create queries that retrieve data in a single step, it would be

highly inefficient. Storing intermediate results greatly reduce both query complexity and
processing time.

Create two databases using the following command:
$ mysqladmin --user=user --password create analysis create sentences

The sentences database contains information on causal assertions, events, and the
sentences from which they are extracted. The analysis database partitions these causal
assertions and events into categories useful for generating assessments. It also contains
weighting tables useful in judging causal assertion and event quality.

Placement of sentence-related tables in the analysis database is, frankly, somewhat
arbitrary. The sentences database was created with the intent to populate its tables early in
the assessment process and to ensure its contents would not change thereafter. The analysis
database was intended to be more mutable, although many of its sentence-related tables
remained unchanged as well.

H. Step 8: Create Schema for the Sentences Database
As in Step 5, you need to create the tables in the sentence database. These tables are

highly indexed in an attempt to shorten query times. Execute the following command:
$ mysql --user=user --password sentences < sentences-myisam.sql

2-4

I. Step 9: Populate the Sentences Database
Execute the following commands:
$ mysql --user=user --password < pt-01a-populate-ca-sentences.sql
$ mysql --user=user --password < pt-01b-populate-event-sentences.sql
$ mysql --user=user --password < \
 pt-01c-populate-ca-sentences-lum.sql
$ mysql --user=user --password < \
 pt-01d-populate-event-sentences-lum.sql

These commands aggregate the causal assertion tables in all four performer databases
into a single table and do likewise for the event tables. Furthermore, although it is useful
to create an index on sentence text, some sentences exceed MySQL’s maximum permitted
index length. These queries work around this by generating an SHA1 hash of the sentence
text and indexing that.

J. Step 10: Identify 30 Sentences for Coder Calibration
The IDA team began its coding activities with a short guidebook of coding standards.

We assumed these standards, which had never been exercised, were a prototype that needed
to be tried and adjusted prior to the full assessment. We had six coders analyze the same
set of 30 sentences. These sentences were chosen by executing the following command:

$ mysql --user=user --password < pt-02-30-sentences.sql
This creates and populates a table, thirty_sentences_with_ca_s, in the analysis

database. Each row of the table identifies a sentence and the document containing it. Each
of these sentences has the following characteristics:

1. BBN, ISI, and LCC all extracted at least one causal assertion from it. (At the
time we performed this step, we had not been directed to include Lum.AI in our
assessment.)

2. None of the causal assertions have generic antecedent or consequent events.

3. The sentence occurred in exactly one document.

Characteristic 2 was determined by testing whether the value in the event_type
column was http://ontology.causeex.com/ontology/odps/Event#Event, the most
general kind of event and one that TA2 performers generally consider of little or no value.
The databases allow an event to have an optional second type, specified in the event_type2
column. The three performers all used this second type (although not often), and sometimes
the value of this column is the general event. BBN and LCC provide a more specific kind
of event in event_type, and the reason for using event_type2 is unclear. ISI only uses the
general event in event_type2 when event_type is a collection of events. ISI, then, is
sometimes able to identify an event as a collection without being able to determine the
nature of elements in the collection.

2-5

The sentences were selected randomly from the set that met these criteria. That is,
187 sentences met the criteria, and a random number generator was used to select 30 of
them. This step is therefore not entirely repeatable. Executing the query always yields 30
sentences, but it is unlikely to yield the same set. This randomization is necessary because
MySQL retrieves rows in the order in which they were entered, and the data given to the
IDA team had the rows grouped by document. Without randomization, the sentences would
have been from a small set of documents, not randomly chosen from the entire set.

When this query was written, we knew that some sentences occur in multiple
documents, but we had not realized that some documents contain multiple instances of the
same sentence. Fortunately, the sample set did not include any duplicate sentences.

K. Step 11: Identify 30 Causal Assertions from the 30 Sentences
The next step is to choose causal assertions from the 30 sentences identified in Step

10. A performer may extract more than one causal assertion from a single sentence; we
wanted to assess exactly one. Execute the following command:

$ mysql --user=user --password < pt-03-cas-from-30-sentences.sql
This creates a table, thirty_cas_from_thirty_sentences, containing all the

sentences from the table in Step 10, plus three randomly chosen causal assertion IDs (one
for each performer).

L. Step 12: Produce Causal Assertion and Event Data for Coders
IDA coders were presented with Excel spreadsheets containing causal assertions and

events to assess. Creating those spreadsheets was a multi-step process. The first step was
to extract information on the causal assertions and events. Execute the following
commands:

$ mysql --user=user --password < pt-04a-assertions-data-bbn.sql
$ mysql --user=user --password < pt-04b-assertions-data-isi.sql
$ mysql --user=user --password < pt-04c-assertions-data-lcc.sql

Each of these commands causes the MySQL server to produce a comma-separated
value (CSV) file containing results for a single performer. Each query file specifies the
name and location of that file. The value given is server-specific. In the query files
distributed, the files are placed in folder C:\ProgramData\MySQL\MySQL Server
8.0\Uploads.

Different versions of MySQL, or versions installed on different platforms, may place

the files in different folders. These three query files, and other such files, may need editing
to run on other computers.

After executing these queries, the folder in which the files are placed should contain
three files whose names begin with 04.

2-6

M. Step 13: Produce Event Factor and Location Data for Coders
Some events have associated locations, and associated causal factors. To generate this

data, execute the following commands:
$ mysql --user=user --password < pt-05a-factors-locations-bbn.sql
$ mysql --user=user --password < pt-05b-factors-locations-isi.sql
$ mysql --user=user --password < pt-05c-factors-locations-lcc.sql

These commands cause the MySQL server to produce CSV files whose names begin
with 05.

When the queries in Steps 12–14 were written, we were still making sense of the data
and were keeping queries simple. It is possible to combine these three steps; in fact, we did
so later.

N. Step 14: Produce Event Actor Data for Coders
Some events have associated actors. To generate this data, execute the following

commands:
$ mysql --user=user --password < pt-06a-actors-bbn.sql
$ mysql --user=user --password < pt-06b-actors-isi.sql
$ mysql --user=user --password < pt-06c-actors-lcc.sql

These commands produce CSV files whose names begin with 06. The files will be
created in directory C:\Program Data\MySQL\MySQL Server 8.0\Uploads. The three
query files (the ones whose names begin with pt-06) each specify this location; if it is not
valid on your computer, change the query files.

O. Step 15: Stitch Together Data from Steps 12–14
Performing Steps 12–14 yields nine files, three each for BBN, ISI, and LCC. In a

folder containing these files (either the folder from the previous step or one into which you
have copied those files), execute the following commands:

$ python3 merge-csvs.py 0[456]a* > bbn-30-calib-sents.csv
$ python3 merge-csvs.py 0[456]b* > isi-30-calib-sents.csv
$ python3 merge-csvs.py 0[456]c* > lcc-30-calib-sents.csv

Files bbn-30-calib-sents.csv, isi-30-calib-sents.csv, and lcc-30-calib-
sents.csv now contain the assertion, event, factor, location, and actor data for BBN, ISI,
and LCC, respectively.

Be careful about opening these files in Excel. The files use the UTF-8 character set
encoding, whereas Excel, especially older versions, uses Microsoft’s Windows-1252
encoding. You may find that text is not translated properly and contains nonsensical
characters. (Be forewarned that there are some nonsensical characters anyway, but you will
encounter more if you use an encoding other than UTF-8.) To use the files, follow these
steps:

2-7

1. Open Excel and either create a new workbook or open an existing one.

2. On the Data ribbon, in the Get & Transform Data section, click From Text/CSV.
A window will pop up.

3. In the File Origin menu, select 65001: Unicode (UTF-8).

4. Click the Load button.

Excel will load data in your file into a new tab with the characters correctly encoded.

P. Step 16: Find Sentences that Occur in Only One Document
This step generates a table identifying sentences that occur in only one document. It

was defined because of the realization of the prevalence of such sentences. The more often
a sentence occurs in multiple documents, the more likely it is boilerplate like the following
statement:

In particular, the content of this site may not be disseminated, copied, made
available to third parties, saved, used or altered without prior consent from
dpa.

Execute the following command:
$ mysql --user=user --password < pt-07-sentences-not-shared.sql

This yields a table called unshared_sentences. The table identifies sentences not in
any other document, the document they are in, and the sentence’s offset within the
document. If a sentence occurs more than once in a document, the first occurrence is
chosen. Sentences used in calibration (Step 10) are not considered.

Q. Step 17: Find Sentences from Which BBN, ISI, and LCC Have
Extracted Causal Assertions
This step creates a table containing a subset of the sentences identified in Step 16,

those from which BBN, ISI, and LCC have all extracted causal assertions. These causal
assertions are unique to a document and are not from the set of sentences identified in Step
10. Execute the following command:

$ mysql --user=user --password \
 < pt-08-sentences-with-CAs-from-3-performers.sql

R. Step 18: Produce Assessment Data for Sentences in Which BBN,
ISI, and LCC All Found Causal Assertions
IDA coders were assigned 70 sentences in which all three performers identified causal

assertions. This step generates those sentences. Execute the following commands:
$ mysql --user=user --password < pt-09a-nongeneric-CAs-bbn.sql
$ mysql --user=user --password < pt-09b-nongeneric-CAs-isi.sql

2-8

$ mysql --user=user --password < pt-09c-nongeneric-CAs-lcc.sql
The MySQL server will create three CSV files, one for each performer, whose names

begin with 09.

Like Step 10, the queries in this step discriminate against general events, but they use
a more sophisticated approach. The IDA team discovered that there were not enough causal
assertions to eliminate general events entirely. Moreover, it was agreed that events with
associated factors were preferred to those without. The causal assertions in the sentences
were ranked as follows:

• The event types were scored as follows:

– A causal assertion whose antecedent and consequent events were both
general had a score of 0.

– A causal assertion whose antecedent or consequent event (but not both) was
general had a score of 2.

– A causal assertion whose antecedent and consequent events were not
general had a score of 4.

• If a causal assertion’s antecedent event had one or more factors, it received an
additional point.

• If a causal assertion’s consequent event had one or more factors, it received an
additional point.

Causal assertions were thus ranked on a scale of 0 to 6. Within groups of identical
scores, causal assertions were selected randomly.

S. Step 19: Identify Shared Sentences and Select a Representative
Queries began to overlap. They all had to account for sentences that occurred in

multiple documents and multiple times within the same document. We solved this problem
by identifying for each sentence a single document and a single place in text (an integer
offset of characters from the start) within that document and then creating a table containing
the sentence, a representative document, and a representative place in text. To create and
populate this table, execute the following command:

$ mysql --user=user --password \
 < pt-10-representative-shared-sentences.sql

This command creates a table called representative_shared_sentences. It also
creates a view, candidate_sentences, that retrieves the union of unshared_sentences
(Step 16) and representative_shared_sentences. Together, these tables supply all the
sentences used in subsequent analysis.

2-9

T. Step 20: Identify Sentences with Causal Assertions from Two
Performers
Coders assessed sentences with causal assertions from two of the three performers in

an attempt to understand whether the third performer was more discriminating or
insufficiently selective. This step generates a table of those sentences. Execute the
following command:

$ mysql --user=user --password \
 < pt-11-sentences-with-CAs-from-2-performers.sql

The result is a table named sentences_with_ca_s_from_two in the analysis database.
This table contains all sentences from which exactly two of the performers (BBN, ISI, and
LCC) extracted causal assertions. Each row identifies the two performers.

U. Step 21: Identify Two-Performer Sentences to Assess
Step 20 identified all sentences from which two performers extracted causal

assertions. Step 21 selects 100 sentences for each performer combination. Execute the
following commands:

$ mysql --user=user --password \
 < pt-12a-create-selected-two-performer-sentences-table.sql
$ mysql --user=user --password \
 < pt-12b-selected-two-performer-sentences-bbn-isi.sql
$ mysql --user=user --password \
 < pt-12c-selected-two-performer-sentences-isi-lcc.sql
$ mysql --user=user --password \
 < pt-12d-selected-two-performer-sentences-bbn-lcc.sql

These commands create a table, selected_two_performer_sentences, and populate
it with 300 rows, 100 for each of commands 2, 3, and 4. Sentences are selected by
weighting each performer combination based on the number of general events in all
assertions extracted from a sentence divided by the total number of assertions extracted
from the sentence.

V. Step 22: Produce Assessment Data for Two-Performer Sentences
Each IDA coder was assigned 100 sentences from which exactly two performers had

extracted causal assertions. This step uses the results from Step 21 to produce CSVs
containing those sentences. Execute the following commands:

$ mysql --user=user --password \
 < pt-13a-create-assertion-functions.sql
$ mysql --user=user --password \
 < pt-13b-2-performer-CAs-bbn-isi.sql
$ mysql --user=user --password \
 < pt-13c-2-performer-CAs-isi-lcc.sql
$ mysql --user=user --password \
 < pt-13d-2-performer-CAs-bbn-lcc.sql

2-10

The upload directory will contain three CSV files whose names begin with 13.

Regarding the first command, the queries developed so far, particularly those used to
download data, had some patterns that would reoccur in yet-to-be-developed queries. They
were encapsulated in MySQL user-defined functions. The first command adds 11 functions
to the analysis database. Nine of these functions encapsulate how to extract assertion-
related text: cues, antecedents, and consequents. Each performer used their own variations
on the standard. We needed separate functions for BBN, ISI, and LCC.

W. Step 23: Create Table of Sentences from Which Only One
Performer Extracted Causal Assertions
IDA coders assessed sentences from which exactly one of the performers (BBN, ISI,

or LCC) extracted one or more causal assertions. The intent was to determine if one of the
performers has a comparative advantage in identifying extractable information. This step
creates and populates a table of such sentences. Execute the following command:

$ mysql --user=user --password \
 < pt-14-sentences-with-CAs-from-1-performer.sql

The analysis database now contains table sentences_with_ca_s_from_one. Each
row identifies a sentence and the performer who extracted causal assertions from it.

X. Step 24: Produce Assessment Data for One-Performer Sentences
Each IDA coder was assigned 100 sentences from which exactly one performer had

extracted causal assertions. This step uses the table from Step 23 to produce CSVs
containing those sentences. Execute the following commands:

$ mysql --user=user --password < pt-15a-1-performer-CAs-bbn.sql
$ mysql --user=user --password < pt-15b-1-performer-CAs-isi.sql
$ mysql --user=user --password < pt-15c-1-performer-CAs-lcc.sql

The upload directory will contain three files whose names begin with 15. These files
contain all sentences from which only one performer extracted causal assertions, as well as
information about the causal assertions extracted.

Each row of the CSV describes a single causal assertion. If a performer extracts
multiple causal assertions from a single sentence, all causal assertions will appear in
separate rows. Some IDA coders noted that they were repeatedly asked to analyze
extractions from the same sentence. The queries return the rows in random order, and (in
practice) the number of times a coder had to assess results from the same sentence was
small.

Y. Step 25: Load Class Depth Data
This step loads data needed to improve the quality of event and causal assertion

assessment. Execute the following command:

2-11

$ mysql --user=user --password < pt-16-load-depth-data.sql
Previous steps assessed event quality based on whether or not the event was generic—

that is, whether column event_type in an event table had the value
http://ontology.causeex.com/ontology/odps/Event#Event. There are two problems
with this approach. First, it is incomplete. Class Event is a subtype of class
EventOrFactor, and the value of the event_type column can be any subtype of
EventOrFactor. Event is not the only generic class to consider.

Second, the approach is coarse. The hierarchy of possible event types is six layers
deep. It is better for a performer to assign a type that is a leaf of the hierarchy tree rather
than the leaf’s parent or grandparent.

The IDA team ultimately used the following approach in subsequent steps. Figure 2-1
shows a portion of the hierarchy of types that may be assigned to an event. Each class in
the picture has a depth from the root, EventOrFactor, measured by the length of the path
(number of arrows) from the root to that class. EventOrFactor has depth 0. Event, Factor,
and Loan have depth 1. Accident and classes in its row have depth 2. Collision and classes
in its row have depth 3.

Figure 2-1. Event-or-Factor Hierarchy (Simplified)

Each class receives a weight, which is its depth divided by the maximum path length
that passes through it. In Figure 2-1, Event has weight 1/3, Accident 2/3, and Collision
1. AgriculturalEvent also has weight 1, because it is a leaf class, and the maximum path
length through it is also its depth. Loan, despite being rather high in the hierarchy, has
weight 1. The rationale is that a TA1 performer that assigns type Loan has found the best
possible match, as the ontology does not further categorize loans.

This step creates a table, class_depth_weighting, in the analysis database. Each
row of the table lists a class (a URL) and its weight.

Z. Step 26: Produce Assessment Data for Lum.AI
Each IDA coder was assigned three kinds of data to assess from Lum.AI:

2-12

1. Causal assertions from the 30 sentences used for calibration (Steps 10–15).

2. Causal assertions from the sentences in which BBN, ISI, and LCC all found
causal assertions (Steps 17 and 18).

3. Causal assertions from sentences in which only Lum.AI found causal assertions.

Execute the following commands to produce this data:
$ mysql --user=user --password \
 < pt-17a-lum-assertions-from-30-sentences.sql
$ mysql --user=user --password \
 < pt-17b-lum-assertions-from-sentences-with-CAs-from-3.sql
$ mysql --user=user --password \
 < pt-17c-lum-assertions-not-found-elsewhere.sql

The upload directory will contain three CSV files whose names start with 17.

As it happened, Lum.AI found causal assertions in only 13 of the 30 calibration
sentences. Lum.AI found 17 causal assertions in those sentences. The query IDA used to
produce data for those sentences, pt-17a-lum-assertions-from-30-sentences.sql,
extracts only one causal assertion per sentence.

AA. Step 27: Select Sentences for Event Assessment (Related to Causal
Assertions)
Each IDA coder assessed 200 events. Half of these events were drawn from sentences

containing causal assertions—more specifically, half of these events were associated with
causal assertions. Execute the following commands to select the sentences:

$ mysql --user=user --password \
 < pt-18a-generate-assertion-scores.sql
$ mysql --user=user --password \
 < pt-18b-sentences-with-cas-from-4.sql
$ mysql --user=user --password \
 < pt-18c-event-weighting.sql

This produces a table, event_analysis_sentences, containing 100 sentences from
which BBN, ISI, LCC, and Lum.AI all extracted causal assertions. The final command
defines a function used in subsequent steps.

The first query does something that, in retrospect, should have been done earlier. It
creates a table containing every causal assertion along with a numeric score of that causal
assertion’s quality. Score is based on the considerations described earlier: the absence of
general events, the presence of factors, and the presence of actors and locations. Absence
of general events is weighted much higher than the others, which offsets one performer
having up to nine factors for an event. The weights make a causal assertion with two non-
generic events better than a causal assertion with one generic event and nine factors.

2-13

BB. Step 28: Produce Assessment Data for Events
This step produces CSVs containing all the information needed to assess events from

the sentences in Step 26. Execute the following commands:
$ mysql --user=user --password \
 < pt-19a-events-from-100-sentences-bbn.sql
$ mysql --user=user --password \
 < pt-19b-events-from-100-sentences-isi.sql
$ mysql --user=user --password \
 < pt-19c-events-from-100-sentences-lcc.sql
$ mysql --user=user --password \
 < pt-19d-events-from-100-sentences-lum.sql
$ mysql --user=user --password \
 < pt-19e-80-more-lum-events.sql

The upload directory will contain five CSV files whose names begin with 19.

These events are associated with causal assertions. The events are evenly divided
between antecedent and consequent events. The antecedent events allow for the possibility
of a causal assertion having antecedents other than causes. The queries do not attempt to
represent all kinds of antecedent. In practice, antecedents other than causes have appeared
in the results.

Step 29 yields events that are not associated with causal assertions. Lum.AI does not
extract an event unless it is associated with a causal assertion. The query in pt-19e-80-
more-lum-events.sql downloads extra Lum.AI-extracted events for coding. These events
are not any of the ones extracted by the query in pt-19d-events-from-100-sentences-
lum.sql.

CC. Step 29: Produce Assessment Data for Events Not Associated with
Causal Assertions
Coders also assessed 25 events that were not associated with causal assertions. This

step creates the necessary data. Execute the following commands:
$ mysql --user=user --password < pt-20a-unassociated-events-bbn.sql
$ mysql --user=user --password < pt-20b-unassociated-events-isi.sql
$ mysql --user=user --password < pt-20c-unassociated-events-lcc.sql

The upload directory will contain three CSV files whose names begin with 20.

3-1

3. Script-Based Execution

Appendix B summarizes the commands in Section 2. The commands have also been
collected into a single script, generate-coder-data.sh, which is included with this
distribution. It has been tested in a Linux environment. Invoke it as follows:

$ generate-coder-data.sh data-directory admin-user user
where:

• data-directory is a directory containing the four uncompressed SQLite
databases downloaded from VDL. That is, the script does not perform Steps 1
and 2.

• admin-user is the name of a MySQL user with administrative privileges. This
user must be able to create databases.

• user is the name of a MySQL user with privileges to create tables, views, and
functions, and select and update data. The user must also have the FILE and
SUPER privileges. It can be the same as admin-user, although many MySQL
installations often grant administrative privileges to specific users. If you do not
have these privileges, ask your administrator to execute the mysqladmin
commands.

The script does not perform Step 15, which requires copying files from a platform-
specific location.

The script repeatedly invokes the mysql command. Each time it does, it asks for a
password. Using the script requires entering a password 56 times. There are ways around
this (e.g., MySQL’s mysql_config_editor command), but they are not portable. The IDA
team is not delivering professional-quality software for CausX and does not have the time
or resources to develop a general-purpose password management approach. The technique
in the script, though painful to use, is secure. Users are welcome to customize the script.

To use this script, you may have to modify the query files that specify the path in
which the MySQL server exports data. For example, pt-04a-assertions-data-bbn.sql
contains the path:

C:/ProgramData/MySQL/MySQL Server 8.0/Uploads/04a-30-sentences-bbn.csv
Modify this path to the location where your MySQL server exports files. See

Appendix A for the full list of files to modify. To determine the path, run the mysql client
and execute the following command:

mysql> SHOW VARIABLES LIKE 'secure_file_priv';

3-2

The output from this command will show the directory into which files are exported.

A-1

Appendix A.
Files Included in This Distribution

Table A-1 lists all the files you should have received with this document. You can use
these files to follow the process in Section 2 and to run the shell script described in
Section 3.

If an asterisk appears in the Path column, the files in that row have hardwired file
paths. You may need to modify them to make them work on your platform.

Table A-1. Files Included in Distribution
File Description Path?
databases.txt The SQLite databases used as

inputs.

generate-coder-data.sh Shell script to perform most of the
commands in Section 2.

pt-01a-populate-ca-sentences.sql Populate tables in the sentences
database with information on
sentences and the events and
causal assertions extracted from
them.

pt-01b-populate-event-sentences.sql
pt-01c-populate-ca-sentences-lum.sql
pt-01d-populate-event-sentences-lum.sql
pt-02-30-sentences.sql Create a table containing 30

sentences from which all performers
have extracted causal assertions.

pt-03-cas-from-30-sentences.sql Select, for each performer, 30 causal
assertions from the 30 sentences.

pt-04a-assertions-data-bbn.sql Download the selected causal
assertions CSVs.

*
pt-04b-assertions-data-isi.sql
pt-04c-assertions-data-lcc.sql
pt-05a-factors-locations-bbn.sql Download the factors and locations

for the selected causal assertions.
*

pt-05b-factors-locations-isi.sql
pt-05c-factors-locations-lcc.sql
pt-06a-actors-bbn.sql Download the actors for the selected

causal assertions.
*

pt-06b-actors-isi.sql
pt-06c-actors-lcc.sql
pt-07-sentences-not-shared.sql Identify causal-assertion-containing

sentences that occur exactly once in
the corpus.

pt-08-sentences-with-CAs-from-3-
performers.sql

Find all sentences from which all
performers have extracted causal
assertions.

A-2

pt-09a-nongeneric-CAs-bbn.sql Download data on sentences from
which all performers have extracted
causal assertions.

*
pt-09b-nongeneric-CAs-isi.sql
pt-09c-nongeneric-CAs-lcc.sql
pt-10-representative-shared-sentences.sql Identify sentences that appear in

multiple documents, or more than
once in the same document, and
select one instance of each of the
sentences for subsequent analysis.

pt-11-sentences-with-CAs-from-2-
performers.sql

Identify sentences from which
exactly two of the three TA1
performers have extracted causal
assertions.

pt-12a-create-selected-two-performer-
sentences-table.sql

Select causal assertions from the
sentences from which exactly two of
the three TA1 performers have
extracted causal assertions.

pt-12b-selected-two-performer-sentences-
bbn-isi.sql
pt-12c-selected-two-performer-sentences-isi-
lcc.sql
pt-12d-selected-two-performer-sentences-
bbn-lcc.sql
pt-13a-create-assertion-functions.sql Download data on sentences from

which two performers have extracted
causal assertions.

*
pt-13b-2-performer-CAs-bbn-isi.sql
pt-13c-2-performer-CAs-isi-lcc.sql
pt-13d-2-performer-CAs-bbn-lcc.sql
pt-14-sentences-with-CAs-from-1-
performer.sql

Identify sentences from which
exactly one performer has extracted
causal assertions.

pt-15a-1-performer-CAs-bbn.sql Download data on sentences from
which exactly one performer has
extracted causal assertions.

*
pt-15b-1-performer-CAs.isi.sql
pt-15c-1-performer-CAs-lcc.sql
pt-16-load-depth-data.sql Upload data used to compute event

quality.

pt-17a-lum-assertions-from-30-sentences.sql Identify causal assertions from
Lum.AI to be used in assessment.

pt-17b-lum-assertions-from-sentences-with-
CAs-from-3.sql

pt-17c-lum-assertions-not-found-
elsewhere.sql

pt-18a-generate-assertion-scores.sql Select 100 sentences from which all
four performers have extracted
causal assertions.

pt-18b-sentences-with-cas-from-4.sql
pt-18c-event-weighting.sql

pt-19a-events-from-100-sentences-bbn.sql Download events from the 100
sentences.

*
pt-19b-events-from-100-sentences-isi.sql
pt-19c-events-from-100-sentences-lcc.sql
pt-19d-events-from-100-sentences-lum.sql

A-3

Pt-19e-80-more-lum-events.sql Download 80 more Lum.AI events,
compensating for the absence of
events not associated with a causal
assertion.

*

pt-20a-unassociated-events-bbn.sql Download data on 250 events not
associated with a causal assertion.

pt-20b-unassociated-events-isi.sql
pt-20c-unassociated-events-lcc.sql
required-files.txt A list of all files in this table. The

generate-coder-data.sh script uses it
for error checking.

schema-myisam.sql Defines a MySQL schema for TA1
performer databases.

sentences-myisam.sql Defines a MySQL schema for
information on sentences.

B-1

Appendix B. Command Summary

This appendix summarizes the commands used to generate the assessment data.
Execute these commands in the order they appear. Be aware that (1) the first command
corresponds to Step 3—downloading data from VDL and uncompressing it is not
automated, and (2) Step 15, stitching together CSVs, is not included, as the location of
CSV files generated by the MySQL server is not portable.

$ python3 dump-db.py bbn_8k_20200518.db bbn-data.sql
$ python3 dump-db.py isi_8k_20200601.db isi-data.sql
$ python3 dump-db.py lcc_8k_20200716.db lcc-data.sql
$ python3 dump-db.py lum_8k_20200608.db lum-data.sql
$ mysqladmin --user=admin-user --password \
 create bbn8k create isi8k create lcc8k create lum8k
$ mysql --user=user --password bbn8k < schema-myisam.sql
$ mysql --user=user --password isi8k < schema-myisam.sql
$ mysql --user=user --password lcc8k < schema-myisam.sql
$ mysql --user=user --password lum8k < schema-myisam.sql
$ mysql --user=user --password bbn8k < bbn-data.sql
$ mysql --user=user --password isi8k < isi-data.sql
$ mysql --user=user --password lcc8k < lcc-data.sql
$ mysql --user=user --password lum8k < lum-data.sql
$ mysqladmin --user=admin-user --password create analysis create sentences
$ mysql --user=user --password sentences < sentences-myisam.sql
$ mysql --user=user --password < pt-01a-populate-ca-sentences.sql
$ mysql --user=user --password < pt-01b-populate-event-sentences.sql
$ mysql --user=user --password < pt-01c-populate-ca-sentences-lum.sql
$ mysql --user=user --password < pt-02-30-sentences.sql
$ mysql --user=user --password < pt-03-cas-from-30-sentences.sql
$ mysql --user=user --password < pt-04a-assertions-data-bbn.sql
$ mysql --user=user --password < pt-04b-assertions-data-isi.sql
$ mysql --user=user --password < pt-04c-assertions-data-lcc.sql
$ mysql --user=user --password < pt-05a-factors-locations-bbn.sql
$ mysql --user=user --password < pt-05b-factors-locations-isi.sql
$ mysql --user=user --password < pt-05c-factors-locations-lcc.sql
$ mysql --user=user --password < pt-06a-actors-bbn.sql
$ mysql --user=user --password < pt-06b-actors-isi.sql
$ mysql --user=user --password < pt-06c-actors-lcc.sql
$ mysql --user=user --password < pt-07-sentences-not-shared.sql
$ mysql --user=user --password \
 < pt-08-sentences-with-CAs-from-3-performers.sql
$ mysql --user=user --password < pt-09a-nongeneric-CAs-bbn.sql

B-2

$ mysql --user=user --password < pt-09b-nongeneric-CAs-isi.sql
$ mysql --user=user --password < pt-09c-nongeneric-CAs-lcc.sql
$ mysql --user=user --password < pt-10-representative-shared-sentences.sql
$ mysql --user=user --password \
 < pt-11-sentences-with-CAs-from-2-performers.sql
$ mysql --user=user --password \
 < pt-12a-create-selected-two-performer-sentences-table.sql
$ mysql --user=user --password \
 < pt-12b-selected-two-performer-sentences-bbn-isi.sql
$ mysql --user=user --password \
 < pt-12c-selected-two-performer-sentences-isi-lcc.sql
$ mysql --user=user --password \
 < pt-12d-selected-two-performer-sentences-bbn-lcc.sql
$ mysql --user=user --password < pt-13a-create-assertion-functions.sql
$ mysql --user=user --password < pt-13b-2-performer-CAs-bbn-isi.sql
$ mysql --user=user --password < pt-13c-2-performer-CAs-isi-lcc.sql
$ mysql --user=user --password < pt-13d-2-performer-CAs-bbn-lcc.sql
$ mysql --user=user --password \
 < pt-14-sentences-with-CAs-from-1-performer.sql
$ mysql --user=user --password < pt-15a-1-performer-CAs-bbn.sql
$ mysql --user=user --password < pt-15b-1-performer-CAs-isi.sql
$ mysql --user=user --password < pt-15c-1-performer-CAs-lcc.sql
$ mysql --user=user --password < pt-16-load-depth-data.sql
$ mysql --user=user --password \
 < pt-17a-lum-assertions-from-30-sentences.sql
$ mysql --user=user --password \
 < pt-17b-lum-assertions-from-sentences-with-CAs-from-3.sql
$ mysql --user=user --password \
 < pt-17c-lum-assertions-not-found-elsewhere.sql
$ mysql --user=user --password < pt-18a-generate-assertion-scores.sql
$ mysql --user=user --password < pt-18b-sentences-with-cas-from-4.sql
$ mysql --user=user --password < pt-18c-event-weighting.sql
$ mysql --user=user --password < pt-19a-events-from-100-sentences-bbn.sql
$ mysql --user=user --password < pt-19b-events-from-100-sentences-isi.sql
$ mysql --user=user --password < pt-19c-events-from-100-sentences-lcc.sql
$ mysql --user=user --password < pt-19d-events-from-100-sentences-lum.sql
$ mysql --user=user --password < pt-19e-80-more-lum-events.sql
$ mysql --user=user --password < pt-20a-unassociated-events-bbn.sql
$ mysql --user=user --password < pt-20b-unassociated-events-isi.sql
$ mysql --user=user --password < pt-20c-unassociated-events-lcc.sql

C-1

Appendix C. Ranking Criteria

Selecting the set of causal assertions and events to assess proved to be one of the most
significant and challenging tasks. Table C-1 shows the number of causal assertions and
events each performer extracted. The IDA team lacked the resources to assess everything
in the limited time available to meet the DARPA requirement. Choosing which events to
evaluate was vital.

Table C-1. Selected Extraction Quantities

Performer # of Causal Assertions # of Events

BBN 401,087 4,614,493
ISI 46,255 1,545,711
LCC 59,737 2,062,786
Lum.AI 39,862 73,423

Early on, the IDA team made the decision to select high-quality causal assertions and
events for coding. The team wanted to give each TA1 performer the opportunity to
showcase their best work.

TA2 performers were clear that certain kinds of events and causal assertions were
more useful than others. In particular, they could not use causal assertions in which both
the antecedent and consequent were generic.7 They preferred events with associated
factors, locations, and times.

The IDA team initially used the confidence scores each performer assigned. Each
causal assertion, event, and location has an associated confidence—a real number between
0 and 1 that expresses “the probability that the referenced individual is correct.”8 This
approach did not yield useful results. There was little uniformity in how TA1 performers
assigned confidence (Table C-2). Furthermore, high confidence values did not correspond
to the TA2 needs stated above. The IDA team decided not to base selection on confidence.

7 A generic event is one whose primary type is http://ontology.causex.com/ontology/odps/Event#Event. If

the secondary type has this value, the event is not considered generic.
8 Taken from the definition of the numeric_confidence property in the CausX ontology.

C-2

Table C-2. Causal Assertion Confidence Ranges

Performer Minimum Average Maximum

BBN 0.65 0.80 1
ISI 0.2 0.59 1
LCC 0 0.37 0.80
Lum.AI 0.23 0.51 1

The IDA team therefore devised its own selection approach. The objective of this
approach was to provide coders with each TA1 performer’s high-quality events and causal
assertions, where quality is judged based on perceived usefulness to TA2 performers.
Coders could then assess the accuracy of information used by TA2s.

The nature of quality changed as coding continued. The details of judging quality
differed for each comparison. The differences reflected the IDA team’s growing
knowledge of database content and the relative strengths and weaknesses of each TA1
performer. This appendix describes each comparison quality in a separate section. There is
one quality criterion shared among all comparisons, and it is considered the most
significant: the presence or absence of generic events.

1. Comparison 1 Quality Criteria
In Comparison 1, quality 𝑞𝑞 of a performer’s causal assertion is determined by the

following formula:

𝑞𝑞 = 2 × 𝑒𝑒 + 𝑓𝑓

where:

𝑒𝑒 = �
2 if neither antecedent nor consequent event is generic
1 if antecedent or consequent event is generic
0 if both antecedent and consequent event are generic

𝑓𝑓 = �
2 if both antecedent and consequent events have factors
1 if either antecedent or consequent event has factors
0 if neither antecedent nor consequent event has factors

Quality is therefore an integer between 0 and 6. A causal assertion with non-generic
antecedent and consequent events that both have factors is ranked most highly. A causal
assertion with non-generic antecedent and consequent events without factors is ranked
equally to a causal assertion in which one of the antecedent or consequent is generic and
both have factors.

This ranking system yields many more highly ranked causal assertions than
necessary. Coders were asked to assess 70 causal assertions per TA1 performer. BBN had
over 5,000 causal assertions with 𝑞𝑞 = 6. Causal assertions were selected from the candidate
set using a random number generator.

C-3

By the time the IDA team was asked to assess Lum.AI extractions, we had devised
the more sophisticated ranking system, discussed in Section 2.Y, based on distance along
the path from root to leaf. We opted to determine the quality of Lum.AI causal assertions
using the simple formula:

𝑞𝑞 = 𝑤𝑤𝑎𝑎 + 𝑤𝑤𝑐𝑐

where 𝑤𝑤𝑎𝑎 is the weighting of the antecedent event and 𝑤𝑤𝑐𝑐 is the weighting of the consequent
event. We did not use the number of factors. We planned to do a separate evaluation of
events and decided that, with this improved event-type ranking scheme, class depth weight
would suffice.

2. Comparison 2 Quality Criteria
In Comparison 2, quality was based solely on event genericity. However, the

evaluation function differed. Comparison 2 concerns sentences from which exactly two of
the performers (BBN, ISI, and LCC) have extracted causal assertions. TA1 performers,
and especially BBN, often extract many causal assertions from a single sentence (as many
as 72). These do not tend to be meaningful causal assertions, so we limit candidate
sentences to those with a maximum of five causal assertions. For each performer, we then
judge sentence quality according to the genericity of all causal assertion events in the
sentence:

𝑠𝑠 = � 𝑒𝑒𝑖𝑖
𝑛𝑛

𝑖𝑖=1
𝑛𝑛�

where 𝑛𝑛 is the number of causal assertions in a sentence, and 𝑒𝑒𝑖𝑖 is the genericity of the ith
causal assertion. The assertion score is then the sum of the two performers’ scores. Under
this weighting system, a sentence with multiple non-generic causal assertions is preferred
to a sentence with a single non-generic causal assertion. The approach favors these
sentences under the assumption that identifying specific kinds of events likely means being
able to identify more factors.

3. Comparison 3 Quality Criteria
Comparison 3 used the same formula as Comparison 1. In Comparison 3, every

sentence was unique and could be assessed independently. There was no need to balance
one performer’s quality against another’s, as in Comparison 2. This might seem
counterintuitive. Comparison 1 considers sentences in which BBN, ISI, and LCC all found
causal assertions, but the formula above does not consider multiple performers’ results.
The explanation is that sentences used for Comparison 1 were not (necessarily) the same
for all performers. The starting criterion for sentence selection was that each performer had
extracted a causal assertion from the sentence, but a given performer’s selection from that

C-4

set was independent of other performers’ results. The sentences selected for BBN, then,
were largely different from those selected for ISI and LCC. Any overlap was coincidental.

As in Comparison 1, quality for Lum.AI causal assertions was based on class depth.

4. Comparison 4 Quality Criteria
Comparison 4 assessed events, not causal assertions. To qualify, an event could not

have more than five factors, actors, locations, or topics. The IDA team imposed this
restriction in consideration of the assessment time constraints.

Coders were given two categories of events: those associated with causal assertions
(i.e., the antecedent or consequent of a causal assertion), and those not associated.

a. Criteria for Events Associated with Causal Assertions
 To select the events associated with causal assertions, the IDA team found all

sentences from which BBN, ISI, LCC, and Lum.AI had each extracted a single causal
assertion. These sentences were then scored and ranked as follows. A score was computed
for each causal assertion based on the completeness of the antecedent and consequent
events, including whether or not the events were generic. Furthermore, if the event had
actors, the team assessed whether the performers had adhered to the definition of an actor:
a person, group of persons, or organization. Some performers included monetary amounts,
physical locations, and measurements as actors. These types of actors lowered a causal
assertion’s score.

The sentences were then sorted according to the sum of each performer’s assertion
score. This favored the sentences from which every performer had extracted something
reasonable, and penalized those in which one performer had done exceptionally well and
others had done poorly. The IDA team wanted to select sentences in which every performer
has done good, if not their best, work.

From these sentences, the IDA team extracted the better of the two events associated
with the sentence’s causal assertion. (Remember that each sentence had one causal
assertion per performer.) Event selection was again based on completeness, with weights
assigned: the more factors, actors, locations, and topics, the better.

The IDA team had planned to extract 100 events. Unfortunately, there were not 100
sentences across the entire corpus from which each performer had extracted only one causal
assertion without at least one generic event. Results varied, but performers had about 70
non-generic events meeting this criterion. Furthermore, it was not possible to limit the set
to complete events.

C-5

b. Criteria for Events Not Associated with Causal Assertions
The IDA team first tried selecting unassociated events using the same criteria as

associated events (Section 4.a). This approach tended to produce groups of identically
typed events. Apparently, event types correlate with the presence or absence of factors,
actors, or locations; this holds true for all performers.

In an effort to increase the number of event types present for assessment, the IDA
team opted for a different and simpler approach to select unassociated events. Each event
is assigned a score from 0 to 4.5. If an event is generically typed, its score is always 0.
Otherwise, its score is:

𝑓𝑓 + 𝑎𝑎 + 𝑙𝑙 + 𝑡𝑡
2� + 𝑠𝑠

where:
𝑓𝑓 = 1 if the event has factors, 0 if not
𝑎𝑎 = 1 if the event has actors, 0 if not
𝑙𝑙 = 1 if the event has locations, 0 if not
𝑡𝑡 = 1 if the event has topics, 0 if not
𝑠𝑠 = 1 if the event has a start time, 0 if not

The presence of a topic is not as significant as the presence of other properties and is
weighted accordingly.

AA-1

Abbreviations and Acronyms

BBN Bolt Beranek and Newman
CSV Comma Separated Value
CausX Causal Exploration
DARPA Defense Advanced Research Projects Agency
IDA Institute for Defense Analyses
ISI Information Sciences Institute
JSON JavaScript Object Notation
LCC Language Computer Corporation
SHA Secure Hash Algorithm
URL Uniform Resource Locator
UTF-8 Unicode Transformation Format
VDL Virtual Distribution Laboratory

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std, Z39.18

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington
Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a
collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From – To)

00-11-20 Final
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Generating the CausX TA1 Assessment Data HQ0034-14-D-0001
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBERS

6. AUTHOR(S) 5d. PROJECT NUMBER

Peter A. Kind, Susan K. Numrich, Steven P. Wartik DA-5-4320
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES 8. PERFORMING ORGANIZATION REPORT
NUMBER

D-15381 Institute for Defense Analyses
4850 Mark Center Drive
Alexandria, VA 22311-1882
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR’S / MONITOR’S ACRONYM

DARPA Dr. Joshua Elliott
Defense Advanced Research Projects Agency
675 N. Randolph St, Arlington, VA 22203

11. SPONSOR’S / MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

Project Leader: Steven P. Wartik
14. ABSTRACT

In Spring 2020, IDA performed an assessment of DARPA’s Causal Exploration (CausX) program. The CausX program
involves extracting events, causal assertions, and related elements from natural language documents. IDA’s assessment
compared the extraction quality of four performers participating in CausX. The IDA team developed an approach to select
each performer’s highest-quality work. To ensure “highest-quality work” was well-defined, the team created an automatable,
repeatable process for selecting events and causal assertions. This document describes the process and how to perform it. It
uses open source software and can be performed on a variety of modern computing platforms; IDA has executed it on
Windows and Linux. All files necessary to execute the process are included in this deliverable. An analyst who wants to
reproduce IDA’s results can use these files and follow the process steps to obtain the same spreadsheet data (allowing for
some variation due to randomization; steps involving randomization note the fact) IDA used in its assessment.
15. SUBJECT TERMS
Causal Exploration, Event, Causal Assertion, Natural Language Processing, SQLite, MySQL, Python, Repeatable Process

16. SECURITY CLASSIFICATION OF:
17. LIMITATION OF

ABSTRACT

Unlimited

18. NUMBER
OF PAGES

34

19a. NAME OF RESPONSIBLE PERSON
Dr. Joshua Elliott

a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include Area
Code)

 703-526-4754 Unclassified Unclassified Unclassified

	1. Introduction
	A. Objective
	B. Inputs
	C. Environment

	2. Process
	A. Step 1: Obtain Data
	B. Step 2: Uncompress Data
	C. Step 3: Convert Databases from SQLite to MySQL
	D. Step 4: Create a MySQL Database for Each Performer
	E. Step 5: Create Schemas
	F. Step 6: Populate Schemas
	G. Step 7: Create Supporting Databases
	H. Step 8: Create Schema for the Sentences Database
	I. Step 9: Populate the Sentences Database
	J. Step 10: Identify 30 Sentences for Coder Calibration
	K. Step 11: Identify 30 Causal Assertions from the 30 Sentences
	L. Step 12: Produce Causal Assertion and Event Data for Coders
	M. Step 13: Produce Event Factor and Location Data for Coders
	N. Step 14: Produce Event Actor Data for Coders
	O. Step 15: Stitch Together Data from Steps 12–14
	P. Step 16: Find Sentences that Occur in Only One Document
	Q. Step 17: Find Sentences from Which BBN, ISI, and LCC Have Extracted Causal Assertions
	R. Step 18: Produce Assessment Data for Sentences in Which BBN, ISI, and LCC All Found Causal Assertions
	S. Step 19: Identify Shared Sentences and Select a Representative
	T. Step 20: Identify Sentences with Causal Assertions from Two Performers
	U. Step 21: Identify Two-Performer Sentences to Assess
	V. Step 22: Produce Assessment Data for Two-Performer Sentences
	W. Step 23: Create Table of Sentences from Which Only One Performer Extracted Causal Assertions
	X. Step 24: Produce Assessment Data for One-Performer Sentences
	Y. Step 25: Load Class Depth Data
	Z. Step 26: Produce Assessment Data for Lum.AI
	AA. Step 27: Select Sentences for Event Assessment (Related to Causal Assertions)
	BB. Step 28: Produce Assessment Data for Events
	CC. Step 29: Produce Assessment Data for Events Not Associated with Causal Assertions

	3. Script-Based Execution
	Appendix A . Files Included in This Distribution
	Appendix B . Command Summary
	Appendix C . Ranking Criteria
	1. Comparison 1 Quality Criteria
	2. Comparison 2 Quality Criteria
	3. Comparison 3 Quality Criteria
	4. Comparison 4 Quality Criteria
	a. Criteria for Events Associated with Causal Assertions
	b. Criteria for Events Not Associated with Causal Assertions

	D-15381 - Cover.pdf
	About This Publication
	For More Information
	Copyright Notice

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	D-15381 - SF 298.pdf
	Form Approved OMB No. 0704-0188

	Blank Page

