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Executive Summary 

Air National Guard (ANG) airmen frequently experience delays of up to a year to 
enter training, which harms unit readiness and contributes to inefficient resource allocation. 
These delays may be caused, at least in part, by inaccurate forecasts in earlier years of 
training needs: the demand for basic military training (BMT) and for technical (or “tech”) 
school slots. To satisfy planning and budgeting requirements, the ANG must request BMT 
and tech school training slots up to five years in advance. Currently, individual ANG 
Career Field Managers (CFMs) collect data through various methods and forecast school 
slot demand generated by airmen who exit the ANG or switch occupations, and by end 
strength adjustments to particular career fields. More precise and reliable ANG school slot 
demand forecasts may help to reduce entry delays.  

To assist in developing ANG school slot demand forecasts, the Institute for Defense 
Analysis (IDA) produces annual “exit” forecasts for each career field subdivision, 
commonly referred to as three-digit Air Force Specialty Code (AFSC), for each June from 
2022 through 2026. We employ the Retention Prediction Model (RPM), a machine learning 
(ML) capability developed by IDA, to forecast five-year retention probabilities for each
airman in service in June of 2021. Since individuals can switch occupations during their
time in service, we layer a Markov transition model over the raw RPM exit forecasts to
predict the AFSC from which enlisted personnel will exit the ANG in the future. We then
use both of these probabilities to forecast the expected number of airmen who will exit the
ANG from each AFSC. This method does not account for individuals not yet in ANG
service who will both join and exit during the forecasting window of July 1, 2022 to June
30, 2026.

To illustrate the performance of this forecasting method, we compare the forecasts 
this method would have produced for each June from 2017 through 2021 to actual exits 
during the same period. This exercise indicates an average mean absolute error (by exit 
share) of 7% across all years, representing a 70% improvement from a baseline 
extrapolation model using historic attrition rates at the three-digit AFSC level. While these 
exit forecasts represent only one component of the demand generating process, this method 
represents a substantial improvement in ANG school slot and general attrition forecasting 
capabilities. 
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1. Introduction

Air National Guard (ANG) airmen frequently experience matriculation delays of 
up to a year to enter training, which harms unit readiness and contributes to 
inefficient resource allocation. Training consists of two parts: basic military training 
(BMT), which lasts approximately eight weeks and provides individuals with basic 
skills to become an airman, and technical (or “tech”) schools, which prepare airmen 
to enter their specific occupations, enumerated by Air Force Specialty Codes (AFSCs). 
ANG leadership relies on the active component of the U.S. Air Force (AF) to provide 
enlisted entrants with basic and technical skills training, and due to planning and 
budgeting requirements, the ANG must account for BMT and tech school training slots 
up to five years in advance. Currently, individual ANG Career Field Managers (CFMs) 
collect data through various methods to forecast school slot demand generated by airmen 
who exit the ANG or switch occupations, and end strength adjustments to particular 
career fields. More precise and reliable ANG school slot demand forecasts may help to 
reduce these delays.  

Demand for BMT and tech school enrollments flow from many potential sources 
related to airmen’s career paths to-date. Direct enlisted ANG accessions (recruits 
without prior military service) must complete both BMT and tech school trainings, while 
prior non-AF service members must generally only complete tech school. 
Depending on their previous AFSC and technical training, prior active/reserve 
enlisted Air Force service members may be required to complete tech school. 
Current ANG airmen changing to another AFSC may also need retraining, depending on 
the similarity between their previous training and their future AFSC. This analysis 
addresses one piece of the school slot demand-generating process—exits from 
service—and provides the complete concept for estimating school demand.  

Using the Retention Prediction Model (RPM-ANG), a machine learning 
(ML) capability developed by the Institute for Defense Analyses (IDA), this analysis 
provides the ANG with enhanced exit forecasts for each career field subdivision, 
expressed as a three-digit Duty AFSC. In particular, we use a combination of gradient-
boosted trees and Markov transition models to estimate exits from ANG service 
(accounting for personnel movement between AFSCs) annually from June 2022 through 
June 2026. This document provides detailed technical information on the data and 
methodologies used to produce these forecasts, which have been provided to the ANG 
separately.  

This paper is organized as follows: Chapter 2 provides background information and 
discusses the scope of this work. Chapter 3 provides the methodology used to produce the 
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forecasts. Chapter 4 overviews the data used to produce the forecasts. Chapter 5 provides 
details and discusses the performance of the forecasting method. Chapter 6 concludes with 
a synopsis of our results and discusses future directions for research that can benefit the 
ANG by way of improved forecasts.  
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2. Background and Scope

A. Background
Each ANG airman is assigned to a particular occupation, designated by an AFSC, and

while all direct accession ANG recruits with no prior service must attend BMT, the demand 
for technical schools is driven by specific occupations. Some occupations may require 
more recruits in a given year than others and may not exhibit consistent annual demand 
patterns. While BMT provides skills useful for all airmen regardless of their occupation 
(and all service members, in general), technical school training is tailored to the 
responsibilities that each airman will be performing. We do not possess specific data 
regarding which technical schools are offered, nor do we possess data regarding which 
AFSCs require the same technical schools; however, we are able to provide forecasts on 
an AFSC level, which we believe will provide ANG leadership with flexibility. 

An AFSC is a five-digit alpha-numeric code where each character represents a 
hierarchical ordering of an airman’s occupation. For enlisted AFSCs, the first digit 
corresponds to the career group, the first two digits together correspond to the career field, 
and the first three digits correspond to the career field subdivision. The fourth digit 
corresponds to the skill level, and all five digits correspond to the specific AFSC (Air Force 
Manual 2021). At the direction of ANG leadership, we forecast exits for each career field 
subdivision, hereafter referred to as a three-digit AFSC.  

Each airman can have up to five AFSCs, which can vary or can overlap: primary, 
secondary, tertiary, duty, and control. Primary AFSC corresponds to the specialty in which 
the airman is best qualified and has the highest skill level. Secondary and tertiary AFSCs 
correspond to the specialty in which the airman is second- and third-best qualified, 
respectively. Control AFSC corresponds to the specialty that helps determine training 
requirements, promotions, and other administrative matters. Duty AFSC corresponds to the 
specialty in which the airman is actually serving (Air Force Manual 2021). At the direction 
of ANG leadership, we forecast exits using the duty AFSC. This is more useful to the ANG, 
as training demand forecasts would then correspond to actual labor needs rather than 
administrative assignments and historical training information. 

Not only does the demand of new entrants vary by AFSC in any given year, but the 
demand of new entrants for a particular AFSC may vary by year. In other words, a 
particular occupation may have different labor needs depending on the year, which can be 
a result of many factors, including the current geo-political climate or military policies. For 
example, the 2013 budget cuts that led the Air Force to make significant drawbacks on its 
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maintenance fields illustrates a structural shift that resulted in significant changes in the 
need for certain occupations (Mehta 2018). Other temporal effects and changes can 
dramatically shift training needs and illustrates the inability to directly forecast demand 
using historical data and subsequently, highlights the need for an individually driven 
demand model. 

B. Components of Training Demand
As is common in many professions, new individuals must be hired each year to

account for individuals who left the occupation and to account for structural resizing. We 
use the term AFSC demand to refer to this accounting. AFSC demand is driven by three 
factors:  

• Exits from the ANG from each specific AFSC by individuals who leave ANG
service altogether;

• Transfers from one AFSC to another by individuals who change their
occupation to a different AFSC; and

• Structural adjustments for the AFSC sought by ANG leadership to resize to a
level that ANG leadership desires.

These three components make up the total number of individuals who must be added to 
that occupation to maintain the necessary labor levels. 

Similarly, various mechanisms are used to fill AFSC demand. We use the term AFSC 
supply to refer to the number of individuals who are allocated to fill AFSC demand. There 
are five sources of AFSC supply:  

• Non-prior service entrants – individuals who enter the AFSC and the ANG from
civilian life;

• Pre-trained prior service entrants – individuals who enter the AFSC and the
ANG from another service and who already have the corresponding technical
school training;

• Non-trained prior service entrants – individuals who enter the AFSC and the
ANG from another service and who do not have technical training;

• Pre-trained transfers into the AFSC – individuals already in the ANG who
change their occupation from another AFSC and who already have the
corresponding technical school training; and

• Non-trained transfers into the AFSC – individuals already in the ANG who
change their occupation from another AFSC and who do not have technical
school training.
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Table 1 details which of the five supply sources require BMT and technical school 
training prior to entering the AFSC. 

Table 1: AFSC Supply Sources 

Supply Source Requires BMT 
Requires Technical 

School Training 

Non-Prior Service Entrants Yes Yes 
Pre-Trained Prior Service Entrants Already Satisfied Already Satisfied 
Non-Trained Prior Service Entrants Already Satisfied Yes 
Pre-Trained Transfers Into AFSC Already Satisfied Already Satisfied 
Non-Trained Transfers Into AFSC Already Satisfied Yes 

Since only some entrants require training prior to entering an AFSC, training demand 
is equal to the number of untrained individuals who fill the AFSC demand. From this 
definition, the total training demand can be calculated only after the supply variables are 
determined. 

There are three stages to determine the number of AFSC technical school training and 
BMT slots required within a given time period. For each AFSC: First, estimate the demand; 
second, determine how to satisfy demand using individuals from the five supply sources; 
and third, based on the supply source allocations for each AFSC, calculate both the total 
number of AFSC entrants who will require technical school training, and the total number 
of new AFSC entrants who will require BMT across all AFSCs. 

C. Scope of the Analysis
While we are interested in forecasting training demand for BMT and technical school

training, collectively referred to as training demand, training demand is difficult to forecast, 
as doing so requires knowledge regarding many components previously discussed. We 
deconstruct this problem into a series of steps that can provide reasonable estimates for 
training demand. However, due to limitations in data availability, we only focus on 
estimating one piece of the overall training demand: exits from service from each AFSC. 

We do not estimate adjustments to the force structure desired by the ANG, as the Air 
Force determines those adjustments. Further, estimating the supply of individuals available 
to satisfy AFSC demand requires understanding whether the ANG can control the flow 
through each available source (combinations of new ANG members, prior service ANG 
entrants, and ANG members switching AFSCs).1 For example, the ANG may control 
whether individuals can transfer into or out of AFSCs, or how many individuals enter from 
prior service. To adjust the exit forecasts, we assume that transfers into and out of AFSCs 

1  Some of these sources may be controlled-but-bounded, in that the ANG can choose how many to select 
but are faced with a limited pool. 
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are uncontrolled by the ANG; however, we lack data on which transfers require retraining 
prior to entering an AFSC. Similarly, information regarding the flow of prior service 
entrants to the ANG (and their associated AFSCs) is unavailable to this analysis. 

Due to these data limitations, this paper forecasts exits from ANG service. As we 
illustrate in Chapter 3, ANG exits are a large driver of—but do not exclusively determine—
AFSC school slots demand. Chapter 3 presents a concept for how to estimate total ANG 
training demand once information is available on controlled supply sources, retraining 
requirements, and former service entrant flows.   
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3. Methodology

We focus on forecasting AFSC demand generated by exits from the ANG from each 
AFSC. Sections 3.A and 3.B provide the relevant context and technical framework for 
forecasting technical school demand and explain how our forecasts fit into the larger 
picture regarding overall training demand. Section 3.C details the specific methodology 
used in this analysis to forecast exits from the ANG from each AFSC.  

A. Mapping AFSC-level Personnel Flows
To support estimation of ANG school slots demand, we focus on personnel flows into

and out of duty AFSCs. These flows, which are discussed in section 2.B, are illustrated in 
Figure 1 for a generic AFSC denoted by j. 

Figure 1: ANG Enlisted Personnel Flows into and out of AFSC j Positions 

Enlisted personnel moving into and out of AFSC j potentially trigger demand for 
BMT and/or technical school training slots. Total enlisted school slot demand for BMT 
and technical schools equals the number of billets in an AFSC to be filled by untrained 
individuals. That is, technical school slots are needed when ANG personnel flow via 



8 

pathways (2), (8), and (15), and BMT slots are needed when ANG personnel flow via 
pathway (1). By contrast, school slots are not required for pathways (7) and (13) as those 
arrows reflect individuals entering AFSC j who are already trained. Depending on whether 
a vacated billet is to be filled, vacant billets arise from pathways (9), (10), and (11). For 
AFSC j, personnel flows via pathways (3), (4), (5), (12), (14), and (16) trigger neither 
school slot demand nor billet vacancies.2 We exclude from the flowchart those who drop 
out prior to AFSC assignment. 

To formalize this process, let 
∆𝑗𝑗,𝑡𝑡 = Desired change in steady state for AFSC j in year t (e.g., planned resizing), 

which is not shown in Figure 1 
𝜑𝜑𝑗𝑗,𝑡𝑡 = Exits from ANG from AFSC j between t-1 and t, i.e., pathways (11) 
𝜆𝜆𝑗𝑗,𝑡𝑡  = Switches to other AFSCs from AFSC j between t-1 and t, i.e., pathways (9) 

and (10) 
𝛾𝛾𝑗𝑗,𝑡𝑡  = AFSC switch-ins to AFSC j between t-1 and t who need tech school 

training, i.e., pathway (8)  
𝜃𝜃𝑗𝑗,𝑡𝑡  = AFSC switch-ins to AFSC j between t-1 and t who do not need tech school 

training, i.e., pathway (7) 
𝜇𝜇𝑗𝑗,𝑡𝑡  = Prior service entrants to AFSC j between t-1 and t who need tech school 

training, i.e., pathway (15) 
𝜌𝜌𝑗𝑗,𝑡𝑡  = Prior Service Entrants to AFSC j between t-1 and t who do not need tech 

school training, i.e., pathway (13) 
𝜔𝜔𝑗𝑗,𝑡𝑡  = Non-prior service entrants to AFSC j between t-1 and t who need tech 

school training, i.e., pathway (2) 
𝑑𝑑𝑡𝑡   = Drop outs between BMT tech school training between t-1 and t, i.e., 

pathway (1) minus the sum of pathways (2) and (3)3 

These parameters are represented as first-differences, that is, the numerical difference 
between the current and the previous period. As we use annual data in the context of this 
work, each model period corresponds to one calendar year. 

B. Estimating Total Enlisted School Slot Demand
The two outcome variables that we seek to estimate are:
𝐵𝐵𝑡𝑡   = Basic military training slots to offer in year t 
𝐷𝐷𝑗𝑗,𝑡𝑡 = Technical school slots to offer for AFSC j in year t  

2  Pathway (6) simply denotes fully trained personnel migrating into an AFSC. 
3  We lack data on dropouts from BMT and tech schools; however, we only exclude dropouts from 

technical schools as we suspect that the number of dropouts from technical schools is small and the 
number of dropouts after or during BMT is much higher. 
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As demand for the service as a whole is driven by demand at an AFSC level, we first 
focus on supply and demand for an AFSC where billet demand (on the left side) in AFSC 
j equals the supply of ANG enlisted personnel.  

∆𝑗𝑗,𝑡𝑡 +  𝜑𝜑𝑗𝑗,𝑡𝑡 + 𝜆𝜆𝑗𝑗,𝑡𝑡 =  𝛾𝛾𝑗𝑗,𝑡𝑡 +  𝜃𝜃𝑗𝑗,𝑡𝑡 +  𝜇𝜇𝑗𝑗,𝑡𝑡 + 𝜌𝜌𝑗𝑗,𝑡𝑡 +  𝜔𝜔𝑗𝑗,𝑡𝑡 

Letting 𝐴𝐴 be the set of all AFSCs in the forecasting year, demand for BMT school 
slots in time 𝑡𝑡 (𝐵𝐵𝑡𝑡) is then written as: 

𝐵𝐵𝑡𝑡 =  ∑ (𝜔𝜔𝑗𝑗,𝑡𝑡)𝑗𝑗𝑗𝑗𝑗𝑗  + 𝑑𝑑𝑡𝑡 
 = ∑ max(0,  ∆𝑗𝑗,𝑡𝑡 +  𝜑𝜑𝑗𝑗,𝑡𝑡 + 𝜆𝜆𝑗𝑗,𝑡𝑡 − 𝛾𝛾𝑗𝑗,𝑡𝑡 −  𝜃𝜃𝑗𝑗,𝑡𝑡 − 𝜇𝜇𝑗𝑗,𝑡𝑡 − 𝜌𝜌𝑗𝑗,𝑡𝑡) + 𝑑𝑑𝑡𝑡𝑗𝑗𝑗𝑗𝑗𝑗  (1) 

Demand for slots for each technical school in time 𝑡𝑡 (𝐷𝐷𝑗𝑗,𝑡𝑡) can then be written as: 

𝐷𝐷𝑗𝑗,𝑡𝑡 =  𝛾𝛾𝑗𝑗,𝑡𝑡 + 𝜇𝜇𝑗𝑗,𝑡𝑡 + 𝜔𝜔𝑗𝑗,𝑡𝑡 
        = max(0,  ∆𝑗𝑗,𝑡𝑡 +  𝜑𝜑𝑗𝑗,𝑡𝑡 + 𝜆𝜆𝑗𝑗,𝑡𝑡 − 𝜃𝜃𝑗𝑗,𝑡𝑡 − 𝜌𝜌𝑗𝑗,𝑡𝑡).  (2) 

Both demand models use a lower bound of 0 to account for the possibility that existing 
supply may already exceed demand, resulting in no new desired training slots.  

C. Estimating Exits from the ANG from each AFSC
We forecast the number of ANG airmen observed in period t who exit the ANG from

each AFSC over each of the next 5 years. This is not the same as forecasting total exits 
from an AFSC for each of the next 5 years, as we are unable to forecast future exits of 
those not yet in service using this framework. For example, if an individual joins service 
two years from now and exits service from a particular AFSC three years from now, then 
this framework will not accommodate prediction of that exit, as it is not able to account for 
entry of that individual. For this reason, we expect all predictions of 𝜑𝜑𝑗𝑗,𝑡𝑡+ℎ after the first 
forecast year (ℎ > 1) to be lower than the observed total exits from the ANG from each 
AFSC, since the latter includes new entrants during the prediction window. Given this 
limitation, we then estimate (3). 

𝜑𝜑𝑗𝑗,𝑡𝑡+ℎ = ∑ �∑ (𝑆𝑆𝑡𝑡+ℎ−1(𝑖𝑖) − 𝑆𝑆𝑡𝑡+ℎ(𝑖𝑖)) (𝐼𝐼 𝑗𝑗, 𝑡𝑡+ℎ−1(𝑖𝑖))𝑖𝑖∈𝑋𝑋𝑘𝑘,𝑡𝑡 �𝐽𝐽
𝑘𝑘=1  (3) 

where 
𝐽𝐽 = the number of AFSCs in the forecasting year 
ℎ =  1, . . . ,5 is the forecast horizon 
𝑋𝑋𝑗𝑗,𝑡𝑡+ℎ = individuals in AFSC j in 𝑡𝑡 + ℎ. 
𝑆𝑆𝑡𝑡+ℎ(𝑖𝑖) = 1 if 𝑖𝑖 is in service in 𝑡𝑡 +  ℎ and 0 otherwise 
𝐼𝐼𝑗𝑗,𝑡𝑡+ℎ(𝑖𝑖) =1 if 𝑖𝑖 is in service and in AFSC 𝑗𝑗 in 𝑡𝑡 + ℎ and 0 otherwise 
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Our methodology combines two distinct methods to obtain an estimate for (3). The 
first method estimates the probability that an individual will remain in service in 𝑡𝑡 + ℎ (the 
probability associated with 𝑆𝑆𝑡𝑡+ℎ(𝑖𝑖)). The second method estimates the probability that an 
individual will appear in AFSC j in period 𝑡𝑡 + ℎ − 1 (the probability associated with 
𝐼𝐼𝑗𝑗,𝑡𝑡+ℎ−1(𝑖𝑖)). 

1. Method 1: Forecasting Remaining in Service
We denote 𝑃𝑃𝑡𝑡+ℎ(i) to be the probability that individual i remains in service in 𝑡𝑡 + ℎ.

To estimate this probability (and thus the probability they will exit service between 𝑡𝑡 +
ℎ − 1 and 𝑡𝑡 + ℎ), we use the Finite Interval Forecasting Engine (FIFE). FIFE is a free and 
open source machine learning package developed by IDA and sponsored by the Office of 
the Under Secretary of Defense for Personnel and Readiness to use machine learning for 
discrete-time survival analysis on panel datasets (Institute for Defense Analyses 2021).4 
Specifically, we use the gradient boosted tree implementation to forecast survival. We refer 
to the resulting estimated model as a retention prediction model, which uses a collection of 
numeric and categorical features containing information on each individual to predict the 
probability that each individual will still remain in service for each of the next 5 years.  

We estimate two separate retention prediction models: an evaluation model and a 
future forecasting model. The evaluation model is used to evaluate the performance of the 
method in forecasting future survival. This model is trained using 75% of the individuals 
in the data between 2005 and 2015, reserving the remaining 25% as a validation set,5 and 
it is then applied to all 2016 individuals to forecast their exit probabilities for 2017 through 
2021. Note that, since this method does not account for new entrants, individuals entering 
the data after 2016 are excluded from the evaluation forecast window. Forecasting 
performance is then evaluated by comparing predictions for this time period to the actual 
observed exit occurrences.  

The future forecasting model is used to produce the forecast interest for 2022 through 
2026. It is trained using 75% of the individuals in the data between 2005 and 2020, 
reserving the remaining 25% as a validation set, and it is then applied to all 2021 
individuals to forecast their exit probabilities for 2022 through 2026.  

The two models are different, as the underlying training data changes. The first model 
allows us to determine the accuracy of our forecasts if we had attempted to answer the 
question of interest 5 years ago, which serves as a lens through which we can consider our 
actual forecasting results from the second model. While we could simply apply the first 
evaluation model to 2021 individuals to obtain future forecasts, doing so would not 

4  FIFE is written in Python and available via the Python Package Index (PyPI), or via GitHub at 
https://github.com/IDA-HumanCapital/fife. 

5  The validation set is used to optimize the hyper-parameters in the model; this is a common method for 
selecting the best model in a way that avoids data snooping bias. 
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consider data between 2016 and 2020, resulting in less than optimal performance for future 
forecasts. 

2. Method 2: Forecasting Transitioning Between AFSCs

To forecast the probability of an individual residing in a given AFSC in a future time
period, we use a discrete-time Markov chain model. We use this method to estimate the 
aggregate transition probability for ANG enlisted personnel between AFSCs (“states”) 
based only on their current AFSC.6 Because these transition probabilities are aggregate, 
they do not account for individual-level variation in transition probabilities. We may 
expand this capability in the future to account for individual-level heterogeneity in 
transitions; however, results from the primary forecast algorithm will be aggregated at the 
three-digit AFSC level, so we will rely on these AFSC-level predictions for forecasting 
these transitions. 

Mirroring the two retention-prediction evaluation and forecast models, we estimate 
two Markov transition models – one for evaluation and a second for forecasting over the 
period of interest. For each model, we define 𝑀 to be the one-period transition matrix 
containing the probabilities of an individual transitioning between AFSCs and 𝑀෡  to be its 
estimate. 𝑀 is a 𝐽 ൈ 𝐽 matrix whose 𝑘, 𝑗th element gives the probability that an individual 
will transition from AFSC 𝑘 to AFSC 𝑗 one period in the future.  

𝑀 is estimated using counts of switching of the individuals among AFSCs. For 
example, a specific transition probability between AFSC A and B is estimated by dividing 
the number of individuals who switched from A to B by the total number of individuals 
who started in A. Estimation of the probability of transitioning more than one period in the 
future is accomplished by multiplication of the matrix 𝑀; that is, the h-period transition 
probabilities are given by 𝑀௛. 

We can forecast the quantity of interest, 𝜑௝,௧ା௛, defined in (3) by accounting for the 

probability that each individual will exit service between 𝑡 ൅ ℎ െ 1 and 𝑡 ൅ ℎ: 

𝜑ො௝,௧ା௛ ൌ ∑ 𝑀෡௞,௝
௛ିଵ ∑ ቀ𝑃෠௧ା௛ିଵሺ𝑖ሻ  െ  𝑃෠௧ା௛ሺ𝑖ሻቁ௜∈௑ೖ,೟

௃
௞ୀଵ  (4)

We restrict the transition model training sets to years 2014-2015 for the evaluation 
model and to years 2013-2020 for the future forecast model, as examination of individuals 
in the validation set revealed sensitivity to the validation window, indicating potential non-
stationarity (see Appendix A for more information). The evaluation forecast and future 
forecast windows remain the same as with the two respective retention prediction models. 
For the same reason mentioned in the discussion of the evaluation of the retention 
prediction model (this method does not account for new entrants), individuals entering the 

6  This is called the Markov property. This property implies that the transition probability between states 
depends on past states only through the most recent state (Hamilton 1994). 
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data after 2016 are excluded from the evaluation forecast window (2017-2021) for the 
evaluation model. 
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4. Data and Descriptive Statistics

To generate the required three-digit AFSC-level school slot demand forecasts, this 
project uses administrative military personnel data from the Defense Manpower Data 
Center (DMDC). IDA receives this data on a quarterly basis as part of an institutional data 
sharing agreement and houses it in IDA’s Personally Identifiable Information Enclave. 
Measured monthly, the data currently spans January 2000 to June 2021. IDA performs 
routine cleaning and regularization of these data assets to ensure their consistency. We 
construct our analytic dataset using DMDC Reserve, Pay, Title 10 Activations, Defense 
Enrollment Eligibility Reporting System (DEERS),7 Deployment, and Casualties files. 
Additionally, we use ANG data corresponding to Extension Course Institute (ECI) training, 
provided to us by the National Guard Bureau/Training Resources and Programming Branch 
(NGB-A1DU). We also include external labor market information from the Current 
Population Survey (CPS) by matching an airmen’s current domestic mailing zip code.  

Table 2: Data Sources 

Dataset Description 
Years 
Used Source 

Master Administrative and Personal for 
Servicemembers 

2005-2021 DMDC 

Pay Pay/Bonus Information for 
Servicemembers 

2005-2021 DMDC 

Activations Title 10 Activations for 
Servicemembers 

2005-2021 DMDC 

Deployments Deployments for Servicemembers 2005-2021 DMDC 
Family Family information for servicemembers 2005-2021 DMDC 
Casualties Casualties for individuals or in UIC 2005-2021 DMDC 
ANG Training ECI courses completed by ANG 

personnel 
2005-20208 NGB-A1DU 

Labor Market Unemployment Rates by Occupation 
and Location 

2005-2021 CPS 

7  We augment the historic DMDC Family files with information from the Defense Enrollment Eligibility 
Reporting System (DEERS). 

8  Due to data reception limitations, we only have this data through April of 2020. For this reason, our 
model uses lagged values to correspond with training completed between 26 and 14 months prior to 
observation. 
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We restrict the analysis to all enlisted ANG personnel present in our DMDC/ANG 
data between June 2005 and June 2021. Due to data quality concerns impacting years 2000 
through 2004, we restricted our subset to calendar year 2005 and thereafter. For 
computational reasons, as well as limited month-to-month variation in the data, the final 
analysis dataset is a panel consisting of annual snapshots as of June 30 of each year 
reflecting the then-current status of each individual, as well as summarized information 
pertaining to the previous 12 months.  

If an enlisted airman commissions as an officer within our analytic period, we retain 
observations prior to commissioning. If an individual exits the ANG and subsequently joins 
another service or component while in our dataset, we keep only the ANG observations. 
We consider an individual to have exited enlisted ANG service (or simply “exited service”) 
when they no longer appear in our ANG analytic dataset; a given exit could represent an 
individual leaving military service altogether, commissioning, or joining another service. 
Due to a lack of data, we are unable to account for individuals who have “dropped out” of 
ANG service, for example, by failing to attend drill. Because individuals are observed 
annually, statements like “X individuals exited in period t” should be interpreted as X 
individuals having exited the dataset at some point between periods t-1 and t. Several 
additional steps were taken to transform these data sources into a usable feature space for 
modeling. More information on these steps can be found in Appendix B. Table 3 provides 
descriptive statistics for the data used in these analyses. 

Table 3: Descriptive Statistics 

Evaluation Model Forecasting Model 

Training Set Years 2005-2015 2005-2020 
Validation Set Years 2005-2015 2005-2020 
Test Set Years 2016 2021 
Forecasting Period 2017-2021 2022-2026 

Training and Validation Sets (Combined) 
Number of Total Observations 1,011,831 1,463,888 
Number of Distinct Individuals 176,289 215,895 
Average Number of Individuals Per Year 91,985 91,493 
Number of Distinct Duty AFSCs 386 403 
Average Number of Duty AFSCs Per Year 192.1 175.4 
% Male 81.2% 80.5% 
% White 84.2% 83.9% 
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Test Set 
Number of Total Observations 89,630 91,144 
Number of Distinct Individuals 89,630 91,144 
Average Number of Individuals Per Year 89,630 91,144 
Number of Distinct Duty AFSCs 148 113 
Average Number of Duty AFSCs Per Year 148 113 
% Male 76.7% 77.8% 
% White 83.4% 83.1% 

Number of Total Features 633 633 
Number of Numeric Features 419 419 
Number of Categorical Features 214 214 

Figure 2 presents the Kaplan-Meier survival curve, which illustrates the retention 
probability after completing each year of service in the ANG. The retention probability 
drops substantially after the sixth year of ANG service, corresponding to the completion of 
the initial contract for individuals with no prior military service (ANG 2021). 

Figure 2: Kaplan-Meier Retention Probability by Year of Service 
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5. Performance

This chapter documents the performance of the evaluation model. The evaluation 
model predicts exits between 2017-2021, and although it employs methods identical to the 
future forecast model, differences in the underlying training data make it a different model. 
As such, these results should be interpreted as illustrating how the forecasting method 
would have performed if applied five years ago. We then compare the results of the 
evaluation model to what actually occurred during the evaluation period, and to a set of 
loss predictions generated by extrapolating historic attrition rates at the three-digit AFSC 
level (approximating current practice).  

A. Retention Prediction Model Individual-Level Performance
We document the performance of the individual-level exit model within the

evaluation time period. We report individual-level performance in addition to AFSC-level 
performance as the ANG Retention Prediction Model (RPM-ANG) is a core development 
of this analysis.  

From an analytic perspective, the data is “imbalanced” in the sense that the vast 
majority of individuals choose to stay in any given time period. This makes both our 
prediction and our evaluation tasks more challenging. Many evaluation metrics have 
difficulty capturing performance in a satisfactory manner in the presence of this type of 
imbalance in the outcome, so care must be taken in choosing appropriate evaluation 
criteria. For example, if a population faced 95% survival in one period, a one-period 
survival analysis model that predicted “stay” for everyone, would obtain a 95% accuracy.9 
To account for this issue, we focus on precision and recall metrics corresponding to exits 
rather than retentions (Saito 2015).10 In general, one should note that no single evaluation 
criteria can perfectly capture model performance.  

To operationalize our metrics, we must select the classification threshold, 𝛼𝛼, for the 
probability of survival, 𝑃𝑃 𝑡𝑡+ℎ(𝑖𝑖), above which any individual i is said to survive for 
analytical purposes. A common method for identification of the optimal threshold value 

9  Accuracy represents the fraction of correctly predicted observations: 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

, where TP is true 
positives, TN is true negatives, FP is false positives, and FN is false negatives. 

10  Precision represents the fraction of individuals who were predicted to exit who were observed to have 
exited: 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹
. Recall represents the fraction of individuals who were observed to have exited who were 

correctly predicted as exiting: 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

. 
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involves chosing the threshold associated with the maximum F1 score; we use this 
method.11 Table 4 presents key performance metrics for each period, and table 5 provides 
confusion matrices for each period based on the optimal classification threshold value.  

Table 4: Performance Metrics by Period for the Evaluation Method 

Period 
Classification 

Threshold Precision12 Recall Accuracy F1 Score 

1 0.85 0.41 0.51 89.24% 0.45 
2 0.75 0.47 0.55 83.59% 0.51 
3 0.77 0.49 0.70 74.51% 0.57 
4 0.75 0.51 0.78 68.36% 0.61 
5 0.71 0.53 0.79 64.81% 0.64 

Pooled 0.75 0.50 0.72 76.09% 0.59 

Table 5: Classification Performance for Each Period 

Period 
Classification 

Threshold 

True 
Positives 

(TP) 

False 
Positives 

(FP) 

False 
Negatives 

(FN) 

True 
Negatives 

(TN) 

1 0.85 4,016 5,829 3,811 75,974 
2 0.75 7,505 8,614 6,091 67,420 
3 0.77 15,357 16,250 6,594 51,429 
4 0.75 22,649 22,101 6,257 38,623 
5 0.71 27,607 24,236 7,307 30,480 

Pooled 0.75 77,377 77,329 29,817 263,627 

Figure 3 provides the precision-recall curve (left) and precision-recall gain curve 
(right) for pooled observations across the five-year window. Precision-recall curves offer 
a visual representation of model performance based on binary (stay/exit) classification 
using various threshold values ranging from 0 to 1. The area under the precision-recall 
curve and precision-recall gain curve can be used as consolidated measures of performance 
and can assist with identifying the optimal threshold value. A traditional precision-recall 
curve must be interpreted relative to some baseline measurement, whereas precision-recall 
gain curve incorporates the baseline measurement, making it easier to interpret (Flach and 
Kull 2015). 

11 The F1 score is the harmonic mean of precision and recall: 2∗𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

. There are alternatives to the 
F1 score when precision and recall should not be equally weighted. 

12  A precision of 0.50 indicates that 50% of those predicted to exit actually exit. While this number seems 
exceptionally low on its own, it is a noticeable improvement on simple guessing (0.24), which is due 
largely to class imbalance. Conversely, precision for retentions is 0.90, which indicates that 90% of 
those predicted to stay actually stay. 
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We pool observations from all periods to create these plots for general illustration of 
model performance. In general, one may wish to examine precision-recall curves for each 
period in the forecasting window. 

Figure 3: Precision Recall, Precision-Recall Gain Curves for all Five Years Pooled. 

When interpreting the precision-recall curve, it is important to note that the baseline 
for evaluation shifts based on the prevalence of the positive class. In this particular case, 
the baseline, or “Everyone Exits” classification rate results in a precision of 0.24 (if every 
observation is predicted to exit, 24% of those observations would be correctly predicted). 
This baseline is not intended to reflect a current method used by the ANG; but rather, to 
illustrate the performance of a rudimentary model. The area under the curve reveals that 
the RPM performs substantially better than the baseline, as the area under the precision-
recall curve is 0.63 (compared to 0.24 for the baseline).13 The area under the precision-
recall gain curve is 0.81 (compared to a baseline of 0.5). 

Figure 4 illustrates the distribution of predicted retention probabilities separated by 
outcome for pooled observations across the five-year window. The red line marks the 
classification threshold value which maximizes the F1 score and separates predicted exit 
from predicted retention.14 The axes are scaled differently to account for the class 
imbalance.  

13  Given the imbalance in the prevalence of stay and exit outcomes, one may wonder how the model 
performs in comparison to an "Everyone Stays" baseline. In this case, the area under the precision-recall 
curve for the baseline measure is 0.761, and the area under the precision-recall curve for the associated 
model using “stay” as the positive class is 0.925, yielding a positive performance difference of 0.164. 
This appears to offer lower performance gains relative to the Everyone Exits comparison (0.634 - 0.239 
= 0.395); however, these metrics can be thought of as different sides of the same coin. In both cases, the 
developed forecasting model outperforms the baseline. 

14 If we let the positive class be “exits,” then the top left represents true positives, the top right represents 
false negatives, the bottom left represents false positives, and the bottom right represents true negatives. 
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Figure 4: Predicted Retention Probabilities Separated by Observed Outcome 

Figure 4 suggests two observations. First, the model is excellent at determining when 
someone will stay in service, likely because certain data features are highly correlated with 
retention. Second, the model is less adept at predicting exits compared to its ability to 
predict retentions. We observe that for those actually exiting, the distribution of predicted 
retention probabilties is much wider and centered farther from the truth (0). For 
comparison, a perfect model would produce a probability distribution for true exits with a 
point mass at 0. Plausible reasons for this include a potential lack of features correlating 
highly with exit and the imbalance in the data resulting in many more true non-exits from 
which the model learns. Future analysis could potentially improve on this limitation by 
improving the feature space with inclusion of additional drivers of attrition. One such 
source would include information regarding civilian careers, which are often linked to 
attrition as service may present an obstacle to airmen’s civilian careers.15 

15  This data was not included in this analysis as IDA was informed that quality data on civilian careers did 
not exist. 
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B. AFSC Exit Prediction Performance
In this section, we present performance metrics for the joint RPM-Transition model.

We examine mean absolute error to understand how well the model predicts exits from 
each AFSC during the evaluation period. To control for differences in AFSC sizes, we 
consider the predicted share exiting at each forecast horizon. That is, we divide the 
expected number of individuals exiting by the initial AFSC headcount to obtain an 
expected share exiting, which we then compare to the observed exit share at that point in 
time. This normalizes accuracy at the AFSC level.  

Table 6 contains the mean absolute error for the RPM-Transition model within each 
year of the evaluation period.16 To provide a comparison metric, we include an “AFSC- 
Average” model, which is akin to a simple trend extrapolation mechanism. For each 
forecast horizon, the AFSC-Average model takes historical data and calculates the average 
exit share from that AFSC for that window. For example, for the second period in the 
forecast, for each year between 2005 and 2014, the model will take each two-year window 
(i.e., 2005 to 2007, 2006 to 2008, etc.), obtain the observed exit shares for each AFSC, and 
then average those shares to obtain a prediction for the two-year forecasted exit share 
(corresponding to 2017 for the evaluation model).  

The AFSC-Average model slightly outperforms the RPM-Transition model in the 
first period, but the RPM-Transition model outperforms in all other years. Averaged across 
periods, the RPM-Transition model is inaccurate by approximately 7% of exits for any 
given AFSC, whereas the AFSC-Average model is off by approximately 23% of exits for 
any given AFSC: an average improvement of 70% over the 5-year horizon. We believe the 
difference in performance in the first year can likely be explained by the inability of 
individuals to switch AFSCs before exiting in the first year. As a result, the AFSC-Average 
model predicts the historical average one-year exit rate from an AFSC, which remains 
relatively constant for a given year. 

Table 6: Mean Absolute Error of Exit Share (RPM-Transition vs. AFSC-Average)17 

Year 
Forecast 
Horizon 

RPM-
Transition 

AFSC-
Average 

% Improvement 
using RPM-
Transition 

2016 t+1 0.03 0.03 -6.85%
2017 t+2 0.04 0.12 66.79%
2018 t+3 0.06 0.21 71.39%
2019 t+4 0.09 0.33 73.91%
2020 t+5 0.12 0.43 73.29%
Average 0.07 0.23 70.28% 

16 In this evaluation, we unified the data in the case of AFSC renaming. 
17 Values may not add up within table due to rounding 
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Figure 5 displays model performance for the 20 largest AFSCs. Model performance 
in this figure is measured as the percentage difference of predicted exits from actual exits 
per AFSC �𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃−𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
∗ 100�, where we average across periods. AFSC size in this 

figure is calculated according to the number of airmen in 2016. Positive (red) bars for a 
given AFSC denote overestimates, while negative (blue) bars correspond to 
underestimates. The model appears to underestimate exits more frequently than 
overestimate them, which could be a result of some combination of underestimating 
transfers into an AFSC, underestimating exits on an individual level, or just randomness in 
the data. None of these suggestions indicate that future forecasts will necessarily also 
underestimate exits; rather, they serve to illustrate a potential source of future 
investigation.18 

Figure 5: Forecast Error among the 20 Largest Duty AFSCs
 (by Assigned Personnel in 2016) 

In addition to the model performance caveats described thus far, exits from some 
AFSCs may be more challenging to forecast than others. This may be due to observable 
differences between individuals across AFSCs as represented in their feature values or 
unobserved or partially observed effects (e.g., policy changes, restructuring, specific 
economic conditions) that can impact exits from service and AFSC  transfers. While  the 

18 For example, we suspect that AFSC 3A1 was recoded to AFSC 3F5; however, it did not meet our 
threshold for a recode (AFSC 3A1 appeared in our data in 2019 and less than 90% of individuals in 3A1 
moved to 3F5 after 2018). A list of actual recodes would likely result in a noticeable increase in model 
performance.  
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retention prediction model captures some individual heterogeneity through observable 
information, the current version of the transition model cannot, indicating that such 
information could be used to improve forecasts of the transitions. Further, some 
unobserved information simply cannot be included in either model due to its unavailability 
(for example, information regarding comparable civilian careers). 

Table 7 documents the 10 AFSCs with the smallest forecast error and the 10 AFSCs 
with the largest forecast error, where “Mean Error” corresponds to headcounts. Observe 
that larger AFSCs result in lower absolute forecast error on a percentage basis than smaller 
AFSCs. This could be due to the difference in magnitude (the same size error would result 
in a greater percentage error for smaller AFSCs); however, this reasoning is confounded 
by the observation that, on average, the magnitude of the mean error is smaller for smaller 
AFSCs.19 Additionally, it appears that AFSCs corresponding to systems, air crews, and 
other operations fields experience lower absolute forecast error on a percentage basis than 
occupations like recruiters and mission support. This could be related to the size of the 
AFSCs or that some AFSCs are potentially more sensitive to shifting policy and other 
temporal effects. These hypotheses could be investigated in future analyses.  

Table 7: AFSCs with the Highest and Lowest Average Forecast Error 

Model 
Performance AFSC Description 

Population 
in 2016 

Mean Error 
(Std) 

Mean Percent 
Difference  

(Std) 

Best 

1A2 Aircraft Loadmaster 1,088 5.83 (9.31) 0.29 (7.33) 
2A9 Bomber 73 -1.38 (3.26) 0.33 (23.9) 
5R0 Chaplain Assistant 285 1.64 (6.99) -0.62 (17.99)
2A6 Aerospace Propulsion 6,133 22.19 (60.01) -0.64 (10.19)
2W1 Aircraft Armament Systems 1,808 9.75 (19.44) 0.87 (10.01)
8U0 Unit Deployment Manager 56 -1.55 (1.95) -0.95 (18.83)
3F020 Personnel 2,709 14.0 (39.47) -1.0 (8.83)
2A3 Avionics Systems 3,771 16.2 (48.38) -1.06 (10.87)
2A8 Mobility Air Forces 1,046 6.45 (20.59) -1.36 (16.44)
2S0 Materiel Management 2,764 17.11 (49.78) -1.45 (13.21)

Worst 

3A1 Administration 1,164 64.35 (87.59) 29.3 (43.86) 
1N2 Signals Intelligence Analyst 121 -7.81 (2.41) -29.96 (17.5)

8R0 
Enlisted Accessions 
Recruiter 318 9.8 (4.54) 32.81 (8.94)

3F4 Equal Opportunity 117 -18.0 (8.18) -35.92 (9.05)
8I0 IG Superintendent 129 21.41 (21.37) 48.38 (39.5)
8R2 Second-Tier Recruiter 217 32.01 (32.89) 50.83 (42.46) 

19 The Pearson correlation coefficient was 0.50 between the size of an AFSC in 2016 and the absolute 
value of the mean error for all AFSCs. 

20 We believe that 3S0 was recoded to 3F0 in 2018; however, for evaluation purposes, we compare the 
predictions for 3S0 to the observed exits from 3S0 in 2017 and the observed exits from 3F0 in 2018 
through 2021. 
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Model 
Performance AFSC Description 

Population 
in 2016 

Mean Error 
(Std) 

Mean Percent 
Difference  

(Std) 

8T0 Professional Military Educ 24 2.56 (2.76) 52.67 (57.52) 

1A8 
Airborne Cryptologic 
Linguist 23 -3.02 (2.02) -59.18 (17.18)

3F3 Manpower 13 1.49 (1.52) 64.6 (66.77)

1C821 Radar 691 
207.79 

(202.51) 104.52 (84.35)

21 AFSC 1C8 first appeared in 2015, meaning that the error is inflated because the model was not well 
equipped to predict the average number of retentions and switch-outs. To our knowledge, no parallel 
problem appears to exist in 2020, so we have reason to believe that this issue will not appear with the 
future forecast model. 
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6. Conclusion

This analysis addresses the challenge of forecasting the number of school slots needed 
by the ANG for each AFSC at the three-digit level over the next five years. We develop a 
general, reusable toolkit for forecasting the exit of individual ANG service members—the 
Retention Prediction Model-ANG (RPM-ANG)—and apply this tool with an extension to 
produce a reusable toolkit for forecasting the number of school slots needed on an ongoing 
basis. This analysis illustrates one of many potential applications of the RPM-ANG toolkit. 
The extension expands on the underlying RPM-ANG capability to account for AFSC 
transitions during the forecast window. We apply these tools to predict exits from ANG 
service among those in service as of June 30, 2021, by AFSC-designated occupation. While 
exits from service comprise only one part of future school slot demand, they provide a 
foundation for future analysis and represent a large share of total school slot demand.  

A. Synopsis of Findings
We develop and employ the RPM-ANG to forecast individual ANG members’ exits

from service using a gradient-boosted tree specification designed for survival analysis. 
Because exits are significantly rarer than stay decisions in any given year, and because 
exits are relevant to school slot demand, we calibrate the model to optimize exit prediction. 
Under these parameterizations, the model correctly identifies 72% of all exits from service 
from 2017 to 2021.  

Since individuals can switch occupations during their time in service, we layer a 
transition model over the raw exit forecasts to predict the AFSC from which individuals 
exit service. We use the resulting joint RPM-Transition model to obtain retention 
probabilities for each individual within each AFSC for each of the next five years. When 
forecasting exits from each AFSC from 2017 to 2021, the model has an average mean 
absolute error (by exit share) of 7% across all years, representing a 70% improvement from 
a baseline AFSC-average model during the same period.  

B. Future Direction
This analysis considers exits among those currently in service, and thus represents

only one component of the overall AFSC school slots demand-generating process. As 
illustrated in Chapter 2, AFSC switching itself can be a source of school slot training 
demand, as it can result in re-training for both the sending and the receiving AFSC. Though 



26 

we do not examine AFSC switching as a component of the demand-generating process, we 
develop a preliminary switching model to adjust the forecasts for exits from service. Future 
research might attempt to model individuals’ switching behaviors using additional data. As 
not every individual who switches AFSCs requires retraining, such analysis would require 
information on available AFSC transfer options and which transfers do and do not require 
retraining. Further, a comprehensive model would consider the retraining requirements for 
prior service entrants. Given these limitations, the forecasts provided in the present 
analyses cannot be directly interpreted as school slot demand predictions; however, they 
do form one of the critical components used to calculate school slot demand.  

This methodology has certain limitations. The first is its inability to forecast exits of 
those not currently in service (i.e., those who enter service after 2021 but exit prior to 
2026). Second, while this analysis presents a substantial improvement over existing 
methods, the development of a more nuanced individual switching model may improve 
exit forecasts. In particular, the method for forecasting AFSC transitions can be improved 
to account for individual level heterogeneity by incorporation of individual level data.  

As in any modeling exercise, performance could be improved with additional 
information, particularly regarding drivers of attrition. This data may include features on 
service members’ civilian careers, or specific contract information beyond what is 
available from DMDC. Data that more clearly denotes constructive exit from service (e.g., 
failure to participate in drill weekends) would also likely improve model performance. 
Additional effort to identify and account for features whose meaning or statistical 
properties shift over time (non-stationarity) may also improve the exit predictions.  

Finally, this work may yield additional returns for the ANG by integrating this effort 
with existing modeling of Air Force Active Component attritions. Such an effort could 
both identify a flow of potential ANG recruits exiting AC service and further assist career 
field managers in understanding expected personnel intake. 

In sum, this effort provides a meaningful start to ANG’s use of advanced predictive 
retention and exit modeling in its personnel management enterprise, and provides a solid 
foundation for future effort and operationalization of these techniques. This first 
application of RPM-ANG is now available for ANG leaders and analysts to use and build 
upon in future work, across a broad array of analytic and operational applications. 
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Appendix A. Selecting Transition Model Samples 

It is critical that the occupational switching behavior during the training window 
closely matches that of the prediction window. Unfortunately, given the shifting nature of 
military duties and occupations, it is unlikely that data on occupational switching from the 
early 2000s will closely resemble occupational switching after 2021. As such, we 
implement a validation method for examining temporal shifts in the allocation processes.  

We construct a transition matrix for each starting year of the training data, and we 
compare this matrix to the corresponding matrix from each starting year of the validation 
data by examination of the Frobenius norm of the difference of the two matrices.22 Figure 
A-1 provides heat maps of the norms for each combination of training and validation 
matrices. The left graph corresponds to the evaluation model and the right graph 
corresponds to the future model.  

Two things are directly observable from the heatmaps below: first, there is a clear 
correlation between performance and the alignment of validation and training start years. 
Second, a potential structural break seems to be indicated in 2009 via a marked rise in 
norms. Given these facts and our prior knowledge that DMDC data collection efforts were 
re-defined between 2012 and 2013, we choose a window for each model that is closer to 
the current period. For the evaluation model, we limit our training set to 2014-2015, and 
for the future model, we limit our training set to 2013 to 2020. 

22 The Frobenius Norm of a matrix M is the square root of the sum of the squares of the elements of M: 

‖𝑀𝑀‖𝐹𝐹 = �∑ |𝑚𝑚𝑖𝑖,𝑗𝑗|2𝑖𝑖,𝑗𝑗 . 
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Figure A-1: Transition Matrix Selections 

Future analyses should consider robust external mechanisms for selecting the best 
validation and training windows. This is particularly challenging, as it results in a 
validation-of-the-validation sample problem. 
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Appendix B. Data Preparation Steps 

Prior to modeling, we prepare the raw data for analysis. Many features in our data 
contain a large number of missing values. Where appropriate, we either fill the missing 
value with 0 or with “missing” to create a new category, and drop features that are more 
than 99.9% missing.23 For the ECI training data, we impute missing course end dates by 
examining the duration of the same course for other individuals and adding that duration 
to the start date. Additionally, we drop features that are more than 99.99% constant. We 
transform features which have only two possible values—one missing and one non-
missing—into a flag indicating whether the feature is populated. Furthermore, we 
transform time-based features into time-agnostic features. For example, we transform 
contract and commitment start dates and projected end dates to reflect the number of days 
since or until those events. There are almost certainly many features that exhibit non-
stationarity which might adversely affect model performance in some situations; however, 
dealing with each of these is beyond the scope of this analysis. 

In addition to including raw data features in model as appropriate, we use the raw data 
to produce new features. Table B-1 lists categories of features included in modeling, 
along with a description and the number of features in each category. 

Table B-1: Feature Categories 

Feature Category 
Number of 
Features Description 

Activations 69 Frequency, tempo, duration and category of title 10 activations 
Active Duty 12 Information pertaining to Active Duty service 
Administrative 2 Administrative accounting and planning codes 
Assignments 33 Specific assignments including occupations and units.  
Benefits/ 
Retirement 

47 Benefits, entitlement programs, retirement programs 

Bonus 27 Bonus compensation 
Career Hardship 17 Job difficulty and potential associated emotional or physical stress 
Contracts and 
Commitment 

28 Length of service and time since or until critical dates in their 
service (start date, projected end date, etc.) 

Deployments 66 Frequency, tempo, duration and type of deployments 

23 While this is a higher threshold than many other studies consider for dropping missing values, the 
LightGBM algorithm allows for improved handling of missing values. 
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Feature Category 
Number of 
Features Description 

Drilling 8 Information on drilling, specifically drilling pay 
Education/Skills 9 Education level, programs, and test scores 
Family 31 Information on family (spouses, dependents) and any changes in 

family status (newly married, divorce, new child, etc.) 
Geography 16 Location of assignment, residence, and duty. Includes distance 

between the assignment and residence. 
Housing 19 Housing arrangements, not including overseas payment information 
Labor Market 3 Unemployment Rates for their occupation category and geographic 

area 
Non-Standard 
Compensation 

53 Special pay (i.e., pay not related to their salary or taxes) 

Peer Effects 74 Qualities about other individuals in their UIC including family, 
education, and deployment features. Number of exits from their 
UICs and occupations each year and average tenure of those who 
served in their UIC or occupation 

Personal 
Information 

11 Demographic Information and other personal information 

Prior Service 33 Information regarding any prior service in any service after 2000 
(excluding service in ANG) 

Rank 4 Information about their rank 
Rank/Pay 
Mobility 

9 Career mobility features reflecting changes in pay and rank 

Special 
Positions/Duties 

10 Non-typical or special jobs or duties 

Standard 
Compensation 

24 Compensation and related payment information 

Training 10 Number of ECI courses taken (along with outcomes) and other 
training information 

Traumatic Event 
Exposure 

18 Whether person experienced a casualty themselves, or was 
exposed casualties in their UIC or family 

Total Features 633 
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Appendix E. Abbreviations 

AF Air Force 
AFSC Air Force Specialty Code 
ANG Air National Guard 
AUC Area Under the Curve 
BMT Basic Military Training 
CFM Career Field Manager 
CPS Current Population Survey 
DEERS Defense Enrollment Eligibility Reporting System 
DMDC Defense Manpower Data Center 
ECI Extension Course Institute 
FIFE Finite Interval Forecasting Engine 
FN False Negatives 
FP False Positives 
IDA Institute for Defense Analyses 
ML Machine Learning 
NGB-A1DU National Guard Bureau/Training Resources and Programming Branch 
RPM Retention Prediction Model 
RPM-ANG Retention Prediction Model for the Air National Guard 
TN True Negatives 
TP True Positives 
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