

INSTITUTE FOR DEFENSE ANALYSES

Forecasting Competing Risks for Navy Personnel Management

WEAI 2021

Jay Dennis Julie Lockwood Rachel Augustine Michael Guggisberg

June 2021 Approved for public release; distribution is unlimited. IDA Paper NS P-22651 Log: H 21-000158

INSTITUTE FOR DEFENSE ANALYSES 4850 Mark Center Drive Alexandria, Virginia 22311-1882

The Institute for Defense Analyses is a nonprofit corporation that operates three Federally Funded Research and Development Centers. Its mission is to answer the most challenging U.S. security and science policy questions with objective analysis, leveraging extraordinary scientific, technical, and analytic expertise.

About This Publication

This work was conducted by the Institute for Defense Analyses under contract HQ0034-14-D-0001, project CA-6-4854, "Expanding the FIFE for Navy Personnel Management" for the Under Secretary of Defense for Personnel and Readiness. The views, opinions, and findings should not be construed as representing the official position of either the Department of Defense or the sponsoring organization.

For More Information: Dr. Julie A. Lockwood, Project Leader jlockwood@ida.org, 703-578-2858

ADM John C. Harvey, Jr., USN (ret) Director, SFRD jharvey@ida.org, 703-575-4530

Copyright Notice © 2021 Institute for Defense Analyses 4850 Mark Center Drive Alexandria, Virginia 22311-1882 • (703) 845-2000

This material may be reproduced by or for the U.S. Government pursuant to the copyright license under the clause at DFARS 252.227-7013 (Feb. 2014).

INSTITUTE FOR DEFENSE ANALYSES

IDA Paper NS P-22651

Forecasting Competing Risks for Navy Personnel Management

WEAI 2021

Jay Dennis Julie Lockwood Rachel Augustine Michael Guggisberg This page is intentionally blank.

To better leverage its wealth of personnel data to achieve a high-quality fighting force, the Assistant Secretary of the Navy, Manpower and Reserve Affairs (ASN M&RA) collaborated with the Institute for Defense Analyses (IDA) to produce high-fidelity predictions regarding retention decisions—including the manner of exit—at the level of the individual sailor. To this end, we expand IDA's time-to-event prediction capability tool, the Finite Interval Forecasting Engine, to accommodate different types of exit to estimate the likelihood that a person exits into each of a finite number of discrete states in some given future period. We demonstrate this capability by predicting the manner of exit for a group of enlisted service members in the U.S. Navy. This page is intentionally blank.

Forecasting Competing Risks for Navy Personnel Management

WEAI 2021

Jay Dennis Julie Lockwood Rachel Augustine Michael Guggisberg

30 June 2021

Manner of exit informs current force trajectories and how to target retention efforts

Early interventions can steer individuals toward further service or more favorable exit conditions

The same methodology can be used to model career trajectories

We use a competing risks framework to forecast the probability of exit into one of many states

Source: https://www.navytimes.com/news/your-navy/2020/04/17/heres-how-the-navyis-ramping-up-its-reenlistment-bonus-policy-to-retain-sailors/

Expansion of IDA capabilities

IDA's Finite Interval Forecasting Engine (FIFE) was designed to forecast when an individual leaves service

We expand the FIFE to forecast how an individual leaves service conditional on leaving and incorporate this into a competing risks framework

We'll talk about the performance of this expansion and an application to Enlisted Navy Personnel

Extending the Finite Interval Forecasting Engine (FIFE) for Competing Risks

A competing risks framework models the occurrence of many different manners of exit

Without competing risks: Probability of Exit at Time *t*

$Pr(T \le t)$	2021	2022	2023
Leave	0.1	0.3	0.8
Stay in	0.9	0.7	0.2

With competing risks:

Probability of Exit at Time t by manner d

$Pr(T \le t \text{ and } D = d)$	2021	2022	2023
Honorable	0.0	0.0	0.4
Administrative	0.1	0.2	0.3
Dishonorable	0.0	0.0	0.0
Medical	0.0	0.1	0.1
Stay in	0.9	0.7	0.2

Competing risks expands the resolution of force trajectories from *when* to *how* individuals attrite

It can also be used to predict any set of mutually exclusive outcomes... Such as exit into other ratings/designators, components, positions, etc.

Example: Competing risks in individual career trajectories

Example: Competing risks in individual careertrajectoriesWould occur if observed

Competing Risks

There are *K* mutually exclusive outcomes

Each outcome occurs at time T_{ik} for k = 1, 2, ..., K

Right Censoring occurs at T_{i0} (no outcome observed)

We only observe the outcome that occurs first (or censoring) and the associated time:

 $d_i = argmin\{T_{i0}, T_{i1}, \dots, T_{iK}\}$ and $T_i = min\{T_{i0}, T_{i1}, \dots, T_{iK}\}$

If event k occurs at time $T_i = T_{ik}$, then a different event could eventually occur had event k not occurred.

Forecasting the Cause-Specific Hazard

The cause-specific hazard estimates the probability* of exiting at time t in manner d

$$P(T = t \text{ and } D = d | T \ge t, X_t) = P(D = d | T = t, X_t) P(T = t | T \ge t, X_t)$$

FIFE models the probabilities of exit and manner of exit separately

$$P(T = t | T \ge t, X_t) = 1 - \frac{1}{1 + \exp\{-f_t(X_t)\}}$$

$$P(D = d | T = t, X_t) = \frac{\exp\{-g_{dt}(X_t)\}}{\sum_{m=1}^{K} \exp\{-g_{mt}(X_t)\}}$$

Estimation of f and g uses a tree based modeler

*also conditional on non-censoring

The Cumulative Incidence Function helps visualize this probability over time

Define $\tilde{T} = T - T_0$ as the time after censoring.

$$P(0 < \tilde{T} \le t, D = d | \tilde{T} \ge 0, X_t) = \sum_{k=1}^t P(\tilde{T} = k, D = d | \tilde{T} \ge 0, X_t)$$

Performance under controlled conditions

Simulation Experiment Setup

ID	Period	X_1	X_2	X_3	Exit Type
0	39	В	0.068	0.392	No_exit
0	40	В	0.281	0.492	No_exit
1	7	С	-0.569	0.660	Х
1	8	С	0.456	0.860	Х
1	9	С	-0.155	1.060	Х
1	10	С	1.106	1.260	Х
1	11	С	-0.535	1.460	Х

Sample Data

This illustrative data generating process (DGP) is simple:

- Only X_1 is predictive of Exit Type. $X_1 \in \{A, B, C\}$
- Probability of exit is fixed in a given period
- Exit Type \in {*No* Exit, X, Y, Z}

Simulation Experiment Setup

Expected Predictivity:

	Med	ium			L	OW				Н	igh	
	DG	iP 1			DC	GP 2				D	GP 3	
	$P(\mathbf{e}$	exit ty	rpe)		P(exit typ	pe)	-		P	(exit typ	e)
X_1	X	Y	Z	X_1	X	Y	Z		X_1	X	Y	Z
A	0.7	0.2	0.1	A	0.7	0.2	0.1		A	0.95	0.025	0.025
В	0.2	0.7	0.1	В	0.33	0.33	0.33		В	0.025	0.95	0.025
С	0.1	0.2	0.7	С	0.33	0.33	0.33		С	0.025	0.025	0.95

An individual with $X_1 = A$ is more likely to exit into state X, etc.

 X_1 is most predictive of exit type for DGP 3 and least predictive for DGP 2

Performance – AUROC*

Shaded area is 95% confidence interval (MC)

Better performance for shorter forecast horizons, when more data is available,

and when the covariates are more predictive of the outcome Other specifications provide similar results

* Area Under the Receiver Operating Characteristic curve (AUROC)

Cumulative Incidence Functions

N=10000, censoring is at 20 periods, probability of exit is fixed at 50% per period

Probability of exit into each exit category grows with the forecast horizon Ranking of exit type probabilities by group is correctly captured CIFs approach the estimated probabilities of exit type conditional on exit

Application

Application – Overview

Item	Details
Source	DMDC Active Duty Master
Population	AD Navy Enlisted
Time Period	2015 - 2020, Monthly
Sample	20%
N	93984
N_{censored}	59050
Observation Count	3995318

Predictors come from DMDC and other sources:

- Demographics,
- Family characteristics,
- Service Retention Bonus eligibility,
- Time to end of contract,
- Economic conditions
- and many others

Application – Outcome Statistics

Se	ervice D	esire		Service Mer	nber's De	esire
Category	y	Ν	Percent Category		N	Percent
Unknow	n 1	7153	48.1	Unknown	7445	20.9
Want to let l	eave	8817	24.7	Want to leave	20934	58.7
Want to ke	eep	5050	14.2	Want to stay	7117	20.0
Beyond con	ntrol	4637	13.0	Beyond control	161	0.5
Service M	ember's	Choic	e	Exit Gre	oup	
Service M Category	ember's N	Choic Perc	e cent	Exit Gro Category	oup N	Percent
Service M Category Voluntary	1000000000000000000000000000000000000	Choic Perc 60	cent	Exit Gro Category Artificial Exit	$\frac{N}{638}$	$\frac{\text{Percent}}{1.8}$
Service M Category Voluntary Involuntary	ember's N 21580 12058	Choic Perc 60 33	e cent .5 .8	Exit Gro Category Artificial Exit Released, general	oup <u>N</u> 638 6180	Percent 1.8 17.3
Service M Category Voluntary Involuntary Unknown	ember's N 21580 12058 2019	Choic Perc 60 33 5.	e cent .5 .8 7	Exit Gro Category Artificial Exit Released, general Life Events	oup N 638 6180 4700	Percent 1.8 17.3 13.2
Service M Category Voluntary Involuntary Unknown	ember's N 21580 12058 2019	Choic Perc 60 33 5.	e cent .5 .8 7	Exit Gro Category Artificial Exit Released, general Life Events Unsuitable	oup N 638 6180 4700 7177	Percent 1.8 17.3 13.2 20.1

Application – Forecasting Exit into "Unsuitable"

Application – Forecasting Want to Keep/Want to Leave

Conclusion

We started with the ability to forecast survival of individual service members

We expanded this capability to forecast exit into multiple states

The competing risks framework allows us to forecast both timing and manner of exit of individual service members

Performance looks good so far

We demonstrated its use in flagging service members for interventions

jdennis@ida.org

Appendix

Appendix: Summary Statistics

How the 36,280 USN personnel attrited in FY 2019

Character of service	Number (total)	%	Number (enlisted)	%	Number (officer)	%
Honorable	24,625	68%	20,983	65%	3,642	90%
Uncharacterized	7,535	21%	7,535	23%	0	0%
Under honorable conditions	1,882	5%	1,821	6%	61	2%
Missing	1,241	3%	907	3%	334	8%
Under other than honorable conditions	941	3%	924	3%	17	<1%
Bad conduct	56	<1%	56	<1%	0	0%
Total	36,280		32,226		4,054	

Reenlistment eligibility of FY 2019 enlisted attritions

Eligibility criteria	Number	Percent
Eligible	13,563	42%
Eligible with waiver	5,614	17%
Ineligible	4,487	14%
Eligible with restrictions	3,884	12%
Temporary medical condition or unsatisfactory initial performance	3,329	10%
Missing	1,117	3%
Ineligible due to high tenure	232	1%
Total	32,226	

Top 10 reasons of separation for officers and enlisted

Reason (officer)	Number	%*	Reason (enlisted)	Number	%*
Expiration of term of service	1,284	33%	Expiration of term of service	13,452	46%
Retirement, 20 – 30 years	1,113	28%	Retirement, 20 – 30 years	3,581	12%
Retirement, failure of selection for promotion	388	10%	Erroneous enlistment or induction	3,385	12%
Unknown	312	8%	Unqualified for active duty	2,229	8%
Retirement, 30+ years	308	8%	Entry level performance and conduct	1,867	6%
Failure of selection for promotion	201	5%	Drugs	1,119	4%
Involuntary release	103	3%	Fraudulent entry	983	3%
Retirement, other	73	2%	Unknown	976	3%
Temporary disability	71	2%	Temporary disability retirement	964	3%
Unfitness or unacceptable conduct	54	1%	Commission of serious offense	869	3%
Total	3,907		Total	29,425	

*Percentage out of top 10 reasons, not total separations

This page is intentionally blank.

Public reporting burden for this caterion of informations is estimated to average 1 hour per response, including the time for revealing instructions, searching existing data Sources, quadrating and multitating the data moded, and completing and revealing this burden to formations. Washington Headquarts Services, Directosete for informations in provide in graving the calculation of information. Searching and calculation of informations. Searching and calculation of the calculation of informations. Searching and calculation of informations. Searching andine information information information information i	REPORT DOCUME	NTATION PAGE		Form Approved OMB No. 0704-0188		
1. REPORT DATE (DD-MM-YY) sx-46-2021 2. REPORT TYPE Ifinal 3. DATES COVERED (From - To) xx-46-2021 Final 58. CONTRACT NO. ITUE AND SUBTITLE Forecaring Computing Risks for Namy Personnel Management 58. CONTRACT NO. IIQ0034-14-D-40001 WE-U 2021 50. GRANT NO. 50. PROGRAM ELEMENT NO(\$). 50. REAM NO. S. AUTHOR(\$) Jule Lockwood 	Public reporting burden for this collection of information is sources, gathering and maintaining the data needed, and cc aspect of this collection of information, including suggestions Operations and Reports (0704-0188), 1215 Jefferson Davis provision of law, no person shall be subject to any penalty PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE	estimated to average 1 hou mpleting and reviewing this for reducing this burden to E Highway, Suite 1204, Arlir for failing to comply with a ADDRESS.	rr per response, including collection of information. Department of Defense, W gton, VA 22202-4302. R collection of information	g the time for reviewing instructions, searching existing data Send comments regarding this burden estimate or any other /ashington Headquarters Services, Directorate for Information espondents should be aware that notwithstanding any other if it does not display a currently valid OMB control number.		
xx-06-2021 Final 4. TITLE AND SUBTITLE So. CONTRACT NO. Funcasing Competing Risks for Nary Personal Management W1-01 2021 So. CONTRACT NO. So. GRANT NO. So. GRANT NO. So. GRANT NO. So. GRANT NO. Jule Lockwood Method Gageberg So. TASK NO. Nethod Gageberg So. TASK NO. T. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Institute for Defense Analysis So. PROPORTING ORGANIZATION REPORT NO. 102 Digree NS P-22651 Alexandria, VA 22311-1882 So. PONSOR'S / MONITOR'S ACRONYM (S) OUSD (P&R) 3. SPONSOR'S / MONITOR'S ACRONYM (S) OUSD (P&R) 10. SPONSOR'S / MONITOR'S ACRONYM (S) OUSD (P&R) 11. SUPPLEMENTARY NOTES 11. SPONSOR'S / MONITOR'S ACRONYM (S) OUSD (P&R) 13. SUPPLEMENTARY NOTES Interpleter Provide for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES Accurate, high-fidelity predictions of complex events can provide important information in many research, managerial, and operational contexts. Our open- source software package, the Firste Interval Forecasing Engine (FIFE) provides a flexible, machine learning toolkit for forecasing pacied attribution Constructed to Facilitate reuse and adaptation, FIFE is one base of for both binary and competing risk surival analysis HITE also includes a suite of built-in tools for data preprocessing, metrice, hyper parameter optimization, and visualizations. 14. ABSTRACT 15. SUBJECT TERMS Personnel Management; Competing Risks; Framework, FIFE 17. L	1. REPORT DATE (DD-MM-YY) 2. I	REPORT TYPE		3. DATES COVERED (From - To)		
4. TITLE AND SUBTITLE 5a. CONTRACT NO. I'mexating Competing Risks for Nary Personnel Management II. (2003-14-12-080) WE: 41 2021 5b. GRANT NO. 5c. AUTHOR(S) Julie Lockwood Julie Lockwood Redded Augustine Mathematic Cagginbeng 5c. TASK NO. 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 5c. TASK NO. Institute for Defense: Analyses 5c. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Alexandra, VA 22311-1882 5b. PERFORMING ORGANIZATION REPORT OUSD (P&R) 1500 Defense Pentagon, 2E:556 Washington, DC 20301 10. SPONSOR'S / MONITOR'S ACRONYM(S) OUSD (P&R) 0USD (P&R) 13. SUPPLEMENTARY NOTES 11. ABSTRACT Accurate, high-fidelity predictions of complex events can provide important information in many research, managerial, and operational contexts. Our open- source software package, the Finite-Interval Forecasting: Engine (FIFL) provides a flexible, machine learning collidit or forecasting: Engine (FIFL) provides a flexible, machine learning collidit or forecasting: Engine (FIFL) provides a flexible, machine learning collidit or forecasting: Engine (FIFL) provides a flexible, machine learning collidit or forecasting: Engine (FIFL) provides a flexible, machine learning collidit or forecasting: Engine (FIFL) provides a flexible, machine learning collidit or forecasting: Engine (FIFL) provides a flexible, machine learning collidit or forecasting: Engine (FIFL) provides	xx-06-2021	Final				
Forwaring Competing Risks for Nary Personnel Management WE-41 2021 HQ0034-14-D-0001 B GRANT NO. 6. AUTHOR(S) Sd. PROJECT NO. B GRANT NO. Sc. PROGRAM ELEMENT NO(S). Sd. PROJECT NO. B GRANT NO. CAUTHOR(S) Sd. PROJECT NO. B GRANT NO. Sc. PROGRAM ELEMENT NO(S). Sd. PROJECT NO. Sd. AUTHOR(S) Sd. PROJECT NO. B Sd. PROJECT NO. Sc. TASK NO. CA.6-4854 St. TASK NO. Sd. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Institute for Defense Analyses Monitor REPORT Also Mark Center Drive NO. Also Mark Center Drive Display Paper NS P-22651 Loog PL2 Loog PL2 OUSD (P&R) 10. SPONSOR'S / MONITOR'S ACRONYM(S) OUSD (P&R) 10. SPONSOR'S / MONITOR'S REPORT NO(S). 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Accurate, high-fidelity predictions of complex events can provide important information in many research, managerial, and operational contexts. Our opersource software package, the Finite- Interval Porec	4. TITLE AND SUBTITLE			5a. CONTRACT NO.		
WEAU 201 55. GRANT NO. SAUTHOR(S) Jay Dennis Jay Dennis Jake Lockwood Rachel Augustine Sc. PROJECT NO. Michael Guggsberg 5d. PROJECT NO. 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 5d. PROJECT NO. Institute for Defense Analyses 5d. PROJECT NO. 4850 Mark Center Drive No. Aksandria, VA 22311-1882 8. PERFORMING ORGANIZATION REPORT 0USD (P&R) 1500 Defense Pentagon, 2E556 Washington, DC 20301 10. SPONSOR'S / MONITOR'S ACRONYM(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 11. SPONSOR'S / MONITOR'S REPORT NO(S). 14. ABSTRACT Accurate, high-fidelity predictions of complex events can provide important information in many research, managerial, and operational contexts. Our open- source software package, the Finite-Interval Forecasting Engine (FIFE) provides a facible, machine Learning toolkit for forecasting panel attrition group, or equipment item—-is observed over multiple periods before potentially transitioning to one or moce exist states. The algorithms within FIFE is not bound to a single use case it can accommodate any process where in a subject—-such as a person, group, or equipment item—-is observed over multiple periods before potentially transitioning to one or moce exist states. The algorithms within FIFE is build on and generalize andidaptation, data pre	Forecasting Competing Risks for Navy Personnel Manageme	ent		HQ0034-14-D-0001		
6. AUTHOR(S) Jay Demini Jake Lockwood Jake Lockwood Richal Gragsbarg 56. PROJECT NO. 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 56. TASK NO. Institute for Defense Analyses 51. WORK UNIT NO. 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 51. WORK UNIT NO. 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 70. CA-6-4854 7. Mathematical State Stat	WEAI 2021			5b. GRANT NO.		
 AUTHOR(S) Jay Dennis Julic Lockwood Rachel Augustine Michael Gaggisberg CA-64854 FORFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Institute for Defense Analyses GA-64854 Work UNIT NO. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Institute for Defense Analyses SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) OUSD (P&R) SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) OUSD (P&R) SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) OUSD (P&R) SPONSOR'S / MONITOR'S ACRONYM(S) OUSD (P&R) SPONSOR'S / MONITOR'S REPORT NO(S). SPONSOR'S / MONITOR'S REPORT NO(S). SPONSOR'S / MONITOR'S REPORT NO(S). SPONSOR'S / MONITOR'S REPORT NO(S). SUPPLEMENTARY NOTES Accurate, high-fidelity predictions of complex events can provide important information in many research, managerial, and operational contexts. Our opensource software package, the Finite-Interval Forecasting Engine (IFIE) provides a flexible, machine learning toolk: for forecasting pand attrition Constructed to facilitate reuse and adaptation, FIFE is not bound to a single use case it can accommodate any protesting subjectimeships temperature analysis in a machine learning context. FIFE can be used for both binary and competing risk survival analysis FIFE also includes a suite of built-in tools for data preprocessing, metrics, hyper parameter optimization, and visualizations. SUBJECT TERMS Personnel Management; Competing Risks; Framework, FIFE Intuition Interval Notes Package, Intexevork, FIFE Intuitation Ison P				5c. PROGRAM ELEMENT NO(S).		
juie Lockwood Rachel Augustine Michael Guggsberg 50. TASK NO. CA-6-4854 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Institute for Defense Analyses 4850 Mark Center Drive Alexandria, VA 22311-1882 8. PERFORMING ORGANIZATION REPORT NO. IDA Paper NS P-22651 Log: H 21-000158 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) OUSD (P&R) 1500 Defense Pentagon, 2E:556 Washington, DC 20301 10. SPONSOR'S / MONITOR'S ACRONYM(S) OUSD (P&R) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 11. SPONSOR'S / MONITOR'S REPORT NO(S). 13. SUPPLEMENTARY NOTES 14. ABSTRACT Accurate, high-fidelity predictions of complex events can provide important information in many research, managerial, and operational contexts. Our open- source software package, the Finite-Interval Forecasting Engine (FIFE) provides a flexible, machine learning toolkit for forecasting panel attrition Constructed to facilitate reuse and adaptation, FIFE is not bound to a single use case: it can accommodate any process wherein a subject—such as a person and generalize traditional tools for survival analysis in a machine learning context. FIFE can be used for both binary and competing risk survival analysis ITIPE also includes a suit of built-in tools for data preprocessing, metrics, hyper parameter optimization, and visualizations. 15. SUBJECT TERMS Personnel Management, Competing Risks; Framework, FIFE 17. LIMITATION 18. NO. OF PAGES 19a. NAME OF RESPONSIBLE PERSON	6. AUTHOR(S) Jay Dennis			5d.PROJECT NO.		
Machel Augustine Michael Guggisberg CA-6-4854 51. WORK UNIT NO. 51. WORK UNIT NO. 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Institute for Defense Analyses Alexandria, VA 22311-1882 6. PERFORMING ORGANIZATION REPORT NO. IDA Paper NS P-22631 Log: H 21-000158 8. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) OUSD (P&R) 1500 Defense Pentagon, 2E556 10. SPONSOR'S / MONITOR'S ACRONYM(S) OUSD (P&R) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 11. SPONSOR'S / MONITOR'S REPORT NO(S). 13. SUPPLEMENTARY NOTES The Adaptating particular terms and paper	Julie Lockwood			5e. TASK NO.		
51. WORK UNIT NO. 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Institute for Defense Analyses 4850 Mark Center Drive Alexandria, VA 22311-1882 8. PERFORMING ORGANIZATION REPORT NO. IDA Paper NS P-22651 Log: H 21-000158 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) OUSD (P&R) 1500 Defense Pentagon, 2E556 Washington, DC 20301 10. SPONSOR'S / MONITOR'S ACRONYM(S) OUSD (P&R) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 11. SPONSOR'S / MONITOR'S REPORT NO(S). 13. SUPPLEMENTARY NOTES Accurate, high-fidelity predictions of complex events can provide important information in many research, managerial, and operational contexts. Our open- source software package, the Finite-Interval Forecasting Engine (FIFE) provides a flexible, machine learning toolkit for forecasting panel attition group, or equipment item—is observed over multiple periods before potentially transitioning to one or more exist states. The algorithms within FIFE build on and generalize traditional tools for survival analysis in a machine learning context. FIFE can be used for both binary and competing risk survival analysis FIFE also includes a suite of built-in tools for data preprocessing, metrice, hyper parameter optimization, and visualizations. 15. SUBJECT TERMS Personnel Management; Competing Risks; Framework, FIFE 17. LIMITATION 18. NO. OF PAGES 19a. NAME OF RESPONSIBLE PERSON	Kachel Augustine Michael Guggisberg			CA-6-4854		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Institute for Defense Analyses 4850 Mark Center Drive Alexandria, VA 22311-1882 8. PERFORMING ORGANIZATION REPORT NO. IDA Paper NS P-22651 Log: H 21-000158 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) OUSD (P&R) 1500 Defense Pentagon, 2E556 Washington, DC 20301 10. SPONSOR'S / MONITOR'S ACRONYM(S) OUSD (P&R) 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 11. SPONSOR'S / MONITOR'S REPORT NO(S). 14. ABSTRACT Accurate, high-fidelity predictions of complex events can provide important information in many research, managerial, and operational contexts. Our open- source software package, the Finite-Interval Forecasting Engine (FIFE) provides a flexible, machine learning toolkit for forecasting panel attrition Constructed to facilitate ruse and adaption, FIFE is not bound to a single use case: it can accommodate any process wherem a subject—such as a person, group, or equipment item—is observed over multiple periods before potentially transitioning to one or more exist states. The algorithms within FIFE build on and generalize traditional tools for survival analysis in a machine learning context. FIFE can be used for both binary and competing risk survival analysis FIFE also includes a suite of built-in tools for data preprocessing, metrics, hyper parameter optimization, and visualizations. 15. SUBJECT TERMS Personnel Management; Competing Risks; Framework, FIFE 17. LIMITATION 18. NO. OF PAGES 19a.NAME OF RESPONSIBLE PERSON				5f. WORK UNIT NO.		
 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) OUSD (P&R) 1500 Defense Pentagon, 2E556 Washington, DC 20301 10. SPONSOR'S / MONITOR'S ACRONYM(S) OUSD (P&R) 11. SPONSOR'S / MONITOR'S REPORT NO(S). 13. SUPPLEMENTARY NOTES 14. ABSTRACT Accurate, high-fidelity predictions of complex events can provide important information in many research, managerial, and operational contexts. Our open- source software package, the Finite-Interval Forecasting Engine (FIFE) provides a flexible, machine learning toolkit for forecasting panel attrition Constructed to facilitate reuse and adaptation, FIFE is not bound to a single use case: it can accommodate any process wherein a subject—such as a person group, or equipment item—is observed over multiple periods before potentially transitioning to one or more exit states. The algorithms within FIFE build on and generalize traditional tools for survival analysis in a machine learning context. FIFE can be used for both binary and competing risk survival analysis FIFE also includes a suite of built-in tools for data preprocessing, metrics, hyper parameter optimization, and visualizations. 15. SUBJECT TERMS Personnel Management; Competing Risks; Framework, FIFE 17. LIMITATION 18. NO. OF PAGES 19a.NAME OF RESPONSIBLE PERSON 	 PERFORMING ORGANIZATION NAME(S) AN Institute for Defense Analyses 4850 Mark Center Drive Alexandria, VA 22311-1882 	D ADDRESS(ES)		 PERFORMING ORGANIZATION REPORT NO. IDA Paper NS P-22651 Log: H 21-000158 		
OUSD (P&R) 1500 Defense Pentagon, 2E556 Washington, DC 20301 OUSD (P&R) 11. SPONSOR'S / MONITOR'S REPORT NO(\$). 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Accurate, high-fidelity predictions of complex events can provide important information in many research, managerial, and operational contexts. Our open- source software package, the Finite-Interval Forecasting Engine (FIFE) provides a flexible, machine learning toolkit for forecasting panel attrition Constructed to facilitate reuse and adaptation, FIFE is not bound to a single use case: it can accommodate any process wherein a subject—such as a person, group, or equipment item—is observed over multiple periods before potentially transitioning to one or more exit states. The algorithms within FIFE build on and generalize traditional tools for survival analysis in a machine learning context. FIFE can be used for both binary and competing risk survival analysis FIFE also includes a suite of built-in tools for data preprocessing, metrics, hyper parameter optimization, and visualizations. 15. SUBJECT TERMS Personnel Management; Competing Risks; Framework, FIFE 17. LIMITATION 18. NO. OF PAGES 19a.NAME OF RESPONSIBLE PERSON	9. SPONSORING / MONITORING AGENCY NA	ME(S) AND ADDRES	S(ES)	10. SPONSOR'S / MONITOR'S ACRONYM(S)		
1500 Defense Pentagon, 2E556 Washington, DC 20301 11. SPONSOR'S / MONITOR'S REPORT NO(\$). 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Accurate, high-fidelity predictions of complex events can provide important information in many research, managerial, and operational contexts. Our open- source software package, the Finite-Interval Forecasting Engine (FIFE) provides a flexible, machine learning toolkit for forecasting panel attrition Constructed to facilitate reuse and adaptation, FIFE is not bound to a single use case: it can accommodate any process wherein a subject—such as a person and generalize traditional tools for survival analysis in a machine learning context. FIFE can be used for both binary and competing risk survival analysis FIFE also includes a suite of built-in tools for data preprocessing, metrics, hyper parameter optimization, and visualizations. 15. SUBJECT TERMS Personnel Management; Competing Risks; Framework, FIFE 17. LIMITATION 18. NO. OF PAGES 19a. NAME OF RESPONSIBLE PERSON	OUSD (P&R)			OUSD (P&R)		
Washington, DC 20301 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Accurate, high-fidelity predictions of complex events can provide important information in many research, managerial, and operational contexts. Our open- source software package, the Finite-Interval Forecasting Engine (FIFE) provides a flexible, machine learning toolkit for forecasting panel attrition Constructed to facilitate reuse and adaptation, FIFE is not bound to a single use case: it can accommodate any process wherein a subject—such as a person, group, or equipment item—is observed over multiple periods before potentially transitioning to one or more exit states. The algorithms within FIFE build on and generalize traditional tools for data preprocessing, metrics, hyper parameter optimization, and visualizations. 15. SUBJECT TERMS Personnel Management; Competing Risks; Framework, FIFE 17. LIMITATION 18. NO. OF PAGES 19a. NAME OF RESPONSIBLE PERSON	1500 Defense Pentagon, 2E556			11. SPONSOR'S / MONITOR'S REPORT NO(S).		
12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Accurate, high-fidelity predictions of complex events can provide important information in many research, managerial, and operational contexts. Our open- source software package, the Finite-Interval Forecasting Engine (FIFE) provides a flexible, machine learning toolkit for forecasting panel attrition Constructed to facilitate reuse and adaptation, FIFE is not bound to a single use case: it can accommodate any process wherein a subject—such as a person, group, or equipment item—is observed over multiple periods before potentially transitioning to one or more exit states. The algorithms within FIFE build on and generalize traditional tools for survival analysis in a machine learning context. FIFE can be used for both binary and competing risk survival analysis. FIFE also includes a suite of built-in tools for data preprocessing, metrics, hyper parameter optimization, and visualizations. 15. SUBJECT TERMS Personnel Management; Competing Risks; Framework, FIFE 17. LIMITATION 18. NO. OF PAGES 19a.NAME OF RESPONSIBLE PERSON	Washington, DC 20301					
13. SUPPLEMENTARY NOTES 14. ABSTRACT Accurate, high-fidelity predictions of complex events can provide important information in many research, managerial, and operational contexts. Our open- source software package, the Finite-Interval Forecasting Engine (FIFE) provides a flexible, machine learning toolkit for forecasting panel attrition. Constructed to facilitate reuse and adaptation, FIFE is not bound to a single use case: it can accommodate any process wherein a subject—such as a person, group, or equipment item—is observed over multiple periods before potentially transitioning to one or more exit states. The algorithms within FIFE build on and generalize traditional tools for survival analysis in a machine learning context. FIFE can be used for both binary and competing risk survival analysis. FIFE also includes a suite of built-in tools for data preprocessing, metrics, hyper parameter optimization, and visualizations. 15. SUBJECT TERMS Personnel Management; Competing Risks; Framework, FIFE 17. LIMITATION 18. NO. OF PAGES 19a.NAME OF RESPONSIBLE PERSON	12. DISTRIBUTION / AVAILABILITY STATEM Approved for public release; distribution is unl	ENT imited.				
14. ABSTRACT Accurate, high-fidelity predictions of complex events can provide important information in many research, managerial, and operational contexts. Our open- source software package, the Finite-Interval Forecasting Engine (FIFE) provides a flexible, machine learning toolkit for forecasting panel attrition. Constructed to facilitate reuse and adaptation, FIFE is not bound to a single use case: it can accommodate any process wherein a subject—such as a person, group, or equipment item—is observed over multiple periods before potentially transitioning to one or more exit states. The algorithms within FIFE build on and generalize traditional tools for survival analysis in a machine learning context. FIFE can be used for both binary and competing risk survival analysis. FIFE also includes a suite of built-in tools for data preprocessing, metrics, hyper parameter optimization, and visualizations. 15. SUBJECT TERMS Personnel Management; Competing Risks; Framework, FIFE 17. LIMITATION 18. NO. OF PAGES 19a.NAME OF RESPONSIBLE PERSON	13. SUPPLEMENTARY NOTES					
17. LIMITATION 18. NO. OF PAGES 19a.NAME OF RESPONSIBLE PERSON	 14. ABSTRACT Accurate, high-fidelity predictions of complex events of source software package, the Finite-Interval Foreca Constructed to facilitate reuse and adaptation, FIFE is group, or equipment item—is observed over multiple p and generalize traditional tools for survival analysis in FIFE also includes a suite of built-in tools for data prep 15. SUBJECT TERMS Personnel Management; Competing Risks; Framework,	can provide important in sting Engine (FIFE) pr not bound to a single u beriods before potentially a machine learning con processing, metrics, hype FIFE	formation in many re rovides a flexible, m se case: it can accomn y transitioning to one o text. FIFE can be us r parameter optimizati	search, managerial, and operational contexts. Our open- achine learning toolkit for forecasting panel attrition, nodate any process wherein a subject—such as a person, or more exit states. The algorithms within FIFE build on ed for both binary and competing risk survival analysis, on, and visualizations.		
		17. LIMITATION	18. NO. OF PAGES	19a.NAME OF RESPONSIBLE PERSON		

16. SECURITY C		OF:	17. LIMITATION OF ABSTRACT	18. NO. OF PAGES	Mr. Lernes Hebert
a. REPORT	b. ABSTRACT	c. THIS PAGE	II	36	19b. TELEPHONE NUMBER (Include Area Code)
U	U	U	U		(703) 697-6631

This page is intentionally blank.