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Abstract 

Homomorphic encryption provides a way to keep sensitive data encrypted while operations are performed on it. It offers the 
possibility of hosting and processing sensitive data in an untrusted environment, such as a public cloud. However, the additional 
encryption affects performance, and it may cause degradation to latency or throughput. Special considerations are required when 
evaluating performance of an Enterprise Resource Planning (ERP) system with a homomorphically encrypted database. These 
result from different encryption types with different performance characteristics, combinations of encryption with non-linear 
performance behavior, and disparities between start-up and steady-state performance. In this paper, we describe the challenges of 
homomorphic encryption performance evaluation and some methods to obtain accurate and reliable results, and we present the 
application of these methods to the evaluation of a CryptDB-based system. 
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1. Introduction 

Homomorphic encryption is a way to encrypt data such that the encrypted data can be directly manipulated 
without a decryption key. This differs from traditional encryption, where manipulation of data requires decryption, 
computation, and re-encryption. The ability to operate on data without having the decryption key means that a third 
party can perform the operations without knowing the underlying data. This security property can be used as part of 
a system that allows an untrusted party, such as a public cloud vendor, to process sensitive encrypted data.  

Fully homomorphic encryption refers to encryption methods that permit any logical operation on the data. It is 
theoretically possible, but practically infeasible. Partial homomorphic encryption refers to encryption that permits a 
single type of operation on data, such as addition. CryptDB is an implementation that uses partial homomorphic 
encryption as part of an overall scheme to encrypt the contents of a database and permit a set of standard database 
queries on the encrypted data.  

The figure below shows the basic architecture for using CryptDB. The proxy sits between the application and 
database. It encrypts content going into the database and decrypts content coming out. It stores encryption keys in 
encrypted form in the database itself. The user passwords are used to decrypt the appropriate encryption keys. 
Information about the encrypted schema and which parts of it each user is allowed to access are stored in the 
annotated schema. CryptDB user defined functions (UDFs) are stored in the database to help the proxy manipulate 
the database cryptographic state. 

 

 

Fig. 1. CryptDB architecture. 

Prior related work examined the feasibility and performance of such a setup [1]. It extended the original 
implementation of CryptDB [4] to include stored procedures, views, and referential integrity of primary/foreign key 
pairs. There has been some work to test performance of both homomorphic and partial homomorphic encryption. [2] 
describes a framework for homomorphic encryption performance testing, and [3] tests the raw cryptographic 
operations for fully homomorphic and partial homomorphic encryption methods. Our work looks at the techniques 
needed to test a homomorphically encrypted database and applies these to a test Enterprise Resource Planning (ERP) 
system with the extended CryptDB implementation.  

Section 2 discusses the areas covered by evaluation, Section 3 describes the test setup, Section 4 presents the 
evaluation approach, and Section 5 provides selected test results to illustrate the evaluation approach and provide 
sample results. 

2. Evaluation Areas 

Performance evaluation covers two main areas: bulk encryption of an existing database and queries against the 
encrypted database. 

2.1. Bulk Encryption 

Bulk encryption is the process of converting an existing unencrypted database to an encrypted database. This 
process performs multiple encryptions of each data element according to the operations that will be performed on the 
data and the associated encryption types that support these operations. Evaluation of bulk encryption includes 
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assessment of the amount of time and computation resources required for a baseline data set and an evaluation of 
scalability to larger data sets.  

The time and computation resources are important for determining the practical impact of bulk encryption. A bulk 
encryption is often performed offline. For operational systems, this requires shutting the system down while the 
encryption takes place to ensure data is not modified during the bulk encryption process. The bulk encryption time 
should not exceed a reasonable downtime for the system that uses the data. 

Scalability is important for predicting performance with larger data sets. With a fixed set of computation 
resources, the total computation, and hence the total time, should scale nearly linearly with database size. However, 
the allowed downtime is often fixed, so another important area of scalability is parallelizability. If this also scales 
nearly linearly with data size, it means the bulk encryption can be divided up and completed in parallel in the same 
amount of time regardless of the data size.  

2.2. Encrypted Queries 

Query evaluation involves sending different types of queries to the encrypted database to determine performance 
characteristics. The primary performance measures are latency and throughput.  

Latency includes both absolute and relative latency. Absolute latency is the amount of time a standard query takes 
to complete. This is important because longer delays from the encrypted queries can negatively impact the user 
experience. Relative latency is the percent increase in latency compared to unencrypted queries. A user might not 
notice an increase in latency from 10 ms to 20 ms for an individual query, but composite operations that aggregate 
many such queries would see significant latency increases.  

Throughput is an issue as a system scales up. Even if latency is low for nominal request rates, decreased 
throughput will create scaling problems that eventually cause latency problems. Contention for critical central 
resources, such as cryptographic functions that are not parallelizable, throttles throughput as request rates increase. 
Synchronization causes delays when distributed resources are available but must be locked to maintain data integrity 
and consistency. The computation resources available provide a limit on overall throughput.  

Homomorphic encryption methods that rely on shared internal state information face potential problems with 
critical central resources and synchronization. Increased resource requirements for performing complex encryption 
operations reduce the throughput for a fixed set of resources. Increasing the available resources would alleviate this 
problem, but it would increase costs. 

3. Setup Considerations 

The following are important considerations in setting up homomorphic encryption performance evaluation: 

• Different queries invoke different cryptography with different performance characteristics, 
• Combinations of queries with different cryptography are not linear, and 
• Initial and steady-state behavior of cryptography can vary significantly. 

Standard database testing looks at the database queries and other properties of the database. Homomorphic 
encryption adds another layer of consideration. It is now also necessary to invoke queries that stress particular types 
of encryption. Just as certain types of database queries are optimized for performance, the encryption can be 
optimized for performance based on how different data sets are used. Stressing particular types of encryption can 
highlight what these tradeoffs are so that appropriate measures can be taken operationally. 

Due to the different ways the different types of encryption operate, some are more compute-intensive and others 
are more disk or memory-intensive. Some rely on the proxy to do most of the work, and others push the majority of 
the work to the database. As a result, stressing a single type of encryption is not sufficient to evaluate overall system 
performance under a diverse request set. Queries that use encryption types that stress the same resources may 
combine linearly, such that the total achievable request rate for a combination of requests is just an average of the 
achievable request rates for the individual requests.  
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However, if requests use different resources or distribute the resource requirements to different components, it is 
possible for the requests to receive more responses than the simple average would indicate. This assumes the 
throughput is bounded primarily by resources. With contention and synchronization, highly non-linear behavior is 
possible. Thus, it is important to test not just individual queries, but various combinations of queries in order to 
determine the performance for a system.  

Testing different queries and combinations of queries results in a large number of test runs. Because the system 
state can become corrupted, inconsistent, or unknown after a test run, it may be necessary to reset the system state 
between runs. However, some of the homomorphic encryption implementations use shared state information that is 
generated as needed during encryption and decryption. This state information is cached and reused for future 
queries. This state information is not the data itself, but the supporting cryptographic structures that are used for 
computing encryptions and decryptions. These optimizations play an important role in making homomorphic 
encryption feasible, but we must consider the start-up performance as separate from the steady-state performance.  

In a real system, it is likely that the steady-state performance is most important. For performance evaluation, it is 
easy to test start-up performance by issuing a small number of queries. Over time, the performance will converge to 
a steady-state value of latency and throughput. The challenge for testing is to determine the point at which steady-
state performance is achieved. Averaging performance across the start-up and steady state provides unreliable 
numbers. The simple solution is to monitor performance until performance remains steady and then record data 
starting after that point in time. If the performance remains stable for a time period comparable to the initial transient 
performance, it is likely that it will remain stable. Accounting for longer-term performance issues is a separate 
problem. Garbage collection and other infrequent but performance-affecting events should be tested as well, but a 
longer-term test would be necessary. 

In order to run the tests above, a method to generate requests and record results is needed. To generate requests, 
one approach is a simple web application that takes requests from a browser, translates them into database queries, 
and returns results in HTML pages. The application approach mimics a full ERP by translating user requests to 
database queries. A full ERP would have more complicated queries and sequences of queries where the relative 
performance is more important due to the additional latency of queries. To test such performance, queries can be 
issued repeatedly to generate higher system utilization that resembles that of an operational ERP. 

Although requests are initiated by a browser, it is possible to use a tool to generate many such requests that 
appear to come from multiple browsers. This approach emulates the aggregated requests from many individual web 
browsers to the application. With the tool, it is possible to prepare collections of requests that test different types of 
queries and cryptography. Requests are assigned different weightings to form an overall request profile, where each 
request is repeated at a rate proportional to its weighting.  

4. Evaluation Method 

Performance evaluation consists of sending requests to the database through the application, waiting for 
responses, and recording timing information of the requests and responses in order to generate latency, throughput, 
and other metrics. Because many requests can be handled in parallel by the database, it is necessary to run multiple 
requester threads in parallel in order to stress the system and determine maximum performance. With a multi-core 
desktop, it is possible to achieve true parallelism up to the number of physical cores and virtual parallelism far 
beyond this limit.  

One challenge is that the ramp-up period for multiple users can have a significant effect on performance. If all 
users start at the same time, they tend to cluster their requests together so that the system receives a group of the 
same requests, then a group of requests of another type, and so on. This degrades performance by focusing the 
resource utilization rather than spreading it out. To address this, ramp-up times must be chosen so that the different 
threads are spread across the request sequence. Sudden spikes and drops in CPU utilization, disk access, and network 
traffic indicate a failure to adequately space threads. Although such thrashing of resources is a good worst-case test, 
it is not likely to represent real-world behavior, where requests are made by independent requesters. 

For throughput testing, the goal is to see how many requests the system can sustainably complete over a period of 
time. There are two approaches for this: adaptive and non-adaptive loads. For an adaptive load, multiple threads 
repeatedly send queries on each thread. New requests are only issued after previous requests are completed. This 
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keeps the number of parallel requests constant, but the request rate varies with the server’s ability to send responses. 
As the number of threads rises, the throughput initially goes up as more parallelism is achieved. However, when the 
system is at maximum capacity, the extra threads queue up and wait, and the throughput stagnates while the latency 
rises. By incrementally increasing the thread count, a performance curve is generated for latency versus throughput; 
the “knee” in the curve indicates where maximum sustainable capacity is reached. Before the knee, throughput is 
still increasing with more users; after the knee, latency rises rapidly with little or no corresponding increase in 
throughput. With this adaptive load, the request rate is determined by the server’s response rate. As the server 
completes more requests, it allows users to send more requests to the server. This is useful for simulating a situation 
where a few users are making long sequences of requests.  

The non-adaptive load is comparable to a large pool of users making short requests. In this case, the request rate 
is fixed without regard to the server’s ability to complete them. The queue length in this case can grow very large, 
unlike the adaptive load where the number of users, and hence the maximal queue length, is fixed. Non-adaptive 
loads better test system stability. The non-adaptive load will continue to send requests even as the old ones queue up, 
and sometimes a large queue of incoming requests can cause additional problems at the server. Thus, a temporary 
slow-down at the server, such as garbage collection, can cascade into a complete failure as queues form and then 
grow. Adaptive loads would simply wait until the server responses and hide such problems behind a lower 
throughput, but non-adaptive loads will maintain request rates and make such problems apparent. 

For latency testing, timing information is collected and average latency values for each type of request are 
computed. It is helpful to first identify the range of achievable throughputs. Latency values are most meaningful 
when the system is not overloaded. By looking at the latency-throughput performance curves, it can be determined 
whether a latency measurement is due to real system latency or just queuing of requests due to throughput saturation. 

To minimize the warm-up time, queries using the same cryptographic methods are grouped together, and tests are 
run sequentially on the warmed-up machine instead of restarting. This requires that the state of the system remains 
clean between tests. Some tests cause the server to fail, and this requires a clean restart and a new warm-up period 
before resuming tests. 

To compute an average performance for a collection of requests, the individual queries are tested first. This shows 
the extreme cases where particular parts of the system are stressed. Then, combinations of queries show which 
queries combine well or poorly.  

5. Test Results 

This section presents selected results of applying the above evaluation approach to a CryptDB-based system. 
Testing of bulk encryption was performed on different data sets to assess scalability. The database was based on the 
Oracle human resources database provided with Oracle 12c. The employees table contained information about 
employees (one employee per row). To test different sizes of data sets, the number of employees in this table was 
varied: the smallest data set contained 10,000 employees, the next largest contained 100,000 employees, and the 
largest contained 1 million employees. Additional employees were generated randomly. Employee IDs were 
assigned sequentially. Salaries and other data were assigned randomly within ranges. Managers, locations, and other 
data that links to other tables were assigned randomly from available options. This provides a set of databases of 
different sizes that are functional and consistent. 

Performance testing of bulk encryption computes the time to do the conversion from the original files to the 
encrypted files. The loading itself is generally much quicker than the encryption, so the encryption dominates the 
overall loading time for the encrypted data. In our test using dual 20-core processors in a Dell Precision desktop, the 
total encryption time for the database with 1 million employees was just under one hour. We deemed this to be 
feasible for our intended use case, but for other ERPs, a determination would depend on the hardware available, the 
data set size, and the desired execution time of the encryption.  

For scalability, the three data sets were run, and the time for each increased roughly by a factor of 10 as the size 
increased. This shows that the times scale linearly with the data set size. For parallelization scalability, the tests were 
repeated on a desktop with 40 cores and a laptop with 4 cores. The speeds of the processors were comparable. The 
times for the laptop were roughly 10 times longer than those for the desktop, again showing linear scalability. 
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The combination of these results shows that the workload scales linearly with the size of the database, and the rate 
of work scales with the number of processors.  

For query testing, a number of queries were used. Queries Q1 through Q6 returned large data sets, and 
performance depended primarily on highly variable network speeds, so these are not included. The remaining 
queries returned smaller result sets and include the following: 

Q7: search for employees with particular department name, job ID, and manager ID values. 
Q8: search for employees with particular job ID and manager ID values, and salary between two values. 
Q9: search for employees with particular city, job ID and manager ID values. 
Q10: search for employees with particular job ID and department name values, and salary between two values. 
Q11: search for employees with particular department name, job ID, and manager ID values. 
Q12: search for employees with particular job ID and manager ID values, and salary between two values. 
Q13: search for employees with particular first name and job ID values, and phone number that contains a 

particular substring. 
Q14: search for employees with particular last name and department name values, and phone number that 

contains a particular substring. 
Q15: return salary information plus a raise value for employees with particular job ID, manager ID, and salary 

between two values. 
Q16: Insert an employee 
Q17: Update an employee 
Q18: Delete an employee 

For the queries under test, measurements of latency and throughput were made for different adaptive user loads, 
and requests were generated by the test tool JMeter. A sample of the results is shown in Figure 2. 

     

Fig. 2. Latency vs. throughput for individual queries. 

Several key features are visible. First, as the load initially increases, the throughput increases with little effect on 
latency. Then, at a critical point, the latency rapidly increases while the throughput remains nearly unchanged. This 
was observed to be the saturation point, where the system resources are consumed and additional requests simply 
queue up and wait longer. Performance for individual queries is shown below. The throughput measurements are the 
values at the “knee” in the curve, which is the maximum sustainable throughput. Based on the initial adaptive load 
results, non-adaptive loads were generated around the knee value to find the highest stable request rate achievable. 
These are displayed in Table 1. 
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   Table 1. Individual query throughput. 

Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 

600 req/s 308 587 172 592 663 43 45 18 
To move from a single query to a mix, we first examined combinations of two queries. With baseline numbers for 

individual queries, it is possible to predict the aggregate throughput of combinations of requests. If the throughputs 
of queries A and B are TA and TB, then the amount of resources needed for a request of type A or B is 1/TA or 1/TB, 
respectively. So, n of A and m of B would require resources R = m/TA + n/TB. Thus, this sequence would be repeated 
1/R times per second, with total throughput of n + m requests per iteration, which is (n + m) / R = (n + m) / (n/TA + 
m/TB). 

We computed these expected values and compared them to the actual numbers to determine which queries mesh 
well together. It is expected that actual performance will always improve compared to the predicted performance, 
because similar queries stress the system in the same way, and different queries have the potential to stress it in 
different ways, which improves internal parallelization and aggregate performance. 

The expected performance is shown in the table below. The baseline numbers appear in gray along the diagonal. 
The values in the table are computed as above with n = m = 1, indicating an equal number of each query. 

   Table 2. Combined query expected throughput (requests per second). 

 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 

Q7  600 407 593 267 596 629 80 83 35 
Q8 407 308 404 220 405 420 75 78 34 
Q9 593 404 587 266 589 622 80 83 35 
Q10 267 220 266 172 266 273 68 71 33 
Q11 596 405 589 266 592 625 80 83 35 
Q12 629 420 622 273 625 663 80 84 36 
Q13 80 75 80 68 80 80 43 44 25 
Q14 83 78 83 71 83 84 44 45 26 
Q15 35 34 35 33 35 36 25 26 18 

The actual performance of each combination of two queries was very close to the predicted values in most cases. 
To help identify areas of significant deviation, the table below lists the percent improvement in throughput of the 
actual above the predicted values. Improvements are green and reductions are red, with the darkness of color 
reflecting the magnitude of change from the baseline.  

   Table 3.Deviation from expected throughput. 

 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 

Q7  -1% -2% 5% -2% 3% 6% 5% 6% 
Q8 -1%  -1% 16% -2% 26% 11% 7% 9% 
Q9 -2% -1%  5% -2% 2% 6% 5% 6% 
Q10 5% 16% 5%  6% 4% 3% 0% 14% 
Q11 -2% -2% -2% 6%  4% 7% 5% 6% 
Q12 3% 26% 2% 4% 4%  5% 1% 8% 
Q13 6% 11% 6% 3% 7% 5%  2% 51% 
Q14 5% 7% 5% 0% 5% 1% 2%  45% 
Q15 6% 9% 6% 14% 6% 8% 51% 45%  

The most gains are seen when Q15 is combined with Q13 or Q14. This indicates that Q15 has very different 
resource requirements than Q13 and Q14. Upon closer examination, it was observed that Q15 created a very high 
computational load on the CryptDB proxy due to the complicated encryption and decryption associated with 
additions, while Q13 and Q14 produced a higher load on the database server due to the invocation of a UDF to 
perform searching of character strings.  

Due to the test tool (JMeter) and its ease of use with static requests, all testing was done with the same sequence 
of queries that had the same values for all queries. This raised the question of whether the query and response values 
were being cached in the database. In order to test this, a variation of Q10, called Q10R, was implemented that used 
random values for the salary range.  

The random values created one million possible queries. The test was run first sequentially, where 300 iterations 
of Q10 were followed by 1,300 iterations of Q10R. Results showed slightly higher latency for the random queries, 
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suggesting some internal caching of results. Then, queries alternated between Q10 and Q10R for 1,600 queries. The 
same overall performance improvement was observed, with a quick drop from a high latency to around 150 ms and a 
second drop to around 50 ms. These were observed to be synchronous for the alternating queries, showing that the 
cryptographic state is the largest component of the performance improvement, and the improvement for 
deterministic over random values is persistent but small. 

The first 10 points represent individual values. Points between 10 and 100 represent the average of 10 trials; 
points at 100 and more represent the average of 100 trials. Iteration numbers represent the average of the trials (e.g., 
trials 201–300 are plotted at 250.5). 

    

Fig. 6. Initial latencies for Q10 and Q10R – sequential and interleaved. 

The latency for Q10R is about 23% higher. However, even on unencrypted data, the latency is about 9% higher 
for random values. This means the effect of randomization is really only a 13% (1.23/1.09 – 1) penalty due to 
CryptDB for random data versus deterministic data. This is not negligible, but small enough to conclude that 
deterministic queries are an adequate representation of random queries. The situation for any real-world system is 
likely to lie somewhere between these values depending on the type of application and the degree of user influence 
on the values in the database queries from the application. 

6. Conclusions 

With the increasing concern over privacy of data and the concurrent increase in public cloud computing, 
homomorphic encryption of databases is a promising component of a solution to preserve privacy while leveraging 
the power of the cloud model. An accurate assessment of performance is an important step in implementing such 
solutions. This paper describes potential challenges when evaluating performance of a homomorphically encrypted 
database as part of an ERP. It describes evaluation approaches to provide accurate and reliable results. It applies 
these to an implementation of CryptDB and presents the performance results.  
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