Emerging Trends in the Commercial Space Sector: Need for Responsive Policy Reform? (Presentation)

Bhavya Lal
Acknowledgements
The author appreciates the contributions made by the following: Alyssa J. Picard, Iain D. Boyd, Jonathan R. Behrens, and Elena de la Rosa Blanco.

For More Information
Bhavya Lal, Project Leader
blal@ida.org, 202-419-3724

Mark J. Lewis, Director, IDA Science and Technology Policy Institute
mjlewis@ida.org, 202-419-54

Copyright Notice
© 2017 Institute for Defense Analyses
4850 Mark Center Drive, Alexandria, Virginia 22311-1882 • (703) 845-2000.

This material may be reproduced by or for the U.S. Government pursuant to the copyright license under the clause at FAR 52.227-14 [December 2007].
Emerging Trends in the Commercial Space Sector

Need for Responsive Policy?

Bhavya Lal, Ph.D.
Science and Technology Policy Institute
National Oceanic and Atmospheric Administration
Advisory Committee on Commercial Remote Sensing (ACCRES) Meeting
April 12, 2017

Acknowledgement – Alyssa Picard, Iain Boyd, Jonny Behrens and Elena de la Rosa Blanco
Science and Technology Policy Institute
Goal of this Discussion

• Potentially burgeoning commercial space sector
• Explore/discuss scope of Agency regulatory role
 – Now
 – Future
 – Alternatives
• Questions to explore
 – Why (if) regulate these activities?
 – Who should regulate?
 – How to best do it to ensure national goals are met?
 – Where is burden of evidence?
Emerging Commercial Activities in Space

<table>
<thead>
<tr>
<th>Activity</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-Space Transportation—Landers, Rovers, and Orbiters</td>
<td>- Are these activities covered under current authorities?</td>
</tr>
<tr>
<td>In-Space Human Habitats</td>
<td></td>
</tr>
<tr>
<td>On Orbit Servicing, Assembly, Manufacturing</td>
<td>- If not, should they be? Is there a role for government given domestic and international laws and treaties?</td>
</tr>
<tr>
<td>On-Orbit Debris Removal</td>
<td></td>
</tr>
<tr>
<td>Space-Based Space Situational Awareness</td>
<td>- If so, is there a role for NOAA?</td>
</tr>
<tr>
<td>Others (e.g., CubeSat based asteroid detection)</td>
<td>➤ Do any of these activities require legislation?</td>
</tr>
<tr>
<td>GPS Radio Occultation</td>
<td></td>
</tr>
<tr>
<td>Space-Based Frequency Mapping</td>
<td></td>
</tr>
<tr>
<td>Space-based Acoustic Sensing</td>
<td></td>
</tr>
</tbody>
</table>

Note: The questions are only listed for the activities under which there is no coverage under current authorities.
NOAA and Remote Sensing

NOAA

• NOAA is responsible for licensing private remote-sensing space systems

• NOAA’s regulations require licensees to provide and operate their systems within certain orbits, submit a plan for post-mission disposition of remote-sensing satellites, and provide a casualty risk assessment for planned post-mission disposals involving atmospheric reentry of the spacecraft

• Presidential directive NSPD-27 (2003) [that set national policy on privately owned and operated remote sensing space systems] does not define remote sensing

• Other NOAA documents have a very high level definition
 – “Remote sensing is the science of obtaining information about objects or areas from a distance, typically from aircraft or satellites.”
 – 15 CFR 960.3 emphasizes earth’s surface

Do activities above fall under NOAA’s jurisdiction? (The authority was created for taking pictures)

If not, then whose? (if anyone’s)
FAA Office of Commercial Space Transportation (AST)

- FAA is a regulator of space launch and reentry transportation carried out within the United States or by U.S. citizens.
- FAA/AST exercises this responsibility consistent with public health and safety, safety of property, and the national security and foreign policy interests of the United States.

Federal Communications Commission (FCC)

- FCC is responsible for efficient and effective use of non-Federal radiofrequency spectrum.
- Internationally it promotes the growth and rapid development of innovative and efficient communication technologies and services.
- It regulates satellite communications through the licensing of radio stations in outer space.
- The FCC requires applicants to submit detailed information concerning plans for orbital debris mitigation. FCC licenses contain terms and conditions, such as specifying orbits and operating consistent with debris-mitigation plans.

Department of Commerce Office of Space Commerce?

- No current regulatory role.
How to Determine Role(s) in this Fast-Changing Sector? First Principles?

• Do we need to define remote sensing better? So commercial space firms have a better sense of whether they will be regulated?

• Why regulate? What are we trying to protect and how?
 – Protect national security interests
 – International treaty compliance

• Do ALL activities need regulation? Are there any that we shouldn’t be regulating anymore? Are there any missions that are “inherently governmental” that can only be performed for governments? Are there any areas where US pre-eminence is critical?

• Who should regulate? What timeframe?
 – NOAA, FAA, FCC, Commerce?

• How to best do it to ensure goals (which goals) are met?
 – Whose buy-in is required and who should just be informed?

• Where is burden of evidence?
 – Licensee? Government?
 – If government says no, what evidence?
DETAILS ON ACTIVITIES
On-Orbit Manufacturing

- Additive manufacturing/3D printing or in-space manufacturing using either materials from Earth OR materials extracted from space and processes in space
- Goals: exotic fiber, silicon carbide, replacement parts for satellites/ISS, full satellites, whole habitats/lunar bases
- Made in Space planning to make ZBLAN – at some point on a private station

Source: Made In Space, http://www.madeinspace.us/projects/fiber/
On-Orbit Assembly

- Use of a space-based platform to assemble entire satellites or satellite components
- Space System Loral attempting to assemble antennae on to comsats

Photo credit: Space System Loral
On-Orbit Servicing

• Four types:
 – End-of-life extension modules
 – Satellite repairs
 – Satellite refueling (Earth fuels)
 – Satellite refueling (from LEO depots of space-derived fuels)

• Orbital ATK – MEV to provide additional power/life extension
• Chandah Space - fix failed deployments of systems or dysfunctional payloads
• Space System Loral to provide additional transponders antennae
• Commercial smallsats provide rendezvous and proximity operations (RPO) services to larger satellites

Chandah Space plans to put smallsats (called InsureSats) in orbit above geosynchronous orbit (GSO) to come down and inspect client GSO satellites using optical payload.

Space-Based Space Situational Awareness

• Use of space-based sensors to provide awareness of the space environment (other satellites, debris, space weather events, etc.) for satellite operators

• Several companies have plans to place SSA sensors on satellites
 – Planetary Resources
 – Northstar
 – SpaceX
 – Other?
In-Space Transportation—Landers, Rovers, and Orbiters

• Transport of goods or people to the Moon, Mars, space habitats, or asteroids

• Astrobotic
• Moon Express
• Masten
• SpaceX

Photo credit: Astrobotic
In-Space Habitats

- Habitats to host crew in LEO, or eventually during Mars missions
- Two types: follow-on to ISS, or transportation capsules (to ISS) that could be used as standalone habitats
- Axiom Space
- Bigelow

Photo credit: NASA TV
Active (or Passive) Debris Removal

- Technologies to remove dangerous pieces of debris from crowded and/or valuable orbits
- Lasers, tethers, claws, solar sails. Most untested but increase in demand likely
- On-orbit servicing modules could also perform debris removal
- Launchspace Technologies
- Astroscale (Singapore/Japan)
- Ball Aerospace, Astra LLC developing M&S tools
Space-Based Acoustic Sensing

- Use of advanced optical sensors to view and recover audio from distant objects that have weak optical modulations produced by local sound and vibration sources

- The modulated light sources and the RAS sensor are passively coupled at the speed of light, yielding a variety of interesting sounds across the entire human auditory range

- Ecliptic Enterprises Corp.
 - 3U CubeSat platform “RASSat” to listen to objects from space using cameras

SpaceX F9 Rocket Staging at >100 km (>60 miles)
Other Areas - Optical Communications

- Laser-based optical communications has been demonstrated in space and offers advantages over RF
 - Faster throughput
 - Fewer spectrum allocation issues at least in the near-term
 - Reduced satellite SWAP
- Beaming laser energy between space and ground will present new regulatory challenges, e.g.,
 - Deconfliction with terrestrial activities
 - Maximum power levels
 - Effects of atmosphere, weather
 - Moon to Earth laser comm
 - ISS to Earth laser comm
 - Commercial hosted payload
DEFINING “COMMERCIAL”
Defining “Commercial”

Commercial Space Policy Guidelines (1991)

• Commercial space sector activities are characterized by the provision of products and services such that:
 – private capital is at risk;
 – there are existing, or potential, nongovernmental customers for the activity;
 – the commercial market ultimately determines the viability of the activity; and
 – primary responsibility and management initiative for the activity resides with the private sector.

National Space Policy (2010)

• The term “commercial” ...refers to space goods, services, or activities provided by private sector enterprises that bear a reasonable portion of the investment risk and responsibility for the activity, operate in accordance with typical market-based incentives for controlling cost and optimizing return on investment, and have the legal capacity to offer these goods or services to existing or potential nongovernmental customers.
What % of a “commercial” firm’s business can be government (and be still considered commercial)?

SpaceX
- Inmarsat $70 million
- SES $110 million
- Iridium $215 million
- NASA $775 million
- Dept. of Defense $115 million
- Intelsat $10 million
- Other companies $480 million

Other Space Firms
- **Lockheed Martin**
 - ~$36B ($46B revenues), 2015
- **Made in Space**
 - Unknown but likely mostly govt

Traditional Commercial
- **DirecTV**
 - $33B (2014), almost all commercial
- **GM**
 - $166B (almost all commercial BUT bailed out by government - $16B)

~$.89B ($1.8B revenues), 2015
Operational Definition

<table>
<thead>
<tr>
<th>Risk Taker</th>
<th>Private Entities/Markets Takes Risk</th>
<th>Government Takes Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Emerging" Commercial Space</td>
<td>Space X, Bigelow</td>
<td>"Traditional" Commercial Space</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e.g., Lockheed Martin</td>
</tr>
<tr>
<td>Commercial Space</td>
<td>Virgin Galactic, Space X, Bigelow (future)</td>
<td>e.g., Roscomos, Arianespace</td>
</tr>
<tr>
<td>Intelsat (current)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Customer Base

Government Primary Customer

Government One of Many Customers
<table>
<thead>
<tr>
<th>1. REPORT DATE (DD-MM-YYYY)</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED (From - To)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XX-04-2017</td>
<td>Final</td>
<td>Mar 2017 - Apr 2017</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5a. CONTRACT NUMBER</th>
<th>5b. GRANT NUMBER</th>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emerging Trends in the Commercial Space Sector: Need for Responsive Policy Reform? (Presentation)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5d. PROJECT NUMBER</th>
<th>5e. TASK NUMBER</th>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE-20-CS243</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lal, Bhavya</td>
<td>IDA Science and Technology Policy Institute</td>
<td>IDA Document NS D-8471</td>
</tr>
<tr>
<td></td>
<td>1899 Pennsylvania Avenue, NW, Suite 520</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20006-3602</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDA Science and Technology Policy Institute</td>
<td>STPI</td>
<td></td>
</tr>
<tr>
<td>1899 Pennsylvania Avenue, NW, Suite 520</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington, DC 20006-3602</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
<th>13. SUPPLEMENTARY NOTES</th>
<th>14. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution is unlimited.</td>
<td></td>
<td>This presentation was prepared for an April 2017 meeting of the National Oceanic and Atmospheric Administration's Advisory Committee on Commercial Remote Sensing (ACCRES). The presentation current and future alternatives for more responsive and flexible U.S. policies in light of rapid and recent changes in the commercial space sector, particularly as related to remote sensing.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>commercial space activities; NOAA; remote sensing; space policy</td>
<td>Unclassified</td>
<td>Same as Report</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
<th>19b. TELEPHONE NUMBER (Include area code)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lewis, Mark J.</td>
<td>202-419-5491</td>
</tr>
</tbody>
</table>