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Executive Summary 

Introduction 
This report reviews empirical evidence on the effectiveness of intelligent tutoring 

systems (ITSs). Although its findings may inform instructional and cognitive theory, its 
focus is primarily empirical and statistical. The review examined findings from 66 studies 
of ITSs: 45 system evaluations and 21 component evaluations. These systems employ 
computer-based tutoring as an instructional method based on (1) models of the subject 
area representing expert performance in solving problems and/or expert knowledge of 
underlying concepts, (2) dynamic models that learn from and evolve with the learner’s 
developing skills and knowledge), and (3) application of these models to support and 
guide mixed-initiative tutorial dialogues derived from expert human tutoring. 

Initially, this review identified about 550 reports as candidates for inclusion. These 
reports were drawn from databases maintained by the Educational Resources Information 
Clearinghouse (ERIC), the National Technical Information Service (NTIS), Comprehen-
sive Dissertation Abstracts, and Google Scholar. 

System evaluations and component evaluations were considered separately. Criteria 
for system evaluations were that they (1) compare an experimental group using an ITS 
with a comparison control group receiving conventional classroom instruction, (2) meas-
ure learning quantitatively and in the same way for both the experimental and control 
groups, and (3) contain no substantive methodological flaws. Criteria for component 
evaluations were that they compare two or more features that could influence the 
effectiveness of an ITS and that they satisfy system evaluation criteria (2) and (3). 

Findings 

System Evaluations 
Of the candidate evaluations, 45 met criteria for inclusion in the system evaluations. 

Overall, the effect of intelligent tutoring in these evaluations was to raise student test 
scores by an average of 0.60 standard deviations over the test scores of conventionally 
taught students, which is roughly equivalent to an improvement from the 50th to the 73rd 
percentile. 

Although eight system evaluations produced effect sizes of 1.00 standard deviations 
or higher, six evaluations resulted in effective sizes that were near or below zero. All but 
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one of these latter results were for evaluations that were poorly aligned with the higher 
order instructional objectives targeted by the tutoring systems. When these studies were 
eliminated from the analysis, the average effect size was about 0.75 for the remaining 
39 systems. 

Another factor that influenced study results was the implementation fidelity of the 
tutoring program—the care and attention with which a program was implemented in the 
classroom. Programs that paid careful attention to implementation were significantly 
more effective than those that did not. 

Component Evaluations 
Of the candidate evaluations, 21 met criteria for inclusion in component evaluations. 

These studies sought to determine if the presence or absence of a specific tutoring feature 
affected learning, usually by comparing performance of two versions of a tutoring sys-
tem, one with and the other without the feature. Findings from these component evalu-
ations can be summarized as the following: 

• Interactive participation as opposed to passive or vicarious learning. Aver-
age effect size for 11 assessments of this component was 0.31 in favor of 
including student-instructor interactions. 

• Support for self-explanation. Although effect sizes in six assessments of this 
component ranged from 0.33 to –0.32, their average was 0.09 in favor of 
prompts encouraging students to reflect on their solutions, overall a null effect. 

• Flexible exploration. One study found an effect size of 0.35 in favor of 
allowing learners flexibility to explore domains rather than limiting them to a 
fixed sequence of steps. 

• Game playing. One study found an effect size of 0.28 in favor of an interface 
with the look and feel of a virtual-reality game over a more standard intelligent 
tutoring approach. 

• Spoken directions, feedback. Two studies found effect sizes of 0.81 and 0.54 
in favor of a pedagogical agent that appeared on screen and provided spoken 
directions and feedback compared with directions and feedback provided only as 
written text. 

• Presence of an animated pedagogical agent. One study compared the value of 
narration delivered by an on-screen agent with the same narration delivered off-
screen and found no difference between the two treatments. 
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Conclusion 
Overall, this review suggests that ITSs may make substantial improvements over 

other instructional approaches by accelerating learning, expanding learners’ basic prob-
lem-solving competencies, and developing the conceptual understanding that contributes 
to long-term retention and transfer. These computer-based systems provide many of the 
advantages of tutoring at scales that would be unaffordable if provided by human tutoring 
or classroom instruction. These systems demonstrated sufficient effectiveness and effi-
ciencies to recommend continued investment in their research, development, and 
application. 
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1. Background 

Developers of intelligent tutoring systems (ITSs) have long believed that their pro-
grams have strong, beneficial effects on student learning. They have estimated the 
increase in test performance from intelligent tutoring to be about one standard deviation, 
roughly an improvement in student test performance from the 50th to the 84th percentile 
(e.g., Anderson, Boyle, Corbett, & Lewis, 1990; VanLehn, 2011). An increase of this 
magnitude is much larger than the one-third standard-deviation improvement usually 
attributed to older forms of computer-based instruction (Fletcher, 2003; C. L. C. Kulik & 
Kulik, 1991; J. A. Kulik, 1994). It is smaller, however, than the two-standard-deviation 
effect that has been attributed to human tutoring (Bloom, 1984), which, roughly, would 
raise an average student’s performance from the 50th to the 98th percentile. 

Benjamin Bloom (1984) introduced the term two-sigma effect to describe the differ-
ence that human tutors seem to make in school programs. (Sigma commonly stands for 
standard deviation in statistical notation.) Bloom also used the term two-sigma problem 
to describe the search for other teaching approaches that could improve student perfor-
mance to the same extent. In the years since Bloom first described the two-sigma prob-
lem, it has inspired instructional designers. Noting the impracticality of providing a single 
human tutor for every student, some researchers have sought to meet Bloom’s challenge 
by capturing the behavior of human tutors in ways made affordable and readily accessible 
through computer technology (e.g., Corbett, 2001a; Fletcher, 1992; Woolf & McDonald, 
1984). The hope was that these ITSs would soon match the success of human tutors and 
break the two-sigma barrier. 

The picture has changed in recent years, however. For one thing, Bloom’s findings 
on human tutors have come into question. Bloom based his conclusions about human 
tutors on evaluations of a single program by two of his students. Over the years, review-
ers have produced at least five extensive meta-analyses of findings on human tutoring, 
and none of these analyses support Bloom’s claims. The earliest meta-analysis (Hartley, 
1977) examined findings on peer tutoring in 29 studies of mathematics learning in ele-
mentary and secondary schools. Hartley reported that the tutoring programs raised math 
test scores by an average of 0.60 standard deviations. P. A. Cohen, Kulik, and Kulik 
(1982) examined results of peer tutoring programs in elementary and secondary schools 
and reported an average effect size of 0.40 standard deviations in 65 studies. Mathes and 
Fuchs (1994) found an effect size of 0.36 in 11 studies of peer tutoring in reading for stu-
dents with mild disabilities. G. W. Ritter, Barnett, Denny, and Albin (2009) examined the 
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effectiveness of adult tutors in elementary schools and reported an average effect size of 
0.30 for 24 studies. Finally, VanLehn (2011) summarized results from 10 comparisons of 
performance of tutored and non-tutored students. He reported that the tutored students 
outperformed the non-tutored students by 0.79 standard deviations. The median effect 
size in the five meta-analyses is 0.40, far from Bloom’s two-sigma effect. 

These findings do not suggest that the effects of human tutoring are insignificant. To 
the contrary, the What Works Clearinghouse (August 2010) considers effect sizes of 0.25 
and higher to be large enough to be of substantive importance in education. By this stand-
ard, the value of human tutoring programs has been amply demonstrated. However, the 
effects typically reported for human tutors are nowhere near as large as those found by 
Bloom’s students (Bloom, 1984). If matching the success of typical human tutors remains 
a goal for developers of ITSs, the goalposts are not as distant as they once seemed. 

Recent evaluation efforts have also challenged conventional beliefs about the effec-
tiveness of ITSs. Specifically, several evaluators have suggested that the benefits of ITSs 
are much smaller than many researchers think. The evaluators have focused their atten-
tion on one specific ITS, the Carnegie Learning Corporation’s Cognitive Tutor. As the 
culmination of years of pioneering work by researchers at Carnegie Mellon University, 
Cognitive Tutor is a computer-based system that teaches students to solve problems by 
simulating the behavior of expert human tutors. It is now used by 600,000 students in 
44 states (Gabriel & Richtel, 2011). No other ITS has received such wide acceptance. 

Recent reports, however, have suggested that Cognitive Tutor has little discernible 
effect on school performance. Campuzano, Dynarski, Agodini, and Rall (2009), for 
example, reported on results from a $15-million national study of reading and mathemat-
ics “software products.” Cognitive Tutor Algebra I was 1 of 10 such products evaluated 
in the 2-year study, and like the 9 other software packages, it turned out to be no more 
effective than ordinary classroom teaching. None of the 10 software packages improved 
student test scores over the scores in conventional classes to any practical extent. Test 
scores from Cognitive Tutor were, in fact, slightly lower than the test scores from stu-
dents in conventional classes, but the negative effect of the Cognitive Tutor program was 
too small to be considered statistically significant. 

This finding was not the only blow to the reputation of ITSs. A synthesis of evalua-
tion findings on programs to improve middle and high school mathematics examined 
results of seven evaluations of Cognitive Tutor Algebra I (Slavin, Lake, & Groff, 2009). 
To be included in the synthesis, the evaluation studies had to meet a set of exacting stan-
dards, and only 7 of 13 Cognitive Tutor evaluations examined by Slavin and his col-
leagues met these standards. Findings suggest that Cognitive Tutor raised student test 
performance by 0.12 standard deviations—a positive amount but less than the 0.25 stan-
dard deviations that the What Works Clearinghouse (August 2010) considers necessary 
for substantive importance in education. 



3 

The What Works Clearinghouse (August 2010) produced another important synthe-
sis of findings on Cognitive Tutor Algebra I, setting up demanding criteria for adequate 
studies of Cognitive Tutor evaluations. They deemed that only 4 of the 24 high school 
evaluations they examined were worthy of serious consideration and reported that the 
average effect of Cognitive Tutor in these 4 studies was very near 0. Students who 
learned in classrooms that used Cognitive Tutor performed at about the same level as stu-
dents who were taught in conventional classrooms. 

The New York Times brought recent findings on Cognitive Tutor to the attention of 
the public in a front-page story (Gabriel & Richtel, 2011). Under the headline “Inflating 
the Software Report Card: School-Technology Companies Ignore Some Results,” the 
article took Carnegie Learning to task for emphasizing the positive on its website and 
ignoring negative findings. 

Our review and analysis present a somewhat different picture of the Cognitive 
Tutor. As will be seen from data in this analysis, the Cognitive Tutor’s emphasis on con-
ceptual understanding is poorly aligned with the mass measurement instruments that treat 
subjects broadly and provide a limited assessment of more substantive, conceptual 
objectives. 

Another recently completely review also presents a different view of tutoring effec-
tiveness. VanLehn (2011) searched journals and conference proceedings for studies that 
examined the effectiveness of human tutoring, intelligent tutoring, and other tutoring sys-
tems. Included in his review were 27 studies that compared intelligent tutoring to instruc-
tion that involved no tutoring. The studies examined two approaches to intelligent 
tutoring, which VanLehn called step-based tutoring and substep-based tutoring (more 
directive, fine-grained tutoring). VanLehn found an average effect size of 0.76 for step-
based tutoring and 0.40 for substep-based tutoring. The overall effect of intelligent 
tutoring in the 27 studies was to raise test scores by 0.59 standard deviations (roughly an 
improvement from the 50th to the 72nd percentile). This effect falls short of the one 
standard deviation gains that many developers expect but is far greater than the zero gains 
reported elsewhere. 

The stakes in the debate about ITSs are high. Educational costs are rising, student 
performance in many schools is far from satisfactory, and, on international tests of stu-
dent performance, schools in many countries outperform schools in the United States. 
Pressures in the military and industrial training communities to raise quality, reduce 
costs, and compete internationally are also increasing. To improve the situation, educa-
tors, trainers, policy makers, and concerned citizens need solid information about the 
effects of proposed improvement strategies. They need to know which strategies are 
worth pursuing and which are not. Given these stakes, examining all the evidence on 
ITSs makes sense. The intent of this review is to provide as comprehensive an analysis of 
the evidence as possible. 
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2. Method 

This review uses meta-analytic methodology to summarize findings on intelligent 
tutoring. Glass (1976) first described meta-analytic methods in his seminal presidential 
address to the American Educational Research Association 35 years ago. Glass’s 
approach recognizes the technical and scientific imperative that any study be accountable 
and amenable to replication. It has at least four basic features: 

• First, meta-analysts use objective methods to locate studies. 

• Second, they describe the features of these studies in quantitative and quasi-
quantitative terms. 

• Third, they report study outcomes as effect sizes, which express the differences 
between experimental and control groups in standard-deviation units. 

• Fourth, they use statistical techniques to examine relationships between study 
features and study outcomes. 

This review focuses on two types of studies of ITSs: system evaluations and 
component evaluations. System evaluations compare results of ITSs with results of con-
ventional classroom instruction. These evaluations thus measure the instructional effec-
tiveness of ITSs. Component evaluations seek to determine if the presence or absence of 
a specific tutoring feature affects learning. A typical component evaluation, for example, 
would compare two different versions of a tutoring system, one with a specific feature 
and one without. Reviews of intelligent tutoring evaluations do not always distinguish 
between the two types of evaluations. Because each type of evaluation has its own 
contribution to make toward the understanding of intelligent tutoring, we analyze results 
of the two types of evaluations separately in this report. 

A. Library Searches 
To find studies for possible use in our analyses, we looked in four library databases: 

• ERIC, the digital database of the Educational Resources Information 
Clearinghouse. This database covers more than 1 million education-related 
documents. We narrowed our search to documents tagged with the descriptor 
“ITS,” along with one or more of the following descriptors: “instructional 
effectiveness,” “comparative analyses,” or “computer software evaluation.” The 
search yielded 104 reports. 
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• NTIS, the bibliographic database of the National Technical Information 
Service. This database includes more than 2 million records on government-
sponsored research and development efforts. We searched it for records that 
contained the string “ITSs” in the subject field. The search yielded 120 docu-
ments. Reports cleared for open publication and unlimited distribution in the 
Defense Technical Information Center (DTIC) are supposed to be sent auto-
matically to NTIS. A spot check found that DTIC reports we covered in this 
review had been sent to NTIS, and we assumed that NTIS would suffice for the 
two databases. 

• Comprehensive Dissertation Abstracts. This database holds information on 
more than 2 million dissertations and theses. We looked for records containing 
the strings “intelligent tutoring” and some form of the word “evaluate” in the 
title, abstract, or keywords fields. The search yielded 98 dissertations. 

• Google Scholar. We restricted our Google search to documents that contained 
the strings “intelligent tutoring,” “evaluation,” “control group,” and “learning” 
somewhere in the text of the document. The search produced a list of 
1570 reports that met this requirement. Google Scholar sorts reports by rele-
vance, and all reports beyond the first 250 in the list appeared to be irrelevant for 
our analytic needs. We therefore restricted our examination to the first 
250 documents listed by Google Scholar. 

We tried using other terms, including the older term “intelligent computer-assisted 
instruction” (ICAI) in additional searches, but these searches did not increase the pool of 
studies for the meta-analysis. 

We located additional reports by branching from reference lists in the studies we 
identified. Two reviews were especially helpful. Van Lehn’s (2011) review on tutoring 
systems cited 38 studies that compared learning gains from human tutoring, 3 forms of 
computer tutoring, and no-tutoring groups. The Carnegie Learning Corporation’s review 
of evaluations of cognitive tutors included a reference list of 33 evaluation studies. The 
bibliographies in other primary studies produced about 2 dozen additional leads to studies 
that were candidates for inclusion in our review. 

As might be expected, the studies identified by our various searches overlapped. 
Taking this overlap into account, we estimate that we located about 550 separate studies 
that were candidates for our analyses of system and component evaluations. To be used 
in the analyses, the candidate studies had to meet several additional criteria. 

B. Criteria for Study Inclusion 
We considered dissertations, government technical reports, and published confer-

ence papers, along with journal articles and book chapters to be fair game for this review. 
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For a study to be included in our analyses, the primary requirement was a focus on intelli-
gent tutoring. We view ITSs as an instructional method, one that uses computers to simu-
late the teaching behavior of one instructor interacting with one student. Features that 
clearly distinguish ITSs from other forms of computer-based instruction are their use of 
(1) explicit models of the subject area, often with representations of expert performance 
and knowledge emphasizing underlying concepts, (2) dynamic models of student under-
standing, which evolve with the learner’s developing skills and knowledge, and 
(3) models of tutorial strategies that support mixed-initiative dialogues between learners 
and tutors. Such dialogues allow either the learner or the computer-tutor to take the 
initiative in asking questions and are generated on demand as needed in solving prob-
lems, answering questions, and eliciting explanations. 

ITSs can be contrasted with drill and practice programs. The latter methods were 
found to be quite effective in achieving lower level instructional objectives such as 
learning arithmetic facts (Suppes & Morningstar, 1972), grapheme-phoneme correspond-
ences in beginning reading (Fletcher & Atkinson, 1973), and foreign language vocabu-
lary and phonetics (Van Campen, 1981). Such items and objectives are found in initial 
learning of nearly all subjects. They generally consist of a collection of discrete items to 
be memorized and/or applied—not analyzed, evaluated, or synthesized—and are limited 
to objectives in the lower reaches of Bloom’s hierarchy or the lower left-hand corner of 
Anderson and Krathwohl’s (2001) learning space, where memorization of facts and 
rudimentary concepts, along with the application of simple procedures, is the targeted 
objectives. Early drill and practice programs employed models of individual learning and 
instructional prescriptions, some of which were quite sophisticated (e.g., Atkinson & 
Paulson, 1972; Suppes, Fletcher, & Zanotti, 1976), but they relied on pre-specified 
models of student states and static instructional methods and did not lend themselves well 
to learning at higher, more abstract conceptual levels. For material in this area, more 
flexible, dynamic, and highly adaptive models seem to be needed. ITSs tend to find their 
value in these areas. 

One motivation, therefore, for the development of ITSs grew from the recognition 
that although computers could be used to teach effectively, pre-specifying all possible 
states of the learner and programming all possible instructional responses to these states 
were expensive. Application of dynamic information structures and mixed-initiative dia-
logue was to enable the computers to generate on demand at least some of the instruc-
tional interactions and thereby assume some of the burden and cost of providing adaptive, 
individualizing instruction (Carbonell, 1970; Fletcher, 2009). 

ITSs typically contain four parts: 

• An interactive interface for student-computer dialogue; 
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• A model of the knowledge and skills that form the objectives of the instruction 
(where we want to go); 

• A dynamic model of the individual student’s evolving knowledge, skills, and 
progress toward achieving the objectives of the instruction (where we are now); 
and  

• Tutoring strategies that can be used to bridge the gap between the student’s cur-
rent knowledge and skills and the targeted instructional objectives (how to get 
from here to there). 

We examined all studies to ensure that they contained these features. 

ITSs use different techniques to develop and modify models of student knowledge 
and skills. Two common techniques are model tracing and knowledge tracing, which are 
described by Anderson et al. (1990), Anderson, Corbett, Koedinger, & Pelletier (1995), 
and other authors.  

Model tracing begins with a model of a problem and with the steps taken (usually 
by an expert) to solve it and overlays the learner’s steps in trying to solve the same or 
similar problem onto those of the expert. This approach identifies correct steps and mis-
steps while allowing for some variation in step sequence. The tutor can then use the 
learner’s missteps and errors to provide diagnostic feedback and assistance. 

Knowledge tracing aims at deeper issues. It also begins with a model, often a 
concept map or diagram that breaks down subject matter knowledge into its many inter-
related conceptual components (e.g., Hoffman, Shadbolt, Burton, & Klein, 1995; Novak 
& Cañas, 2008). This model can then be used to identify the basic knowledge and 
cognitive skills needed to solve a problem. Again, using an overlay technique, the 
computer tutor determines what concepts a learner applied or failed to apply in trying to 
solve a problem. In this way, it infers from the learner’s actions and the concept map—or 
some other knowledge representation—what the learner understands or misunderstands. 
Evaluations of both model-tracing and knowledge-tracing systems are included in our 
analyses. 

C. Criteria for System Evaluations 
To be included in our analysis of system evaluations, a study had to meet the fol-

lowing additional criteria: 

• The study had to compare the treatment group to a comparison group. Single-
group pre-post comparisons do not provide an adequate basis for measuring 
treatment effectiveness and were not included in this review. Also ineligible 
were comparisons of treatment group results to norms or expected performance. 
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• The comparison group had to receive instruction that was representative of the 
instruction commonly provided in classrooms (e.g., lecture, recitation, home-
work, and perhaps laboratory exercises). The comparison group could be either 
a conventional class or an especially constituted group that received instruction 
that closely approximated conventional teaching. Studies in which comparison 
groups used materials that were specially developed for the treatment groups 
(e.g., “script” control groups) were not accepted. Also not accepted were studies 
in which comparison groups received no relevant instruction (i.e., no-instruction 
control groups). 

• Achievement results had to be measured quantitatively and in the same way in 
the treatment group and the control group. School grades were not acceptable 
outcome measures, because grades could have been awarded on a different basis 
in different classes. Results from both locally developed posttests and tests 
developed for wider use (i.e., district, state, and national assessments and 
published tests) are included in the analyses. 

• The study could not contain disqualifying methodological flaws such as signifi-
cant pre-treatment differences between the treatment and control groups. Pretest 
differences of 0.50 standard deviations or more are considered too large for 
adjustment by regression techniques and are thus disqualifying (Slavin et al., 
2009). Overalignment of the outcome measures with treatment or control treat-
ments was also cause for exclusion. Overalignment occurs, for example, when 
the outcome measure uses test items that were specifically included in the 
instructional materials for either the treatment or control group. Also disqual-
ifying was the use of groups drawn from different populations (e.g., volunteers 
in the treatment group and non-volunteers in the control group). 

Forty-five of the approximately 550 studies that we located through database searching 
and branching met all the criteria for inclusion in the meta-analysis of system evaluations. 

D. Criteria for Component Evaluations 
To be included in our analysis of component evaluations, a study had to compare 

versions of a tutoring system with and without a specific feature of intelligent systems. 
For example, a component evaluation might examine the value of spoken feedback by 
comparing a tutoring system that provides spoken feedback with a version that provides 
only written feedback. When searching for system evaluations of tutoring effectiveness, 
we located 21 component evaluations, described in 11 separate reports, that other 
researchers (e.g., VanLehn, 2011) had included in their reviews on intelligent tutoring. 
This set of studies formed the data set for our analysis of component evaluations. 
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E. Study Features 
We used 13 variables to describe study settings, treatments, validity threats, and out-

come measures of the studies that we located (see Table 1). Definitions of these variables 
were guided by our knowledge of previous meta-analyses of instructional technology 
findings and by a preliminary examination of the studies located through library searches. 
Some variables originally recorded as continuous variables (e.g., study year, study size, 
study length) were split into ordered categories for the final analysis. This categorization 
helped solve the problems presented by skew, non-normality, and presence of outliers in 
the continuous measurements. 

 
Table 1. Categories for Describing Study 

Settings, Treatments, Validity Threats, and Outcome Measures 

Settings 

Country (1 = USA; 2 = other) 
Publication year (1 = Up to 2000; 2 = 2001–2005; 3 = 2006+) 
Grade level (1 = K–12; 2 = postsecondary) 
Subject (1 = math; 2 = other) 

Treatments 

Study type 
1 = Experimental: short-term studies in which treatment and control groups work, usually 

in a computer laboratory, on the same assignments with or without intelligent tutor. 
2 = Field evaluations: studies that compare performance in conventionally taught and 

intelligent tutoring classes. 
Study size (1 = Up to 80; 2 = 81–250; 3 = 251+) 
Study duration (1 = Up to 4; 2 = 5–16; 3 = 17+ weeks) 
Cognitive Tutor study 

1 = No: Study does not evaluate a current or earlier version of a Carnegie Learning Cogni-
tive Tutor program. 

2 = Yes: Study examines such software. 
Validity Threats 

Group assignment 
1 = Intact groups: existing classes or groups assigned to treatment and control conditions. 
2 = Random: participants assigned randomly to conditions. 

Instructor effects 
1 = Different instructors: different teachers taught treatment and control groups. 
2 = Same instructor: same teacher or teachers taught treatment and comparison groups. 

Pre-treatment differences 
1 = Unadjusted posttest: posttest means not adjusted for pretest differences. 
2 = Adjusted posttest: gain scores or posttest means adjusted by covariance or 

regression. 
Outcome Measures 

Test source 
1 = Local: Posttest was a locally developed test. 
2 = Regional: Posttest was a commercial, state, or district test.  

Test format 
1 = Constructed-response items only: Posttest was a problem-solving test, essay exam, 

and so forth. 
2 = Both constructed-response and objective-test items: Posttest measures included both 

item formats. 
3 = Objective items: Posttest was a multiple-choice test or other test with a fixed-alterna-

tive format. 
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F. Effect Sizes 
Effect sizes in comparisons of average performance are often calculated as the dif-

ference between treatment and control posttest means, divided by the posttest standard 
deviation of the control group (Glass, McGaw, & Smith, 1981), which is the approach 
used in this review. Some reports included this kind of effect size, along with other 
statistical data. When these reports did not, we calculated this kind of effect size, when-
ever possible, from means and standard deviations provided in the reports. Occasionally, 
it was necessary to retrieve effect sizes from reported test statistics rather than from 
means and standard deviations. We used standard formulas and techniques (e.g., Cooper, 
Hedges, & Valentine, 2009; Glass et al., 1981) to retrieve effect sizes from t-statistics and 
F-statistics when means and variances were not reported. 

A few guidelines are useful when calculating effect sizes from means and standard 
deviations. First, posttest means adjusted by pre-instruction measures for prior knowledge 
usually provide a better estimate of population treatment effects than unadjusted posttest 
means do. Pre-post gain scores are a good example of adjusted means, but covariate-
adjusted means and regression estimates of treatment effects are even better estimators. 
In calculating or recalculating effect sizes, we therefore established explicit priorities. We 
gave highest priority to covariance-adjusted means and regression estimates of treatment 
effects, next highest priority to gain scores, and lowest priority to simple posttest means. 

Although using adjusted rather than raw means is preferable when estimating 
treatment effects, using the standard deviations of the adjusted measures to standardize 
treatment effects (i.e., as the denominator in effect size calculations) is not appropriate in 
meta-analysis. We used pre-adjusted, raw standard deviations instead. Standard devia-
tions of gain scores or covariance-adjusted scores are smaller than raw standard devia-
tions, and effect sizes based on these reduced standard deviations are inflated. These 
inflated effect sizes cannot be interpreted simply (e.g., in terms of percentile scores or 
standard scores) and cannot be aggregated with effect sizes that are calculated with raw 
standard deviations. 

Although effect sizes based on reduced standard deviations are not appropriate for 
meta-analyses, such effect sizes sometimes appear in the educational literature. When we 
found reports that had these inflated effect sizes, we made corrections whenever possible 
by recalculating the effect sizes from other statistics supplied in the reports. When a 
report did not present additional statistics from which effect sizes could be recalculated, 
we assumed a correlation of 0.60 between pretest and posttest scores and adjusted the 
effect sizes accordingly. This default correlation was the median value in five studies that 
reported either pre-post correlations or statistics from which the correlations could be 
derived (Arnott, Hastings, & Allbritton, 2008; Fletcher, 2011; Pek & Poh, 2005; 
Suraweera & Mitrovic, 2002; VanLehn et al., 2007). 
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Finally, a common but not universal practice is to use control-group rather than 
pooled standard deviations for standardizing treatment effects for meta-analysis. Control-
group standard deviations are not affected by experimental treatments, whereas treatment 
group standard deviations may be. As a result, control-group standard deviations usually 
provide a better estimate of variation in the general population. Some researchers, how-
ever, report only pooled standard deviations for their measurements. When researchers 
failed to report separate posttest standard deviations for treatment and control groups, we 
used pooled standard deviations instead of control-group standard deviations in effect-
size calculations. A meta-analysis of interactive, computer-based videodisc instruction by 
Fletcher (1989) reported 151 effect sizes calculated using control group and pooled stan-
dard deviations. Although some sizable differences emerged, overall, the average differ-
ence in effect size using the two approaches was 0.007. In 91 cases, the effect sizes based 
on pooled standard deviations were larger. In the remaining 60 cases, the effect sizes 
based on control-group standard deviations were larger. 
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3. Results 

This section presents results from two sets of analyses. The first set of results comes 
from analyses of the 45 system evaluations. The second set comes from analyses of the 
21 component evaluations. 

A. System Evaluations 
The 45 system evaluations that satisfied our inclusion criteria constitute a diverse 

group (see Table 2). The publication dates of the studies span nearly three decades. The 
earliest study dates from 1985, and the most recent study dates from 2011. The studies 
come from six countries: the United States, Germany, Singapore, New Zealand, Croatia, 
and Serbia. The content covered in the studies varies from “borrowing” in third-grade 
subtraction problems to solving analytic problems of the sort that appear on the Law 
School Admissions Test (LSAT). The studies took place in elementary schools, high 
schools, colleges, and military training sites. The shortest study lasted less than 1 hour, 
and the longest study lasted three semesters. 

1. Overall Effects 
In 41 of the 45 studies (91%), the students who received intelligent tutoring out-

performed the control students on posttests. In the remaining four studies (9%), the con-
ventionally taught students had higher averages. Although these box-score results look 
good as a won-loss record, they provide little information about the strength and consis-
tency of the intelligent tutoring effects. Effect-size analysis provides a more complete 
picture. 

The strongest positive effect of tutoring in the 45 studies was to raise posttest scores 
by 1.97 standard deviations (Fletcher, 2011). The largest negative effect was to reduce 
scores by 0.34 standard deviations (Hategekimana, 2008). The median effect size in the 
45 studies is 0.63. The average effect size for the 45 studies is 0.60. The effect sizes for 
the Fletcher and Hategekimana studies are outlier values, where an outlier is defined as a 
value that is at least 1.5 interquartile ranges above the 75th percentile or a value that is at 
least 1.5 interquartile ranges below the 25th percentile. The 5% trimmed mean, which is 
calculated from all values in this data set except the highest and lowest, is 0.60. 

Cohen (1988) defined rough guidelines for the interpretation of effect sizes, calling 
effect sizes of 0.20 small, 0.50 medium-size, and 0.8 large. By these standards, the  
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average effect size of intelligent tutoring is moderate to large in size. Effects in 10 (27%) 
of the studies are positive but small in size, effects in 17 (38%) of the studies are positive 
and moderate in size, and effects in 11 (24%) of the studies are positive and large in size. 
Effects in 6 of the remaining studies (13%) are trivial in size. One study (Hategekimana, 
2008) reported an effect that was negative and small in size. 

More recently, the What Works Clearinghouse (August 2010) concluded that effect 
sizes of 0.25 and higher are large enough to be of substantive importance for instruction. 
By this standard, in 36 of the 45 studies (80%), tutoring gains were large enough to be of 
substantive importance. Only one study (Hategekimana, 2008) had a negative effect that 
was large enough to be of substantive importance. 

2. Study Features and Effect Sizes 
Although intelligent tutoring, on average, improved learning by a moderate-to-large 

amount, effects were very large in some studies and near zero in others. To determine 
whether the variation in study results was related to the ways in which the studies were 
carried out, we calculated average effect sizes for different categories of studies (see 
Table 3), and we also calculated correlations between study features and effect sizes (see 
Table 4). We carried out these analyses with the full sample of 45 studies and the 
trimmed sample of 43 studies (i.e., all studies but the one with the largest positive effect 
size and the one with the largest negative effect size). Results were similar in the two 
analyses, but, for the sake of simplicity, we present only the results for the trimmed sam-
ple in the tables. 

 
Table 3. Average Effect Sizes by Study Features 

Study Feature Number Mean 
Standard 
Deviation 

Country    
USA 34 0.54 0.35 
Other 9 0.82 0.32 

Publication year    
Up to 2000 11 0.70 0.24 
2001 through 2005 14 0.56 0.39 
After 2006 18 0.56 0.39 

Grade level    
Elementary and high school 21 0.43 0.33 
Postsecondary 22 0.76 0.31 
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Table 3. Average Effect Sizes by Study Features (Continued) 

Study Feature Number Mean 
Standard 
Deviation 

Subject    
Mathematics 16 0.38 0.34 
Computer science 12 0.72 0.37 
Science 7 0.70 0.26 
Other 8 0.75 0.27 

Study type    
Experimental study 14 0.65 0.29 
Field evaluation 29 0.57 0.39 

Study size    
Up to 80 participants 21 0.76 0.28 
81 through 250 participants 9 0.54 0.32 
More than 250 participants 12 0.30 0.33 

Study duration    
Up to 4 weeks 12 0.61 0.29 
5 through 16 weeks 15 0.75 0.38 
17 weeks or more 11 0.29 0.26 

Cognitive Tutor study    
No 29 0.68 0.29 
Yes 14 0.41 0.42 

Control for group assignment    
Quasi-experimental design 12 0.50 0.40 
Random control trial 28 0.65 0.35 

Control for instructor effects    
Different instructors 13 0.48 0.37 
Same instructor 26 0.64 0.37 

Control for pre-treatment differences    
Unadjusted posttest 10 0.66 0.31 
Adjusted posttest 32 0.58 0.38 

Test source    
Local 33 0.72 0.28 
Local and regional 3 0.45 0.24 
Regional 7 0.08 0.22 

Test format    
Constructed-response items only 12 0.74 0.23 
Constructed-response and objective  12 0.54 0.36 
Objective items only 15 0.53 0.47 
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Table 4. Correlations Between Study Features and Effect Sizes in 43 System Evaluations 

Study Feature 

Correlation 

r Sig 

Country (1 = USA; 2 = other) .32 .035 
Publication year (1 = up to 2000; 2 = 2001–2005; 3 = 2006+)  –.17 .269 
Grade level (1 = K–12; 2 = college and postsecondary) .47 .002 
Subject (1 = math; 2 = other) .47 .001 
Study type (1 = experimental study; 2 = field evaluation) –.11 .490 
Study size (1 = up to 80; 2 = 81–250; 3 = 251+) –.56 .000 
Study duration (1 = up to 4; 2 = 5–16; 3 = 17+ weeks) –.33 .041 
Cognitive Tutor study (1 = no; 1 = yes) –.36 .017 
Group assignment (1 = intact groups; 2 = random) –.19 .241 
Instructor effects (1 = different; 2 = same instructors) .20 .212 
Pre-treatment differences (1 = unadjusted; 2 = adjusted) –.09 .560 
Test source (1 = local; 3 = regional; 2 = both) –.67 .000 
Test format (1 = constructed response; 3 = objective; 2 = both) –.22 .168 

 
The analyses showed that six study features are significantly related to effect size: 

the country in which the study was conducted, the grade level of the participants, the sub-
ject that was taught, the study sample size, the test source, and the intelligent tutoring 
program used. Specifically, effect sizes are smaller in studies (1) from the United States, 
(2) with younger participants, (3) with larger sample sizes, (4) with math as the subject 
matter, (5) with outcomes measured on regional tests, and (6) with Cognitive Tutor as the 
ITS. 

These six features are highly intercorrelated. Their influences are not independent. 
For example, test source (local vs. regional) is the study feature most strongly related to 
effect size, and, when its influence is controlled statistically by partial correlation or 
regression techniques, none of the remaining study features are significantly correlated 
with effect size. This result suggests that the zero-order correlations between study fea-
tures and effect sizes should not be taken at face value. One or more underlying influ-
ences may be behind all of the significant zero-order correlations. 

3. Test Alignment 
We carefully examined the differences in effect sizes between studies and within 

studies to identify the fundamental influences. This closer analysis began with the obser-
vation that almost all the studies with trivial or very small effect sizes used standardized 
or regional posttests that were poorly aligned with the higher order instructional objec-
tives emphasized in the ITSs. Many of the studies with poorly aligned posttest measures 
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were Cognitive Tutor evaluations, but we also found instances of poor alignment with 
other tutoring systems. 

a. Cognitive Tutor Studies 
In a pioneering evaluation of the Practical Algebra Tutor (PAT), an early version of 

a Cognitive Tutor program, Koedinger, Anderson, Hadley, and Mark (1997) noted that 
this ITS was developed to support a new math curriculum and that standardized tests 
available at the time were poorly aligned with the objectives of the new curriculum. 
Specifically, PAT taught such problem-solving skills as analysis of complex problem 
situations, selection of solution methods, and application of these methods to find 
answers. However, standardized tests available at the time were not designed to measure 
such higher order curricular objectives. Instead, these multiple-choice tests measured 
recognition skills taught in standard curricula. 

Koedinger and his colleagues therefore included two types of tests in their evalua-
tion of PAT: locally developed tests and standardized tests. The locally developed tests 
measured problem-solving skill by requiring students to construct answers for the test 
problems. The standardized tests were multiple-choice measures of recognition skills. 
The researchers found large effects on the locally developed problem-solving tests (aver-
age effect size = 0.99) and small effects on the regional multiple-choice tests (average 
effect size = 0.36). Koedinger and his colleagues were encouraged by these results. The 
problem-solving tests showed that this version of Cognitive Tutor was very effective in 
teaching the higher order skills that it was designed to teach. Results on standardized tests 
showed that the problem-solving benefits came without negative effects on poorly 
aligned tests that did not stress problem solving. 

Other studies of Cognitive Tutor found the same pattern of results. For example, 
Corbett (2001b, 2002) examined the effects of Cognitive Tutor on locally developed 
problem-solving tests and multiple-choice tests consisting of released questions on 
regional—international, national, and state—tests. For Grade 7 students, the effects for 
locally developed problem-solving tests were large (average effect size = 0.71), and the 
effects for regional, multiple-choice tests were trivial (average effect size = 0.18). For 
Grade 8 students, effects on problem-solving tests were small (average effect size = 
0.28), and the effects for regional tests were trivial (average effect size = 0.13). 

The pattern holds up in the full set of 14 studies of Cognitive Tutor (see Table 5). 
Overall, Cognitive Tutor significantly and substantially raised student performance on 
locally developed tests but neither helped nor hindered student performance on regional 
tests. The average effect size on locally developed tests is 0.72, whereas the average 
effect size on the regional tests in the 14 Cognitive Tutor evaluations is 0.10. That is, 
Cognitive Tutor boosted performance on tests that were well aligned with curricular 
objectives but did not lower performance on tests that were less clearly aligned. 
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Table 5. Effect Sizes by Test Source for 

14 Studies of Algebra, Geometry, and LISP Cognitive Tutors 

Publication 

Effect Size 

Overall Local Regional 

Anderson et al. (1990) 1.00 1.00 – 
Arbuckle (2005) 0.74 0.74 – 
Cabalo & Vu (2007) 0.03 – 0.03 
Campuzano et al. (2009) –0.10 – –0.10 
Corbett (2001b) 0.45 0.71 0.18 
Corbett (2002) 0.21 0.28 0.13 
Corbett & Anderson (2001) 1.00 1.00 – 
Koedinger & Anderson (1993) 0.35 0.35 – 
Koedinger et al. (1997) 0.68 0.99 0.36 
Pane et al. (2010) –0.19 – –0.19 
Reiser et al. (1985) 1.00 1.00 – 
Ritter et al. (2007) 0.40 – 0.40 
Shneyderman (2001) 0.12 – 0.12 
Smith (2001) –0.07 – –0.07 

Average 0.36 0.72 0.10 

b. Alignment Effects 
Additional evidence for the importance of the alignment of instructional and test 

objectives comes from two studies of the AutoTutor system (Graesser, Jackson, et al., 
2003; Person, et al., 2001) and one study of the Andes tutoring system (VanLehn, et al., 
2005). Like the evaluators of Cognitive Tutor, Graesser and VanLehn and their col-
leagues found that the size of tutoring effects depended on the degree of test alignment 
with the higher order objectives of their programs. Specifically, effects were large on 
tests of conceptual or deep understanding but small on tests of factual information or 
more shallow learning, as shown in Table 6. 

 
Table 6. Effect Sizes for Three Studies With 

Separate Measures of Deep and Shallow Learning 

Publication Deep Learning Shallow Learning 

Graesser, Moreno, et al. (2003) 0.34 0.00 
Person et al. (2001) 0.30 0.03 
VanLehn et al. (2005) 0.95 –0.08 

Average 0.62 –0.02 
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For the earliest of the studies, Person et al. (2001) had hoped to use a sample of 
questions included with the course textbook as a posttest in their evaluation, but the 
researchers found that all the textbook questions were at the information level in Bloom’s 
hierarchy. Then, they asked experts at Carnegie Mellon University to write conceptual 
test items based on the textbook material, and they used these questions as the measure of 
deep learning in their evaluation. Person et al. (2001) found an effect size of 0.30 for 
conceptual or deep learning and an effect size 0.03 for informational or shallow learning. 
A subsequent evaluation by Graesser and his colleagues (2003) examined the effects of 
AutoTutor on shallow and deep learning in a computer literacy course. They found the 
same pattern of results in this study. AutoTutor raised scores by an average of 0.34 on the 
conceptual test and an average of zero on the information items. 

An evaluation by VanLehn et al. (2005) further confirmed this pattern of findings. 
The researchers looked at the effects of Andes on several different tests in a physics 
course. They reported that effect sizes were high on the tests that measured conceptual 
learning but low on the tests that measured informational learning. The average effect 
size for the measures of deep learning and for measures of shallow learning was –0.08. 

c. Overall Importance of Test Alignment 
The inclusion of poorly aligned outcome measures in these evaluations affected the 

overall meta-analytic results. Results from these tests depressed the overall average effect 
size for ITSs, inflated the variability in study findings, and created the illusion that many 
different study features influenced the findings. When we eliminated poorly aligned tests 
from our analysis, the pool of studies became smaller (i.e., 39 studies rather than 45), but 
the average effect size went up from 0.60 to 0.73, the consistency of results increased, 
and the results seemed more robust. Average effect size in the reduced sample of 39 stu-
dies is 0.73, the median effect size is 0.75, and the 5% trimmed mean is 0.72. The 
interquartile range is 0.40. Approximately half the effect sizes fall between 0.55 and 0.95. 
In addition, no study feature is related significantly to effect size in the reduced data set. 
The effects of intelligent tutoring on aligned tests therefore seem to be robust and not 
susceptible to slight changes in subjects, tutoring features, or design features. 

Also notable is that all but one of the studies in the reduced data set found an effect 
size of 0.25 or more. This cutoff point is the one used by the What Works Clearinghouse 
(August 2010) to separate results of no practical significance from educational results that 
are important. We therefore conclude that with well-aligned outcome measures, the 
effects of intelligent tutoring were large enough to be considered substantive in 38 (97%) 
of the 39 studies. 
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d. Implementation Fidelity 
Along with test alignment, implementation fidelity appears to have a substantial 

effect on study findings. Implementation fidelity refers to the degree to which the imple-
mentation of a tutoring system meets developer specifications. Fidelity is high when 
developer specifications are met and low when they are not. Fidelity depends, in part, on 
the orientation and training given to the schools and teachers implementing a tutoring 
system, but it also depends on the proper technical operation of the system. Implementa-
tion fidelity, although obviously an important concern, is seldom studied experimentally 
in evaluations of tutoring systems. The available evidence on its effects comes instead 
from natural experiments in which a weak implementation resulted from a technical or 
training failure in part but not all of an experiment. Although the weaker and stronger 
implementations were not planned, some researchers documented procedures and results 
sufficiently well to permit conclusions about the impact of implementation fidelity. 

Koedinger and Anderson (1993) reported two sets of intelligent tutoring findings: 
one set for a teacher who was very experienced with intelligent tutoring programs and the 
other set for teachers who had far less experience with intelligent tutoring. The overall 
effect of intelligent tutoring in the study was to raise posttest scores by 0.35 standard 
deviations, but the effect sizes were very different for the experienced and inexperienced 
teachers. The effect size for the experienced teacher, based on a comparison of perfor-
mance in his intelligent tutoring and conventionally taught classes, was 0.96. The effect 
size for the less experienced teachers, based on a comparison of their intelligent tutoring 
and conventionally taught classes, was –0.23. Students of the teachers who were not 
familiar with the tutoring program gained nothing from intelligent tutoring. Observations 
showed that the experienced teacher spent his laboratory time in content-related discus-
sions with his students, whereas the inexperienced teachers were more likely to focus on 
technical problems and advice about the computer interface. 

Le, Menzel, and Pinkwart (2009) examined the effects of a single 1-hour session of 
intelligent tutoring on student’s logic programming skills. The intelligent tutoring session 
was held on two separate days. On the first day, the intelligent tutoring implementation 
was poor. Technical problems created long delays (e.g., 1-minute delays) in the computer 
tutor’s responses. This implementation of intelligent tutoring produced negligible effects 
on learning. The average effect size was 0.01. Technical problems were resolved by the 
second tutoring day. Students who received intelligent tutoring on this day showed a 
significant positive effect of intelligent tutoring. The average effect size was 0.28. 

VanLehn et al. (2005) reported results from 5 years of using the Andes tutoring sys-
tem at the U.S. Naval Academy. In the first year, the Andes system presented students 
relatively few physics problems, and the program contained a large number of bugs. 
Effect size for the first year of Andes use was 0.21. In the second through fifth years of 



30 

the program, the number of physics problems was increased, and bugs were fixed. Aver-
age effect size for these 5 years was 0.57. 

Pane et al. (2010) found a negative effect of Cognitive Tutor Geometry in a large 
field evaluation. Posttest scores of Cognitive Tutor classrooms were 0.19 standard devia-
tions lower than posttest scores in control classrooms, but the researchers also found a 
correlation between implementation fidelity and effect sizes. Posttest scores from classes 
where teachers implemented the new curriculum faithfully were almost one-half standard 
deviation higher than posttest scores from classes where teachers implemented the curric-
ulum less faithfully. 

Overall, the average effect size for strong implementations in the four studies was 
0.46, and the average effect size for weak implementations was –0.10, as shown in  
Table 7. This finding suggests that implementation fidelity may affect results of intelli-
gent tutoring evaluations. However, adjusting overall results to take into account failures 
in implementation was impossible because so few reports contained information about 
implementation fidelity. 

 
Table 7. Effect Sizes for Four Studies With Separate Measures 

From Stronger and Weaker Implementations of Intelligent Tutoring 

Publication 

Effect Size 

Stronger 
Implementation 

Weaker 
Implementation 

Koedinger & Anderson (1993) 0.96 –0.23 
Le et al. (2009) 0.28 0.04 
VanLehn, et al. (2005)  0.57 0.21 
Pane et al. (2010) 0.04 –0.42 

Average 0.46 –0.10 

B. Component Evaluations 
In this section, we summarize results from 21 component evaluations, which were 

described in 11 separate reports. We excluded these evaluations from our meta-analysis 
of system evaluations because they do not include conventionally taught control groups. 
These evaluations, therefore, lack a baseline from which to measure the potential contr-
ibutions of an alternative teaching system. However, component evaluations do provide 
useful information for system design. Through them, researchers can identify features 
that increase the effectiveness of a system so that developers can set priorities for revising 
it. The 21 evaluations examined three aspects of intelligent tutoring: interactivity, self-
explanation, and interface features. 
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1. Interactivity 
Student and tutor interactions play a key role in tutoring. Human tutoring employs 

mixed-initiative interactions. Tutors ask questions and students respond, or students ask 
questions and tutors respond. Carbonell’s (1970) seminal paper cited mixed-initiative dia-
logue as a distinctive feature of intelligent computer-assisted systems. It remains a critical 
feature of ITSs, although the full, free-form interactivity of human tutoring still eludes us. 
Therefore, ITS researchers must, to some degree, limit student and tutor dialogue in their 
systems. The value of various dialogue capabilities remains a matter of interest, at least 
until computer natural language processing improves even more than it recently has. 

In any case, researchers sometimes severely limit natural language interactions in 
ITSs for experimental purposes. What is left is usually a skeletal computer system that 
poses problems for students but does not provide adaptive hints or scaffolding to help stu-
dents answer correctly. Instead, these stripped-down, limited-interactive systems usually 
give all students the same explanations and feedback. They do not try to “understand” 
individual student answers or misconceptions. The six studies of interactivity that we 
located differed substantially in the way they approached the question. For this reason, 
we describe the main features of each study separately below. Table 8 summarizes their 
results. 

 
Table 8. Interactivity Effects in 11 Component Evaluations 

Study Interactive Condition Non-Interactive Condition 
Effect 
Size 

Craig, Driscoll, and 
Gholson (2004), 
Experiment 1 

Standard AutoTutor 
instruction 

Students viewed the tutorial 
session of another “yoked” 
student 

0.49 

Craig et al. (2004), 
Experiment 2 

Standard AutoTutor 
instruction 

Students viewed the tutorial 
session of another “yoked” 
student 

0.44 

Craig, Sullins, 
Witherspoon & 
Gholson (2006), 
Experiment 1 

Standard AutoTutor 
instruction 

Students viewed the tutorial 
session of another “yoked” 
student 

0.65 

Craig et al. (2006), 
Experiment 2 

Standard AutoTutor 
instruction 

Students viewed the tutorial 
session of another “yoked” 
student 

0.34 

Gholson et al. (2009) Standard AutoTutor 
instruction 

Students viewed a 
monologue presentation of 
ideal problem solutions 

0.04 

Lane & VanLehn 
(2005) 

ProPL (pronounced Pro-
PELL) ITS 

Read the same content 0.33 
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Table 8. Interactivity Effects in 11 Component Evaluations (Continued) 

Study Interactive Condition Non-Interactive Condition 
Effect 
Size 

Moreno, Mayer, 
Spires, & Lester 
(2001) 

Students solved prob-
lems with immediate 
feedback from computer 
tutor 

Students read answers to 
problems without working on 
the problems 

0.69 

VanLehn et al. (2007), 
Experiment 1 

Why2-Atlas and Why2-
AutoTutor 

Canned text remediation –0.18 

VanLehn et al. (2007), 
Experiment 3 

Why2-Atlas and Why2-
AutoTutor 

Canned text remediation 0.28 

VanLehn et al. (2007), 
Experiment 5 

Why2-Atlas and Why2-
AutoTutor 

Canned text remediation 0.17 

VanLehn et al. (2007), 
Experiment 6 

Why2-Atlas and Why2-
AutoTutor 

Canned text and canned text 
remediation 

0.11 

 
Craig, Driscoll, & Gholson (2004) studied interactivity in two experiments with stu-

dents at the University of Memphis. Each of the laboratory experiments provided 30 to 
40 minutes of instruction in computer literacy. Students in the interactive conditions of 
the experiments interacted with the AutoTutor ITS in the normal fashion. Students in the 
non-interactive condition viewed recorded tutoring sessions of other students. The esti-
mated effect size for Experiment 1 was 0.49, when the interactive condition is contrasted 
with the non-interactive vicarious one. The estimated effect size for interactivity in 
Experiment 2 was 0.44. 

Craig, Sullins, Witherspoon, & Gholson (2006) reported results of two follow-up 
experiments that included a standard interactive tutoring condition and a standard vicari-
ous condition, which were similar to the experimental and control conditions in Craig et 
al. (2004) Students in the standard interactive condition interacted with the AutoTutor 
ITS. Control students learned vicariously by viewing the recorded AutoTutor sessions of 
other students, which Craig et al. (2006) called yoked vicarious sessions. For Experi-
ment 1, the estimated interactivity effect size is 0.65. For Experiment 2, the estimated 
interactivity effect size is 0.34. 

Gholson et al. (2009) evaluated the importance of interactivity in computer literacy 
and physics instruction for students in Grades 8 through 11. Students in the interactive 
condition received about 3 hours of instruction via a standard AutoTutor system. Students 
in a control condition learned vicariously through a monologue presentation of ideal 
answers to problems. Pre-post gains were nearly identical for the standard AutoTutor 
group and the monologue group. The estimated interactivity effect size was 0.04. 

Lane and VanLehn (2005) compared the performance of college students who used 
a dialogue-based ITS called ProPl with performance of a control group who read the 
same content. Participants were college students in an introductory programming course 
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at the University of Pittsburgh. Lane and VanLehn compared performance of the two 
groups on a timed 2-hour lab assignment and a 75-minute posttest that targeted students’ 
planning and algorithm writing skills. The average effect size for the lab assignments is 
0.34. In addition, the ProPl group scored 0.31 standard deviations higher than the control 
group on a written posttest. The average effect size on the two outcome measures is 0.33. 

Moreno, Mayer, Spires, and Lester (2001) carried out a series of five experiments 
on the use of a tutor representation, called a pedagogical agent, in computer-based 
teaching. The third experiment examined the importance of student interaction with the 
pedagogical agent. Participants in the experiment were college students at the University 
of California at Santa Barbara. These students were asked to design plants suited to 
specific environments for a lesson on plant ecology. Students in the interactive condition 
listened to a complete solution to a problem immediately after designing a plant. Students 
in the control group saw the same problems but listened to explanations without being 
able to design plants. Outcomes measured in the study were recall of factual information 
included in the lessons and ability to apply the information to solve new problems. The 
estimated effect size for interactivity is 0.69. 

VanLehn et al. (2007) reported on results from six studies (and seven experiments) 
on human tutoring, intelligent computer tutoring, and reading textbook material. The 
first, third, and fifth studies in the series compared the effects of a fully interactive 
tutoring system with those of a less interactive version of the system. College students in 
the interactive conditions worked for 2 to 3 hours on physics problems, with help from an 
intelligent tutor. Students in the comparison groups (called canned-text-remediation 
groups) entered an essay in response to a physics question, read through the full sets of 
hints and scaffolding developed for tutorials on the question, and then edited their essays 
to take into account what they had learned from the text feedback. Individual student 
essays were not analyzed in the canned-text-remediation condition, and students did not receive 
adaptive feedback on flaws in their essays. The effect sizes in the three experiments, based on 
a comparison of tutoring versions with different levels of interactivity, were –0.18 for 
Study 1, 0.28 for Study 3, and 0.17 for Study 5. 

The sixth study in the series, which combined results from the VanLehn et al. 
Experiments 6 and 7, contained an interactive condition that was similar to the interactive 
conditions in the other studies. However, unlike Studies 1, 3, and 5, it contained two con-
trol conditions: the canned-text-remediation condition described previously and a canned-
text-only condition. Students in the canned-text-only condition read the problems along 
with an ideal answer to each problem, but the students did not write answers of their own. 
The authors found no significant difference in results from the canned-text-remediation 
and the canned-text-only conditions. In addition, performance of the students in the inter-
active condition was similar to performance of students in the control conditions. Effect 
size for interactivity for Study 6 was 0.11. 
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Effect sizes varied from moderately positive to moderately negative in the four 
VanLehn et al. (2007) studies. The authors attributed the variation in results to the 
amount of challenge in the instructional material used in an experiment. They reported 
that interactivity effects were positive and significant in studies with challenging lessons 
and tests (e.g., where students who had not taken college physics studied content written 
for students who had taken college physics). Findings were insignificant or negative in 
studies with lessons and tests that were less challenging (e.g., where novices studied 
material written for novices or students at the intermediate level studied material written 
for intermediate-level students). 

Together, the 11 comparisons in the 6 interactivity evaluations suggest that tutoring 
sessions that include student-teacher interactions are more effective than systems that 
substantially reduce or eliminate student-tutor interactions. The average effect size is 0.31 
in the 11 comparisons (see Table 8). While interactivity makes a crucial contribution to 
the effectiveness of ITSs, it does not fully explain their effectiveness. Reducing the inter-
activity of tutoring systems does not reduce their effectiveness to the level of conven-
tional classroom instruction. It does, however, reduce their effectiveness to the level of 
older style computer-based instructional systems (Fletcher, 2003; C. L. C. Kulik & Kulik, 
1991; J. A. Kulik, 1994). 

2. Self-Explanation 
Self-explanation prompts encourage students to reflect on their solutions to prob-

lems: why they chose a certain approach, why the approach did or did not work, what 
more general principle the approach represents, and so forth. Researchers have shown 
that such prompts can enhance learning, especially deeper understanding, in regular 
classrooms (e.g., Brown & Campione, 1994; Chi, 2000; Palincsar & Brown, 1984; White, 
Shimoda, & Frederiksen, 1999). We found six studies assessing the effectiveness of self-
explanation prompting in ITSs. These studies are summarized in Table 9 and discussed in 
the remainder of this subsection. 

Aleven and Koedinger (2002) carried out two experiments to determine whether 
explanation-prompting could improve the effectiveness of Cognitive Tutor. Students in 
the control group worked on high-school geometry problems for about 7 hours on a 
standard version of Cognitive Tutor. Students in the treatment group worked on the same 
problems with a special version of Cognitive Tutor that also prompted students to explain 
their answers in knowledge construction dialogues (KCDs). The researchers found that 
students who were required to explain their answers needed fewer problems to reach cri-
terion levels than students who were not required to explain answers. In a first experi-
ment, the amount of time-on-task was not controlled, and the KCD group spent 18% 
more time working on problems. The self-explanation effect was significant in this  
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Table 9. Effects of Self-Explanation Prompts in Six Component Evaluations 

Study Treatment Comparison Result 

Aleven & Koedinger 
(2002), Experiment 1 

Cognitive Tutor, plus 
KCDs 

Cognitive Tutor without 
supplemental KCDs  

T > C  
(p < .005) 

Aleven & Koedinger 
(2002), Experiment 2 

Cognitive Tutor, plus 
KCDs  

Cognitive Tutor without 
supplemental KCDs  

T > C, ns 

Conati & VanLehn (1999) SE-Coach provided intel-
ligent prompting for self-
explanation 

SE-Coach presented 
canned text answers 

ES = 0.12 

Craig et al. (2006), 
Experiment 1 

Vicarious viewing of ideal 
problem solutions, plus 
reflective questions 
posed by AutoTutor. 

Vicarious viewing of ideal 
problem solutions, with-
out reflective questions 

ES =0.23 

Gholson et al. (2009) Vicarious viewing of ideal 
problem solutions, with 
embedded deep-level 
questions 

Vicarious viewing of ideal 
problem solutions, with-
out embedded deep-level 
questions 

ES = 0.33 

Siler, Rosé, Frost, 
VanLehn, & Koehler 
(2002) 

Andes2 intelligent 
tutoring, plus KCDs 

Andes2 presented mini-
lessons with same 
content 

ES = –0.32 

Note for Table 9: ES = effect size; KCD = knowledge construction dialogue; T = treatment group;  
C = comparison group; ns = not significant; and p = probability 

 
experiment, as measured by the number of problems required to reach criterion levels. In 
a second experiment, the researchers controlled the amount of time on task for the two 
groups, and the difference in performance for the two groups was small and marginally 
significant for success in solving harder problems requiring more student reasoning. We 
were not able to calculate effect sizes for these experiments. 

Conati and VanLehn (1999) studied explanation prompts in a tutoring system, SE-
Coach, that was designed primarily to prompt and shape student self-explanations. Their 
study compared a full version of this system to a stripped-down version from which self-
explanation prompts were removed. The full version of SE-Coach guided students 
through the steps involved in solving a specific physics problem and, at each step, 
prompted students for explanations. SE-Coach provided menus to make it easier for stu-
dents to construct their explanations and also offered correctives for unsatisfactory expla-
nations. The stripped-down version of SE-Coach presented the problem-solving steps in 
each solution as canned text. Students were asked to read the steps but were not asked to 
explain them. Examination scores of students in the self-explanation group were slightly, 
but not significantly, higher than scores of students in the control group. The effect size 
was 0.03 for the researchers’ objective-based scoring of the examination problems and 
0.21 for their feature-based scoring. The average effect size for the study was 0.12. In 
two follow-up studies, Conati and VanLehn (2000a, 2000b) looked at effects in 
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subgroups of students. The sample size in most subgroups was too small, however, to 
yield statistically reliable findings. 

The first experiment in Craig et al.’s (2006) report, described in the previous sub-
section, included vicarious learning conditions with and without deep-level questions. 
The deep-level questions were designed to stimulate the students to reflect on concepts 
that were used in solving problems. In the full-questions-vicarious condition, the experi-
menter added deep-level questions before each step in the ideal answer to each problem. 
In the monologue-vicarious condition, students listened to ideal answers that did not 
include embedded questions. Students in both conditions listened to the ideal answers 
without interacting with the tutor in any other way. The effect size for deep-level 
questions was 0.23. 

In addition to examining interactivity effects, the study by Gholson et al. (2009) 
examined the effects of deep-level questions in two vicarious learning conditions, which 
Gholson and his colleagues referred to as dialogue and monologue conditions. In the dia-
logue condition, the experimenter embedded deep-level questions before each tutorial 
interaction. In the monologue condition, students listened to recordings without the 
embedded deep-level questions. The estimated effect size for deep-reasoning questions 
was 0.33. 

Siler, Rosé, Frost, VanLehn, & Koehler (2002) carried out three studies that evalu-
ated the effects of KCDs by comparing two programs delivered by the Andes2 tutoring 
system. The first program presented students with KCDs, whereas the second program 
provided mini-lessons on the same content. Students in KCD sessions were asked to 
explain their answers, were given menus to help them construct explanations, and were 
also given feedback on their explanations. Students in the control condition read about 
the same concepts in specially prepared mini-lessons. The mini-lessons severely limited 
interactions but contained all the conceptual content of the corresponding KCDs. The 
participants in the experiment were paid college student volunteers who had completed 
laboratory lessons on physics concepts. In the first and third experiments, the pretest 
scores of the treatment and comparison groups were significantly and substantially 
different, so the results of these experiments cannot be used to draw conclusions about 
the experimental treatment. The second experiment in the series, however, was not 
flawed by initial differences in comparison groups. The estimated KCD effect size for 
this study is –0.32. 

Overall, the six self-explanation studies found an average effect size of 0.09 for self-
explanation, a null effect. These studies therefore suggest that tutoring systems that 
prompt students to explain their answers are about as effective as systems that do not. 
Although explicit self-explanation prompting does not appear to hurt tutoring programs, 
in aggregate, these studies suggest that it does little to increase their effectiveness. 
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3. Interface Features 
Four component evaluations examined the importance of several interface features 

of tutoring systems—far too few studies to provide definitive answers about the impor-
tance of any specific feature. Nonetheless, these studies suggest that interface features 
can influence the effectiveness of tutoring systems. Specifically, these interface evalua-
tions suggest that tutorial systems work better when they (1) allow students to explore a 
knowledge domain flexibly rather than in lockstep fashion, (2) provide information in a 
game-like rather than purely didactic manner, and (3) provide spoken rather than text-
only instruction and feedback. The evaluations, therefore, suggest that interface design 
may be a fruitful area for further research and development. 

a. Flexible vs. Inflexible Exploration 
Mark and Greer (1995) compared the effects of different ways of teaching learners 

to program a video cassette recorder (VCR). Participants in the study were undergraduate 
students at the University of Saskatchewan and had no prior experience in VCR pro-
gramming. The students worked with four different computer simulations of a VCR. Two 
of the simulations differed in the amount of exploration that they allowed students. Spe-
cifically, a sequence-based instructional program (Mark-II) required students to follow a 
rigid sequence of steps in programming the VCR, whereas a device-based version 
(Mark-III) allowed students to follow a flexible sequence of steps. The students who were 
given more freedom to explore the simulation outperformed the students who did not 
have this freedom. The Mark-III students took fewer steps to program a VCR on a post-
training lab assignment and also made fewer errors on a post-training test. The effect size 
for flexibility was 0.35. The authors concluded that flexible programs are more effective 
because they give students more room to explore domains and build conceptual models 
of them. 

b. Game Playing 
Virvou, Katsionis, and Manos (2005) compared the effectiveness of a standard ITS 

with a conventional user interface to the effectiveness of the same ITS with a 
VR-ENGAGE interface, which gave the system the look and feel of a virtual reality 
game. Participants were fourth grade children studying geography in elementary schools 
in Greece. Effect size for the gaming interface was 0.28. The effect of switching from a 
standard interface to a game-playing one was small but significant. 

c. Tutor Representations 
Moreno et al.’s study (2001), described in Section 3.B.1, examined the role that 

tutor representations can play in computer-based instruction. The researchers carried out 
five experiments with a tutor representation, or pedagogical agent, named Herman. In the 
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first two experiments in the series, Moreno and her colleagues compared two experi-
mental conditions. In the first condition, Herman appeared on screen and presented spo-
ken directions and feedback to students. In the second condition, directions and feedback 
were presented as written text, and Herman’s image and voice were absent. The effect of 
the pedagogical agent on student learning was clear. In Experiment 1, the effect size asso-
ciated with the presence of a pedagogical agent was 0.81. In Experiment 2, the pedagogi-
cal agent raised scores by an average of 0.54 standard deviations. 

Students in Moreno et al.’s Experiments 1 and 2 were exposed to two aspects of the 
pedagogical agent: they saw Herman, and they listened to him. Moreno et al. carried out 
two additional studies to determine which of these attributes was more important for stu-
dent learning (i.e., Was it more important to see or to hear a pedagogical agent?). 
Moreno’s Experiments 4 and 5 manipulated two aspects of the pedagogical agent: 
whether or not the agent provided spoken narration and whether or not the pedagogical 
agent was visually present. The pedagogical agent was an animated character in Experi-
ment 4 and a recorded image of an expressive actor in Experiment 5. Results showed that 
the sight of the tutor was far less important than his spoken voice. Test scores were nearly 
identical for conditions with and without a visual image. Test scores from conditions with 
spoken narration, however, were much higher than test scores for conditions with text 
only. Spoken narration raised test scores by an average of 0.99 standard deviations. 

Moreno et al.’s experiments therefore suggest that spoken narration can be very 
important in computer-based teaching systems, but further research is needed to deter-
mine the degree to which the study’s findings generalize to other tutoring systems. In two 
studies, for example, VanLehn et al. (2007) found very similar results for (1) Why2-
Atlas, a tutoring system that provides text-only answers to students, and (2) Why2-
AutoTutor, a system that provides spoken guidance and feedback. In the fifth study in 
VanLehn’s report, Why2-Atlas posttest scores were 0.08 standard deviations higher than 
Why2-AutoTutor scores. In the sixth study, which included results from VanLehn et al.’s 
Experiments 6 and 7, Why2-Atlas posttest scores were 0.27 standard deviations higher. 
On average, the posttest difference in results for the two tutoring systems was 0.18 stand-
ard deviations. Because feedback modality is not the only way in which Why2-Atlas and 
Why2-AutoTutor differ, this comparison of the two systems only provides suggestive 
evidence about the effects of spoken vs. written feedback in tutoring systems. 

 



39 

4. Discussion and Conclusions 

A. Scope 
In 1983, Richard Clark published a widely cited article with the well wrought and 

often repeated assertion that “The best current evidence is that media are mere vehicles 
that deliver instruction but do not influence student achievement any more than the truck 
that delivers our groceries causes changes in our nutrition“ (page 445). In short and per-
haps oversimplified, it is not technology, but what you do with it that matters. All of the 
system evaluation studies we reviewed compared a technology-based approach (i.e., 
ITSs) with classroom instruction. It might then be argued that our concern and that of the 
studies we reviewed was with a medium rather than an instructional method. However, 
just because a method uses computers does not necessarily condemn it to the media-
based dustbin. As our review shows, there are differences in the effectiveness of ITSs, as 
with any method. However, with the focus on reliably replicating the capabilities of one-
on-one human tutoring with computers (thereby increasing the accessibility and afford-
ability of such tutoring), research on ITSs appears to reside securely within the instruc-
tional method camp as a concern with a bona fide instructional method. 

B. Findings 
This review shows that ITSs can be effective instructional tools. Students who 

received intelligent tutoring outperformed students from conventional classes in 41 (91%) 
of the 45 system evaluations that we examined, and the improvement in performance was 
great enough to be considered of substantive importance in 36 (80%) of the 45 studies. 
The median effect size in the 45 studies was 0.63, which is considered a moderate-to-
large effect for studies in the social sciences. It is roughly equivalent to an improvement 
in test performance from the 50th to the 72nd percentile. 

This effect size may underestimate the true effectiveness of ITSs, however, because 
the posttests used in some of the system evaluations were poorly aligned with the 
teaching objectives of the tutoring systems. Specifically, nine evaluations of Carnegie 
Learning’s Cognitive Tutor employed standardized, multiple-choice tests that were not 
closely aligned with the instructional objectives of the Cognitive Tutor programs. In 
addition, three other system evaluations included posttests that were poorly aligned with 
the instructional objectives emphasized in the tutoring programs. Most of the trivial 
effects that we found came from these poorly aligned tests. When results from poorly 
aligned tests were eliminated from our analysis, median effect size for intelligent tutoring 
was 0.75 in 39 evaluations, and effect sizes were large enough to be considered of 
substantive importance in 38 (97%) of the 39 studies. 
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Another factor that can influence the results of an intelligent tutoring program is the 
fidelity in implementing the program. Very few system evaluations measured fidelity of 
implementation, but the few that did suggested that intelligent tutoring effects are much 
stronger when teachers implement intelligent tutoring programs carefully and completely 
and are weaker when teachers do not implement intelligent tutoring programs properly or 
when technical problems affect the implementations. One large study found a difference 
in effect sizes of one-half standard deviation between strong and weak implementations 
of an ITS (Pane et al., 2010). Another study found a difference in effect size well in 
excess of 1.00 when the learning by students with a teacher experienced in using the 
Cognitive Tutor was compared to learning by students whose teachers lacked this 
advantage (Koedinger & Anderson, 1993). These findings suggest the need to better 
understand and systematically develop (human) teacher skills and strategies for working 
effectively with ITSs. 

Whether we consider findings from all studies or only from studies with well-
aligned posttests and strong implementations, it is clear that ITSs surpass older forms of 
computer-based instruction in effectiveness. For example, a 1994 review, which aggre-
gated results from 12 separate meta-analyses carried out at 8 different universities, found 
an average effect size of 0.35 for these older approaches (J. A. Kulik, 1994). The largest 
of the meta-analyses cited in the review covered 254 reports. The average effect size in 
the 254 studies was 0.3, roughly equivalent to an increase from the 50th to the 62nd per-
centile (C. L. C Kulik & Kulik, 1991). Thus, older forms of computer-based instruction, 
on average, raised posttest scores about one-third standard deviation over scores from 
conventional classrooms. The gains from ITSs are twice as high. 

The instructional gains from intelligent tutoring are also greater than the gains most 
often found with human tutoring. The five meta-analyses we reviewed earlier found that 
tutored students outperformed students who learned in conventional classrooms (P. A. 
Cohen et al., 1982; Hartley, 1977; Mathes & Fuchs, 1994; G. W. Ritter et al., 2009; 
VanLehn, 2011). The median effect size in the five meta-analyses was 0.4. For a long 
time, the goal of developers of ITSs has been to match the success of human tutoring. 
Our results suggest that ITSs have already met this goal. 

Interestingly, the average effect size in the system evaluations we reviewed is very 
close to the average effect that VanLehn (2011) found for ITSs. VanLehn found 
27 studies that compared posttest scores of students taught with and without intelligent 
tutoring. He found average effect sizes of 0.40 for substep-based forms of intelligent 
tutoring and 0.76 for step-based forms. The overall average effect size was 0.58. The 
similarity of VanLehn’s overall findings to ours is remarkable, given that the two reviews 
differed substantially in search procedures, inclusion criteria, and effect-size calculation. 
For example, VanLehn examined studies found in computer science journals and con-
ferences, whereas we cast a wider net for studies. When a study reported results on 
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several learning measures, VanLehn used the strongest effect size to represent the study 
results, whereas we averaged effects over all measures to derive an overall effect size. 
VanLehn also included data from several kinds of control groups in his analyses, whereas 
we restricted our analyses to comparisons with conventionally instructed controls. 
Despite these differences, VanLehn’s review and our review found overall effects of 
intelligent tutoring to be similar. 

VanLehn’s review also examined 15 evaluations that directly compared the effects 
of ITSs and human tutoring. Ten of the evaluations examined step-based intelligent 
tutoring, and five examined substep-based tutoring. The average difference in posttest 
performance from intelligent tutoring and human tutoring was only 0.10 standard 
deviations. Test scores of students who were tutored by humans were 0.10 standard 
deviations higher than the test scores of students who received intelligent tutoring via 
computer. The difference is not large enough to be considered of substantive importance. 
VanLehn’s finding is also consistent with our conclusions about human tutoring. 

On the other hand, our conclusions about Carnegie Learning’s Cognitive Tutor are 
different from those drawn by Slavin et al. (2009) and the What Works Clearinghouse 
(August 2010). We found that Carnegie Tutor effects differed substantially on locally 
developed, problem-solving tests and standardized multiple-choice tests. The average 
effect size was 0.72 on local tests designed to measure the higher order objectives 
stressed in the Carnegie Tutor curriculum, but the average effect size was 0.10 on 
multiple-choice tests that did not directly measure problem-solving skills. Slavin found 
an average effect size of 0.12 in seven studies of Cognitive Tutor Algebra, and the What 
Works Clearinghouse found a near-zero average effect in four studies. We concluded that 
Cognitive Tutor effects were large enough to be of substantive importance. Slavin and his 
colleagues concluded that there was “limited evidence of effectiveness” of Cognitive 
Tutor, based on their finding that at least one study in their analysis had an effect size of 
at least 0.10. The What Works Clearinghouse researchers concluded that evidence was 
moderate to strong that Cognitive Tutor had no discernible effect on student achievement. 

Reasons for the different conclusions about Cognitive Tutor seem evident. The con-
clusions drawn by Slavin and his colleagues and by the What Works Clearinghouse were 
based on results from standardized tests that were poorly aligned with the instructional 
objectives of the Cognitive Tutor curriculum. Results from tests of problem-solving that 
fit the Cognitive Tutor curriculum were not included in their analyses. If we had based 
our conclusions about Cognitive Tutor solely on such tests, we might have reached simi-
lar conclusions. We believe, however, that it is a mistake to draw conclusions solely on 
tests that seem poorly aligned to the higher order instructional objectives stressed in most 
ITSs. 

Studies that examined components of ITSs provided some additional insights into 
their workings. For example, the component evaluations reinforce earlier findings that 
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frequent and meaningful interactions between students and the system contribute substan-
tially to learning effectiveness. However, this interactivity alone does not explain the 
effectiveness of the systems. Eliminating interactivity from ITSs reduces their effective-
ness by around 0.3 standard deviations in a typical study. It thus reduces the effectiveness 
of these computer systems to the level of older forms of computer-based instruction but 
not to the level of conventional teaching. 

The component evaluations also suggest that interface improvements might increase 
the effectiveness of ITSs. Interface studies suggest that tutorial systems work better when 
they (1) require interactive rather than passive participation, (2) provide spoken rather 
than text-only instruction and feedback, (3) provide information in a game-like, rather 
than purely didactic, manner, and (4) allow students to explore a knowledge domain 
flexibly rather than in lockstep fashion. A caveat, however, is that each of these findings 
is based on only one or two laboratory studies. For greater confidence in these conclu-
sions, we need to see these findings replicated in other settings, including real school 
settings, with different learners, and with a wider selection of instructional materials. 

C. Final Word 
The results of this review suggest that ITSs make substantial improvements over 

those of other instructional approaches by accelerating learning, expanding learners’ 
problem-solving competencies, and developing the deep conceptual understanding that is 
needed for retention and transfer—doing so at scales that would be unaffordable if based 
on human tutoring or classroom instruction. Overall, the findings of this review are 
sufficiently promising to recommend continued research, development, and application 
of ITSs. 
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R-WISE Reading and Writing in a Supportive Environment 
VCR video cassette recorder 
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xTex-Sys eXtended Tutor-Expert System 
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