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Executive Summary 

Many Department of Defense (DoD) systems experience extreme environments during 
regular service life, including very high or low temperatures, corrosive environments, radiation, 
and high strain rates. Extreme environments can have adverse effects on material properties, such 
as changes in strength or toughness, by affecting composition and microstructure. Designing, 
modeling, and managing materials in extreme environments is an important mission for the DoD 
because it affects platform lifetime, reliability, maintenance, and performance specifications.  

A challenge of modeling and designing materials for extreme environments is the complexity 
of processes that lead to failure. Both composition and microstructure may vary with time upon 
exposure to extreme environmental conditions, and the relationships between these variables and 
materials properties that dictate performance are not always well understood or easy to elucidate. 
It is difficult to independently control various aspects of microstructure, and the mechanisms that 
determine microstructural evolution are also often poorly understood or difficult to model. Data 
on materials in extreme environments can be painstaking to collect, often requiring specialized 
apparatus and long time periods. This combination of factors makes data science methods that 
employ soft-modeling or statistical learning approaches particularly attractive because these can 
identify hidden trends in data for further investigation, extract key variables, and assist with 
visualizing complex relationships that may be difficult to establish deductively. Such methods 
shine when empirical models are unavailable or of limited applicability. 

Specifically, materials scientists seek to identify processing-structure-property (PSP) 
linkages that can explain how to engineer materials to achieve particular desired properties. In 
recent years, efforts applying data science approaches to this goal have met with some success in 
crystal structure identification, property prediction, and microstructure description. In particular, 
databases of computed properties based on density functional theory and thermodynamic 
calculations have led to a number of discoveries of new materials for applications ranging from 
transparent conducting oxides to magnets and Li-ion battery materials. In few cases have these 
methods, or any data science methods, been applied to problems specific to materials in extreme 
environments. One important reason for this is that material failures due to extreme environments 
are often mechanical and therefore closely connected to microstructural variables, which in turn 
depend on processing conditions and are thus much harder to predict from first principles. Other 
barriers include a lack of available data in consistent formats and limited awareness of or access 
to statistical learning methods and tools. 

The lack of data can be attributed to several important challenges for building databases for 
materials in extreme environments. Firstly, materials are generally characterized on many length 
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scales, and microstructures may include many different types of features or defects, meaning that 
a comprehensive description of material microstructure and composition needs to be flexible 
enough to incorporate an enormous variety of data even for a single material family. Secondly, 
significant variety exists in the characterization methods chosen by researchers, such that data may 
come with substantial uncertainty. The culture of reporting data via journal article that is prevalent 
for materials researchers is also not conducive to straightforward database building. Partly, this is 
because it is essential to capture metadata such as experimental and processing conditions in 
addition to microstructural information to build databases that are useful for establishing PSP 
linkages. Few existing databases meet all of these parameters. 

Many tools are now available to help build an infrastructure of materials data science and 
materials informatics. Several materials databases do exist (though rarely specific to materials in 
extreme environments), which may contain computational or experimental data, or both. There are 
also a number of materials resource and data repositories available, as well as several efforts to 
build open-source analysis, visualization, and e-collaboration tools for materials researchers. Few 
of these tools are specific to materials in extreme environments, and many are not well-known to 
the DoD materials testing and research community. Some statistical learning tools of particular 
interest for materials scientists are those that permit multi-label classification, fuzzy logic, or 
automated, computational image processing and analysis. 

Interviews with researchers and materials testing experts in government labs focused on 
materials in extreme environments revealed that these groups have interest in using such tools and 
building databases to preserve important results. Despite this interest, such actions have not been 
adopted because of limited access to up-to-date software and lack of institutional support for 
extensive data entry programs. To prevent the loss of useful, expensive data through personnel 
turnover and failure to document or store, we recommend that organizations collecting such data 
implement policy changes that will encourage researchers to store their test data in accessible, 
curated repositories. We also recommend a full review of data management protocols in DoD 
materials testing and characterization laboratories to identify gaps and best practices. 

There are a number of DoD-relevant material classes in which a curated and accessible 
database would be useful, including high-entropy materials, corrosion-resistant materials, 
radiation-resistant materials, high-temperature structural materials, and thermal barrier coatings. 
In particular, due to the relatively young state of the field and the small size of the existing 
community, high entropy materials may represent a flagship area for establishing standardized 
data reporting and curation habits. Corrosion and radiation-resistant materials researchers may 
benefit from computational image analysis methods attached to existing databases of material 
surveillance data. High temperature materials and thermal barrier coatings of interest for 
hypersonic applications may benefit from automated image analysis and database building for 
process control and quality assurance. Databases of computationally-generated microstructures 
could also be of interest for building models that explain the relationships between complex 
microstructural variables and material properties. 
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Databases should be structured to assist materials data scientists in designing new analyses. 
Potential users need to understand the nature of data contained in a database, including its quantity 
(how many data points?) and quality (how reliable are the data?), the types of materials covered 
(compositions, processing methods, etc.), and the types of data contained (e.g. images, spectra, 
measured properties, compositions). Failure to adequately describe database contents in a public 
and accessible way is a significant barrier to researchers who might use such data. If the goal is to 
make a useful resource, it is essential to provide detailed and well-advertised information about 
database contents. 

Case studies on limited sets of experimental data identified additional challenges and details 
of value for building resources for data science for materials in extreme environments. Analysis 
of composition and crystal structure information for a table of 110 high entropy alloys 
demonstrates that support vector machines, decision trees, and random forests are all adequate 
methods for conducting multi-label crystal structure classification in this class of materials. 
However, more data are needed to build robust classifiers that can accommodate a variety of 
intermetallic phases. This is an example of the type of classification that could be conducted 
starting from computationally-generated data, but must be validated with experimental data and 
an awareness of processing methods. Regression on data of composition and exposure conditions 
of irradiated FeCrAl alloys was able to predict yield strength with ~15% error, but results were 
difficult to interpret due to lack of microstructural information and variable correlation. 
Incorporating more physical intuition and microstructural variables into the model-building 
process would likely yield improved results. Finally, computational image analysis was applied 
to a number of optical micrographs of grey cast iron. This analysis led to the essential 
conclusion that automated imaging pipelines must be well-documented and validated in order 
to quantify uncertainty and delineate limits of applicability. With adequate documentation 
and validation, automated image analysis can significantly increase the amount of data that a 
single researcher can process at a time. However, to extend the reach of such tools, they need to be 
incorporated into the materials training pipeline. Universities should cover both quantitative 
image analysis and general statistical learning methods in materials science curricula for both 
undergraduate and graduate students. Furthermore, university courses and libraries can help 
publicize the existence of various materials data science tools, including databases, 
repositories, and software, to improve the awareness and technical skills of the materials 
science workforce. 
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1. Introduction: Data Science and Materials in 
Extreme Environments 

Extreme environments are ubiquitous in military systems, which during service may 
experience chemical attack, mechanical stress, irradiation, extremes in temperature and pressure, 
or combinations of these conditions. Materials determine the performance of platforms like 
hypersonic aircraft, naval vessels, and nuclear reactors, defining maximum and minimum 
allowable usage temperatures, limiting service lifetime, and dictating maintenance requirements. 
For example, the permissible speed of a hypersonic aircraft is directly limited by the thermal 
properties of the leading edge and thermal protection system in atmosphere. (Sziroczak and Smith 
2016) Meanwhile, many platforms will experience cracks and mechanical failures after repeated 
or long-term exposure to corrosive environments or radiation. Military platforms may also be 
subject to extreme stimuli including high strain rates, electric fields, or chemical hazards. 
Development, design, and modeling of materials for extreme environments is therefore of 
significant value to the Department of Defense (DoD). 

Extreme environments can be damaging to material properties, especially during long-term 
or cyclic exposure. For example, high temperatures promote surface reactions such as oxidation, 
enable microstructure changes such as grain growth or coarsening, and facilitate phase separation 
through interatomic diffusion. Similarly, corrosion causes gradual changes in material 
microstructure, affecting both composition and mechanical properties of materials, and may be 
highly dependent on specific environment descriptors. Radiation causes atomic displacements in 
materials that can lead to void formation, phase separation, and embrittlement. Cold temperatures 
can likewise cause embrittlement, while at the same time arresting transport properties such as 
diffusivity that may be important to material function (e.g., for electrochemical devices such as 
batteries). 

It is difficult to characterize many of these material degradation mechanisms. Not only are 
the physical processes involved often slow (a typical corrosion rate is measured in mm/year), but 
they may also be poorly understood. In addition, there are often numerous variables that may 
contribute to a particular property of interest, including test conditions, initial composition, and 
material microstructure and/or processing. Many of these variables are difficult to control 
independently, and characterization and quantification may be painstaking as well, especially for 
microstructural variables. However, designing materials to withstand and function properly in 
extreme environments is required to expand the capabilities of technologies ranging from nuclear 
reactors to hypersonic aircraft. Data collected in the area of materials for extreme environments is 
difficult to come by and therefore extremely valuable. 
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Recently, the concept of data science has expanded as a technical discipline that touches 
nearly every other type of science, ranging from market analysis, to bioinformatics, to artificial 
intelligence. Data science encompasses data management (e.g., data storage, collection, tracking, 
and sharing), data analytics (e.g., statistical inference, computational algorithms), and e-
collaboration (Kalidindi and Graef 2015). Data science provides tools to address specific technical 
challenges, such as cluster analysis, classification, or prediction. The methods used may be 
supervised or unsupervised, and will generally be more or less successful depending on the 
character of the data being analyzed. The data in question can also take many forms—from images, 
to purchase histories, to experimental measurements and conditions. In the materials science 
community, images, experimentally measured properties (including composition), measurement 
conditions, and processing history are some of the most important types of data. 

Data science methods are of interest to materials scientists primarily for identifying 
processing-structure-property relationships (Kalidindi and Graef 2015; Rajan 2015; Agrawal and 
Choudhary 2016). The ultimate goal of such analysis is to solve inverse design problems and to 
increase the amount of data-driven decision making in the materials design process. There are 
many challenges in place for realizing this vision, most notably the variety and complexity of 
materials data. Material characterization takes place over many length scales and can be conducted 
with a range of techniques that describe composition, microstructure, and materials properties. For 
example, a single metallic alloy may contain features including point defects, grains, dislocations, 
precipitates, twin boundaries, and pores, and each of these features will have a particular 
orientation, distribution, and associated strain or composition fields. These features are not static 
over time, especially in extreme environments that often promote morphology or composition 
change. However, they play an essential role determining the performance characteristics of 
materials, including mechanical and transport properties. For the materials community, describing 
such varied data in consistent, useful, and standard ways while making it accessible to those who 
might conduct useful analysis is a challenge. Because of such challenges, statistical learning 
approaches remain beyond the scope of much materials science research. 

This report assesses the challenges and opportunities for applying statistical learning 
approaches to understanding materials in extreme environments, with particular focus on 
challenges of interest to the DoD. We begin in Chapter 2 by highlighting a few examples where 
data science has been successfully applied to materials problems, focusing on the methods used 
and why they are of particular value to the materials community. 

Chapter 3 then reviews the status of available databases, data repositories, and open-access 
data science tools for materials science. Such resources are growing in number and availability 
through projects such as the Materials Genome Initiative (Jain et al. 2013), NIST’s Materials 
Resource Registry (NIST n.d.), and Georgia Tech’s MATIN (Georgia Tech n.d.). A list of data 
science resources and associated URLs can be found in Appendix B. Chapter 3 also covers the 
challenges for adapting or designing such tools for the special case of materials in extreme 
environments, including perspectives from a few experts in the field of extreme-environment 
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material characterization. The communities for extreme-environment materials research are often 
quite small, with highly specialized testing methods and data that preclude standardized, widely 
accessible forms. However, there are a few cases where subject-specific data have been 
compiled—these are highlighted with specific comments as to the utility of such databases, 
potential for expansion, and particular value to the DoD.  

Chapter 4 identifies several target areas of value to the DoD that appear well-suited for a 
materials informatics or statistical learning approach. For each area, potential descriptor variables, 
target variables for optimization, analysis and data production methods, and obstacles to 
implementation are described.  

Chapter 5 presents three case studies where statistical learning approaches were applied to 
small available materials data sets. These case studies include a classification problem involving 
high entropy alloys, a regression problem involving radiation resistance in FeCrAl alloys, and an 
image analysis problem with data pulled from the ASM Microstructure Database. This chapter is 
primarily exploratory in nature, simply testing out a few methods on real data and describing the 
advantages and pitfalls of these approaches, including the role of missing data.  

Finally, we conclude with a perspective on the path forward for the DoD to maximize the 
value of its hard-won data in understanding, modeling, and designing materials for extreme 
environments.  
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2. Data Science Methods in Materials Science: 
Representative Examples 

In this section, we focus on only a few examples of data science or statistical learning 
methods that have been applied in materials research and appear promising for future work on 
materials in extreme environments. The purpose of this section is to illustrate ways in which these 
methods have been successful, rather than to fully review the topic. For more complete coverage 
of previous materials data science work, we refer the reader to a group of recently published 
comprehensive reviews (Kalidindi and Graef 2015; Rajan 2015; Agrawal and Choudhary 2016; 
Ramprasad et al. 2017). 

A. Classification Methods 
Classification is a common goal of statistical learning that may be applied to both ordered 

problems (e.g., ranking of susceptibility to a particular failure mechanism) and non-ordered 
problems (e.g., predicting crystal structure). In materials science, classification might also involve 
comparing an image to a known microstructure standard to determine class membership. This can 
be used as a kind of quality assurance in manufacturing or monitoring processes. Finally, we might 
use classification to determine whether an image contains certain features (e.g., dislocation loop, 
grain boundary, precipitate, pore), or to find certain features within an image. Such automated 
feature detection may also be extended to data collected by spectroscopic methods or other means. 
In fact, such feature detection algorithms, especially as applied to images, are general to many 
data-science focus areas, such as facial recognition or medical image analysis (Russ 2011). 

A study by Kong et al. provides a model of data-driven classification as applied to materials 
science. In this study, crystal structure data for 840 intermetallic compounds were gathered and 
used to identify design rules based on classification trees (Kong et al. 2012). The authors chose 
descriptor variables that could be determined solely based on material composition (such as 
average number of valence electrons per atom, or average difference in atomic radii). They then 
constructed classification trees by using information entropy (a mathematical descriptor of 
uncertainty in data) as a partitioning metric, and used cross-validation to determine the optimal 
tree depth. The final tree could determine a subset of likely crystal structures (from a possible 34) 
based solely on input composition. The output of this tree allowed the authors to reduce 
computational effort for full-scale density functional theory simulations of unknown structures by 
~85%. Moreover, because the classification-tree method maintains explanatory power, it provided 
physical intuition that would have been absent from something like a neural network.  
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It is important to note, however, that crystal structure prediction is a much more tractable 
challenge than microstructure prediction. In the absence of specific efforts to quench a material 
into a thermodynamically metastable state, crystal structure is heavily determined by 
thermodynamics, while microstructure is heavily dependent on processing conditions. Two 
samples with identical crystal structure can easily have significantly different material properties; 
this is due to variation in microstructure. Unless a material is intended to be used as a single crystal, 
designing materials for particular applications requires attention to microstructure and processing. 
In the context of extreme environments, processing can also include usage profiles, such as thermal 
history or radiation exposure. Regardless, thermodynamic predictions can still be quite valuable 
for materials in extreme environments; for example to predict which oxide scales are most likely 
to form as products of high temperature oxidation.1  

Often, a single sample contains a variety of microstructural features or phases. Therefore, 
classification methods that allow for multiple labels are of particular interest to materials scientists, 
especially in cases where class membership may exhibit conditional relationships. For example, 
small adjustments in composition can shift thermodynamic equilibria in alloys between solid 
solution (a single-phase state) and phase-separated states. Rather than considering a phase-
separated state as a separate class, one can consider it as a state in which two classes coexist. This 
can be useful from a mathematical perspective, because it prevents us from either ignoring multi-
label data or creating unique classes for multi-label data that may be relatively sparse. 
Classification trees and support vector machines (SVMs) are statistical learning methods that are 
well-adapted to handling multi-label classification problems.  

SVMs seek to maximize the margin between multiple classes based on so-called supports, 
which are the nearest points on either side of the boundary (Hastie, Tibshirani, and Friedman 
2009). One can think of an SVM as a type of regularization that determines a boundary by 
penalizing points for being too close to the boundary, or for being on the wrong side of the 
boundary. SVMs can describe non-linear boundaries, and can be tuned for the softness of a 
boundary by adjusting the regularization parameter C. Furthermore, SVMs are easily adapted to 
multi-label problems by training classifiers using a one-vs-all or cross-training approach (Boutell 
et al. 2004). Multi-label data points are often on the edges of class regions, and therefore SVMs 
are well-suited to taking advantage of such data points. SVMs can also be used for prediction, for 
example to relate methane storage capacity to structural descriptors of metal-organic frameworks 
(Fernandez et al. 2013). Chapter 5.A describes a case study on high entropy alloys inspired by the 
work of Kong et al. that will explore the use of SVMs and decision trees for multi-label 
classification. 

Although we did not cover it in the case studies, another useful concept that is important for 
classification problems in materials science is fuzzy logic. Algorithms that employ fuzzy logic 
allow for a certain amount of uncertainty in class membership, typically predicting probability of 

                                                 
1  Based on conversation with Dr. James Smialek, NASA 
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class membership rather than binary class membership (Rajan 2015). They account for 
indiscernability in data—i.e., the situation where two points with identical descriptor variables can 
fall into separate, mutually exclusive classes (Jackson, Pawlak, and LeClair 1998; Boutell et al. 
2004). While mathematically distinct from multi-label classification, fuzzy classification can use 
similar learning strategies (including SVMs and decision trees) (Boutell et al. 2004). Boundary 
cases in fuzzy logic classification tend to be related to the uncertainty surrounding decision 
boundaries, rather than coexistence of multiple classes. This is an appealing method for materials 
data analysis because predictor variable sets are often incomplete, and data may have significant 
uncertainty, especially when translated between different labs or experimental techniques. Indeed, 
the sharpness of boundaries between classes can itself be a useful output from data analysis. 

B. Property Prediction 
The second broad statistical learning goal in materials science is prediction. Although it is 

one of the most widely used prediction methods, regression, even linear regression, can be subtle 
to implement, especially when applied to high-dimensional data. Accounting for covariance in 
variables, selecting predictor variables, and checking that assumptions are fulfilled are all 
important steps in any regression analysis. When applied well, regression can provide both 
explanatory power and property prediction. When applied blindly, regression can be misleading 
or fail to capture useful information contained in existing data. 

A study of high-temperature oxidation resistance conducted by NASA is an illustrative 
example of regression applied well in the area of materials for extreme environments (Smialek and 
Bonacuse 2016). High temperature oxidation resistance is of great concern for turbines, both for 
jet engines (Air Force) and for spacecraft (NASA). Over several decades, NASA collected data on 
weight loss due to oxidation and spalling of alloys and superalloys subjected to cyclic high-
temperature oxidation conditions. (Smialek and Barrett 1997) The data from these experiments 
were stored in a database that researchers at NASA were able to analyze in detail in a number of 
studies using statistical learning and regression approaches (Smialek and Bonacuse 2016; Barrett 
1997, 1992; Smialek et al. 2000; Barrett 2003). 

In a 1992 study, the weight loss data were used to build a metric called an “attack parameter” 
Ka for Ni- and Co-base superalloys that accounted for both scale growth rate and spalling rate 
(Barrett 1992). Using multiple linear regression, Barrett constructed a model of high temperature-
oxidation susceptibility as a function of composition that accounted for 85% of observed variance 
with 14 terms, and used that model to predict optimal compositions for this type of alloy. Barrett 
selected first order terms by stepwise selection at a specified significance level. For second order 
terms, Barrett used a partial subset analysis procedure. Later, in 2016, a new analysis of Ni-base 
superalloys was conducted using the same data. (Smialek and Bonacuse 2016) In that analysis, a 
logarithmic weight-gain transform was fit to compositional variables. Terms were selected by 
considering the Akaike Information Criterion (AIC) and design matrix condition numbers of 
models including those terms. The AIC and design matrix condition number, respectively, penalize 
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models with additional terms that add minimal improved goodness of fit and quantify the degree 
of covariance of model terms. The more recent model, which focused only on Ni-base superalloys, 
used 10 terms and accounted for 84% of data variance. 

These studies illustrate several useful points for the use of regression in understanding 
complicated extreme-environment data. First, despite a space of over 100 potential variables to 
include in the models, the models were constructed with a small subset of these, and selections 
were made based on objective tools for variable importance quantification. Beyond simply 
conducting regression fits, the authors of both studies also did extensive analysis of the complex, 
often interdependent contributions of composition to the overall oxidation resistance of the alloys. 
Finally, although the data used for this study were collected more than 15 years ago, their inclusion 
in an accessible database within NASA enabled useful, new analysis as enhanced computational 
power became available. 

The two analyses also frame the data differently; one focused on attack parameter, the other 
on weight change. In fact, the attack parameter could have been analyzed completely differently. 
This type of parameter has been used to rank alloys into classes of oxidation susceptibility—such 
ranking schemes are perfect for ranked classification problems such as ordered logistic regression. 
(Barrett 1997) Where data are not of sufficient quality for quantitative property prediction, such 
classification methods can be a powerful alternative analysis option. 

We also note that the database used for the above study did not include microstructural 
information. In high temperature oxidation processes, the type and proportion of scale growth 
depends heavily on thermodynamic variables. Therefore, composition alone can be a useful 
predictor of oxidation resistance, because composition influences the shift of equilibrium toward 
protective scales, like alumina, and away from detrimental scales, such as those containing Ti and 
Nb. Knowledge of which elements were helpful or harmful to oxidation resistance was directly 
derived from detailed analysis of the contributions of various regression terms (Smialek and 
Bonacuse 2016). That said, some variance in experimental results could not be explained solely 
through compositional analysis, and the protective value of certain elements (e.g., Ta) could not 
be adequately explained through the formation of a known protective scale. It is here that 
microstructural information (such as initial grain sizes, phase fractions, or phase morphologies) 
could be useful, because it can provide the missing links that explain why certain elements are 
important, or that variance is due more to kinetic rather than thermodynamic effects. We shall see 
some consequences of such missing information in chapter 5.B, where we apply linear regression 
with regularized variable selection to data on radiation resistance in FeCrAl alloys. 

C. Microstructure Description 
A key challenge relevant to both prediction and classification in materials data science is 

quantifying microstructure. As described in the Introduction, microstructure may include many 
variables and length scales, and may be characterized in many ways, including myriad varieties of 
microscopy, acoustic methods, and tomographic (3-D) methods. Microstructure description must 
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be flexible and extensible, and ideally it must also be quantitative. While we cannot expect any 
particular set of microstructural variables to be sufficient for all possible materials of interest, we 
might seek methods of quantifying microstructure that can be adapted to any particular problem. 

The work of Kalidindi et al. gives us a convenient strategy to address this challenge using n-
point statistics (Kalidindi, Niezgoda, and Salem 2011). N-point statistics, roughly speaking, 
describe the probability that two local states will be found at the end points of some n-dimensional 
volume. A single image may contain only two local states of interest, such as two different phases, 
or it may contain many, such as a range of grain orientations. The n-point statistic provides a 
mechanism for quantifying the arrangement of these states that is flexible and extensible enough 
to cover a range of length scales, materials, and local states of interest. Two- and three- point 
statistics are particularly useful due to the ease of estimation from images using Fast Fourier 
Transforms (FFT) and their ability in some cases to actually regenerate a microstructure from 
compact storage forms (Kalidindi, Niezgoda, and Salem 2011; Niezgoda, Kanjarla, and Kalidindi 
2013). One can think of this as a generalized way of quantifying feature distribution or orientation 
functions.  

When combined with the dimensionality-reduction method known as principal component 
analysis (PCA), Kalidindi et al. demonstrated this approach for unsupervised and supervised 
clustering and classification for both experimental Ti alloy micrographs and computationally 
generated microstructure datasets (Kalidindi, Niezgoda, and Salem 2011; Niezgoda, Kanjarla, and 
Kalidindi 2013). The addition of known material properties (e.g., stiffness) or processing 
information (e.g., annealing time and temperature) to instances of quantified microstructure then 
facilitated generation of processing-microstructure-property linkages. Specifically, these authors 
were able to link variation in microstructure to variation in a material property of interest (stiffness) 
(Niezgoda, Kanjarla, and Kalidindi 2013). While PCA and n-point statistics do abstract the 
representation of material microstructure, they also provide a convenient means of comparing and 
quantifying otherwise highly complicated data that may include feature shape, size, orientation, or 
distribution.  

The open source PyMKS software package provides tools for applying n-point statistics to 
microstructural images and studying PSP linkages (Brough, Wheeler, and Kalidindi 2017). Such 
tools are readily applied to computationally-generated microstructures (which can also be built 
using PyMKS), as the individual states of interest are typically labeled in the generation process. 
However, we will see in chapter 5.C that when used to quantify experimental images, the results 
of this method combined with PCA are heavily dependent on the choices made during the pre-
processing steps of image filtering and segmentation. Therefore, for collaboration across multiple 
labs and data sets, this technique requires advanced consideration of which features are important, 
which data to store or share, and methods for standardizing image collection, filtering, and 
segmentation or quantifying the error of these processes.  
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3. Status of Available Materials Databases and Data 
Science Tools  

Materials data science tools fall into several broad classes: databases, data repositories, and 
analysis tools. This chapter will briefly review available resources in each area, citing strengths, 
weaknesses, and application as appropriate. The challenges of hosting, maintaining, and curating 
such databases are well-described in multiple reviews (Tenopir et al. 2011; Kalidindi and Graef 
2015; DMMI 2014). The resources mentioned here are listed in Appendix A, but the highlighted 
resource registries should provide more comprehensive lists. 

A. Databases 
Databases for material science may contain computational data, experimental data, or both, 

and may be commercial, open access, or limited access. This discussion will not include databases 
of published journal articles, because these do not allow for straightforward data extraction for 
large-scale analysis of PSP linkages. The largest open-source databases tend to be those containing 
computationally-generated predictions of crystal structure, electronic structure, thermodynamic 
properties, and phase diagrams. Such databases include the Materials Project, Open Quantum, and 
AFLOW, and each includes tools for running workflows to add new data to the database (Jain et 
al. 2013; Saal et al. 2013; Curtarolo et al. 2012). These databases support a materials design 
approach whereby many potential compositions and/or crystal structures are screened for 
computable properties of interest (e.g., band gap, effective mass of charge carriers, Curie 
temperature), and the most promising candidates are then synthesized in the laboratory for full 
testing. Such an approach has been applied to screening for transparent conducting oxides (Hautier 
et al. 2013), new magnetic materials (Sanvito et al. 2017), and Li-ion battery materials (Saal et al. 
2013; Qu et al. 2015).  

The beauty of such an approach is that it allows investigators to generate the data they need 
without any laboratory equipment. The drawback is that it provides limited mechanisms for 
considering the effects of microstructure and processing. It turns out that the greatest challenges 
of materials in extreme environments are those related to changes in material properties over time. 
Material property drift results from both compositional and microstructural changes that are often 
stimulated by exposure to factors such as elevated temperatures, radiation, or chemical attack. In 
such a context, thermodynamic predictions are of limited value, because they do not account for 
processing history that may create kinetic barriers to achieving thermodynamic equilibrium. 
Instead, modeling that can capture the processes that cause microstructure or composition change 
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in response to stimuli like radiation and heat are needed, especially if these models can also relate 
such changes in composition and microstructure to properties like strength or toughness.  

The second common type of materials database compiles experimentally measured materials 
properties. These may be established standards, such as those reported by NIST (Johnson 2010), 
data compiled from literature sources, as reported in the NIMS MatNavi Database (Xu, Yamazaki, 
and Villars 2011), or carefully curated collections of specific data, as in the International Crystal 
Structure Database, ICSD (Allmann and Hinek 2007). Such databases often contain composition, 
crystal structure, and property information, but there are few databases that also include 
microstructural details or detailed processing histories, and even fewer that include actual 
micrographs. The subscription-only ASM Micrograph database is an exception in that it contains 
thousands of micrographs for many different materials, including limited processing and 
compositional information (ASM International n.d.). However, even this example rarely provides 
micrographs covering multiple length scales or orientations, giving only a partial picture of each 
material contained in the database. 

Genre-specific databases occupy an interesting middle ground. These databases may contain 
both computational and experimental information, but tend to be focused on a particular type of 
material, such as structural metals or thermoelectric materials (PRISMS n.d.; Gorai et al. 2016). 
The TE Design lab is an excellent example of one such database. The TE Design Lab is an online, 
open-source database that includes both computational and experimental data from thermoelectric 
materials, along with data visualization and analysis tools. This database permits users to submit 
new data for review, and provides templates for users to run new calculations generating new data 
to be included in the database. The inclusion of both experimental and computational data also 
sidesteps the challenge of small datasets that is common for experimental-only databases. With 
limited experimental data, predictions are difficult to extend beyond the domain material class, 
and trends, especially those developed through statistical learning, can be skewed by historically 
more-studied materials (Gorai Comp Mat Sci 2016). Thus, the TE Design Lab format, which 
standardizes and curates computational & experimental data inputs and provides users with tools 
to make data accessible, should be a model for new genre-specific databases in the area of materials 
for extreme environments. 

There are a few examples of extreme-environment materials databases in existence. The high-
temperature oxidation database cited in chapter 2 is one example (Barrett 2003). In fact, 
international (IAEA) and national (EDB) databases exist for tracking embrittlement of structural 
materials for nuclear reactors, and the U.S. Naval Research Lab has compiled an extensive 
database of corrosion testing results (IAEA 2009; Wang and Subramani 2008; U.S. Naval 
Research Laboratory 2018). However, these databases tend to have limited access, with little to no 
advertisement or description of the data they contain or how it is used. While such barriers may be 
necessary due to proprietary or security reasons, they hinder collaboration, which limits the value 
of such hard-won data. Corrosion and radiation especially are challenges that cross the military 
and civilian communities; and while reactor embrittlement databases do serve a very large 
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community, they are limited in the data they collect. The EDB does not include microstructural 
information, and it is unclear to what extent the IAEA reactor embrittlement database does. 
However, microstructure has a direct effect on embrittlement and avenues of environmental attack 
(corrosion); therefore microstructural information would be valuable to both of these communities 
(Allen and Tan 2008). Innovation is required to establish standardized, preferably automated 
characterization of relevant microstructure for such databases, especially without requiring long-
term storage of individual micrographs. Furthermore, databases must provide detailed, well-
advertised descriptions of their contents in order to adequately attract a broad and effective user 
base. 

B. Data Repositories 
Data repositories are distinct from databases in that they are an intermediary between 

potential data users and data storage locations. Data repositories provide a way for researchers to 
make experimental and computational data publicly available and discoverable. Data are often 
uploaded in a variety of forms, but repositories may also include links to locally hosted datasets, 
rather than actually storing the data on their own servers. This can minimize the burden to the 
repository host by decreasing the necessary available data storage infrastructure. Data suppliers 
are responsible for providing metadata covering the contents of available files and datasets.  

One of the most comprehensive materials data discovery sites is the Materials Resource 
Registry hosted by NIST (NIST n.d.). Beyond linking to materials data sets, it also links to many 
other materials resources, software, computational tools, and reference databases. Materials data 
repositories may also be found using the Registry of Research Data Repositories, which is not 
specific to materials science but does allow searches by subject matter (RE3Data n.d.). 

Mat-DB is a database application available to the European Union research community that 
has the similar goal of aiding data management and discoverability for the materials community 
(Joint Research Centre n.d.; Over et al. 2005). Mat-DB supports restricted, registered, and open 
access options for its users, and also promotes standard data-entry formats. Mat-DB is managed 
by the European Commission Joint Research Center.  

Materials Commons is a data repository and e-collaboration platform linked to the DOE-
funded PRISMS Center, which focuses on structural alloys. Materials Commons provides ways to 
track data provenance and scientific workflows, making metadata readily available (PRISMS n.d.). 
Users can also control access to their projects on the Materials Commons. Although PRISMS 
began by focusing on structural metals, the tools and protocols developed within the PRISMS 
framework are envisioned for use for general materials development and discovery. The NIST 
Materials Resource Registry contains links to both the PRISMS website and Materials Commons. 

Unlike NIST and the DOE, the DoD does not have a public site devoted to materials data 
discoverability and awareness. However, data management plans, including plans to make 
federally funded, unclassified data publically available, are now a requirement for DoD research 
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funding proposals (DoD 2015). The Defense Technical Information Center (DTIC) also makes 
some reports available. It seems impractical for the DoD to establish its own materials resource 
repository in light of existing open-access options. However, the lack of open-access data 
centralization in DoD-critical areas such as corrosion, high-temperature, and high strain-rate 
material testing impedes data discoverability. Therefore, we suggest that program offices 
specializing in these areas either provide recommendations for particular locations for data storage, 
or that the DoD build a resource registry similar to the one hosted by NIST that would be 
searchable by DoD focus areas. 

C. Analysis Tools 
Many statistical learning and data mining packages are now available for open source 

programming languages such as R and Python. These include packages for classification, 
prediction, regression, unsupervised and supervised learning, data preprocessing, and data 
visualization. Tools specific to materials science include those that focus on analysis methods for 
data generated by common material characterization methods, including imaging and 
spectroscopy. 

Open source materials data analysis tools can significantly enhance the proliferation of data 
science methods in this field. Even when access to data is restricted due to security or proprietary 
reasons, analysis tools are useful and necessary. For example, the PyMKS package mentioned in 
chapter 2.C can be openly used to quantify microstructural information in a segmented image, or 
to generate microstructures for further analysis (Brough, Wheeler, and Kalidindi 2017). This tool 
is specifically aimed at materials science studies, but it can easily be combined with general image 
analysis tools such as scikit-image and OpenCV, both of which are also open source Python 
packages. PyMKS is just one tool available from Georgia Tech’s MATIN (Materials Innovation 
Network) project, which also provides links to data repositories and e-collaboration tools (Georgia 
Tech n.d.). 

Another open-source material data analysis platform is DREAM.3D, which allows 
reconstruction of multi-dimensional data sets, generation of synthetic microstructures, and access 
to image analysis filters and workflow documentation (Groeber and Jackson 2014). This platform 
meshes material microstructure so the user can assign descriptors (e.g., grain, dislocation, 
orientation) to individual mesh constituents. 

Open source tools like those available from DREAM.3D for microstructure characterization 
of multi-dimensional imaging data are sorely needed. Reliable tools for recognition of dislocations, 
grain boundaries, precipitates, pores, or other features are essential. Commercial software exists 
for conducting such image analysis, but the lack of open-source tools stunts materials research by 
limiting access and collaboration. Being able to analyze more images enhances the value of a 
single, often expensive microscopy session, and increases the amount of data a single research can 
gather and analyze in a fixed time. A single researcher may collect dozens of images during a 
typical two-hour electron microscopy session—but rarely analyzes every image in detail, thereby 
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limiting the statistical value of the dataset. User facilities such as National Labs are ideal places to 
develop such tools. The Center for Data-Driven Discovery at Brookhaven National Laboratory 
focuses on challenges related to National Laboratory data generation and analysis, including for 
transmission electron microscopy analysis and X-ray scattering (Brookhaven National Laboratory 
n.d.). Like image analysis, spectral analysis, such as curve-fitting and peak identification, applies 
to many types of materials characterization data. 

Publicizing the availability of analysis tools, databases, and data repositories will accelerate 
their use by the materials community. Materials education programs in particular are well-
positioned to inform students and staff about the existence and application of such resources. This 
in turn will encourage students to take advantage of these tools in their own work, enhancing the 
materials workforce skill base, promoting standardized data analysis methods and reporting, and 
promoting novel tool development.  

D. Perspectives from Test Labs and Experts 
Government laboratories have been characterizing materials for decades. Testing may be 

motivated by different reasons, such as understanding and predicting material failure in 
government property, searching for new and improved materials, or evaluating potential 
government acquisitions. The results of such testing may be classified, and therefore not available 
to the public. However, this does not preclude us from considering the best practices for data 
storage, curation, maintenance, and sharing within DoD infrastructure. Given the history of such 
testing and characterization, it is likely that considerable knowledge has been lost through lack of 
digitization in a searchable format. This section summarizes conclusions based on feedback from 
a few individuals involved in government material testing and characterization. However, we 
recommend a full survey of DoD and/or government materials testing & characterization data 
management protocols in order to identify best practices and gaps in this area. 

Common practices for data storage, maintenance, and sharing within government material 
testing communities were identified based on feedback from individual members of four 
government material testing groups.2 For the most part, data are collected and stored by individual 
teams following whatever format the team deems appropriate. Often, the results of data analysis, 
along with the most relevant supporting data, will be published in either open literature or technical 
reports. This publication may require approval by the funding sponsor, depending on the specific 
project. The quantity of data reported, and whether data are reported as summaries or as tables of 
individual observations, is highly dependent on the author and the purpose of the report. For 
example, when conducting quality assurance testing, one might report summary statistics (mean 
and standard deviation) rather than individual test results. When reporting on the progress of a 
                                                 
2  Dr. James Smialek, Material High Temperature Oxidation Group, NASA Glenn Research Center; Dr. Farrel J. 

Martin, Code 6134, Center for Corrosion Science and Engineering, Naval Research Laboratory; Jay Ong, 
Corrosion testing, NSWC Carderock; Joel McDuffee, Nuclear Experiments and Irradiation Testing Group, Oak 
Ridge National Laboratory 
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long-term testing program, one might report tables of measurements. The DoD has made efforts 
at materials data longevity and accessibility in supporting Military Handbooks and Information 
Analysis Centers, but these do not facilitate straightforward access to the kinds of data sets most 
useful for statistical learning efforts (Information International Associates 2012).  

In some cases, researchers have compiled data collected over multiple years in the form of a 
personal spreadsheet or database. The oxidation data from NASA is one example of such an effort, 
comprising decades of material testing data stored in a standardized data format that was made 
available to the high temperature oxidation team (Barrett 2003). Such compilations are useful to 
the teams that continue testing or conduct future analysis, but can present limitations for data 
sharing between researchers or groups that use different formats or slightly different testing 
protocols. This is especially true when there are access restrictions on the data in question; in such 
a case, a formal collaboration or release request may need to be established before data can be 
shared. Groups with such internal protocols may find it worthwhile to publicize the data storage 
format (without releasing actual data) to lay the groundwork for potential standardization in the 
event of future collaborations or data sharing.  

Beyond their value as accessible data sources, internally-maintained databases can encourage 
institutional protocols that preserve data for long term effectiveness across multiple testing efforts. 
For example, the Barrett oxidation database has inspired a similar development in the area of 
environmental barrier coatings within the same laboratory at NASA. We note, however, that 
significant barriers exist in DoD labs to implementing internal databases that go beyond a simple 
spreadsheet format. Cited challenges include lack of software, data storage architecture, 
established data storage formats, or incentives to conduct data entry on significantly backlogged 
data. The lack of an actively maintained database can lead to data loss as storage formats and 
operating systems evolve over time and personnel turn over. One way to prevent such data loss is 
to implement institutional guidelines that encourage data preservation actions, especially in 
organizations where the loss of individuals can mean the loss of decades’ worth of data. For 
example, when possible and approved for public release, data may be preserved by uploading onto 
a data repository similar to the ones described in chapter 3B. Testing data for materials in extreme 
environments are particularly worth preserving, because the testing is often expensive, time-
consuming, and highly technical. 

A second way to enhance the value of such datasets is to use e-collaboration tools to facilitate 
collaboration within government agencies or between government labs. Access-controlled tools 
like those available through PRISMS and MATIN can help users develop customized data entry 
protocols that allow compilation of data from different testing labs with similar interests. Similarly, 
automated analysis codes produced using Python, DREAM.3D, or other platforms can be exported 
between labs to ensure consistent characterization protocols. 

There is also room for improvement when moving forward from historical datasets. New 
datasets need not be restricted to only the data collected in the past. For example, microstructural 
information went largely unreported for the oxidation data set and micrographs were not included 
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in the database (Barrett 2003). However, information such as phase fractions or phase length scales 
could be quite useful, for example to determine the limits of potential improvements in oxidation 
resistance, or to identify helpful and harmful scales. Along this vein, in the absence of experimental 
data, the results of computational simulations could be used to augment the existing database.3 
This is another way in which historic data can remain relevant—by providing straightforward 
validation and concrete targets for ongoing simulation efforts. 

Although enterprising researchers have occasionally been able to ensure the persistence of 
their data through decades, such efforts would be more successful and widespread with increased 
availability of data management tools and institutional support for data preservation. Experimental 
data retain value over time as new analysis and simulation methods are developed, but only if they 
remain accessible and documented. Data preservation also guards against unnecessary duplication 
of effort. Therefore, organizations that conduct extensive materials testing in extreme 
environments will benefit from supporting their analysts and researchers in efforts to preserve 
expensive, hard-won data. Supporting actions might include: (1) providing guidance on methods 
and means of data storage and discoverability, (2) contracting for development of internal data 
repositories and e-collaboration tools, (3) supporting committees to establish standardized data 
entry formats and protocols within each material testing community, and (4) incorporating data 
management plans into proposals for new research or testing programs.  

 

                                                 
3  Based on discussion with Dr. James Smialek, NASA 
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4. Target Areas 

In this section, we describe the factors that contribute to a materials data science problem, 
and highlight a few target problems in the area of materials in extreme environments that appear 
well-suited to a data science approach. 

A. Structuring a Materials Data Science Problem 
When structuring a study using data science tools, the following list of questions should help 

guide choices related to data gathering, analysis methods, and variable selection. These questions 
need not be asked in the order listed, as analysts may not have control over data collection. 

1. Is the study explanatory, utilitarian, or exploratory? 
An explanatory study seeks to understand which knobs to turn to control a particular outcome, 

and to explain why those knobs might work. In contrast, a utilitarian study may aim to develop a 
model that will predict an outcome with available information, without necessarily explaining 
connections. Finally, an exploratory study may not have a defined goal, but may seek to identify 
previously unknown relationships or structure within a data set. A research study will often be 
explanatory or exploratory in nature, while process control development may be more utilitarian. 
Knowing the answer to this question will help the analyst select appropriate statistical learning 
tools.  

2. What is the material domain space? 
This will likely be geared by the application (i.e., corrosion-resistant alloys, high temperature 

structural materials). Highly disparate mechanisms may be at play within different material classes 
(e.g., metal vs. polymer) or forms (e.g., single crystal vs. polycrystalline). It may be the case that 
multiple material classes are of interest to solve a problem (e.g., lightweight structural materials 
can include composites or aluminum alloys), but the disparity in synthesis mechanisms and 
microstructure would suggest using separate statistical learning modules for each material class. 
The material domain may be extremely narrow, as for optimizing a processing line, or extremely 
broad, as for designing high entropy alloys. It is important to understand the breadth of potential 
materials of interest, and what sources of variation may come into play. The answers to this and 
the following question will also be important when defining data entry formats and options for 
new databases. 
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3. What are the properties of interest? 
Perhaps we want to predict a property based on a known composition or microstructure. 

Perhaps we want to describe a microstructure given an image, with an eye to a particular 
application or theoretical model. Perhaps our goal is to understand how sensitive a particular 
property is to variations in microstructure or processing. We may want to conduct unsupervised 
learning on a suite of data with unknown value. Whatever our goal, we need an idea of which 
variables are going to be considered in our data analysis, and of what (if anything) we are trying 
to optimize. These may include mechanical or transport properties, composition, microstructure, 
cost, processing parameters, or environmental parameters. If the problem at hand is linked to a 
particular application, this will define the suite of properties that matter. It may be necessary to 
define a metric or score to describe how well a material satisfies some set of requirements. 

4. Where will data come from, and what data quality, contents, and quantity are 
expected? 
Whether data are available from the literature, are contained in an existing database, are to 

be gathered from experiments, or are to be generated via computational means, it is important to 
have an understanding of the expected number of data points, level of accuracy or trust in those 
data points, and the actual types of data available (e.g., images, measured properties, processing 
histories). Subscription or registration-based databases do not always publicize a detailed 
description of their contents, which creates a barrier to researchers who are deciding whether to 
gain access to those databases. The expected number of data points (n) and number of descriptor 
variables (p) will also inform the choice of learning method. 

B. Specific High-value Targets 
This section will highlight several materials in extreme environments problems of interest to 

the DoD that seem well-suited to a data-science approach. For each target area, we address to the 
extent possible the questions posed in chapter 4A, including articulating key explanatory variables 
and target properties. 

1. Complex Concentrated Alloys (CCAs) and High Entropy Alloys (HEAs) 
CCAs and HEAs are metallic alloys that incorporate a high degree of disorder and multiple 

base elements in their microstructure. These alloys are of interest for numerous applications within 
the DoD. (Miracle 2015, 2018; Zhang et al. 2014) HEAs, typically defined as containing at least 
5 principal elements at concentrations between 5 and 35 atomic percent, are a subset of CCAs. 
While HEAs are often described as single-phase solid solutions, CCAs may incorporate multiple 
phases or have fewer than five principal elements (Miracle 2018). 

Relative to traditional alloys made by adding small amounts of impurities to a one- or two- 
element base metal, CCAs and HEAs constitute a combinatorial explosion in terms of potential 
compositions. Because of the enormous design space, including through adjustment of processing 
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approaches, CCAs are being considered to solve myriad extreme environment challenges that 
confound existing alloys and superalloys, including high temperatures, low temperatures, 
corrosion, radiation, and wear (Zhang et al. 2014). The opportunities for data science solutions are 
likewise extensive. Each part of the PSP linkages needs to be established for these alloys, from 
predicting fundamental crystal structure based on composition (see chapter 5A) to predicting 
properties of interest or microstructure based on composition and processing parameters, to 
identifying the relationships between microstructure and target properties. There is also ongoing 
work in simply establishing models for transport and deformation mechanisms in CCAs. Although 
many such models exist and are well understood for conventional alloys, they may not translate to 
highly disordered systems. Without hard models, soft models based on statistical learning from 
high-throughput computational and experimental data may point the way to greater understanding. 

For HEAs and CCAs, research is still at an early stage, which means that explanatory and 
exploratory models will be most useful. Particular focus groups will be determined by the 
application—for example, alloys with BCC crystal structure are preferred over FCC alloys for 
structural applications that require higher strength and lower ductility (Zhang et al. 2014). 
Variables of interest for optimization may include mechanical properties such as weight-
normalized yield strength or stiffness, maximum use temperature, diffusion coefficients, or 
corrosion resistance. Explanatory variables for computation-based phase prediction should be 
those that can be determined from composition alone, such as average atomic size differences or 
valence electron concentration (Guo 2015; Yang and Zhang 2012). For microstructural prediction, 
processing parameters may be of interest, such as heat treatment information (time, temperature, 
cooling and heating rates) or processing method (e.g., arc melting, casting, mechanical alloying). 
Microstructural variables could include grain size, phase fractions or length scales, porosity, 
precipitate morphology, or dislocation density.  

Some work has been done generating thermodynamic databases for high entropy alloys by 
commercial enterprises such as Thermocalc and Ques-Tek (Mao, Chen, and Chen 2017; QuesTek 
Innovations LLC 2018). However, experimental data, particularly with regard to microstructure, 
is needed to produce a truly effective data infrastructure for HEAs and CCAs. High-throughput 
synthesis and characterization is challenging, especially for structural materials, where many 
property measurements are needed and test miniaturization is restricted by microstructural length 
scales (Miracle 2015). This is a case where common data reporting by multiple labs could grow a 
knowledge base that would otherwise be very difficult to compile. Because this research field is 
still young and the research community is relatively small, there is real potential to develop 
common data-reporting schemes now (perhaps associated with publication) that could truly benefit 
the entire community. HEAs could represent a flagship area for encouraging data-reporting habits 
common in other fields to transition to materials scientists. 
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2. Corrosion-resistant Materials 
Corrosion can be broadly defined as material degradation in response to chemical attack 

(M&MP COI 2017). Corrosion causes material loss and transformation (often, oxidation), change 
in material properties, and can participate in crack growth when coupled to mechanical stress. All 
of these factors amount to damage that weakens structures and leads to eventual material failure. 
Although we are most often concerned about corrosion in metals, it can also be a problem for 
ceramics such as SiC (Allen and Tan 2008). The exact flavor of corrosion will depend on 
environmental factors like pH, the presence of sulfur, hydrogen, or oxygen, and additional factors 
such as high temperatures or mechanical stress. Furthermore, microstructural variables such as 
grain boundary character, grain size, and residual strain can directly influence the mode and rate 
of corrosion (Allen and Tan 2008). With the diversity of potentially corrosive environments and 
corroding materials of relevance to DoD infrastructure, corrosion prevention and control is a 
complex, ongoing challenge (PEO Land Systems 2017). Thus, corrosion is a cross-cutting problem 
for the DoD, constituting its own Technical Area Team within the Materials and Manufacturing 
Processes Community of Interest (M&MP COI 2017). Therefore, the design and testing of 
corrosion-resistant materials, along with prediction of corrosion in operating environments are 
ongoing goals for DoD labs (M&MP COI 2017). 

As an example of the kind of corrosion problem that may benefit from a statistical learning 
approach, we consider zirconium alloys for nuclear fuel cladding in fission reactors. Such cladding 
undergoes corrosion in both light and boiling water reactors, and it has been observed that both 
compositional and microstructural changes can significantly affect the kinetics of corrosion and 
oxide growth (Motta, Couet, and Comstock 2015). Alloy degradation may be described by a 
number of features, including hydrogen pickup fraction, pre-transition times, post-transition 
corrosion rates, and pore formation and growth rates. The transition is a feature of oxide growth 
kinetics that demarcates a change from parabolic or subparabolic corrosion kinetics to much faster 
scale (oxide) growth. Often, such transitions are periodic and oxide growth is a cyclical process. 
Alloys with longer pre-transition times and slower scale growth are considered more corrosion-
resistant. 

The orientation and anisotropy of growing oxide grains, along with pore growth, contributes 
to stress accumulation that can affect transition time and thickness. However, the connection 
between the alloy composition and microstructure and the oxide microstructure is not well 
understood (Motta, Couet, and Comstock 2015). Nor is the role of precipitates (secondary phases) 
in the alloy fully accounted for. Precipitates may oxidize at delayed rates as defined by Pourbaix 
or Ellingham diagrams. Nonetheless, Zr alloys with enhanced corrosion resistance tend to have 
both complex composition and secondary phase precipitates. Therefore, variables of interest for 
modeling corrosion kinetics might include microstructural descriptors of precipitate shape, size, 
or distribution, in addition to typical descriptors like grain boundary density. Compositional 
variables should also be used as descriptors, along with exposure variables (e.g., temperature, time, 
hydrogen levels, applied stress).  
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Prediction of kinetic parameters (e.g., coefficient and exponent for pre-transition phase) or 
classification of oxide growth kinetics (immediate breakaway, single cycle to breakaway, or fully 
cyclic) are both potential goals for statistical models from Zr alloy corrosion data. A database 
compiled from documented micrographs, compositions, and oxide growth kinetics could be 
analyzed to attempt to model some of these effects and guide further alloy development and 
mechanistic hypothesis testing.  

For structural materials of relevance to the DoD, material testing data gathered by members 
of the Naval Research Lab or testing and certification groups at the Naval Surface Warfare Centers 
could similarly be analyzed with a statistical learning approach in order to explain or explore the 
mechanisms of corrosion in operational environments. In addition, utilitarian models based on 
machine learning from naval corrosion testing databases may be useful for flagging or predicting 
required maintenance checks for in-service systems. Some work to this effect has been done to 
predict corrosion rates of common alloys based on worldwide measurements of corrosion rates 
and weather variables at military bases (Morefield et al. 2009). Efforts like these should continue 
and be expanded to newly introduced alloys and coating systems, particularly with reference to 
initial compositions and microstructures. Furthermore, similar efforts could be applied to building 
models to predict high temperature oxidation, which is an important problem for turbines in jet 
engines (M&MP COI 2017; Smialek et al. 2000).  

3. Thermal Barrier Coatings and High Temperature Structural Materials 
Hypersonic vehicles face a major challenge with high temperature resilience (Sziroczak and 

Smith 2016). Atmospheric drag during ascent or cruise can generate significant heat that is 
proportional to the atmospheric density and the cube of velocity. While only about half of this heat 
actually reaches the aircraft, it means that materials are needed that can withstand very high 
temperatures, with the maximum usage temperature directly affecting the possible speed of the 
vehicle at various altitudes. To address this challenge, hypersonic vehicles require high 
temperature structural materials and/or thermal protection systems (TPS) that dissipate heat, 
including by ablation. The leading edges of hypersonic vehicles experience the most intense heat. 

Materials of interest for these purposes include C-C composites (for both leading edges and 
surfaces, maximum T ~1500 ⁰C), refractory metals (e.g., Inconel, maximum T ~1400 ⁰C), and 
ultra-high temperature ceramics (usually only for leading edges, e.g., Hf/Zr diboride, maximum T 
~ 1200-1600 ⁰C) (Sziroczak and Smith 2016). For leading edge materials, thermal diffusivity and 
melting point should be maximized. For structural materials, mechanical properties at high 
temperatures are also important, such as interlaminar toughness (for layered composites), shear 
strength, and tensile strength.4 

Explanatory variables will depend on the material class. For example, variables such as pore 
density, fiber diameter, interphase coatings, fiber tow properties, fiber weave, and fiber alignment 
                                                 
4  Based on conversation with Dr. William Hong, IDA 
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are meaningful for C-C or metal-matrix fiber composites, while variables such as precipitate shape 
and dispersion may be important for oxide dispersion strengthened Ni alloys. Inconel is in fact a 
family of Ni-Cr alloys including varied composition and microstructure. 

Utilitarian models that can relate processing conditions to microstructure (e.g., pore size and 
distribution) and microstructure to mechanical and thermal performance could be quite valuable. 
Explanatory models connecting composite, ceramic, and metallic microstructure to thermal 
diffusivity would likewise be of interest. However, data for hypersonic materials is scarce in the 
public domain. Nonetheless, this is an area where statistical learning could be applied to either 
optimize processing or assist with material design. 

4. Radiation-resistant Structural Materials 
While not as widespread of a challenge as corrosion, irradiation is also of relevance to the 

DoD, particularly for structural materials in reactors onboard nuclear-powered submarines and 
ships. Like corrosion damage, radiation damage is controlled by complex processes that connect 
material composition, microstructure, and exposure conditions. In fact, structural materials 
typically have operating temperature windows that define both a maximum and a minimum usage 
temperature. This is because the mechanisms of radiation damage and resistance differ depending 
on temperature; these processes include defect formation and annihilation, diffusion, absorption 
into defect sinks, accumulation, and amorphization. Radiation resistant structural material classes 
include ferritic steels, V alloys, and SiC/SiC composites. The strategies to design radiation 
resistance tend to focus on adding radiation-resistant matrix phases, immobilizing point defects, 
and engineering high-sink-strength microstructures. Sinks may be cavities, precipitates, 
dispersoids, grain boundaries, or dislocations (Zinkle and Snead 2014). 

It is easy to see how valuable consistent, quantitative microstructural descriptors would be in 
this context. For radiation damage, the average spacing between defects can be just as important 
as the size of those defects, because a balance must be struck between mechanical properties (e.g., 
toughness, strength) and radiation tolerance (e.g., operating temperature range, ductile-to-brittle 
transition temperature as a function of dosage). Material healing can be governed by how readily 
a defect can migrate to a sink. It is difficult to control microstructural variables independently, 
even at fixed composition. With enough data points, a wide microstructure space can be covered 
and trends identified, even in the absence of systematic variable adjustment.  

Data on radiation embrittlement has been gathered for decades in reactor pressure vessel 
(RPV) surveillance databases (Wang 2010; IAEA 2009). Such data mean that the effects of 
exposure conditions and to some extent composition on RPV steels are well understood. 
Microstructural data, or at least micrographs, may also exist from efforts like the UCSB Radiation 
Embrittlement Damage Analysis and Predictions (REDAP) project. Research efforts to understand 
radiation damage in particular material classes continue, for example at Oak Ridge National Lab. 
A database of micrographs could be analyzed with computational image processing to quantify 
variables like the concentration, morphology, and distribution of features like pores (and voids), 
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dislocations, grain boundaries, or precipitates. Paired with starting compositions of samples, 
surveillance data on exposure conditions and mechanical property measurements could be used to 
build predictive models or explanatory models that relate embrittlement to particular 
microstructural characteristics. Such analysis could also help link the propagation of variance 
between processing, microstructure, and performance, which could inform questions about the 
importance of certain variables even if it does not explain the mechanisms of importance.  

5. General Trends 
A statistical learning approach is best aimed at materials problems where physical 

mechanisms are poorly understood or difficult to model with hard modeling. In such cases, soft 
modeling may significantly reduce computational effort, or may point to physical effects that were 
previously difficult to resolve due to conflicting or correlated variables (Rajan 2015). Problems in 
which the microstructure acts as an important variable fall squarely in this category, because 
complex microstructures are extremely difficult to model. Microstructure is an essential 
component of design for corrosion and radiation-resistant materials, and it plays an important part 
in defining thermal diffusivity and mechanical properties. Likewise, when manufacturing 
materials with complicated microstructures, one must understand what makes two samples the 
same or different, and one must understand what level of variance actually matters for material 
performance. The more complicated the material, the more difficult or time-consuming it is to 
quantitatively characterize the microstructure—which advocates for including automated image 
processing into any quality assurance workflow. 

This chapter has focused on the role of experimental data, but it should be noted that 
computational data does have a role to play for materials in extreme environments. In particular, 
simulating microstructures (to get around the problem of independent property control) can be a 
powerful technique for generating data on relationships between microstructural variables and 
target properties. In such a case, one needs to have a physical model in mind to determine a target 
property (e.g., tensile strength) from a known microstructure, but advances in finite element 
modeling and Monte Carlo simulation have made it possible to do this in some cases where a 
deterministic relationship is uncertain or inaccessible analytically (Niezgoda, Kanjarla, and 
Kalidindi 2013). This approach is also worthwhile when trying to determine how a particular 
mechanistic hypothesis might translate to observable effects.  

The high entropy alloy problem represents a case where there is a dearth of physical 
knowledge and an enormous space of possible alloys. In fact, similar concepts are also being 
extended to ceramics, with numerous potential applications for materials in extreme environments 
(Gild et al. 2016; Rost, Christina M. et al. 2015; Zhou, Jieyang et al. 2018). Because we have not 
determined the limits of these materials, we do not know what they are capable of, and they are 
therefore being investigated for nearly every extreme-environment application. The sheer lack of 
knowledge means that data science methods may be able to help narrow down the search space in 
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various application areas. However, here and for any analysis built on experimental data, it will be 
important to guard against bias resulting from a limited domain space of experimental results.  
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5. Case Studies 

A. High Entropy Alloy Classification 
In this chapter, we apply a few classification methods to experimental data on cast high 

entropy alloys. The data come from a table available in previous work that sought to classify alloys 
by their ability to form solid solutions based solely on composition (Yang and Zhang 2012). That 
study found that the average atomic size difference δ and the ratio of entropy and enthalpy of 
mixing Ω could be used to discriminate between solid-solution and mixed-phase compositions. 
Here, we focus on discriminating between particular phases—face-centered cubic (FCC), body-
centered-cubic (BCC), and intermetallic phases labeled by α and σ.  

Phase selection rules for HEAs have been developed in a number of studies (Guo 2015). For 
example, Dominguez et al. showed using principal component analysis that enthalpy of mixing 
and valence electron concentration can be helpful predictors of BCC or FCC character 
(Domínguez, Goodall, and Todd 2015). That study also included entropy of mixing, average 
atomic size difference, and electronegativity difference as predictor variables. In slightly different 
work, high throughput computations of enthalpies of formation of binary phases were used to 
predict combinations of elements that could form single phase HEAs (Troparevsky et al. 2015). 

The strategy in the present work is to explore the strengths and weaknesses of a few multi-
label classification schemes using data points containing composition and phase information for 
110 cast high entropy alloys. The 110 data points come from Table 1 of reference (Yang and Zhang 
2012), after excluding those data points that contained phases other than the four of interest (FCC, 
BCC, α and σ). Observations labeled as BCC1 + BCC2 (originally distinguished by containing 
BCC solid solutions with fluctuations in local lattice parameter and composition) were counted as 
BCC. Other phases were excluded due to limited occurrence in the data set (< 4 examples). Rather 
than focusing on specific elemental content, we focused on descriptor variables that could be 
determined for arbitrary composition, following (Yang and Zhang 2012) and (Guo 2015). The 
chosen descriptor variables included those highlighted in previous studies and a few additional 
variables; particularly J, which is the average total angular momentum quantum number based on 
the composition. Table 1 reports the descriptor variables used for this analysis, including the 
formula for calculating these given a composition. Note that the variable “Precursor” is categorical 
with up to three possible values—this translated to three dummy variables, which brought the total 
number of variables up to 12.  

We used a multi-label classification approach. As highlighted in chapter 2A, this approach 
has non-exclusive class labels built into its framework, rather than defining exclusive classes with 
some uncertainty about class membership. For the present data set, this means that any observation 
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can have up to four labels, rather than defining separate classes based on (possibly sparse) 
combinations. For example, we do not need separate classes for FCC + σ, BCC + σ, FCC + BCC, 
and FCC + BCC + σ. The multi-label approach is intuitive to this problem, because it is known 
that samples can contain multiple phases, and transitions from one phase to another will often be 
systematic (i.e., proceeding from one phase to another via a mixture of phases).  

SVMs, decision trees, and random forests were chosen as potential classification methods. 
Prior to conducting analysis, the 110 sample data set was randomly divided into training and test 
sets, leaving 93 data points for training and 17 for test. The test data were set aside for final 
classifier performance analysis. All analysis for this work was done in Python. 

 
Table 1. Descriptor variables for high entropy alloy study 

Variable Units Description Formula (if applicable) 
δ % Average atomic deviation 

𝛿𝛿 = ��𝑐𝑐𝑖𝑖 �1 −
𝑟𝑟𝑖𝑖
�̅�𝑟
�
2

𝑛𝑛

𝑖𝑖=1

 

ΔHmix kJ/mol Enthalpy of mixing 
∆𝐻𝐻𝑚𝑚𝑖𝑖𝑚𝑚 = � 4∆𝐻𝐻𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑐𝑐𝑖𝑖𝑐𝑐𝑖𝑖

𝑛𝑛

𝑖𝑖=1,𝑖𝑖≠𝑖𝑖

 

ΔSmix J/(mol*K) Entropy of mixing 
∆𝑆𝑆𝑚𝑚𝑖𝑖𝑚𝑚 = −𝑅𝑅�𝑐𝑐𝑖𝑖ln (𝑐𝑐𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

 

Tm K Melting point Rule of mixtures 
Ω unitless Solid-solution formation parameter Ω =

𝑇𝑇𝑚𝑚∆𝑆𝑆𝑚𝑚𝑖𝑖𝑚𝑚
|∆𝐻𝐻𝑚𝑚𝑖𝑖𝑚𝑚|  

Alloyn count Number of constituent elements Count from formula unit 
VEC count Average valence electron 

concentration 
Weighted average of element 
VEC by atomic fraction 

J unitless Average total angular momentum 
quantum number 

Weighted average of element J 
by atomic fraction.  

dEN (Δχ) unitless Electronegativity deviation parameter 
(Pauling scale) ∆𝜒𝜒 = ��𝑐𝑐𝑖𝑖(𝜒𝜒𝑖𝑖 − �̅�𝜒)2

𝑛𝑛

𝑖𝑖=1

 

Precursor categorical Dominant structure type of base 
elements 

BCC, FCC, or BCC_FCC if 
equal concentrations 

*In the above table, ci and ri denote atomic fraction and radius of element i. R is the gas constant. The first five 
parameters were available from Table 1 in reference (Yang and Zhang 2012). Electronegativities of elements are 
based on the Pauling scale. dEN was determined using the same formula as reference (Guo et al. 2011). 

 
Prior to SVM analysis, data were scaled so that each of the 12 variables had mean 0 and 

standard deviation 1. Following this, principal component analysis was used as a dimensionality-
reduction method. While the SVM approach is well-designed to manage multi-label data, it suffers 
in computational speed with additional variables. Figure 1 plots explained variance against the 
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number of principal components. Over 95% of the variance in the training data was explained with 
7 principal components, so 7 components were selected moving into SVM analysis. 

 

 
Figure 1. Explained variance vs. number of principal components for the HEA training data 

 

 
Figure 2. HEA training data plotted against the first two principal components 

 
Figure 2 shows the training data plotted against the first two principal components. The four 

labels clearly overlap—there are many examples of simultaneous FCC and BCC, and no examples 
of σ or α phases alone. Furthermore, the α phase only constitutes four observations. We note that 
because of the sparseness of α data, it did not appear in the test data set. However, we did use 10-
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fold cross-validation to build all classifiers in order to give some information about the ability of 
the classifiers to detect the α phase. 

SVMs were trained on each class in a one-vs-rest procedure using either the conventional 
linear boundary or the radial basis function (RBF) kernel. These kernels effectively adjust the 
shape of the boundaries that will be produced by the SVM. In the SVM algorithm, a complexity 
parameter C determines how complex the boundary can be. In fact, the larger the value of C, the 
more observations are penalized for being on the wrong side of the boundary. This parameter is 
determined by cross-validation, and essentially guards against over-fitting the data. Figure 3 shows 
the cross-validation performance of the SVM classifier versus the value of C for the two kernels. 
The RBF kernel shows higher accuracy than and similar variance to the linear kernel. Based on 
cross-validation, C = 1000 and 100 for the RBF and linear kernels, respectively. 

 

 
Figure 3. Cross-validation scores vs. complexity parameter C for support vector machine 

classifiers using the linear or radial basis function (rbf) kernel 
 

The cross-validation results show that the RBF SVM should have accuracy of 60-80% when 
applied to test data, while the linear SVM should have about 45-65% accuracy. For multi-label 
classification, accuracy describes the number of points for which class labeling was perfect. In 
other words, observations that miss one label (false negative), include one incorrect label (false 
positive), or have two or more of these errors would all be equally counted as inaccurate. Multi-
label classification allows for other definitions of performance, however, such as base-class 
precision (proportion of predicted instances of a label that are correct), base-class recall 
(proportion of true instances of a label that are correctly classified), and alpha-evaluation. Alpha-
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evaluation is a metric that allows one to disparately weight errors of different types (false positives, 
false negatives) (Boutell et al. 2004). 

 
Table 2. Precision and recall of SVM classifiers applied to HEA data 

Class Precision (RBF) Recall (RBF) 
Precision 
(Linear) Recall (Linear) 

FCC 0.87 ± 0.11 0.87 ± 0.17 0.83 ± 0.12 0.78 ± 0.14 
BCC 0.93 ± 0.08 0.89 ± 0.14 0.95 ± 0.08 0.91 ± 0.13 
σ 0.75 0.875 0.75 0.875 
α 1 false + 0.75 2 false + 0.75 

*Italics denote the best performance for each metric and class 

 
Table 2 compares the precision and recall of the linear and RBF SVMs in cross validation. 

The main difference between the two kernels is that the linear classifier had better precision and 
recall for the BCC phase, while the RBF classifier did better for the FCC phase. The margin of 
difference between the two models is larger for the FCC phase (about 4–9%) than for the BCC 
phase (2%). The RBF classifier also did slightly better with avoiding false-positives for the α 
phase, which only appeared in four of the 10 cross-validation folds. Overall, the RBF classifier has 
the best accuracy and the best performance across the metrics for the two SVM models.  

Decision trees were explored separately for this analysis. Decision trees do not require that 
data be scaled prior to analysis. To preserve the descriptive nature of the decision tree (a strength 
of this type of model), dimensionality reduction using PCA was also not conducted. Decision trees 
were grown using the Gini impurity criterion to determine the positions of category splits. The tree 
depth and minimum number of samples per leaf was tuned by cross-validation, as shown in Figure 
4. Based on this analysis, there were two possible best trees: one with depth 6 and at least 3 samples 
per leaf, and one with depth 9 and at least 1 sample per leaf. Of these, the first is a simpler model 
but the second shows slightly smaller variance in prediction accuracy.  

Table 3 compares the cross-validation precision and recall of the two types of tree. The 9-1 
tree performs best or ties for best performance in all metrics, with a general better precision than 
the 6-3 tree. In particular, the 9-1 tree does a better job correctly labelling the σ phase, which likely 
follows from its ability to filter to finer individual leaves. 

The final 9-1 decision tree trained on the full training set has its first split for δ at 5.04, and 
the next level of splits for J (2.878) and melting point (1778 K).  
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Table 3. Precision and recall 
Class Precision (6-3) Recall (6-3) Precision (9-1) Recall (9-1) 

FCC 0.80 ± 0.13 0.84 ± 0.16 0.82 ± 0.17 0.84 ± 0.16 
BCC 0.90 ± 0.09 0.94 ± 0.07 0.92 ± 0.09 0.94 ± 0.07 
σ 0.63 0.75 0.67 0.94 
α 1 false + 0.25 0 false + 0.25 

*Italics denote the best performance for each metric 

 

 
Figure 4. Cross-validated accuracy of decision trees as a function of tree depth and minimum 

number of samples per leaf (Min leaf #) 
 

A random forest algorithm was also applied to this data set. The random forest algorithm 
builds an ensemble classifier by repeatedly fitting a weak classifier to a data set that has been 
randomly resampled with replacement. For the present study, cross-validation was used to 
determine the optimal weak classifier depth of 6. The random forest classifier has a cross-
validation accuracy of 65–82%, which is a reduced variance as compared to a simple decision tree 
classifier. A plot of variable importance for this classifier identifies the four most important 
variables in order of decreasing importance as follows: J, VEC, Ω, and δ. This result fits well with 
intuition from Yang et al. Note that J and δ were two of the top three variables in the 9-1 decision 
tree. The random forest variable importance accounts for appearances like this over many 
iterations of training similar classifiers. It is interesting to note that the average angular momentum 
quantum number J was not included in the referenced previous work classifying HEA crystal 
structure, but is one of the most important predictors for the tree and forest models. 
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Table 4 and Table 5 compare the precision and recall, respectively, of the SVM-RBF model, 
the 9-1 decision tree, and the random forest model, determined by 10-fold cross validation. 
Because the α and σ phase did not occur in the test sets for all 10 folds, recall is determined based 
only on the folds in which these phases appear, and the false positive rate (number of false positives 
in all folds) is reported instead of precision for the alpha phase. The best-performing score of the 
three models for each class is shown in italics. 

 
Table 4. Precision of classification applied to HEA data 

Class SVM-RBF 9-1 decision tree Random forest 
FCC 0.87 ± 0.11 0.82 ± 0.17 0.83 ± 0.11 
BCC 0.93 ± 0.08 0.92 ± 0.09 0.92 ± 0.09 
Sigma 0.75 0.67 1 
Alpha – false positive 
rate 

1 0 0 

* Italics indicate the best score for the row 

 
Table 5. Recall of classification applied to HEA data 

Class SVM-RBF 9-1 decision tree Random forest 
FCC 0.87 ± 0.17 0.84 ± 0.16 0.92 ± 0.10 
BCC 0.89 ± 0.14 0.94 ± 0.07 0.97 ± 0.06 
Sigma 0.875 0.94 0.875 
Alpha  0.75 0.25 0.75 

* Italics indicate the best score for the row 

 
The tables indicate the SVM-RBF model has the best precision for the FCC and BCC phases, 

with moderate precision for the alpha and sigma phases. The random forest model has the best 
recall for all but the sigma phase, and is tied with the SVM for the sigma and alpha phases. The 
random forest model also exhibits the smallest variance in recall values. Although the random 
forest model sacrifices some precision for the FCC phase relative to the SVM model, it has the 
best performance across all metrics. Therefore, if one model were to be selected as a future 
classifier, we would choose the random forest model.  

As a final confirmation of this model selection, we retrained these three models on the full 
training set and applied them to the test data. All three models had the same prediction accuracy 
(65%) and perfect recall for the BCC phase, with the most common error being incorrect 
classification of FCC or BCC as both FCC and BCC. Both the RBF SVM and the decision tree 
had 91% recall of the FCC phase and accurately captured the one instance of σ phase in the test 
set. Compared to the RBF SVM, the 9-1 tree was more even-handed about its false-positives for 
the FCC and BCC phases (FCC and BCC precision of 83 and 81%, respectively, for the tree vs. 
77 and 87% for the SVM). In contrast, the random forest had perfect recall for the FCC phase, 
with similar but slightly better precision than the SVM (79 and 87%), and missed the instance of 
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the σ phase in the test set. Improvements to these models might be possible by changing the scoring 
function during model training and cross-validation, so that false positives were more heavily 
penalized than false negatives.  

Overall, this case study showed that support vector machines, decision trees, and random 
forests could be used to construct adequate multi-label classifiers for predicting crystal structure 
in high entropy alloys. Cross-validation and alternative scoring functions are tools that can be used 
to optimize such models. Additional data on compositions with intermetallic phase identification 
could build these into more sophisticated classifiers. Although here we focused on experimental 
data, this approach could be applied to computationally-generated data in order to build such 
classifiers, which would then need to be validated with experimental results.  

B. Property Prediction: FeCrAl Alloy Radiation Analysis 
This case study focuses on predicting the yield strength of FeCrAl alloys subjected to neutron 
irradiation. The data come from tables published in a report documenting testing of FeCrAl alloys 
in the High Flux Isotope Reactor at Oak Ridge National Lab (ORNL) (Field et al. 2016). These 
alloys are of interest for accident tolerant fuel cladding due to their ability to form protective 
alumina scales while producing limited heat and H2 during exposure to steam at elevated 
temperatures. Furthermore, alloying and oxide-dispersion strengthening are expected to allow 
tuning of mechanical properties for these harsh environments (Field et al. 2016). 

The data reported by Field et al. include exposures of 11 different alloys to several different 
testing conditions, including pre-exposure (non-irradiated) conditions. The data were collected in 
two stages, with a first study that focused on composition effects “Phase I” and a second study that 
aimed to collect more information about radiation-induced changes in microstructure “Phase II.” 
As of the 2016 report, a total of 74 data points had been collected. Previously published work on 
the collected data found that composition effects were important in determining embrittlement 
outcomes, that hardening was correlated with phase-separation in high-Cr content alloys (Field et 
al. 2015; Field, Briggs, Sridharan, et al. 2017), and that dislocation loop formation occurred in a 
spatially heterogeneous manner that correlated with grain boundary position (Field, Briggs, Hu, et 
al. 2017). These results indicate that both composition and initial microstructure play a role in 
determining the embrittlement effects of FeCrAl alloys. 

In the present work, we develop a simple regression model with regularized variable selection 
using the FeCrAl data that links composition and exposure variables to yield strength. We do not 
include microstructural variables because these were not available for individual observations in 
the dataset. The present discussion is meant only as a test study using the data available from the 
ORNL work, and is not meant as a critical analysis of that ongoing effort. Rather, we seek to 
identify ways in which a statistical-learning approach can enhance or extend the utility of such 
hard-won data, especially if additional researchers conducting similar tests elsewhere can 
contribute to overall data libraries. We also wish to articulate obstacles in the way of this extension 
and expansion and seek concepts for overcoming such obstacles. 



 

35 

The data were split into training and test groups, with the test data constituting 11 of the 74 
data points. The remaining 63 data points were used for training with cross-validation. The 19 
variables used for the analysis included estimated atomic fractions of 11 elemental species based 
on the weight-percent compositions reported in Field et al., irradiation temperature Tirr, test 
temperature Ttest, irradiation dose d, four interaction terms (Cr/Al, Cr*Tirr, and Cr*d, and Tirr*d), 
and the estimated configurational entropy of the compounds based on the atomic fractions of 
species. Interaction terms were chosen because of the known importance of α’ precipitation as an 
embrittlement driver in high-Cr containing alloys, a process that is triggered by exposure to 
irradiation and high temperatures. The Cr/Al ratio was included because both of these elements 
are typically associated with corrosion resistance, and an increase in one may couple to a decrease 
in the other, meaning that decoupling their effects could be difficult without an interaction term. 
Because the samples are not actually full solid solutions, the estimate of configurational entropy 
should be taken more as an indicator of the potential for solid solution, rather than as the actual 
entropy of the sample.  

This is not an exhaustive list of variables that could have been included in the analysis. We 
could have included every compositional interaction (not just Cr/Al), every interaction between 
exposure and composition, and we could have also included powers of terms such as dose, as some 
amount of saturation as a function of dose has been noted in literature. Furthermore, we could have 
included other aggregating variables similar to the configurational entropy variable, such as 
melting temperature based on the rule of mixtures. Due to the limited number of data points, we 
decided to stick to the main effects and the few interaction terms that seemed pertinent.  

In addition, we note that the use of atomic fractions as variables effectively limits a model to 
a particular alloy system with a particular set of impurities. Variables that can be derived from any 
composition, such as those used in the HEA case study, are a better choice when there is 
uncertainty about which atomic species may be present in future compositions of interest.  

A prediction model for FeCrAl alloy yield stress was built using regularized linear regression 
on the 19 predictor variables. Data were centered and standardized prior to fitting in order to place 
all variables on the same scale. The model was built using the least angle regression algorithm 
with lasso regularization (lasso-LARS). The least angle method is an efficient algorithm for 
multivariate linear modeling that sequentially builds a model by including predictor variables one-
by-one and scaling their coefficients to continually decrease correlations with residuals (Hastie, 
Tibshirani, and Friedman 2009). The lasso is a regularization method that penalizes models for 
using too many variables, and encourages scaling coefficients to zero. The size of the penalty is 
determined by α, a regularization parameter. 

Figure 5 shows how the stepwise path of the lasso-LARS coefficients evolves as a function 
of the regularization parameter α, which controls the complexity of the fit. The optimal final value 
of α (0.0012) was chosen by cross-validation based on the cross-validated mean-square error of 9 
validation folds. Of the initial set of 19 variables, 2 (Cr and N) are eliminated by the lasso 
algorithm, while 3 others (P, S, and Sconf) have coefficients of <100 (three orders of magnitude 
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below the largest coefficient). Initially, the Si content and test temperature stand out as the most 
strongly correlated variables, but by the end of the procedure the variables d (dose) and Tirr*d have 
the largest coefficients.  

 

 
Figure 5. Coefficients fitting path of the lasso-LARS algorithm applied to FeCrAl alloy data for 

yield stress. Large positive coefficients indicate an embrittling effect, while large negative 
coefficients indicate a softening or toughening effect. 

 
The final coefficients for the exposure variables reflect intuition: higher irradiation 

temperature or test temperature tends to have a softening influence, while large irradiation dosage 
leads to increased embrittlement. Similarly, increased Si, Y, O, and Fe seem to lead to 
embrittlement. The effect of oxygen is expected—oxygen is likely correlated with oxide 
precipitates in the material, which should have a strengthening and embrittling impact. 
Furthermore, increased impurity concentrations (e.g., Y, Si) should cause solid solution and further 
precipitate hardening. However, countering this intuition is the finding that the coefficients for Mo 
and C are negative, while the coefficient for Fe (i.e., definition of non-impurity) is positive. This 
could be an interaction effect (i.e., increased Fe will tend to imply decreased Al and Cr, and Al 
already has a negative coefficient), or it could indicate a microstructural effect, such as a shift in 
grain size, morphology, or precipitate formation and character when the primary alloying element 
concentration changes. 

The Cr*T interaction is apparently an embrittling one; this is consistent with the observation 
that increased Cr content leads to α’ precipitate formation, and suggests that increased irradiation 
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temperature is necessary to facilitate precipitate formation. However, the Cr*d interaction shows 
a softening effect, which conflicts with the expectation that increased dosage accelerates α’ 
precipitate formation. Meanwhile, the third interaction term in this triangle, Tirr*d, is very large, 
and it is negative (toughening). This likely balances against the coefficient for dose—because 
irradiation temperature and dosage are always 0 at the same time for these data, and increased 
dosage alone is an embrittling factor, the large negative coefficient for Tirr*d, along with the 
smaller negative coefficient for Tirr alone, balance the correlation of these variables. The linear 
model does not seem adequate to describe the true interactions between the processing variables 
and the Cr content of the alloys.  

The final correlation between the fitted and true values for the training data, as shown in 
Figure 6, is fair, with an r2 of 0.82. The average prediction error is 127 MPa (roughly 15%) when 
the model is applied to the test data. Analysis of the residuals indicates that for the most part the 
assumptions of the linear model are satisfied by the data; the residuals are fairly normally 
distributed (though heavy on the tails), and residual plots versus individual predictor variables do 
not show obvious deficiencies, aside from the fact that individual variables sometimes have 
obvious gaps in their domains, such as Tirr, d, and interactions of these. The plot of residuals versus 
fitted values (Figure 7) shows little dependence on the fitted yield stress. 

 

 
Figure 6. Fitted vs. actual values for FeCrAl yield stress training data 
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Figure 7. Residuals vs. fitted yield stress for the FeCrAl data 

 
Missing information relevant to the embrittlement outcomes may exist, which could account 

for some of the variance that was not captured by the linear model. For example, the effect of grain 
boundary density (or grain size), which is known to influence dislocation formation, is absent from 
these data (Field, Briggs, Hu, et al. 2017). Similarly, the effect of α’ precipitates is difficult to 
capture using composition and exposure variables alone; there are conflicting correlation effects 
from dose, temperature, and Cr content, and details like grain size, impurity content, and 
dislocation density could influence the formation kinetics of precipitates. This is a case where 
specific modeling of precipitate formation coupled to either simulations or automated image 
analysis could tell us which compositional interaction terms or microstructural variables might be 
most important for predicting embrittlement of a particular alloy upon exposure to high 
temperatures and neutron irradiation.  

Indeed, this case study finds that a more in depth analysis with additional data is needed in 
order to gain mechanistic insight into radiation-induced FeCrAl alloy embrittlement. We should 
not expect compositional variables alone to predict yield stress, even at high temperatures, because 
yield is a process that inherently involves material microstructure. Furthermore, while composition 
should not be expected to remain constant throughout exposure to high temperatures due to 
processes like oxidation and corrosion, the effect of irradiation that leads to embrittlement is 
primarily microstructural alteration. The process of irradiation-induced microstructural change is 
heavily governed by kinetics, which suggests that compositional and environmental variables 
alone cannot capture the full range of important predictors, especially without incorporating 
interaction terms. Such physical intuition is required to build a more effective model. 

Field et al. engaged in extensive microstructural analysis of subsets of their samples, 
including dislocation loop analysis and α’ precipitate analysis (Field, Briggs, Hu, et al. 2017; Field 
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et al. 2016). Volume fraction, distribution, and number density of microstructural features are 
important intermediate variables that can be used to build PSP linkages, but initial microstructural 
variables such as grain size, porosity, and precipitate distribution are also needed. Work to this 
effect at ORNL has employed automated image analysis algorithms in the past to characterize 
microstructural features in FeCrAl alloys (Field, Briggs, Hu, et al. 2017; Field et al. 2016). 
However, these efforts have met with limited success, still requiring manual counting techniques 
to distinguish among various dislocation orientations (Field, Briggs, Hu, et al. 2017). 

There are limits to our ability to build microstructural databases, even with automated image 
quantification. Specimen preparation, especially for TEM or 3D characterization, can be extremely 
time consuming and require highly specialized training. Image analysis algorithms have 
limitations—supervised algorithms can only detect what they are trained to detect, and they must 
avoid being tricked by image contrast artifacts that may be easily identified by experts. 
Nonetheless, in cases where sample preparation and image collection are well-tuned, and where 
features of interest are either distinctive or difficult for a human analyst to quantify, automated 
analysis can be an effective, low-bias tool that maximizes the value of each image. It can also be 
useful in the context of non-destructive evaluation, where inspections aided by computer image 
recognition are already of interest (Brence and Brown 2002).  

Finally, we note that this is a case where a computationally-generated microstructure could 
have real value, especially when coupled to models of microstructure evolution or simulation of 
mechanical properties. Tools like DREAM.3D and PyMKS may be useful for such analysis, where 
the effect of precipitate size, shape, or distribution could be modeled. 

C. Microstructural Analysis 
This case study is aimed at exploring some aspects of automated image analysis using 

micrographs taken from the ASM Micrograph Database (Lupulescu et al. 2015). Specifically, 11 
optical images of flake and lamellar grey cast iron were analyzed using different methods of edge 
detection and segmentation to understand some of the strengths and weaknesses of these 
approaches. These images were chosen because of their distinctive microstructure that features 
graphitic flakes or lamellae that appear as dark regions against a much lighter background of 
primarily pearlite matrix. Depending on the composition of the cast iron, the size, shape, and 
density of the graphitic phase varies. In fact, the graphitic phase can be either hypoeutectic or 
eutectic and the matrix can contain both ferrite and pearlite Fe, but our image analysis does little 
to distinguish between these phases. Four of the 11 images were listed as “unetched” in the 
database, while the others were etched with 4% picral. The difference in etch significantly changes 
the contrast of the images for the various phases, though graphitic regions still appear dark and the 
matrix still appears light. Otherwise, the samples varied in terms of composition, specifically with 
regard to C, P, or Si content. 

The goal for this case study was to use computational image analysis methods to quantify 
information about the shape, size, and quantity of the graphitic phase in the set of images. The first 
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task in this analysis was to segment the images so that the graphitic regions would be identified 
separately from the matrix phase. A few methods were attempted including canny edge detection 
followed by edge filling and masking followed by Sobel or Laplace edge detection.  

A side-by-side comparison of these segmentation procedures is revealing. Canny edge 
detection fails to effectively fill single flakes due to discontinuities in detected edges and edge 
detection at small contrast variations internal to flakes. In contrast, the watershed algorithm is 
much more successful. In this process, thresholds are first applied to an image to define regions 
that correspond to particular objects with high confidence (i.e. the lightest regions are almost 
certainly matrix and the darkest regions are almost certainly graphitic). Then, contrast gradients 
are identified in the image using a gradient detection method such as the Sobel (1st derivative) or 
Laplace (2nd derivative) transforms. Following this, objects are filled in by extrapolating contrast 
along gradients, in the same way that one might try to predict water running down hills on a 
topographic map (i.e., the watershed algorithm). The Laplace and Sobel transforms have differing 
strengths. Laplace edge detection is more successful in delineating smaller flakes, but also exhibits 
higher sensitivity to the choice of initial thresholds as shown in Figure 10. 

Figure 10 compares the estimated phase fraction of the graphitic flakes and lamellae of one 
example image with composition 4.0% C and 2.0% Si using the watershed algorithm with the 
Laplace and Sobel transforms. A range of high and low threshold values was applied in order to 
determine how sensitive the two techniques were to the choice of thresholds. This can also be seen 
as an assessment of the sensitivity of this algorithm to brightness/contrast variations from different 
microscopes or imaging technicians. Figure 10 shows that the Sobel transform exhibits more 
systematic variation in the estimated phase fractions as a function of threshold choice as compared 
to the Laplace transform. The Sobel transform also shows much smaller variance overall. The 
Laplace transform consistently estimates a higher graphitic phase fraction, presumably due to its 
ability to more adequately detect small features. It turns out that the Laplace transform is also more 
easily confounded by contrast variations in the matrix of the picral-etched images. Further analysis 
was therefore conducted using the watershed algorithm with the Sobel transform.  
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Figure 8. Estimated graphitic phase fraction (color bar) as a function of thresholding limits for the 

watershed algorithm using the Sobel (a) or Laplace (b) transforms 
 

After segmenting an image, the next step is to analyze the objects in the image. If objects do 
not overlap, it is fairly straightforward to simply define objects as those occupying a continuous 
space with the same segmentation label (graphite or matrix). If they do overlap, methods must be 
employed to separate overlapping objects for analysis. These were not explored in the present 
study. 

Once image objects have been identified, their properties can be easily quantified. In the 
present work, this was done using the scikit-image function measure.regionprops, which can 
determine a large number of object properties including area, orientation, eccentricity, solidity, 
and perimeter (van der Walt et al. 2014). It is then possible to construct histograms of the object 
properties in an image to understand how the shape, size, and other features of objects are 
distributed. Objects can also be filtered using their properties; for example, segmentation errors 
may appear as abnormally large area flakes. In images of other materials, one could imagine 
distinguishing between pores and grain boundaries using shape descriptors. 
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Figure 9. Example histograms for graphitic flake solidity and minor/major axis ratio for three 

images of grey cast iron. From left to right, the compositions are: (a,d) 2.1% C, 2.0% Si (b,e) 3.0% 
C, 2.1% Si, (c,f) 3.7% C, 2.1% Si. 

 
Figure 11 shows example object property histograms for three images of unetched grey cast 

iron with differing composition. Specifically, these histograms show solidity (ratio of object 
area/convex hull area) and the ratio of the minor and major axis, defined for each object by the 
ellipse with the same normalized second moment. These histograms show, for example, that the 
sample with 3.0% C has a much higher number density of graphitic flakes compared to the other 
two images. On average, the graphitic flakes in the sample with the highest C content have the 
least solidity (ratio of object area/convex hull area) and are the most slender in character. Although 
not shown, there is also an increase in the mean and standard deviation of flake area with increased 
C content for the three images.  

A second way to characterize microstructures in images like these is to use n-point statistics. 
Rather than focusing on the shape and size properties of individual objects, this approach is more 
useful for understanding distributions in space of objects in an image. Such analysis can convey 
information about object shapes, but it will do so in an averaged way. 
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After segmenting the images using the watershed algorithm with the Sobel transform 
(threshold pixel intensities [8-bit] at 90 and 190 for picral-etched images, and 150 and 220 for 
unetched images), the images were processed using PyMKS to identify their n-point statistics. The 
1-point statistic of the images defines the estimated graphitic phase fraction. Figure 12 shows this 
estimated graphitic flake phase fraction fg as a function of C content for the 11 images. Note that 
all four points with apparent fg below 10% are from unetched images (points with black outline); 
the same compositions after picral etch and corresponding image processing show the same trends 
in fg as a function of C content, but shifted to higher absolute estimated fg.  

 

 
Figure 10. Estimated flake phase fraction based on n-point statistic image processing as a 
function of C content. Points outlined in black are from unetched images. Data point color 

corresponds to Si content. 
 

Principal component analysis applied to the n-point statistic outputs of the images showed 
that the etch type was a major source of variance. Figure 13 shows that the four unetched images 
were clearly separated from the other seven images in both PC1 and PC2. The role of composition 
in principal component space is less clear. 
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Figure 11. Results of principal component analysis on grey cast iron images converted to n-point 

statistic representations. Circled points correspond to images of unetched samples. 
 

The above analysis exemplifies some of the pitfalls of automated image processing. Before 
developing an automated workflow, it is essential to understand the expected error due to effects 
like varied brightness/contrast, choice of etchant, choice of edge detection or segmentation 
method, and unexpected phase variations. Even among the images analyzed here, additional phases 
were present that were not detected using these methods, including precipitates that appeared in 
samples containing P. While databases of image analysis results may be an effective substitute for 
databases of actual images, the analysis supporting such results needs to be validated and 
documented so that potential users and contributors understand these limitations.  

Human image analysis has its own advantages and limitations. For example, when several 
PhD materials scientists were asked to describe one of the images of grey cast iron, all noted that 
many of the graphite flakes emanated from central points in a star-like pattern. This observation 
stands out immediately to the human eye, but would be difficult to find with an automated code 
that was not specifically tailored to identifying such features. However, human analysts were not 
able to easily provide quantitative descriptions of flake size or morphology that can be acquired 
through computational code. 

An image of reaction-bonded Si-C was also shown to two of these materials scientists, who 
were challenged to provide qualitative descriptions of the images and to attempt quantitative 
analysis by whatever methods they preferred. They were told that this was an optical micrograph 
of reaction-bonded Si-C, and were given the etch information provided by the ASM database. 
While both identified three distinct phases in the image, there was disagreement about the identity 
of the dark gray phase, including some uncertainty about the extent to which imaging or 
microstructural defects were responsible for the darker shade. One participant used manual point-
counting and circle-intersection methods to quantify the microstructure (Boyer and Gall 1981), 
while the other used computational image analysis tools (specifically, the Trainable Weka 
Segmentation Plugin with the FIJI distribution of ImageJ [Arganda-Carreras et al. 2017]). 
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Estimates by these two methods of the Si phase fraction (white phase) were 12–13% and 18%, 
respectively. Estimates of the SiC phase fraction (light phase) were 55–58% and 43%, 
respectively. The 43% estimate was noted by the analyst as likely an underestimate, due to the 
difficulty of separating very small particles of the light gray phase from dark gray surroundings. 
The first participant also estimated grain sizes manually (mean ~12 um for the light gray phase), 
while the second participant generated a particle-size distribution from the image segmentation 
analysis. Neither participant identified any information about feature shapes (e.g., aspect ratio) or 
spatial distributions, though this may have been due to limited time. 

This discussion demonstrates that image analysis conducted by individuals can give different 
outcomes, and that different features may be interpreted differently, noticed, or ignored, by 
different people. Furthermore, lack of metadata can strongly affect the interpretation of images. 
For example, the grey cast iron image series in fact includes up to four phases (pearlite, ferrite, 
hypoeutectic graphite, eutectic graphite), but these are not always obvious to an observer without 
additional characterization (e.g., X-ray diffraction results), processing information, or higher-
magnification images. Image analysis requires understanding of both methods and subject—
computational analysis has real potential to accelerate manual methods (which are very often 
systematic and can be straightforward to automate), but only if conducted with appropriate context 
and awareness of potential pitfalls. The ability to process a larger volume of images per sample 
also has the potential to produce improved statistics to represent a 3D microstructure based on 2D 
slices.  

Quantitative image processing and analysis is not a staple of current materials science 
curricula at universities. A review of the materials science course catalogs of 12 universities5 found 
only two containing courses specifically targeting the overlap of statistical and informatics 
techniques with materials science.6 At Carnegie Mellon, in particular, data science was highlighted 
as a topic covered in at least three courses. Most of the universities do provide courses on imaging 
methods (usually more focused on understanding the function and appropriate use of various types 
of microscopes, especially transmission electron microscopes, than on understanding image post-
processing and analysis or microstructure quantification) and computational materials science 
(typically focused on computational material modeling approaches, such as density functional 
theory, kinetic Monte Carlo simulations, or molecular dynamics simulations). These types of 
courses can provide a natural foothold for adding topics on image analysis techniques and 
materials informatics approaches to modeling materials data. Materials science departments can 
also recommend courses taught in other departments on statistical learning, data mining, and image 

                                                 
5  MIT, UC Berkeley, University of Illinois Urbana-Champaign, University of Michigan Ann Arbor, Georgia Tech, 

Stanford University, Northwestern University, Cornell University, UC Santa Barbara, Penn State University 
Park, Caltech, and Carnegie Mellon University 

6  Cornell University: MSE 5730 “Probability, Statistics, and Data Analysis for the Physical Sciences” and 
Carnegie Mellon University: 27-566 “Special Topics in MSE: Using Materials Informatics to Assess Societal 
Impact of Materials” 
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analysis. For example, the biology and bioengineering communities use these tools extensively, 
and there is substantial overlap between the tools and techniques to solve image analysis problems 
in biological sciences and materials science (Russ 2011). Courses on image processing and 
analysis already exist in some biological and bioengineering departments,7 which may be useful 
models for designing similar courses focused more on materials science. The first step in 
promoting these tools for future materials research and development will be to make them visible 
to students in universities. 

 

                                                 
7  Stanford, Biomedin 260: “Computational Methods for Image Analysis and Interpretation”, University of 

Chicago, 2019 offering: “Computational Image Analysis in Cellular and Developmental Biology”, MIT 6.121: 
“Biomedical Signal and Image Processing” 
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6. Conclusions and Recommendations 

This report covered a broad spectrum of topics in order to build a picture of the current status, 
limitations, and opportunities of data science and statistical learning methods for understanding, 
modeling, and designing materials for extreme environments. We conclude with key observations 
on areas where these approaches could be of the most immediate value, with some comments on 
barriers to adoption and the necessary shifts in institutional policy and workforce training needed 
to facilitate this kind of work. 

A. High Value Challenges for Materials in Extreme Environments 
A single, universal database that applies to all materials of interest and incorporates all 

relevant experimental and computational results in a validated fashion is still a long way away. 
However, there are some specific challenges that we can begin to solve using the tools of data 
science.  

First among these is the search for high entropy alloys and ceramics with properties optimized 
for high temperature, corrosion resistance, radiation resistance, and tolerance of high strain rates. 
Because of the early stage of CCA/HEA and high-entropy ceramic research, there is real 
opportunity to develop databases that relate measured properties, composition, processing, and 
microstructure. We saw in the case studies that even limited data on HEAs can be used to build 
decent classification schemes—a more complete database accounting for microstructure in 
addition to composition could accelerate work targeting specific applications, properties, or 
mechanistic insights. Work on building computationally-generated databases on HEAs is already 
under way, but augmenting such data with experimental results is essential and will benefit the 
entire HEA/CCA community. Even within the DoD, establishing a common reporting architecture 
to be shared among DoD labs would be worthwhile.  

More ambitious would be developing a resource similar to the TE Design Lab that allows 
reporting and curation of both experimental and computational data and provides tools for analysis 
and visualization. Similar efforts to build shared resources in specific areas of materials for 
extreme environments (corrosion, radiation, high temperature, hypersonic) seem more likely to be 
successful than simply uploading results into universal data repositories. The DOE has funded 
development of such tools in the past—it may be time for the DoD to do the same. Short of funding 
tool development or data management/curation, the DoD would benefit from providing an internal 
materials resource registry searchable by focus area. Resources built and hosted by individual 
groups in the various extreme environment research communities could then be linked to this 
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registry, in addition to potentially being linked to larger repositories such as the NIST Materials 
Resource Registry. 

With data available, analysis techniques for building exploratory, explanatory, and possibly 
utilitarian models could be developed with some of the techniques highlighted in this report. 
Frameworks that accommodate multi-label classification or fuzzy logic will likely be of great value 
in understanding materials data. Methods with explanatory power, such as decision trees and 
regression, will be valuable for building materials knowledge and wisdom. However, more opaque 
techniques like neural nets should not be discounted, especially when there is a highly utilitarian 
goal with multiple, complex, or poorly established mechanisms, such as predicting corrosion in 
disparate materials as a function of exposure conditions and material composition, microstructure, 
and loading. 

There are several areas in which automated, computational image analysis can make a real 
impact for the design, monitoring, and development of materials in extreme environments. 
Because automated image analysis can quantitatively and consistently describe material 
microstructure within a particular material system (e.g., through 2-point statistics or feature 
distribution functions) it can facilitate robust comparison among multiple images without relying 
on consistent human interpretation. Therefore, images taken by different operators, at different 
facilities, or at different times, but with the same general imaging subject, conditions, and methods, 
could be compared more readily and quantified more consistently. Furthermore, such methods 
significantly enhance the speed of image characterization, meaning that a statistically 
representative description of material microstructure can be gathered easily once an imaging and 
analysis method has been established. Finally, computational image characterization can condense 
image files into more compact representations of relevant features, decreasing the electronic 
storage space needed to maintain a database including such information. 

Perhaps the most useful place for such analysis in the extreme environment world is for 
quantitative microstructural characterization alongside ongoing exposure to extreme 
environments. This example applies to both research facilities and industrial settings. The reactor 
embrittlement databases are ideal examples of the kind of work that can be augmented by such 
characterization (IAEA 2009; Wang and Subramani 2008). Reactors are installed with test coupons 
ready for periodic characterization for monitoring pressure vessel health. Coupons are regularly 
tested for mechanical properties and material property changes are tracked over time. If those same 
coupons were also characterized with a few standardized scanning electron and optical microscope 
conditions, the resulting data could inform modeling and simulation efforts to predict radiation 
damage (and ultimate failure) or understand the mechanistic causes of embrittlement. It is easy to 
see how such an approach could be extended to studying corrosion, oxidation, or high temperature 
microstructure evolution. Where it is impractical to include test coupons in operating systems, 
such concepts could be extended to non-destructive evaluation (NDE) methods such as eddy 
current testing. Automated analysis results could be used in conjunction with human analysts as 
they make decisions about the severity of material flaws (Brence and Brown 2002). This kind of 
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ongoing material microstructural monitoring has the potential to enhance the sustainment and 
readiness missions of the DoD.  

A second important area of impact for these methods lies in material processing and quality 
assurance. In a manufacturing setting, lots of identically produced material or parts are generally 
tested to ensure that they meet quality assurance standards. A sample will be extracted for testing, 
and measured properties must fall within a specified range that is defined for each product. If the 
sample falls outside of that range, it can be an indication of a problem in the processing line. At 
minimum, the lot will be rejected or rated at a lower grade. At maximum, the processing line will 
be inspected to identify the source of the problem and correct it. In particular, fiber composites for 
hypersonic systems stand out as an area where such computational image analysis could augment 
manufacturing quality assurance (QA) efforts, and potentially assist in improving overall 
manufacturing consistency.  

QA is an ideal case for automated image analysis, as the samples and test conditions should 
be identical from lot to lot, even across multiple manufacturing facilities or QA technicians. 
Therefore, it should be straightforward to define tolerance ranges based on automated 
characterization workflows that quantify the key microstructural features of interest. Such 
concepts are already being applied in the world of additive manufacturing, where researchers are 
training neural networks on videos from the build chamber in order to predict build quality (Metal 
AM 2018). QA is an essential aspect of any manufacturing plant, both to maintain standards for 
customers and to optimize process control that in turn manages maintenance costs and surprises. 
An increase in material grain size or a change in precipitate density or porosity can be informative 
of potential drift in a manufacturing line, for example, pointing to temperature control failures or 
changes in impurity levels. Furthermore, if a lot passed QA testing but later returned with failures 
before the expected end of service life, information about the starting microstructure could be 
valuable in understanding the cause of the failure. Since many extreme-environment damage 
processes are slow moving, hard to monitor, and poorly modelled, there are limits to what QA 
testing can do to predict extreme-environment related failures. However, this does not mean that 
such data would not be useful in aiding continuous improvement of processing lines.  

Characterizing expected variance in analysis results due to normal deviations in imaging 
conditions and material microstructure is an important task in any attempt to use computational 
image analysis to quantify material microstructure. Furthermore, it will be necessary to precisely 
define the analysis workflow that will output the variables of interest. Standardized software tools 
that can run such workflows in an automated fashion, include documentation of validation and tool 
limitations, and provide guidance for analysts on how to manage various types of imaging artifacts 
will substantially improve the reliability of such efforts across multiple analysts or facilities.  

B. Implementation Challenges and Workforce Development 
There are several things that need to happen before statistical learning approaches can be 

widely applied to problems in materials for extreme environments relevant to the DoD. These 
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relate to the availability and discoverability of data and analysis tools, the standardization of data 
storage, sharing, and curation, and the availability of a workforce that is skilled in the application 
of these methods. The responsibility for providing these pieces is shared between DoD leadership, 
research communities, professional societies, and academia. 

The first hurdle is to establish a culture of database-building with standardized formats for 
data storage and data entry. Individual researchers can publish their data entry formats, which can 
potentially smooth the process of sharing data when labs choose to collaborate. In cases where a 
small database has been collated for years, linking that database to a resource registry can also 
promote similar practices by those collecting similar data. While straightforward in principle, 
however, it is difficult for DoD researchers to do even this much without institutional support. It 
takes time, effort, and expertise to load data onto institutional servers in formats that are searchable 
and well-referenced. Furthermore, information access must be managed through approval 
processes and access to useful software may be restricted or outdated; these are both significant 
barriers to building such resources.  

As described in chapter 3D, institutional support can come in a number of forms, from 
providing guidance on the best practices for data storage and sharing, to supporting committees 
that establish data storage standards, to directly contracting for development of e-collaboration 
tools. A more in depth analysis of the data management practices of the materials research and 
testing communities of the DoD could provide more specific steps forward. 

We do not recommend that the DoD attempt to establish its own broad materials data 
repository, as this would simply duplicate efforts already underway by NIST and the Materials 
Genome Initiative. Rather, we suggest that smaller, topic-centric databases would be of greater 
value to the DoD materials community. The area of CCAs/HEAs is the best one for testing out a 
materials data storage paradigm that incorporates not only composition and property information, 
but also the results of microstructural analysis. Such a database would require substantial 
collaboration between materials researchers and experts in data management, software 
development, and image processing. The result could lead the way and be extended to other 
communities within the DoD, such as those focusing on hypersonic materials, corrosion, and 
radiation. 

In addition to the process of database-building, sharing of analysis tools and protocols across 
DoD labs could be of value. For example, if one lab develops an open-source tool that detects 
microstructural features (e.g., pore sizes and shapes), that lab can make that tool available to other 
DoD researchers, even if specific data cannot be shared. With such efforts, it will be important to 
validate tools in order to understand likely sources of error, expected variance, and applicable 
ranges. 

Finally, it is necessary to build awareness and technical skill with data science and statistical 
learning approaches within the materials science workforce. Universities need to inform students 
of available databases, data repositories, and statistical learning tools, and provide some 
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background as to how they might be useful to the materials community. Furthermore, 
computational image analysis and quantification should be incorporated into materials science 
course catalogs. Practical coverage of available image characterization software, useful image 
processing methods (e.g., edge detection and segmentation), and statistical approaches to 
interpreting and describing imaging data (e.g. n-point statistics) would be valuable to any materials 
experimentalist’s toolbox. Courses covering these topics could be designed based on courses now 
available to the biology and bioengineering communities. Similar courses in materials curricula 
would enhance workforce literacy in these areas and speed the implementation of such tools in 
relevant manufacturing, research, or monitoring facilities. University libraries and professional 
societies could further assist this process by publicizing the existence of various materials data 
science tools, including databases, repositories, and software. 

DoD researchers in the area of materials for extreme environments can benefit from applying 
data mining and statistical learning tools, including those that permit performance classification, 
property prediction, and microstructural quantification. These have the potential to help the 
materials research and testing community build models that can estimate appropriate environments 
for material use, predict material failure, optimize material structure, and make data-driven 
decisions about where to focus experimental and measurement efforts. However, this will only be 
possible with access to appropriate tools, institutional support, and a skilled workforce.  
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Appendix A. 
Selected Materials Data Science Links 

• Materials Genome Initiative: https://www.mgi.gov and https://mgi.nist.gov 

o PRISMS – Predictive Integrated Structural Materials Science: 
https://www.prisms-center.org 

o Materials Commons: https://materialscommons.org/mcapp/#/data/home/top 

o Materials Project: https://materialsproject.org 

o CHIMAD – Center for Hierarchical Materials and Design: 
chimad.northwestern.edu 

• NIST  

o Materials Resource Registry: https://materials.registry.nist.gov 

o Materials Data Repository: https://materialsdata.nist.gov 

o Materials Data Facility (funded by NIST and CHIMAD): 
https://materialsdatafacility.org 

o Standard Reference Data: https://www.nist.gov/srd/srd-catalog 

• MATIN – Materials Innovation Network: https://matin.gatech.edu 

o PyMKS –The Materials Knowledge System in Python: pymks.org 

• OQMD – The Open Quantum Materials Database: oqmd.org 

• AFLOW – Automatic-FLOW for Materials Discovery: aflowlib.org 

• MatNavi – NIMS Materials Database: mits.nims.go.jp/index_en.html  

• ICSD – International Crystal Structure Database – www2.fiz-
karlsruhe.de/icsd_home.html 

• ASM International Online Databases: https://www.asminternational.org/materials-
resources/online-databases 

o ASM Alloy Center Database 

o ASM Alloy Phase Diagram Database 

o ASM Failure Analysis Database 

o ASM Handbooks Online 

https://www.mgi.gov/
https://materialsproject.org/
https://materials.registry.nist.gov/
https://materialsdata.nist.gov/
https://materialsdatafacility.org/
https://www.asminternational.org/materials-resources/online-databases
https://www.asminternational.org/materials-resources/online-databases


 

A-2 

o ASM Medical Materials Database 

o ASM Micrograph Database 

o Corrosion Analysis Network 

• TE Design Lab – Thermoelectrics Design Lab: www.tedesignlab.org 

• Registry of Research Data Repositories: re3data.org 

• Mat-DB: https://odin.jrc.eu.europa.eu/alcor/Main.jsp 

• Scikit-image –image processing in Python: https://scikit-image.org 

• OpenCV: https://opencv-python-tutroals.readthedocs.io/ 

• DREAM.3D: dream3d.bluequartz.net 

• Brookhaven National Laboratory – Center for Data-Driven Discovery: 
https://www.bnl.gov/compsci/C3D/ 

 

 

https://www.bnl.gov/compsci/C3D/
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Appendix B. 
List of Contacts 

• Joel McDuffee, Distinguished R&D Staff and Group Leader, Nuclear Experiments and 
Irradiation Testing Group, Oak Ridge National Laboratory 

• Dr. Farrel J. Martin, Materials Engineer, Code 6134, Center for Corrosion Science and 
Engineering, U.S. Naval Research Laboratory, Washington DC, 20375 

• Jay Ong, Naval Surface Warfare Center, Carderock 

• Dr. James Smialek, Senior Technologist, Materials High Temperature Oxidation, 
NASA Glenn Research Center 

• Dr. Eric Wuchina, Program Officer, Ultra-High Temperature Materials, Office of Naval 
Research 

• Dr. William Hong, Dr. Evan Laprade, Dr. Howard Last, Dr. Christopher Pellegrinelli, 
Dr. Janet Sater, Institute for Defense Analyses 
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Appendix C. 
HEA Decision Tree 

This appendix includes details for interpreting the high entropy alloy (HEA) decision tree 
built as described in chapter 5A. Table 6 explains the variable symbols in the tree. Each node in 
the tree lists the split condition (variable and value), the Gini impurity of the node before the split, 
the total number of data points (samples) to be split, and the label matrix (value) of those data 
points. The rows of the label matrix correspond to the class labels in the following order: FCC, 
BCC, σ phase, α phase. The columns represent binary class membership for that label in the 
following order (0, 1), with 1 representing a positive label. So, looking at the first node in the tree, 
there are a total of 93 samples, with an initial Gini index of 0.273. Of the 93 samples, 64 contain 
the FCC phase, 70 contain the BCC phase, 11 contain the σ phase, and 4 contain the α phase. The 
split condition for the node is average atomic deviation less than or equal to 5.04 %; if this 
condition is met, we move to the node on the left, and if it is not, we move to the node on the right. 
The same procedure is followed for all following nodes, using the new node split condition and 
the reduced set of data points remaining at that node. 

Table 6. Symbols Used in the Final Decision Tree 
Symbol (Tree) Symbol (text) Units Description 
delta δ % Average atomic deviation 
J J unitless Average total angular momentum quantum 

number 
Tm Tm K Melting point 
DelSmix ΔSmix J/(mol*K) Entropy of mixing 
DelHmix ΔHmix kJ/mol Enthalpy of mixing 
dEN Δχ unitless Electronegativity deviation parameter 
VEC VEC unitless Valence electron concentration 



delta ≤ 5.04
gini = 0.273

samples = 93
value = [[29, 64]

[23, 70]
[82, 11]
[89, 4]]

J ≤ 2.878
gini = 0.183

samples = 47
value = [[4, 43]

[21, 26]
[45, 2]
[47, 0]]

True

Tm ≤ 1777.765
gini = 0.263

samples = 46
value = [[25, 21]

[2, 44]
[37, 9]
[42, 4]]

False

dEN ≤ 0.245
gini = 0.09

samples = 20
value = [[2, 18]

[0, 20]
[18, 2]
[20, 0]]

DelSmix ≤ 12.69
gini = 0.121

samples = 27
value = [[2, 25]

[21, 6]
[27, 0]
[27, 0]]

DelSmix ≤ 15.915
gini = 0.049

samples = 18
value = [[0, 18]

[0, 18]
[16, 2]
[18, 0]]

gini = 0.0
samples = 2
value = [[2, 0]

[0, 2]
[2, 0]
[2, 0]]

gini = 0.0
samples = 13
value = [[0, 13]

[0, 13]
[13, 0]
[13, 0]]

DelHmix ≤ -5.49
gini = 0.12

samples = 5
value = [[0, 5]

[0, 5]
[3, 2]
[5, 0]]

gini = 0.0
samples = 3
value = [[0, 3]

[0, 3]
[3, 0]
[3, 0]]

gini = 0.0
samples = 2
value = [[0, 2]

[0, 2]
[0, 2]
[2, 0]]

delta ≤ 2.19
gini = 0.222
samples = 3
value = [[2, 1]

[1, 2]
[3, 0]
[3, 0]]

Tm ≤ 1699.67
gini = 0.069

samples = 24
value = [[0, 24]

[20, 4]
[24, 0]
[24, 0]]

gini = 0.0
samples = 1
value = [[0, 1]

[1, 0]
[1, 0]
[1, 0]]

gini = 0.0
samples = 2
value = [[2, 0]

[0, 2]
[2, 0]
[2, 0]]

gini = 0.0
samples = 2
value = [[0, 2]

[0, 2]
[2, 0]
[2, 0]]

delta ≤ 0.875
gini = 0.041

samples = 22
value = [[0, 22]

[20, 2]
[22, 0]
[22, 0]]

gini = 0.0
samples = 1
value = [[0, 1]

[0, 1]
[1, 0]
[1, 0]]

DelHmix ≤ -9.01
gini = 0.023

samples = 21
value = [[0, 21]

[20, 1]
[21, 0]
[21, 0]]

Tm ≤ 1802.75
gini = 0.111
samples = 3
value = [[0, 3]

[2, 1]
[3, 0]
[3, 0]]

gini = 0.0
samples = 18
value = [[0, 18]

[18, 0]
[18, 0]
[18, 0]]

gini = 0.0
samples = 1
value = [[0, 1]

[0, 1]
[1, 0]
[1, 0]]

gini = 0.0
samples = 2
value = [[0, 2]

[2, 0]
[2, 0]
[2, 0]]

DelHmix ≤ -5.22
gini = 0.164

samples = 35
value = [[18, 17]

[0, 35]
[35, 0]
[32, 3]]

VEC ≤ 7.317
gini = 0.306

samples = 11
value = [[7, 4]

[2, 9]
[2, 9]

[10, 1]]

DelHmix ≤ -9.215
gini = 0.125

samples = 32
value = [[15, 17]

[0, 32]
[32, 0]
[32, 0]]

gini = 0.0
samples = 3
value = [[3, 0]

[0, 3]
[3, 0]
[0, 3]]

Tm ≤ 1640.17
gini = 0.12

samples = 25
value = [[15, 10]

[0, 25]
[25, 0]
[25, 0]]

gini = 0.0
samples = 7
value = [[0, 7]

[0, 7]
[7, 0]
[7, 0]]

gini = 0.0
samples = 9
value = [[9, 0]

[0, 9]
[9, 0]
[9, 0]]

DelHmix ≤ -17.53
gini = 0.117

samples = 16
value = [[6, 10]

[0, 16]
[16, 0]
[16, 0]]

gini = 0.0
samples = 3
value = [[3, 0]

[0, 3]
[3, 0]
[3, 0]]

VEC ≤ 6.354
gini = 0.089

samples = 13
value = [[3, 10]

[0, 13]
[13, 0]
[13, 0]]

gini = 0.0
samples = 7
value = [[0, 7]

[0, 7]
[7, 0]
[7, 0]]

J ≤ 3.204
gini = 0.125
samples = 6
value = [[3, 3]

[0, 6]
[6, 0]
[6, 0]]

gini = 0.0
samples = 3
value = [[3, 0]

[0, 3]
[3, 0]
[3, 0]]

gini = 0.0
samples = 3
value = [[0, 3]

[0, 3]
[3, 0]
[3, 0]]

Omega ≤ 2.65
gini = 0.203
samples = 8
value = [[7, 1]

[0, 8]
[2, 6]
[7, 1]]

DelSmix ≤ 14.22
gini = 0.111
samples = 3
value = [[0, 3]

[2, 1]
[0, 3]
[3, 0]]

gini = 0.0
samples = 6
value = [[6, 0]

[0, 6]
[0, 6]
[6, 0]]

delta ≤ 5.485
gini = 0.25

samples = 2
value = [[1, 1]

[0, 2]
[2, 0]
[1, 1]]

gini = 0.0
samples = 1
value = [[1, 0]

[0, 1]
[1, 0]
[0, 1]]

gini = 0.0
samples = 1
value = [[0, 1]

[0, 1]
[1, 0]
[1, 0]]

gini = 0.0
samples = 2
value = [[0, 2]

[2, 0]
[0, 2]
[2, 0]]

gini = 0.0
samples = 1
value = [[0, 1]

[0, 1]
[0, 1]
[1, 0]]
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ASM American Society for Metals 
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DOE Department of Energy 
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ICSD Inorganic Crystal Structure Database 
LARS Least Angle Regression 
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ORNL Oak Ridge National Lab 
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RBF Radial Basis Function 
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SVM Support Vector Machine 
TEM Transmission Electron Microscope 
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