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Executive Summary 

This document discusses the prevalence of natural cloud blockages to remote 
intelligence, surveillance, and reconnaissance activities.  The focus is on three case studies 
chosen to illustrate the value of open source global cloud coverage information.  Our 
methodology and case study results are discussed with the strengths and weaknesses of the 
analysis highlighted. 

The first case study was completed as part of a project for the Global Hawk Program 
Office.  We delivered a detailed analysis of the Global Hawk’s reconnaissance systems and 
capabilities compared with the U-2 spy plane [1].  We also explored the impact various 
viewing angles would have on cloud-free line of sight.  Since the Global Hawk operates at 
a lower altitude than the U-2, this question directly concerned the comparative 
effectiveness of the platforms in remote intelligence, surveillance, and reconnaissance 
(ISR). 

To estimate the probability of cloud-free line of sight as a function of viewing angle, 
we identified an open source dataset of global cloud coverage, CloudSat that provides 
vertical profiling of cloud layers.  Using sets of geometrically gridded clouds, or snapshots 
of weather, at four separate geographical locations, we designed a line-of-sight algorithm 
to identify the frequency of cloud blockages.  Our analysis found no substantial differences 
in the frequency of cloud-free line of sight for aircraft operating at the differing altitudes 
expected for the U-2 and Global Hawk platforms. 

A second case study describes a cloud modeling addition to the IDA Sensing 
Effectiveness Evaluator (ISEE) [2].  Our cloud modeling feature is uses two-dimensional 
cloud grid information from NASA’s MODIS CloudMask dataset.  These grids specify in 
a nominally 1 by 1 km grid the location of clouds at a given instant on a particular day.  
This information is used in ISEE’s line of sight calculation, with cloud presence implying 
full obscuration.  Next, we using an ensemble of actual weather patterns and conducting 
many ISEE calculations, we obtain estimates of the degree to which clouds might hamper 
visual or infrared collection at given times and locations. 

The third case study explores the local, spatial correlation of clouds.  Analysis of the 
spatial correlation of clouds can answer a pertinent question for remote ISR: if it is cloudy 
in one region, how likely is it that a nearby location will also be blocked by clouds?  Using 
an autocorrelation function applied to a dataset from MODIS’s CloudMask product, the 
likelihood of concurrent cloudy regions over distance and direction was calculated in the 
Baltic region, in support of a study provided by IDA for the Office of Cost Assessment and 
Program Evaluation (CAPE), in the Office of the Secretary of Defense, on adversary ISR 
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systems.  Cloud cover was found to be statistically similar on length scales of tens of 
kilometers, suggesting that geographically close targets will have approximately equal 
likelihood of being concurrently blocked by clouds – an intuitive finding that our analysis 
quantifies. 

This document is intended to describe the research and analyses leveraged in these 
three separate studies and document the modeling techniques employed.  In particular, this 
research emphasizes the value of free, easy to access, and peer-reviewed, scientific datasets 
of CloudSat, CALIOP, and MODIS.  These datasets provide historical observations of 
cloud coverage, and more generally, the optical properties of the atmosphere on a global 
scale.  Future studies regarding the effectiveness of remote intelligence gathering should 
draw upon the properties and variability of atmospheric conditions.  As a brief 
characterization of the valuable sources of global cloud cover information, we list key 
features of the CloudSat, CALIOP, and MODIS datasets below.  

 

Satellite Based Open-Source Scientific Datasets of Global Cloud Occurrence   

Scientific Dataset Summary Resolution Dates 

CloudSat 
Active radar, Nadir-

only vertical profile of 
clouds 

1 km along track 250 
m vertical 2006-2011 

CALIOP 
Active lidar, Nadir-

only vertical profile of 
clouds 

333 m along track 30 
m vertical 2006-2011 

MODIS 
Passive EO/IR, 

±55➦   FOV, planar 
view of clouds 

250 m, 500 m, 1 km 
along and across 

track 
2000-present 

References 
1. Institute for Defense Analyses, Global Hawk Block 30 Improvements Study: 

Sensor Integration, Cost, and Effectiveness: Volume 1, IDA Paper P-5236, 2015, 
UNCLASSIFIED. 

2. Institute for Defense Analyses, Development of the IDA Sensing Effectiveness 
Evaluator (ISEE) Model for Airborne Intelligence, Surveillance, and 
Reconnaissance, IDA Paper P-4771, 2011, UNCLASSIFIED. 
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1. Introduction 

Clouds cover about two-thirds of the earth’s surface at any given time [1].  
Considering that electro-optical and infrared (EO/IR) wavelengths cannot penetrate clouds, 
the prevalence of clouds in certain regions of the world warrants consideration when 
evaluating the effectiveness of long-range airborne and overhead surveillance and 
reconnaissance systems.  In this report, we explore three separate case studies dealing with 
the effect of clouds on remote sensing.  In all cases, historical weather information taken 
from scientific datasets is analyzed to determine statistics on clouds’ spatial and temporal 
distributions for particular regions of the world.  The frequency of cloud blockages as a 
function of viewing altitude, viewing angle, and season are analyzed.  By measuring the 
historically observed frequency of cloud blockages, we estimate the potential difficulties 
airborne and overhead EO/IR sensors would have in achieving cloud-free line of sight with 
ground targets. 

Historical observations provide insight into climate, but do not serve as a good 
prediction of weather (e.g., cloud cover at a specific location, date, and time of day).  Here 
we are not considering the physical causes of clouds, but rather their frequency and 
morphology.  The insights that these observations provide are useful to the U.S. defense 
community for long-term strategic planning and system evaluation.  As a general example, 
EO/IR airborne sensors have been effective in recent years when monitoring objects on the 
ground in some of the drier regions of the world – e.g., the Middle East and portions of 
Central Asia.  The Baltics and the Korean peninsula, as examples, have substantially 
cloudier climates, and the analysis presented in this report provides quantitative measures 
to predict and compare system performance in cloudy environments. 

To provide context to this analysis, we first provide a general introduction to the effect 
of clouds on remote sensing (Chapter 2).  The concept and calculation of the probability of 
cloud-free line of sight (PCFLOS) is discussed in Chapter 3.  The scientific datasets used 
to estimate the frequency of cloud blockages in our case studies are introduced in Chapter 
4, though additional resources for global cloud cover exist [1].  Chapter 5, the penultimate 
chapter, presents case studies, highlighting our methods and analysis. 

The case studies discussed in this report reflect work that IDA performed for three 
separate studies.  The first study was conducted for the Global Hawk Program Office, 
exploring the effect viewing angle has on visibility through clouds.  We assessed historical 
data from Colorado State’s CloudSat project and found that viewing angle generally has a 
marginal effect on visibility through the clouds (for the altitudes of interest in this study).  
The second study details the addition of a cloud model to the IDA Sensing Effectiveness 
Evaluator (ISEE) model.  The new cloud model loads observations of clouds from the 
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National Aeronautical and Space Administration (NASA) Moderate Resolution Imaging 
Spectroradiometer (MODIS) instrument and incorporates this information into the ISEE 
simulation.  The final study concerns statistics on cloud cover over the Baltic region of 
Europe, addressing the effectiveness of EO/IR sensors to image nearby locations 
concurrently.  All three case studies utilize historical observations from global, open-
source, scientific datasets. 

Reference 
1. Stubenrauch, C.J., W.B. Rossow, S. Kinne, S. Ackerman, G. Cesana, H. Chepfer, L. 

Di Girolamo, B. Getzewich, A. Guignard, A. Heidinger, et al., “Assessment of global 
cloud datasets from satellites: Project and database initiated by the GEWEX radiation 
panel,” Bulletin of the American Meteorological Society, 94(7):1031–1049, 2013. 
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2. The Effect of Clouds on Remote Sensing 

A. Introduction to Radiative Transfer 
To conceptualize the effect of cloud cover on remote sensing, consider an airborne 

(or space-borne) EO/IR sensor monitoring a target on the earth’s surface.  The surface of 
the earth, and any objects on it, both emit and reflect radiation.  During daylight hours, the 
reflection of natural light via the sun’s rays is the strongest source of radiation coming from 
an object; at night, radiative emissions in the infrared spectrum (often modeled as 
“blackbody” radiation) dominate.  Ideally, the sensor’s detector will be exposed to the 
emitted or reflected radiation and produce a coherent image that a human observer can 
interpret.  A variety of physical and image processing factors are also important to this 
process.1  This report focuses on the nature and frequency of natural cloud blockage and 
its effect on remote EO/IR sensing.  To discuss this process quantitatively, we provide a 
brief introduction to the key concepts of radiative transfer.2  

Two fundamental quantities of radiative transfer are intensity and flux density (often 
termed radiance and irradiance, respectively).  Radiation transfers energy over time, area, 
a range of directions (treating light as a ray), and a certain range of wavelengths.  If any 
one of those quantities is zero, no energy is transferred.  Monochromatic intensity, Iλ, 
measures the transfer of energy via light per unit time, per unit area, for a specific direction, 
and for a specific wavelength.  As monochromatic intensity is a function of the wavelength 
of light λ, integrating over a range of wavelengths yields the intensity I: 

 𝐼𝐼 = ∫ 𝐼𝐼𝜆𝜆d𝜆𝜆𝜆𝜆2
𝜆𝜆1

 (2-1) 

The units of intensity are W m−2 sr−1, reflecting that power is transferred over an 
area and over a solid angle, measured relative to the unit area through which the power is 
being transferred.  See Figure 2-1 for an illustration. 
  

                                                 
1 See past work by IDA for details [1]. 
2 The terminology of radiative transfer can be confusing or redundant and can differ from source to 

source; here we will use Qiang Fu’s terminology in his chapter “Radiative Transfer” in Atmospheric 
Science [2]. 
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Figure 2-1.  Radiance Measures Radiative Power along the Path of a Ray of Light,  

While Flux Density Sums All Rays Incident on a Surface for a Solid Angle 
 

The monochromatic flux density Fλ measures the radiative transfer of energy per unit 
time at a specific wavelength through a unit area on a planar surface.  Integrating the 
monochromatic intensity Iλ over a solid-angle hemisphere yields Fλ.  Considering a planar 
surface, define a zenith angle θ as the angle off the normal to the surface.  Assuming the 
radiation is incident on the surface from one direction, say above, the monochromatic flux 
density is 

 𝐹𝐹𝜆𝜆 = ∫ 𝐼𝐼𝜆𝜆 cos 𝜃𝜃 d𝜔𝜔2𝜋𝜋  (2-2) 

where dω denotes integration over solid angle, and the region of integration is 2π, or the 
full hemisphere above the surface.  Figure 2-1 depicts the geometry over which flux density 
is defined, and its relationship to radiance or intensity.  Similarly to radiance, integrating 
Eq. 2-2 over a range of wavelengths yields the flux density F: 

 𝐹𝐹 = ∫ 𝐹𝐹𝜆𝜆d𝜆𝜆𝜆𝜆2
𝜆𝜆1

= ∫ ∫ 𝐼𝐼𝜆𝜆
𝜆𝜆2

𝜆𝜆1
dλd𝜔𝜔2𝜋𝜋  (2-3) 

Finally, by considering a fixed area, A (such as the surface of the earth), the flux, E, 
or radiative power (measured in watts) incident upon a surface can be calculated: 

 𝐸𝐸 = ∫ ∫ ∫ 𝐼𝐼𝜆𝜆
𝜆𝜆2

𝜆𝜆1
dλd𝜔𝜔d𝐴𝐴2𝜋𝜋Δ𝐴𝐴  (2-4) 

Returning for our conceptual airborne EO/IR sensor, the field of view of the sensor 
represents a solid angle that encompasses the target.  The rays of light that are incident on 
the detector surface come from multiple sources.  Figure 2-2 illustrates the various paths 
of light that are incident upon the detector of the sensor on an airborne platform (see figure 
for explanation). 
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Figure 2-2.  Diagram Depicting the Role Clouds Play in Remote Sensing During the Day 

A sensor is directed to a target, such that the target lies within its field of view (dashed black line).  The sun’s 
rays (red arrows) hit the cloud and scatter light in all directions, illuminating the target on the ground in natural 
light.  The illuminated target reflects this radiation (blue arrows).  The cloud attenuates this signal coming from 
the target by scattering the light in other directions as well as via frequency-dependent absorption.  In addition 
to this reduction in signal, path radiation from the sun is scattered by the cloud into the sensor’s field of view, 
cluttering the signal with noise and making the cloud opaque. 

 

The extinction of an electromagnetic wave (in our case, a visual signal emanating 
from a target or target area) occurs through the processes of scattering and absorption.  The 
liquid droplets and solid ice particles that compose clouds will scatter, and to a lesser extent 
absorb, electromagnetic radiation in the visible and infrared spectrum.  The scattering of a 
signal by a cloud of droplets is elastic; the frequency of the light remains the same, but its 
direction changes.  The probability that a photon will pass through a typical cloud 
obstruction without scattering at least once is very low, and thus an EO/IR signal passing 
through a cloud will lose its coherence. 

The processes of scattering and absorption by particles are idealized to be linear with 
respect to three quantities: the intensity Iλ, the local concentration of the particles, and the 
“effectiveness” of scattering and absorption for each particle [2].  This implies that 
doubling the intensity doubles the amount of light scattered or absorbed, with similar 
dependence on concentration and effectiveness.  Consider an individual ray of light passing 
through an infinitesimally thin layer of a cloud of particles.  First, assuming that each 
particle is identical, the monochromatic intensity will decrease an amount dIλ by passing a 
distance ds through the cloud according to, 

 𝑑𝑑𝐼𝐼𝜆𝜆 = −𝐼𝐼𝜆𝜆𝐾𝐾𝜆𝜆𝑁𝑁𝑁𝑁d𝑠𝑠 (2-5) 

where Kλ is the efficiency or “effectiveness” of either scattering or absorption, N is the 
number of particles per unit volume, and σ is the cross-section of each identical particle.  
Thus, the total extinction of a ray of light through a cloud is the sum of the contribution 
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from each particle.  Likewise, the contribution from different particle types are additive, 
and the efficiency of scattering and absorption can be treated as separate, additive terms.  
Assuming a set of J total particle types, the extinction of light through the thin layer is 
expressed as, 

 𝑑𝑑𝐼𝐼𝜆𝜆 = −𝐼𝐼𝜆𝜆�∑ 𝐾𝐾𝜆𝜆,𝑗𝑗,scattering𝑁𝑁𝑗𝑗𝜎𝜎𝑗𝑗
𝐽𝐽
𝑗𝑗=1 + ∑ 𝐾𝐾𝜆𝜆,𝑗𝑗,absorption𝑁𝑁𝑗𝑗𝜎𝜎𝑗𝑗

𝐽𝐽
𝑗𝑗=1 �d𝑠𝑠 (2-6) 

where Kλ,j,scattering represents the efficiency of scattering for the jth particle type and 
Kλ,j,absorption represents the efficiency of absorption.  Define the quantity αλ = KλNσ as the 
scattering or absorption coefficient. 

Equations 2-5 and 2-6 measure extinction (absorption plus scattering) over an 
infinitesimal path length ds.  We can now define the optical depth of a cloud of particles.  
For simplicity, consider a ray of light passing a length L through a cloud of identical 
particles that only scatter light.  Define Iλ,0 as the monochromatic intensity of light incident 
on the cloud, and Iλ,L the monochromatic intensity leaving the cloud.  Integrating Eq. 2-5 
over the path yields Beer’s law: 

 𝐼𝐼𝜆𝜆,𝐿𝐿
𝐼𝐼𝜆𝜆,0

= 𝑒𝑒�− ∫ 𝛼𝛼𝜆𝜆(𝑠𝑠)𝐿𝐿
0 d𝑠𝑠� (2-7) 

This quantity is termed the transmissivity of the cloud.  Another useful measure of a cloud, 
or a vertical slab of the atmosphere, is the optical depth τλ: 

 𝜏𝜏𝜆𝜆 = ∫ 𝛼𝛼𝜆𝜆(𝑠𝑠)𝐿𝐿
0 d𝑠𝑠 (2-8) 

While τ is unitless, it is dependent on the path through the cloud.  If the cloud is 
homogeneous, the attenuation coefficient is constant and τ = αL.  Notice that the 
attenuation coefficient has units of 1/length and is thus independent of the dimensions of 
the depth L of the cloud.  The inverse of the attenuation coefficient is l = 1/α, the mean 
free path of a photon in the cloud.  The mean free path can be thought of as the average (or 
expected) distance traveled by a photon before a scattering or absorption event occurs. 

Although from the standpoint of remote sensing a photon emitted from a target will 
be “lost” from a signal due to scattering, a portion of light from the ground may still escape 
through the cloud and be detected by the sensor (consider the diagram in Figure 2-2).  On 
a very cloudy afternoon, a significant portion of the sun’s rays still diffuse through the 
clouds via scattering.  However, the sun’s location is not visible from the ground, since 
after multiple scattering events, the light is diffusely scattered among the cloud deck.  
Visible and infrared light traveling through clouds typically scatters multiple times; thin 
clouds in which single scattering dominates produce dramatic optical effects such as glories 
and the sun’s corona. 

Electro-optical and infrared sensors are incapable of acquiring a target through an 
even moderate cloud obstruction.  The attenuation coefficient of low to middle height 
clouds (cumulus, stratus, and nimbostratus type clouds) ranges from 100 to 500 dB/km for 
wavelengths of 0.4-10 µm [3].  This corresponds to over 99.9-percent loss per km, and 
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EO/IR systems operating in this range will suffer a near complete loss of signal from cloud 
obstruction.  Higher, ice-phase cirrus-type clouds are less optically thick and can be very 
difficult to detect [4].  The combined active radar systems CALIPSO and CloudSat 
(discussed in Section 4.1) have a detection sensitivity of optical depth in the visible range 
greater than about 0.1 for ice clouds, and clouds with a lower depth may be missed [5].  A 
recent scientific survey by the Global Energy and Water Cycle Experiment Radiation Panel 
of satellite based sources of global cloud cover uses a visible optical depth threshold of 0.1 
to define the “global total cloud amount” corresponding to at least a 9.9-percent loss of 
signal through the cloud [6].  In the case studies presented in Chapter 5, we use this 
common detection threshold to define a cloud.  The typical cloud, defined colloquially, far 
exceeds this detection threshold. 

Returning to our conceptual airborne EO/IR sensor, clouds obstruct remote 
information extraction by increasing the amount of light detected by the sensor not 
associated with the target and by attenuating the signal from the target.  Scattering of 
ambient light into the sensor by clouds is a three-dimensional (3D) problem and cannot be 
modeled by the attenuation coefficient of clouds alone.  To determine the spatial 
distribution of scattered photons traveling through a mass of clouds, a more sophisticated 
treatment of light-matter interactions is necessary.  The next section briefly discusses a 
more rigorous treatment of cloud’s effect on remote sensing. 

B. Scattering of Light by Liquid Cloud Droplets 
Clouds are composed of liquid or solid water particles on the scale of microns to tens 

of microns.  These particles are distributed quasi-randomly in a cloud, with significant 
variability in density possible [7, 8].  The optical properties of a cloud of droplets are 
different from the optical properties of contiguous liquid water.  The fundamental reason 
for this is the small size of the droplets.  The visible and near-infrared band ranges from 
wavelengths of 400 nm to about 2 µm: the same order of size as the cloud particles.  In this 
regime, the wave nature of light becomes significant and the physics of light-matter 
interactions is best described by Maxwell’s equations.3  

Consider an electromagnetic wave incident on a droplet of water.  By treating the 
incident wave as a ray, we can use Fresnel’s equations to calculate the reflected and 
refracted rays of light through the particle.  This simple approach reasonably models the 
optical patterns of rainbows [2, 9], which are caused by large rainwater droplets about 1 
mm in diameter.  However, for common cloud droplets on the micron scale, the incident 
electromagnetic wave produces a pronounced diffraction pattern that is not modeled using 
rays.  Mie theory approaches this problem using Maxwell’s equations.  Using a generating 
scalar function, the coupled, vector equations of Maxwell can be converted into an 
eigenvalue problem with a series solution [10].  The scattering patterns of the incident wave 

                                                 
3 For a great overview of the physics of light scattering by small particles, see section 4.4 of Wallace and 

Hobbs’ book Atmospheric Science [2]. 
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can thus be approximated using a sufficient number of terms of this series solution.  
Evaluating the resulting expressions for the scattered waves is not analytically tractable 
and requires numerical analysis. 

The total cross section σ of a particle roughly captures how much it obstructs an 
incident wave (see Eq. 2-5).  For particles much larger than the wavelength of light (such 
as a baseball on a sunny day), the total cross section of the particle is simply its geometric 
cross-section σgeo: the area of the particle projected onto the plane perpendicular to the 
light.  Spherical droplets of water primarily scatter light, so the total cross-section of a 
droplet is equivalent to its scattering cross-section σsca.  Due to diffraction, the scattering 
cross-section of a spherical droplet is approximately a factor of two larger than its 
geometric cross-section!  In other words, the droplet obstructs the light greater than its size 
would indicate.  As a further complication, the scattering cross-section sensitively and non-
monotonically depends upon the size of the droplet. 

A conceptually useful approximation to the Mie-theory solution is presented by van 
de Hulst in his 1957 book Light Scattering by Small Particles [11].  Defining the efficiency 
factor Qext as the ratio of the scattering cross-section to the geometric cross-section, the 
efficiency factor for a water droplet can be approximated as, 

 𝑄𝑄ext ≈ 2 − 4
𝑝𝑝

sin 𝑝𝑝 + 4
𝑝𝑝2 (1 − cos 𝑝𝑝) (2-9) 

where p = 4πr(m − 1)/λ, with r being the radius of the spherical droplet; m = 1.33, the 
index of refraction for water; and λ is the wavelength of the light.  Figure 2-3 plots the 
efficiency factor for multiple sizes of droplets as a function of wavelength.  Note that the 
curves appear to oscillate about a value of 2, indicating that the scattering cross-section of 
the droplet is twice as large as its geometric cross-section.  Although the approximation 
captures the general behavior of Qext’s dependence on wavelength and droplet radius, the 
exact Mie solution is significantly more complicated.4 

The distribution of scattering angles resulting from light incident upon a single droplet 
are similarly dependent upon droplet radius and the light’s wavelength.  However, a general 
characteristic remains the same: the scattering angle is forward peaked, meaning that a 
scattering event is more likely to slightly deflect the trajectory, rather than reflect.  The 
differential cross-section in the backscattering region is about three orders of magnitude 
lower than the forward-scattering cross-section [13].  As mentioned in the previous section, 
any scattering event effectively blurs a target by weakening the signal and increasing noise, 
and as such the scattering angle is less important than the scattering cross-section. 

 

                                                 
4 See page 105 in Bohren [10], and page 177 in van de Hulst [11] for a complete derivation of the exact 

Mie solution, and for a nice overview, see Refs. 2 and 12. 
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Figure 2-3.  Approximate Efficiency Factor vs. Wavelength (Top Panel) and Inverse 

Wavelength (Bottom Panel) for Water Droplets with Three Separate Radii 
Efficiency factor is the ratio of scattering cross-section to geometric cross-section.  Low- and mid-altitude water 
clouds typically have droplets with radii from 1 to 50 µm.  Notice the sensitive dependence of the scattering 
cross-section on droplet radius and wavelength. 

 

Clouds are not monodisperse; a parcel of cloud mass will contain a distribution of 
droplet sizes.  Given a particular distribution, and assuming that the particles are randomly 
distributed and separated from each other by average distances larger than their radii, the 
scattering cross-section of the cloud mass is the same as the summation of each individual 
droplet’s scattering cross-section [12].  Integrating the scattering cross-section over the 
frequency distribution of cloud droplets along a path defines the scattering cross-section 
per unit volume βλ,sca: 

 𝛽𝛽𝜆𝜆,sca = ∫ 𝜎𝜎𝜆𝜆,sca(𝑟𝑟)𝑛𝑛(𝑟𝑟)∞
0 d𝑟𝑟 (2-10) 

where σλ,sca(r) is the scattering cross-section at wavelength λ of a single particle of radius 
r and n(r) is the distribution function of the particle size per unit volume.  The scattering 
cross-section per unit volume has units of inverse length, can vary along the extent of the 
cloud, and is an analogous measure to the material attenuation coefficient αλ presented in 
Eq. 2-8.  The cross-section per unit volume can be related to the optical depth of the cloud 
directly: 
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 𝜏𝜏 = ∫ 𝛽𝛽sca(𝑧𝑧)𝐿𝐿
0 d𝑧𝑧 (2-11) 

where L is the spatial extent of the cloud along the z axis.  Using a distribution of cloud 
droplets n(r) and a cloud geometric thickness L, Equations 2-9 through 2-11 provide an 
estimate of the extinction of a signal through the cloud as a function of wavelength.  
Integrating over wavelength, as in Eq. 2-1, for a particular source spectrum, such as the 
sun, yields the total attenuation of the signal. 

Ice crystals in clouds are generally not spherical and can assume a variety of shapes.  
Commonly they are characterized as flat plates or thin rods [7].  Regardless of shape, ice 
crystals primarily scatter radiation, and their optical properties can be crudely treated in an 
analogous fashion to spherical droplets.5  

C. Typical Spatial Distributions of Clouds 
Clouds range in size from hundreds of meters to hundreds of kilometers.  Large storm 

fronts can dominate a landscape, and fair weather cumulus clouds can dot the sky, casting 
shadows intermittently on a windy afternoon.  The simplest division of clouds into cumulus 
type and stratus type is based upon this contrast of isolated clouds existing in small, discrete 
chunks and roughly uniform planes with great horizontal extent.  It is this spatial (and 
spatiotemporal) heterogeneity that make the optical properties of clouds difficult to 
quantify and generalize, particularly with regards to the radiation budget of the earth’s 
atmosphere [14].  However, because of the interest in clouds’ role in climate change, the 
statistics of clouds’ spatial distributions have recently been well studied. 

The earliest comprehensive satellite studies on the horizontal extent of clouds 
determined that cloud cover has sizable contributions from the smallest measured scales to 
the largest.6  The distribution of cloud sizes, either measured as an area or a length, has 
been found to reasonably follow a power law with a negative slope [15-17].  Defining a 
number density function n(x) such that n(x)dx is the number of clouds with sizes between 
x and x + dx, consider the power-law, 

 𝑛𝑛(𝑥𝑥) = 𝑎𝑎𝑥𝑥−𝛽𝛽 (2-12) 

where α and β are constants.  The magnitude of β determines the relative contribution large 
clouds make to total cloud cover.  With a β of 2, each logarithmic interval (say 1-10 meters, 
10-100 meters, etc.) contributes the same amount to total cloud coverage.  For smaller β, 
larger clouds begin to increasingly dominate, and all systematic cloud studies have found 
β to be less than 2.  A particular parcel of cloud will thus tend to belong to a large cloud 
mass on the order of hundreds of kilometers in scale, and, as such, clouds of these scales 

                                                 
5 See Chapters 2 and 8 of Wang’s Clouds and Precipitation [7] and Volume 2 of the Infrared and 

Electro-Optical Systems Handbook [12] for details. 
6 This paragraph summarizes the summary of recent work on measuring clouds’ horizontal distributions 

provided by Robert Wood et al. [15]. 



2-9 

form the bulk of cloud cover.  Using MODIS’s CloudMask dataset, discussed in Section 
4.B, β ≈ 1.67 over the globe, excluding the polar regions [15].  Curiously, this satellite-
based result is in reasonable agreement to those using aircraft-based datasets, even of 
particular cloud types, such as cirrus or stratocumulus.  Most critically to the case studies 
presented in this work, the fitted power law matches observations well down to the smallest 
scales measurable, about 150 meters for airplane observations and about 1 km for the 
satellite observations.  Using the best fit power-law, we expect that about 5 percent of total 
cloud cover is composed of clouds with lengths less than 1 km [15].  Thus, we can be 
confident that resolving clouds to horizontal resolutions of 1 km will capture the majority 
of cloud cover, and clouds on smaller scales may still be captured in the datasets depending 
upon their optical thickness. 
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3. The Probability of Cloud-Free Line Of Sight 
(PCFLOS) Metric 

A. Overview 
A powerful and intuitive measure of the effect of clouds on sensors is the PCFLOS, 

which measures the probability that a line of sight between an observer and a target is not 
obstructed by clouds.  For a single observation of a single target at a specific time, the 
determination of whether or not a cloud is in the way (CFLOS) is unambiguous and 
deterministic.  Since the task of deterministically calculating where and when clouds will 
occur in the future, even given perfect information in the present, is an impractical task 
(and not expected to be possible as turbulence models are chaotic), we must rely upon a 
probabilistic measure for predictions.  As any casual observer of weather forecasting 
knows, numerical weather prediction models used for operational forecasting can provide 
accurate predictions at best a week in advance, and these predictions have uncertainties 
associated with them. 

The PCFLOS metric is used not only in the surveillance and reconnaissance 
community for strategic assessment [1-5], but also in the academic community for 
calculations of the earth’s radiation budget [6-8].  Global climate studies require high-
fidelity cloud modeling, and the sensitive dependence of clouds’ radiative properties on 
local and global heterogeneity has a significant effect on the earth’s radiation budget.  As 
such, theoretical and experimental work has gone into defining and approximating 
PCFLOS on both a global scale and for particular cloudy scenes (e.g., cumulus clouds).  
Here we will consider PCFLOS as a practical metric, more familiar to the reconnaissance 
community. 

The probability of cloud-free line of sight uses past observations to make predictions.  
PCFLOS should be defined by three elements: location of target, location of observer, and 
times of observation.  For example, given a set of N observations of a particular target 
under ideally the same conditions, we can estimate the PCFLOS as simply the number of 
observations with cloud-free line of sight over the total number of observations N: 

 PCFLOS = ∑ CFLOS𝑖𝑖
𝑁𝑁�𝑁𝑁

𝑖𝑖=1  (3-1) 

Here the measure CFLOS is taken to be zero given a cloud blockage and one given cloud-
free line of sight. 

Interpreting CFLOS as a random variable, Eq. 3-1 is the estimator for the expected 
value of CFLOS.  Thus, the sampling of the distribution of CFLOS should be under similar 
conditions to that of the PCFLOS metric one is trying to estimate.  (Obviously, observing 
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clouds out a window does not effectively estimate the occurrence of clouds in the Sahara 
desert).  Ideally, the set of N observations would be independent, in that the probability 
that one observation is cloud-free does not affect the probability of another observation 
being cloud-free.  In practice, no two observations are completely independent, but this 
assumption of independence becomes more valid the further apart in time observations are 
taken. 

The probability of cloud-free line of sight as presented in this report assumes an 
observation is practically instantaneous and scheduled independent of cloud cover.  
Obviously, an observer who only attempts to make observations in times of clear weather 
will achieve more instances of clear line of sight with the target.  In this situation, to achieve 
an appropriate estimate for PCFLOS, the set of observations N should reflect the scenario 
one is trying to estimate.  In addition, if the observer is willing to maintain a constant 
observation of a target until the clouds break, likewise, the set of observations N should 
reflect this scenario.  PCFLOS can be generalized to measure whether or not the target is 
visible for at least a fixed amount of time, but the metric becomes more difficult to calculate 
and rather intractable.  The analysis presented in the third case study of this report begins 
to address this question, providing a metric for the chance of simultaneously tracking 
multiple targets in close proximity to each other (see Section 5.C). 

The PCFLOS metric greatly simplifies the more complicated treatment of radiation 
transport discussed in Chapter 2.  At first glance, the treatment of clouds as either being 
present or not present appears incapable of capturing the complicated physical phenomena 
of cloud blockages to remote sensing.  For instance, translucent cloud edges, thin fog-like 
stratus cover, and wispy high clouds can partially obstruct an object in the visible and 
infrared spectrum.  While acknowledging the existence of these “gray areas,” the typical 
cloud blockage completely obscures a target (see Section 2.C).  In addition, once a 
detection threshold is defined, say a visual optical depth of τ > 0.1, the presence of clouds 
can be determined unambiguously.  Thus the PCFLOS metric provides a straightforward 
and useful assessment on the frequency of cloud blockages. 

B. Estimating PCFLOS and the 3D Cloud Effect 
To construct an estimate for the PCFLOS at a particular target, one can use a set of 

observations of particular instances of weather.  A spatial distribution of clouds in a grid 
represents a single observation.  By placing imaginary observers and targets in this cloudy 
field, it becomes a straightforward question whether or not a cloud-free line of sight exists.  
Cycling through many instances of weather provides statistics of this measure.  A common 
shortcut to extract more information out of a single cloudy scene is to assume local spatial 
correlation is equivalent to short-term time correlation: the clouds one observes at a 
particular location are just as likely to have been observed a short distance away.  To 
illustrate this concept, consider Figure 3-1. 
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Figure 3-1.  Schematic of Clouds Obstructing a Scene in Two Dimensions 

The target is not visible directly overhead.  PCFLOS in this scene can be estimated as one minus the fractional 
area covered in clouds. 

 

Figure 3-1 depicts a two-dimensional scene of a partially cloudy field over a single 
target, a house.  When viewed from above, the house is completely obscured.  However, 
one might imagine that after a few minutes, the clouds would drift and the house would 
become visible from above.  If the observation is made independent of cloud cover, the 
clouds as they appear are just as likely to be displaced a small amount.  To extract as much 
information as possible from this particular scene, one can estimate PCFLOS in the 
particular cloudy field.  Picking an area of the ground, say a 1 km × 1 km block, the amount 
of area visible divided by the total area provides an estimate of PCFLOS at the scene: 

 PCFLOSscene = 𝐴𝐴clear
𝐴𝐴total

= 1 − 𝐴𝐴cloudy

𝐴𝐴total
= 1 − CF (3-2) 

where CF is the cloud fraction, or fraction of ground covered in clouds. 

Equation 3-2 implies a slightly more complicated interpretation of PCFLOS than a 
simple, frequentist interpretation of Eq. 3-1.  Given a set of N cloudy scenes, the PCFLOS 
at the target can be approximated as, 

 PCFLOS = ∑ (1 − CF𝑖𝑖)
𝑁𝑁�𝑁𝑁

𝑖𝑖=1 = ∑ PCFLOS𝑖𝑖
𝑁𝑁�𝑁𝑁

𝑖𝑖=1  (3-3) 

or simply the mean of the PCFLOS over all scenes or instances of weather.  The formula 
is reasonable as long as the area from which the cloud fraction is calculated is relatively 
small, i.e., the weather is on average the same.  In our third case study presented in this 
report, the annual cloud cover is calculated over the Baltic region for a 1 km × 1 km grid 
using 4 years of data.  As expected, the annual cloud cover is approximately constant over 
small length scales, with some exceptions (see Section 5.C). 

Realistically, weather patterns will vary by day, season, and year.  Yearly variations 
in global climate are beyond the scope of this report; in the proceeding case studies, we 
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take the seasonal weather patterns observed in recent years as characteristic of seasonal 
weather patterns in the near future.  Of interest to the field of remote sensing is PCFLOS 
of a ground target as a function of location, season, altitude, and viewing angle.  The global 
spatial and seasonal variability of cloud cover is a well-studied phenomenon, and satellite-
based cloud datasets typically provide averaged cloud cover [9].  If an observer attempts 
to make observations directly above a target independent of the weather, these averages 
provide a reasonable approximation to the observer’s PCFLOS. 

Global climate studies require high-fidelity cloud modeling, and the sensitive 
dependence of clouds’ radiative properties on viewing angle has a significant effect on the 
earth’s radiation budget.  In the words of Yingtau Ma, “for low or middle clouds a cloud 
fraction change of no more than 5 percent would generate an error in the surface longwave 
CF (cloud forcing) of the same magnitude as the direct forcing from CO2 doubling” [6].  As 
such, theoretical and experimental work has gone into defining and approximating 
PCFLOS as a function of viewing angle on both a global scale and for particular cloudy 
scenes (e.g., cumulus clouds). 

The cloud fraction can be extended to an effective cloud fraction, CF(θ), dependent 
upon viewing angle, but retaining the same interpretation as the fractional area covered in 
clouds.  The area of the earth with clear line of sight will shrink generally as θ increases 
[6].  A perfectly flat object will cast the same size shadow on a flat earth from dawn until 
dusk; the vertical dimension of the cloud will increase its shadow as θ increases.  Figure 
3-2 depicts the shrinking of the area with clear line of sight for a particular broken cloudy 
field. 

 

 
Figure 3-2.  Schematic of the Dependency of PCFLOS on Viewing Angle 

Because of clouds’ vertical thickness, the visibility through a broken cloud deck will generally decrease with 
viewing angle off zenith (A>B). 

 

Unfortunately, realistically defining the spatial dimensions of the 3D space of clouds 
is especially challenging and not well supported by direct observation.  Similarly, defining 
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the spatial extent of a cloud is generally ambiguous.  Past work estimating angular 
dependence of PCFLOS typically does not make individual measurements of CFLOS (say, 
from an aircraft), but rather uses an algorithm based upon photographs [1], or a ground 
instrument [5, 8], averaging visibility in a scene in a similar way to that mentioned above.  
A common technique to bound the problem is to restrict study to a single layer of cumulus 
clouds.  Two studies published in 2004 and 2008 found good agreement between ground-
observed PCFLOS at a location in the tropical, western Pacific and the Southern Great 
Plains to PCFLOS modeled using random, Poisson distributed hemispheres to represent 
clouds [6, 8].  Under these conditions, the PCFLOS through a cumulus field is modeled as, 

 PCFLOScumulus = (1 − CF)𝑓𝑓(𝜃𝜃) (3-4) 

where 

 𝑓𝑓(𝜃𝜃) = 1
2

�1 + √1 + tan2 𝜃𝜃� (3-5) 

and CF is the cloud fraction at zenith.  Naively using this equation to estimate PCFLOS 
given a particular cloud fraction is not recommended, since typical cloud formations vary 
from location to location, and the classification of clouds into cumulus and stratus types is 
not rigorous [10]. 

In summary, the PCFLOS metric is a practical metric that provides useful information 
on the expected operating conditions a sensor may experience.  The metric is typically 
constructed using past observations.  PCFLOS depends sensitively on many factors such 
as target location and season.  Since PCLFOS is a statistical measure, care must be taken 
to assure that the sampling dataset used to generate the metric is consistent with the way in 
which it will be used. 
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4. Select Satellite-Based Datasets 

Satellites provide an unprecedented platform through which to measure the radiative 
properties of the atmosphere on a global scale.  The scientific datasets used in this study 
are based primarily upon radiation measurements from equipment housed in the “A-train” 
constellation of satellites.  The constellation consists of the satellites Aura, CloudSat, 
CALIPSO, Aqua, GCOM-W1, and OCO-2, each housing distinctive scientific equipment 
(see Stephens et al. for a scientific summary of the A-train [1]).  The constellation performs 
an approximately 99-minute sun-synchronous orbit, returning to the same orbit about every 
16 days (233 orbits in 16 days).  The instruments housed in the satellites make virtually 
simultaneous measurements of the earth’s surface, allowing the unique capabilities of the 
instruments to be combined in scientific studies. 

Figure 4-1 depicts two sample orbits of the CloudSat satellite, flying in the A-train.  
Notice that upon completion of a single orbit, the satellite is displaced hundreds of miles 
from its original location.  The constellation passes the equator northbound at 
approximately 1:30 p.m. local time and southbound at approximately 1:30 a.m. local time.  
Thus, the A-train constellation provides measurements at about two times of day for a 
particular location. 

 

 
Figure 4-1.  Sample Orbit Paths of the CloudSat Satellite  

in the A-Train Constellation of Satellites 
The dots denote the start of the orbits.  The red orbit passes North Korea in the afternoon, and the blue orbit 
in the early morning. 
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A. CloudSat and CALIOP 
Colorado State’s CloudSat project provides years of global satellite-based cloud 

observations.  The CloudSat satellite houses the Cloud Profiling Radar (CPR), an active 
radar system designed to penetrate through moisture and profile multiple cloud layers.  The 
CPR operates on the long-wave wavelength of 3,400 µm (94 GHz) with a pulse width of 
3.3 µs.  The CPR is nadir-pointing, leaving an effective footprint of about 1 km along the 
orbit of the satellite and about 1 km perpendicular to the orbit.  The vertical profile of the 
atmosphere is sampled with a resolution of about 250 meters.  CloudSat nominally has a 
vertical resolution of 485 meters, but over-sampling effectively doubles this resolution [2].  
The signal suffers small, but measurable, attenuation from cloud droplets, ice particles, and 
even raindrops.  All scientific products offered from the CloudSat project are based upon 
the measured radar backscatter as a function of altitude. 

The satellite CALIPSO operates a similar device called the CALIOP (cloud-aerosol 
lidar with orthogonal polarization).  The CALIOP pulses on the shorter wavelengths of 
0.532 and 1.06 µm in the visible and near-infrared bands.  As discussed in Chapter 2, at 
these frequencies cloud droplets will strongly scatter incoming radiation.  The signal will 
attenuate passing through significant cloud cover.  The CALIOP is also nadir-pointing and 
leaves a smaller effective footprint than CPR but is more often sampled [1, 3].  Similarly 
to the CPR, the CALIOP system measures the lidar backscatter as a function of altitude. 

The CPR and CALIOP systems provide symbiotic measurements of clouds and water 
vertical layers in the earth’s atmosphere.  The CALIOP, operating on the visible and near-
infrared frequencies, is more sensitive to cloud layers than the penetrating CPR, which can 
measure vertically deep clouds.  CloudSat’s CPR cannot accurately detect hydrometeors 
below 1 km.  CloudSat researchers Gerald Mace and Qiuqing Zhang identify the following 
technical limitation of the combined instruments: clouds below optically thick clouds might 
be missed when they are weakly reflective or under 1 km in height [3]. 

Since the CPR and CALIOP systems only sample at nadir, persistent gaps on the 
surface of the earth remain unmeasured by the combined systems.  Figure 4-2 depicts the 
ground trace of an ensemble of CloudSat orbits.  The sun-synchronous orbit of the A-train 
is designed to repeat its “ground track” every 16 days; of the 233 typical ground tracks for 
each full 16-day orbit, 16 that pass through North Korea are shown.  Over 1,000 unique 
orbits are depicted in the figure, but they can clearly be organized into 16 typical orbits, 8 
red and 8 blue. 

The CloudSat project provides post-processed products of clouds’ optical and 
physical properties.  These products include the raw, backscattered radar power as a 
function of elevation (1B-CPR), a geometric grid of cloud locations (2B-GEOPROF, 2B-
GEOPROF-LIDAR), an identification of cloud types (2B-CLDCLASS-LIDAR), cloud 
optical depth (2B-TAU), and cloud liquid and ice water content (2B-CWC-RVOD) among 
other scientific products.  The “-LIDAR” suffix indicates that CALIOP data are combined 
with the CPR to produce the product.  All products are free to download from Colorado 
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State’s website (http://www.cloudsat.cira.colostate.edu/data-products), with scientific 
publications and technical details for each product provided. 

 

 
Figure 4-2.  Ground Tracks of 1396 CloudSat Orbits that Pass Near North Korea 

Orbits heading northbound and passing North Korea in the afternoon are marked red, and those heading 
southbound in the early morning are marked blue.  The orbits are grouped into 16 nominally identical paths, 
easily identified in the graph as thick lines. 

 

We used the dataset recording a geometric grid of clouds locations, 2B-GEOPROF- 
LIDAR, for the first case study presented in this report (Section 5.A).  Figure 4-3 depicts a 
sample granule of data taken from a single orbit of the A-train.  Each location in the grid 
is marked with a “cloud fraction,” a value between 0 and 1 that denotes the fractional 
presence of a hydrometeor (rain or cloud) using information from both CloudSat and 
CALIOP.  CloudSat’s algorithm for determining the presence of a cloud is based upon 
comparing the radar backscattering power (using the radar equation) to the noise 
background.1  

The combined radar-lidar products maintained by CloudSat provide a view of the 
vertical profile of clouds in the earth’s atmosphere.  The main weaknesses to this dataset 
are the persistent gaps depicted in Figure 4-2, the long revisit time, and the relatively small 
geographical footprint cross-path (approximately 1 km).  These data provide a two-
dimensional view: the dimension along the path of the satellite and the vertical dimension.  
The unique accuracy and penetrating power of the two pieces of equipment thus provides 

                                                 
1 For the primary academic publications on the product, see Marchand et al. [4] and Mace and Zhang 

2014 [3], and for technical details on the algorithm, see CloudSat’s technical manual for the 2B-
GEOPROF and 2B-GEOPROF-LIDAR products on their website. 

http://www.cloudsat.cira.colostate.edu/data-
http://www.cloudsat.cira.colostate.edu/data-
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“the first measure of global cloud vertical structure that is not limited by the presence of 
optically thick layers near the tops of cloudy columns” [3]. 

 

 
Figure 4-3.  Sample Granule from 2B-GEOPROF-LIDAR Product: Clouds Detected by the 

Combined CloudSat and CALIPSO System, along an Orbit near Kujang, North Korea 
X-axis denotes distance on plane of the earth along the path of the satellite, with zero being the minimum 
distance on the track from Kujang (39.9 ºN, 126.25 ºE).  Y-axis denotes elevation above mean sea level.  
Yellow shading denotes clouds; blue shading, open sky; and any color in-between, cloud volume fraction. 

B. MODIS 
NASA’s MODIS is housed on the satellites of Aqua and Terra.  The Aqua satellite 

orbits in the “A-train” constellation; the Terra satellite performs a very similar sun-
synchronous orbit, crossing the equator northbound at about 10:30 p.m. and southbound at 
10:30 a.m. local time.  MODIS acquires data using passive sensors (detecting natural 
radiation) operating on 36 spectral bands observing up to ± 55º from nadir, with a spatial 
resolution of 250 meters, 500 meters, and 1 km along and across the satellite path at nadir.  
Because of the observational zenith angle, this resolution is about a factor of five coarser 
at angles farthest from nadir.  The two instruments each completely measure the earth’s 
surface every 1 to 2 days. 

MODIS’s CloudMask product provides results from a series of spectral tests designed 
to detect clouds.  The product contains results from 14 spectral bands, four of which are 
directly used to detect the presence of a cloud.  The remaining spectral tests are leveraged 
by the cloud detection algorithm to determine an appropriate confidence level given the 
particular situation (the presence of sun-glint for example).  Through this algorithm, the 
MODIS science team provides a best estimate on whether or not a cloud was detected at a 
particular location and their confidence in that detection.  (For the case studies presented 
in this report, if the MODIS science team was 66 percent sure of cloud-free sky, we 
assumed no cloud was present.  The most common confidences in detection are above 95 
percent.  Robert Wood et al. found their analysis on clouds’ horizontal distributions using 
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this dataset were consistent regardless of whether or not they interpreted uncertain pixels 
as being cloudy or clear [5].) 

Figure 4-4 displays a granule of CloudMask data from 17 January 2014, depicting the 
clouds north of Japan.  Because of the high speed of the orbiting satellite, the clouds 
pictured in Figure 4-4 are imaged minutes apart. 

 

 
Figure 4-4.  Clouds Detected by MODIS North of Japan on 17 January 2014 

Yellow denotes clouds; blue, open water; and green, open ground.  Notice the fine spatial structure captured 
by MODIS, as well as the prevalence of large, connected cloudy regions. 

 

MODIS’s dataset provides standardized, high-quality, and high-resolution data of 
historical weather patterns anywhere on the globe.  Because of its importance in informing 
climate modeling, the quality and consistency of the MODIS dataset is a continuing focus 
of MODIS’s science team.  The CloudMask algorithm was validated in 1998 in a case 
study [6], and in a recent study, the global MODIS cloud dataset compared favorably with 
other independently gathered satellite cloud databases [7].  As mentioned above, for each 
CloudMask datum, the MODIS team documents its confidence in quality of the data, cross-
validating spectral tests and considering factors such as the prevalence of sun glint or snow.  
This transparency allows the user to control and document the desired level of confidence 
in studies based upon the MODIS dataset. 

The MODIS global cloud database provides much greater spatial coverage than the 
CloudSat database.  The revisit time for a location is much shorter as a result.  However, 
MODIS’s database is still a two-dimensional view: the dimension along the path of the 
satellite and the dimension across the path.  Although MODIS estimates the cloud top 
height using CO2 slicing [8], we have not incorporated this information into our analysis 
since it provides a rough and incomplete picture of cloud’s vertical structure.  The MODIS 
CloudMask dataset’s greatest strengths are the planar spatial correlation of clouds and the 
sheer quantity of data for any location in the world.  
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5. Case Studies 

A. Estimating PCFLOS Using CloudSat and CALIPSO 
In the summer of 2015, we explored how the viewing angle affects the probability of 

cloud-free line of sight.  This work was conducted for the Global Hawk Program Office.1  
As mentioned in Chapter 3, the decrease in visibility through a scattered cloud field is a 
well-explored effect, with a history of experimental and modeling work in the defense 
community.  A past study of probability of cloud-free line of sight over the globe by 
CloudSat researcher Don Reinke drew our attention to the CloudSat database and the 
unique vertical profiling it provides [2].  We used this global study as motivation for our 
own detailed analysis of PCFLOS at four separate geographical locations. 

Don Reinke’s study estimates PCFLOS using a line of sight calculation on a series of 
geometric grids of clouds (the 2-B GEOPROF dataset).  The details of his calculation and 
the construction of a probability from a series of observations can be found in a proceedings 
paper [2].  While it is well established in the literature that cloud-free line of sight decreases 
with viewing angle [3-7], PCFLOS as a function of viewing angle reported in this dataset 
is typically non-monotonic.  (We suspect that sampling issues led to this result, potentially 
resulting from averaging along lines of sight both in the forward and backward direction 
of the path of the satellite.)  One major motivation for performing our own analysis of the 
CloudSat database was to rectify this inconsistency with the literature. 

Using sets of geometrically gridded clouds, or snapshots of weather, at four separate 
geographical locations, we designed a line-of-sight algorithm to identify the frequency of 
cloud blockages.  Appendix A details the algorithm and its modeling assumptions.  The 
result of the algorithm is an estimate for PCFLOS, calculated in a similar manner to Eq. 3-
3 and defined as a function of season, day or night, altitude of observer, and viewing angle 
(angle off zenith).  Table 5-1 summarizes this parameter space. 

Table 5-1.  Parameter Space of the PCFLOS Metric Calculated for this Case Study 

Param Season Day, Night  Altitude of Obs. Viewing Angle 

Domain 

Winter (DJF), 
Spring (MAM), 
Summer (JJA), 

Fall (SON) 

1:30 am, 
1:30 pm 

1 km to 25 km, 1 
km steps 0° to 80°, 5 steps 

PCFLOS was calculated using a line-of-sight algorithm for four locations of interest in the world.  The data 
used in this study came from CloudSat’s 2B-GEOPROF-Lidar product, with data spanning 6 calendar years 
(2006-2011). 

                                                 
1 See previous IDA study [1]. 
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Using approximately 5 years of data from Colorado State’s CloudSat project, 
stretching from 2006 to 2011, we can estimate PCFLOS anywhere in the globe.  We 
selected four particular locations, areas of interest to the U.S. Department of Defense, to 
demonstrate the information we can extract from this procedure: Kujang, North Korea; 
Donetsk, Ukraine; Qom, Iran; and Maradah, Libya.  While each country was selected 
because of geopolitics, the particular locations in each country are near a crossing point of 
typical northbound and southbound orbits (see Figure 4-2 and Radha Venkat’s 2013 study 
[8]).  By selecting a target near this crossing point, we increase the quantity of data 
available for the study and decrease the distance between the satellite tracks of the orbits.  
Only those orbits that passed within 25 km of the targets were used in the study. 

1. Study of Clouds Over Kujang, North Korea 
Figure 5-1 depicts the seasonal variation in PCFLOS at nadir of an observer over a 

range of altitudes at a specific location in North Korea. 
 

 
Figure 5-1.  PCFLOS vs Altitude of Observer at Nadir: Seasonal Variation Near Kujang, 

North Korea (39.9 °N, 126.25 °E) 
Observations taken from CloudSat’s GEOPROF-Lidar database [10], using 84 individual observations over 3 
years within 20 km of target.  Fall tends to be the clearest season.  Low-lying clouds are very common in 
winter, reflected in the low PCFLOS values near 3 km.  Notice that above 13 km PCFLOS remains constant, 
reflecting that clouds are not observed at these altitudes. 

 

With an observer directly above the target at nadir, PCFLOS will by definition 
decrease as a function of altitude; a cloud at a certain altitude will block line of sight for all 
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observers above it.  The rate of change of PCFLOS with altitude is related to the presence 
of typical cloud layers at that location.  For example, the upper left panel of Figure 5-1 
depicts the dependence of PCFLOS on altitude for the 3 winter months of December, 
January, and February.  The curve represents an unweighted average of cloud-free line of 
sight determinations on approximately 20 separate cloudy scenes.  In the winter, PCFLOS 
dramatically decreases around 3 km in altitude, reflecting that low-altitude clouds are 
common in the winter.  The lower right panel of the figure, corresponding to fall, displays 
a PCFLOS curve with a more consistent slope, indicating that in the fall, clouds are 
approximately uniformly common from altitudes of 1 km to 10 km. 

Figure 5-2 depicts the angular dependency of PCFLOS near Kujang, North Korea.  
Our results indicate that altitude from 1 km to 12 km is a far more important parameter 
than angle of observation.  The angle of observation has negligible effect between 0° and 
45°, and at most appears to have a maximum effect of decreasing PCFLOS by 10 percent 
at lower altitudes and high angles. 

 

 
Figure 5-2.  PCFLOS vs. Angle of Observation Near Kujang, North Korea  

(39.9 °N, 126.25 °E) 
Observations taken from CloudSat’s GEOPROF-Lidar database [10], using 84 individual observations over 3 
years within 25 km of target.  The two curves for PCFLOS vs. angle for altitudes of 14 km and 19 km lie on 
top of each other, reflecting that no clouds were detected between those altitudes.  Observers were placed 
along a 50-km stretch of satellite track close to the target. 

 

The other three locations studied demonstrated similar dependence of PCFLOS on 
viewing angle.  Clearly altitude is a more important parameter for visibility than angle.  
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Figure 5-3 depicts the angular dependency of PCFLOS near Kujang, North Korea; 
Donetsk, Ukraine; Maradah, Libya; and Qom, Iran.  The weak dependence of PCFLOS on 
viewing angle was surprising to us at first (the other three locations studied demonstrated 
similar dependence).  Previous studies of actual cloudy fields have found stronger 
dependence on viewing angle either for particular cloudy fields or as functions of cloud 
fraction [4-8].  We believe the reason for us finding such dependency is twofold: the 
resolution of the CPR does not resolve gaps near or below 1 km in length, and we did not 
restrict our study to partially cloudy weather. 

 

 
Figure 5-3.  PCFLOS vs. Angle of Observation for Altitudes of 1 km, 7km, and 15 km for 

four Separate Locations: Kujang, North Korea (39.9 °N, 126.25 °E); Donetsk, Ukraine (48.5 
°N, 38 °E); Maradah, Libya (29.2 °N, 19.5 °E); and Qom, Iran (34.6 °N, 50.5 °E) 

Observations taken from CloudSat’s GEOPROF-Lidar database [9], using observations over 5 years within 
25 km of each target.  Observers were placed along a 50-km stretch of satellite track close to the target. 

 

Addressing the first point, the horizontal resolution of CloudSat’s CPR is about 1.1 
km.  Thus gaps in the clouds around or below this length will not be resolved.  The shutter 
effect of clouds discussed in Section 3.B will only yield variation in PCFLOS with angle 
if the gaps are well resolved.  In 2013 Nico Trebbin performed a statistical analysis of gaps 
in clouds using measurements from the active lidar sensor onboard the satellite Calipso 
(see Section 4.A) with a horizontal resolution of 333 meters [10].  Based upon a full year 
of data with 14 million cloud gaps, Trebbin calculated a mean cloud gap of 7.41 km and a 
median of about 1 km.  Thus, we expect CloudSat resolves around half the gaps between 
clouds that are large enough to be operationally relevant. 

Concerning the second point, since we did not restrict our study to cumulus-type 
clouds, the preponderance of large, connected clouds will lessen angular effects.  
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Restricting our averaging to instances of weather with partly cloudy coverage would most 
likely increase the dependency of PCFLOS on angle. 

Figures 5-1 through 5-3 depict the chance of a cloud blockage to a line of sight 
between an observer and the target.  Multiple cloud layers could obstruct the view.  Using 
CloudSat’s cloud-detection and identification algorithm contained in product 2B-
CLDCLASS-Lidar,2 we can characterize these cloud obstructions.  CloudSat sorts clouds 
into eight types: cumulus (Cu), stratocumulus (Sc), stratus (St), altocumulus (Ac), 
altostratus (As), nimbostratus (Ns), cirrus/cirrostratus (high cloud), and deep convective 
clouds.  Each of these cloud types are, in part, defined by CloudSat to have a characteristic 
length scale; cumulus clouds have horizontal dimensions around 1 km and nimbostratus 
clouds range from 50 to 1,000 km in length.  Figure 5-4 depicts the probability of 
occurrence for each observed cloud types near Kujang, North Korea. 

 

 
Figure 5-4.  Probability of Cloud Occurrence, Sorted By Type Near Kujang, North Korea  

(39.9 ºN, 126.25 ºE) 
Observations taken from CloudSat’s CLDCLASS-Lidar database [11], using 73 individual observations over 3 
years within 25 km of target.  Clouds are correlated by altitude.  The size of clouds obstructing Kujang varies 
from small cumulus clouds to giant nimbostratus clouds (deep convective clouds not shown). 

2. Weaknesses and Strengths of the Study 
The limitations of the PCFLOS metric calculated in this study arise primarily as a 

result of limitations of the CloudSat database instead of our analysis of the database.  As 
discussed in Section 4.A, CloudSat does not completely image the globe; the instances of 
weather that are associated with one of the four locations explored in this case study are 
located only within 25 km of each other.  Thus we are capturing the characteristic weather 
of each location and assuming that local variability in PCFLOS is marginal.  In addition, 
clouds are only resolved to 1 km, and smaller clouds and clouds below 1 km in height are 

                                                 
2 See Sassen, Wang, and Liu 2008 [11]. 
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liable to be missed.  As discussed in the previous subsection, not resolving the gaps 
between clouds will limit some dependency of PCFLOS on viewing angle.  Also, the 
observations from CloudSat are restricted to two times of day; daily variability in cloud 
cover cannot be captured. 

The matrix of clouds used in the study represents a 2D picture of a 3D world; the 
angle of observation only represents the direction along the path of the satellite.  We suspect 
that PCFLOS versus viewing angle will vary with respect to bearing.  It is probable that 
certain areas of the world have clouds organized in characteristic directions, but we found 
little variation with respect to viewing angle in our four locations cases.  In addition, Wood 
et al. found that the statistical properties of cloud sizes do not vary when measuring along-
track as opposed to across-track [12].  Wood et al. were using MODIS’s CloudMask 
(discussed in Section 4.B), and both satellites that house the MODIS equipment operate on 
similar orbit paths as CloudSat and CALIOP.  As a counterpoint, in our study of clouds’ 
spatial distributions in the Baltic, we found noticeable dependence of clouds’ spatial 
distributions on bearing (see Section 5.C for details).  Potentially, additional studies could 
combine information from both methods discussed in this CloudSat-based study and the 
study on the Baltic using MODIS’s dataset, providing a more complete measurement of 
3D cloud fields. 

Despite these weaknesses, the probability of cloud-free line of sight derived in this 
case study allows us to represent typical cloud patterns that occur at any location in the 
world.  The information we can extract accurately quantifies the vertical structure of 
clouds, allowing us to predict typical cloud decks’ elevations and the expected change of 
visibility with altitude.  In addition, we can group expected cloud blockages into 
frequencies of occurrence for specific cloud types separating monsoons from fair-weather 
cumulus clouds. 

B. Cloud Modeling in ISEE Using MODIS 
To analyze the effect of environmental conditions on imagery collection, we 

developed a cloud modeling addition to our ISEE model [13].  ISEE simulates imagery 
collection at the mission level, modeling aspects of the exercise including, but not limited 
to, sensors, targets, atmospherics, geography, and scheduling.  The goal of our cloud-model 
addition was to estimate the role clouds have on inhibiting information extraction from 
multiple targets with multiple sensors on the time scale of hours on length scales up to 
hundreds of kilometers. 

The new cloud model is designed to take two-dimensional cloud grids from NASA’s 
MODIS CloudMask dataset.  These grids specify in a roughly 1 km × 1 km grid the location 
of clouds at a given instant on a particular day.  This information is used in ISEE’s line-of-
sight calculation, with the presence of a cloud in that line of sight assumed to completely 
obscure information extraction.  By using an ensemble of actual weather patterns and 
running ISEE multiple times with different grids of clouds, we estimate the degree to which 
clouds might hamper imagery collection. 
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1. Details of Cloud Model 
Using historical weather patterns captured by NASA’s MODIS, we performed an 

ensemble of simulations to determine the effect of cloud cover on our imagery collection 
model ISEE.  Figure 4-4 depicts one such “snapshot” of clouds north of Japan.  Each 
instance of weather extracted from the MODIS dataset provides realistic operating 
conditions.  By running an ensemble of simulations, we can determine how the model is 
affected by particularly cloudy, clear, and typical weather over the entire country.  Thus, 
we can determine not only the average effect of clouds, but also the best and worst case 
effects. 

Each cloudy scene extracted from MODIS covers the entire country in question.  The 
MODIS dataset is packaged into granules corresponding to an orbit of the satellite.  
Restricting the data to the country in question, we create a spatial grid that records for each 
grid point whether or not a cloud is present.  The resolution of the dataset is approximately 
1 km × 1 km directly underneath the satellite’s path, and up to 5 km in width at the edges 
of the grid.  At the initialization of the simulation, we associate each target with the nearest 
cloud grid point and record whether a cloud is present.  If a cloud is present, we consider 
that target blocked, and no imagery collection can occur.  As ISEE runs, we simulate the 
movement of clouds via wind using the static turbulence model: wind translates the clouds 
without changing their relationship to each other.  Each time the wind translates the clouds, 
each target is reassociated with the nearest cloud grid point.  Thus, the average in time is 
the same as the instantaneous spatial average. 

Our strategy for cloud modeling prioritizes spatial fidelity.  MODIS provides an 
accurate estimation of which targets are blocked at a particular time.  Thus, we can estimate 
not only the chance of a target being blocked, but the chance that another target is blocked 
concurrently.  This has obvious implications for simultaneous tracking of multiple targets 
in a geographical region.  For instance, by considering dozens of instances of weather over 
the country of interest in February, we have an estimate for the likelihood of practically 
full cloud cover over the country and the information that can be extracted (if any) under 
those circumstances. 

2. Justifications for Modeling Procedure 
For this case study, we did not use a data-based estimate of PCFLOS to generate 

predictions.  The imagery collection simulation in ISEE conducts multiple near-
simultaneous observations of targets that could be very close or very far away.  Thus, 
weather affecting each observation is correlated.  For example, say the probability that a 
particular location is cloud covered is 50 percent and the probability that a location 2 km 
away is covered is also 50 percent.  However, to simulate imagery collection, the existence 
of a cloud blockage must be determined.  Given a cloud blockage at one location, there is 
a higher than 50-percent chance that the second location is blocked by clouds.  This is due 
to the fact that clouds are spatially correlated.  The MODIS dataset provides excellent 
spatial distributions of clouds on the earth’s plane, capturing their spatial correlation 
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explicitly to an accuracy of about 1 km.  The CloudMask product is nominally available 
for spatial resolutions of 250 meters, 1,000 meters, and 5,000 meters.  We selected the 
1,000-meter spatial resolution for this study because it is fine enough to resolve gaps 
between clouds but is still computationally manageable. 

The nadir-pointing satellites of CALIPSO and CloudSat provide detailed 
measurements of cloud thickness, elevation, and profile.  However, they image only a 1-
km wide strip of the earth’s surface during orbit.  The resulting cloud datasets are well 
resolved in the vertical direction and in the direction of the orbiting satellite, but provide 
no information in the direction perpendicular to the satellite path.  MODIS provides a two-
dimensional portrait of the clouds in the plane of the earth’s surface, although it contains 
little information on cloud’s vertical profiles.  We identified the plane of the earth’s surface 
as the most important dimensions to capture clouds in ISEE. 

Due to the high speed of the orbiting satellite (the Aqua satellite completes an orbit 
about every 99 minutes), clouds within hundreds of kilometers are detected by MODIS 
within minutes of each other.  Since the geographical area we wish to simulate has 
dimensions of hundreds of kilometers, we treat the detected clouds as existing 
simultaneously.  A location is within the satellite’s field of regard (± 55º from nadir) every 
couple of days, and thus the time resolution of the dataset is much poorer than the spatial 
resolution. 

The modeling strategy of ISEE with the cloud model addition is not to represent the 
real world with the highest fidelity possible, but rather to model a scenario with fidelity 
high enough to allow for meaningful comparisons between equipment, procedures, and 
other variables.  Our method of introducing time dynamics into our cloud field is far from 
ideal, but it allows us to capture the quantitative effects of cloud coverage and gaps in cloud 
coverage on a large scale.  We opted to sacrifice time-resolution for spatial resolution and 
used the static-turbulence model [14], which was discussed at the beginning of Section 3.B.  
This holds that spatial correlation is equivalent to time-correlation; as time passes, clouds 
translate in space.  The longer the simulation runs, the less accurate the cloud simulation 
becomes.  We care most about capturing the breaks in clouds and estimating how often and 
how many targets will be covered by clouds at a given time. 

C. Cloud Distributions in the Baltic Region Using MODIS 
In the winter of 2016, the Office of Cost Assessment and Program Evaluation (CAPE) 

requested that IDA perform a study on intelligence, surveillance, and reconnaissance (ISR) 
systems when applied to the Baltic region of Europe.  Of particular interest was the ability 
of these systems to monitor U.S. and allied ground forces in the region.  Cloud cover plays 
a role in remote surveillance, as EO/IR sensors are incapable of seeing through clouds.  To 
explore the role of cloud cover in this scenario, we identified the following topics of 
analysis for the study: the change of average cloud coverage with month and location and 
the likelihood of multiple locations being covered in clouds simultaneously.  To address 
these questions, we decided to perform an analysis of cloud distributions using MODIS’s 
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CloudMask dataset [15].  This work leveraged the experience gained in performing the 
previous two case studies. 

1. Processing of the Dataset 
The four calendar years of 2012-2015 were selected to form the observational basis 

for the study.  We extracted 937 cloudy scenes represented in MODIS’s CloudMask 
product, corresponding to about 80 granules of data per month.  With such an abundance 
of data, we could generate good statistics on inter- and intra-monthly variability of cloud 
cover. 

The “Baltic region” used in this study is pictured in Figure 5-5, originally defined as 
extending from 20°  to 30°  in longitude and 53° to 60° in latitude. 

 

`  
Figure 5-5.  Region of the Earth Considered in This Study 

Red dots denote the four corners of a rectangle in longitude and latitude, with the interior of 
this rectangle denoting the domain of the analysis. 

 

Although the region is rectangular in terms of degrees, since the surface of the earth 
is a sphere, the region does not map perfectly to an evenly spaced rectangular grid.  
Notably, the east-west distance along the surface of the earth from one end to the other at 
the most southerly point is 670 km and at the most northerly point 560 km.  The north-
south distance along lines of longitude is 778 km.  The autocorrelation analysis of clouds 
placed on a grid, which is presented later in this section, requires a regularly spaced grid.  
In such a grid, the distance between two pairs of indices depends only upon the relative 
difference of the indices.  To convert our rectangular in degree grid to a rectangular in 
distance grid, we designed a simple coordinate projection.  The new rectangular distance 
grid is 560 km × 778 km, obtained by removing two small triangles in the lower left and 
lower right of the region in Figure 5-5, and by changing the region from an apparent 
pentagon to an apparent rectangle.  The new grid has an equal spacing of 750 meters in 
each direction.  The binary matrix of clouds from MODIS’s CloudMask product originally 
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defined in terms of degrees was interpolated onto the new grid using a nearest neighbor 
algorithm. 

2. Average Cloud Cover by Month and Location 
We define the cloud fraction over the Baltic region as the fraction of the region 

covered in clouds.  The median of this metric captures the typical amount that the Baltic is 
covered in clouds at any given time, as measured using this sample dataset.  The left panel 
of Figure 5-6 depicts the distribution of this metric over the full dataset; the right panel 
depicts the monthly statistics of this metric, plotting the mean and 80-percent confidence 
bounds. 

 

 
Figure 5-6.  Amount the Baltic Is Covered in Clouds at any Given Time  

(Left) Distribution of cloud fraction of the Baltic region for the full dataset considered in this study.  The dashed 
black line denotes the mean cloud fraction of 0.63.  (Right) Cloud fraction of the Baltic region versus month of 
the year.  The mean cloud fraction is marked as a blue dot, with the upper and lower bounds indicating the 
middle 80 percent of the distribution.  The statistics for each month were calculated using about 80 samples. 

 

Figure 5-6 captures the variability of the cloud fraction in the Baltics.  The region is 
more often covered in clouds than not, since the mean (and distribution generally) lies 
above a cloud fraction of 50 percent.  During the winter months, clouds are especially 
common, with more than 95 percent of the region being covered in clouds more than 10 
percent of the time.  The variability in the cloud cover is quite striking, especially during 
the summer and spring months.  This communicates a fact that we already intuitively know: 
at any given time of the year, there is a reasonable chance that it will be cloudy and there 
is a reasonable chance that it will be clear.  This variability holds true even on scales as 
large as the Baltic region [12, 14]. 

Instead of averaging the occurrence of clouds over a geometric region and observing 
how this changes in time, we can average over time and observe how this changes with 
location.  This time-averaged cloud frequency is depicted in Figure 5-7. 
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Figure 5-7.  Time-Averaged Cloud Fraction of the Baltic Region 

The higher frequency of clouds over the Baltic Sea makes the coast clearly visible.  The inland 
Lake Peipus appears as a dark blob in the upper right of the figure, and it is unknown to us if 
clouds are in fact less common or more difficult to detect over the lake.  The interior of the 
Baltic region varies in time-averaged cloud fraction from around 65 percent to 58 percent. 

 

As visible in Figure 5-7, the variability in time-averaged cloud fraction is rather 
moderate over the land mass of the Baltic region.  This suggests that year-round each land 
region has a similar number of cloudy days.  Interestingly, the CloudMask product is 
sensitive enough to detect the exhaust from a building materials supplier factory in the 
Vaukavsky District of Belarus (53.27 °N, 24.44 °E).  The smoke (aerosols) leaving the 
factory apparently is detected as clouds, leading to a local time-averaged cloud fraction of 
near 0.8, about 0.2 greater than the surrounding area. 

3. Spatial Correlation of Clouds 
To quantify the tendency of clouds to cover vast swathes of land concurrently, we 

used the autocovariance metric.  The autocovariance of a function measures its self-
similarity with respect to change in independent variables.  In our case, the function is the 
binary cloud matrix and the independent variables are the cardinal directions of east and 
north.  We can use the autocovariance to determine the average change in cloud coverage 
with respect to distance in any planar direction.  (See Appendix B for details of our 
analysis.) 

Table 5-2 displays Psame, the chance of observing the same weather (cloudy or clear) 
a displaced distance from one’s location, averaged over the years of 2012-2015.  In the 
table, the second column lists the distance corresponding to each chance, averaged over all 
directions.  The minimum and maximum distances are given in the third and fourth 
columns with absolute bearing listed in degrees.  Clouds tend to be the most self-similar in 
the northeastern/southwestern direction, as evident in the bearings listed in the table.  
Figure 5-8 presents the same data in graphical form.  The x-axis represents shifts along the 
cardinal directions of east (positive shift) and west (negative shift).  The y-axis represents 
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shifts along the cardinal direction of north.  Psame is symmetric with respect to the origin: 
comparing locations northwest is equivalent to comparing locations southeast.  At zero 
distance, the weather is completely self-similar, and Psame = 1.  As distance increases, the 
weather (cloud or clear) will be more and more likely to be different.  Since clouds tend to 
exist in clusters, Psame decreases rather slowly as the distance increases.  Even at distances 
of 200 km away, the likelihood of having the same “weather” is still around 70 percent. 

 

Table 5-2.  Chance of Observing the Same Weather  
(Cloudy or Clear) a Displaced Distance from a  

Location in the Baltic Region 

Chance of 
Similarity  

(%) 

Mean 
Distance 

(km) 

Maximum 
Distance 

(km) 

Minimum 
Distance 

(km) 

100 0 0 0 
90 5.35 5.56 (66°) 5.1 (-43°) 
80 51.38 53.78 (25°) 48.32 (-55°) 
66 295.08 >300 (66°) 260.86 (-67) 
50 > 300 >300 >300  

 
 

 
Figure 5-8.  Chance of Observing the Same Weather (Cloudy or Clear)  

a Displaced Distance from a Location in the Baltic Region 
 

Averaging by month reveals great variability in the clustering of clouds by season.  
Figure 5-8 depicts the average distance (over all directions) for Psame = 90 percent.  For the 
winter seasons, large stratus coverage (or large open sky) most likely dominates, due to the 
higher self-similarity of the weather.  Smaller, cumulus cloud fields are more common in 
the spring and summer, increasing the frequency of gaps in the clouds. 

4. Discussion 
Based upon the analysis presented in this section, we can reach some general 

conclusions on cloud cover over the Baltic.  As evident in Figure 5-6, the fraction of the 
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Baltic region covered in clouds varies more significantly within a month than between 
months, although the winter months tend to be the most cloudy, and the summer months 
the most clear.  Of the 937 pictures of the Baltic, 99.9 percent of the region was covered in 
clouds on the cloudiest day and only 5.5 percent on the clearest day.  We found little spatial 
variability in the time averaged cloud coverage for the interior land regions of the Baltic 
region (see Figure 5-9). 

 

 
Figure 5-9.  Monthly Dependence of Average Distance for Psame = 90 Percent 

Higher distances correspond to larger cloudy and clear regions. 
 

Using the autocovariance metric, we found that weather (cloudy or clear) in the Baltic 
region is quite similar on length scales < 10 km.  Thus, whether blocked by clouds or with 
a clear line of sight, one is very likely to be blocked or have clear line of sight (respectively) 
within distance scales of 10 km away.  This result is consistent with the discussion of 
cloud’s horizontal distributions in Section 2.C, namely that the average piece of cloud tends 
to exist in large clouds over tens of kilometers in length.  Cloud occurrence doesn’t become 
statistically dissimilar until distances of hundreds of kilometers away.  Winter months have 
the largest, most uniform cloud fields and summer months have the most variable cloud 
fields.  However, just like the cloud fraction, the spatial correlation of clouds varies 
significantly between observations in time in a manner probably comparable to the 
variation in the cloud fraction.  We found only weak directional dependence on cloud 
spatial correlation, with clouds being the most self-similar in the northeastern-southwestern 
direction. 
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6. Conclusion and Path Forward 

This report details three case studies utilizing global, open-source, scientific datasets of 
cloud occurrences.  Although not specifically designed for remote-sensing applications, these 
datasets provide high-quality measurements of the earth’s atmosphere anywhere on the globe.  
In characterizing the typical cloud coverage that a geographical location may have in a 
particular season in a particular scenario, we can estimate the extent to which clouds may 
preclude remote sensing over the EO/IR portion of the electromagnetic spectrum. 

Well known to the scientific community are the technical limitations to satellite retrievals 
of clouds’ optical properties.  Satellite observations do not provide measurement of a cloud’s 
optical and physical properties with quality as high as in situ measurements via aircraft or 
balloon.  For example, CloudSat’s calculations of optical depth, liquid water content, and cloud 
type are based upon models derived from in situ measurements and are inferences rather than 
measurements.  However, by using the results of a peer-reviewed detection algorithm for each 
data source, we can confidently estimate how often clouds of some threshold thickness occur 
at a particular location. 

The scientific satellite datasets of CloudSat/CALIOP and MODIS provide measurements 
of the earth’s atmosphere on a global scale.  However, because of the resolution limitations of 
these datasets, one cannot get images of scattered or broken cloud decks as detailed as those 
provided by aircraft or ground observations, such as whole sky imagers [1, 2].  Considering 
the general opacity of clouds, the preponderance of large, connected cloudy regions, and our 
work analyzing the CloudSat/CALIOP and MODIS datasets, the angular dependence of 
PCFLOS is not a factor as critical for remote-sensing applications as altitude, geographical 
location, or season.  (Of course, given a particular cloudy field, it could be an important factor.)  
In addition, we found that the resolution limitations of these datasets can be a benefit because 
the limited resolution makes the datasets smaller and more tractable for our purposes.  

Our team has a few potential modeling directions in which we could go to improve upon 
our ability to assess the frequency of cloud blockages for remote-sensing applications.  The 
scientific datasets used in this report are derived from sun-synchronous satellite observations 
and provide only a snapshot of where the clouds were, not how they move.  Numerical weather 
prediction models such as the Weather Research and Forecasting Model (WRF) can provide 
estimates of how clouds move and develop in time, but these models require significant 
computational power and expertise to operate.  Indeed, the question of how clouds evolve in 
time is much more complicated than the dynamics of a wind field.  Potentially we could use 
the statistics of cloud persistence developed by Lund and Shanklin in 1972 [3].  We are hopeful 
that we can extract more information through parametric studies with known, simple 
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assumptions rather than through more complicated, higher fidelity models with intractable 
assumptions. 

An additional path of work would be merging the datasets of MODIS and 
CloudSat/CALIOP.  MODIS’s CloudMask product places clouds on a plane of the earth’s 
surface without information on height; CloudSat and CALIOP provide a trace through this 
plane, profiling cloud height.  These pictures are complementary, but they provide an 
incomplete picture of clouds over a full 3D region of the earth.  Statistics of spatial correlations 
of the clouds can be calculated easily within each dataset (see Section 5.C).  With further 
assumptions (such as clouds being isotropic in the earth’s plane), we might be able to construct 
a reasonable 3D cloud field based upon these observations.  In so doing, the cloud-blockage 
calculation in ISEE would become an explicit line-of-sight calculation from the observer to the 
target.  However, the technical challenges of constructing a reasonable 3D cloud field and the 
calculation of LOS through a 3D latitude, longitude, and elevation grid are daunting.  Less 
ambitious efforts, such as correlating metrics like average cloud height and average cloud 
spacing, could be fruitful in future studies. 
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Appendix A 
Algorithm for Calculating CFLOS in 2D Grid 

This section details the algorithm we designed to calculate PCFLOS based upon a 
series of two-dimensional cloud grids.  The software used in the analysis was written using 
MATLAB; design decisions of the algorithm reflect the strengths of this coding platform. 

Consider the following objects as inputs.  Define a particular target location T, with a 
well-defined longitude and latitude.  Consider a set of two-dimensional, cloud-fraction 
grids CFi,j , with the column index i of these grids denoting distance along the surface of 
the earth, and the row index j denoting height relative to sea level.  These grids correspond 
to unique satellite orbits.  The grid has regular spacing, 240 meters in the vertical and 1,096 
meters in the horizontal; each index i is associated with the same distance regardless of j, 
but the heights for each column are shifted slightly, with a consistent pattern; thus the 
heights are nearly unique for each pair i, and j.  Each index i is also associated with a 
longitude and latitude and an elevation Gi, which denotes the elevation of the ground.  The 
values of CFi,j are between 0 and 1. 

Now consider a square grid, with roughly the same dimensions as the cloud fractions.  
The target is identified as the lower, center of the grid, corresponding to the origin with 
respect to horizontal distance and height (not elevation).  A set of observers are placed in 
the grid, directly above and to the left of the target.  Each observer is associated with a 
height Hobs and an angle of observation θobs.  A line of sight is constructed between each 
observer and the target.  Both the grid boxes, which the line of sight transverses, and the 
length of the line located in each grid box are calculated.  As such, each observer is 
associated with a set of indices and lengths in the square grid, which will be used for the 
PCFLOS calculation to follow.  (We note that this step of the algorithm was the most 
difficult to design but resulted in a tremendous speed-up in calculation) 

The main calculation of PCFLOS starts by looping through a set of two-dimensional 
cloud grids CFij.  If the minimum distance of the satellite’s ground path is less than some 
critical distance (we selected 25 km), the cloud fraction matrix is fed into the PCFLOS 
algorithm.  This algorithm begins by associating CFi,j with a square grid.  Since the actual 
heights of each vertical column shift slightly, this procedure has a maximum error of 120 
meters in the vertical direction.  Next, looping through observers, PCFLOS is calculated 
for each observer using the following formula: 

 PCFLOSobs = ∏ �1 − CF𝑖𝑖(𝑘𝑘),𝑗𝑗(𝑘𝑘)�
𝐿𝐿(𝑘𝑘)/ℎ

𝑘𝑘  (A-1) 

Here k denotes the index in the set of grid boxes that a line of sight between the observer 
and the target crosses through.  The indices i(k) and j(k) denote the location in the square 
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grid of the indices, and L(k) denotes the length of the line in the box.  The length is 
normalized by the characteristic length h, which we took to be the height of each grid box, 
240 meters. 

Equation A-1 relies upon the interpretation that the chance of clear line of sight to the 
target is the product of the probabilities of seeing through each grid box in between.  Since 
the cloud fractions CFi,j are primarily zeros and ones, practically every box between the 
target and the observer must be clear of clouds.  However, in the event that a box is partially 
filled with clouds, the probability of seeing through the clouds partially filling one box is 
independent of the probability of seeing through another box.  The form of the exponent 
and normalization factor h was chosen in keeping with this interpretation; if the observer 
is directly above the target, the chance of seeing through a partially cloudy grid box is taken 
to be 1 − CF, in keeping with the definition of cloud fraction (see Section 3.B).  As a 
consequence of the exponent, a line of sight that travels through a grid box diagonally with 
a length twice the height of the grid is treated as two separate grid boxes with identical 
cloud fraction and an independent probability of being blocked by clouds. 

Upon completing the calculation of PCFLOS for each observer, the resulting vector 
is stored as a column in a matrix, with an index n.  Since this index is associated with a 
particular orbit of the satellite, any dependency of PCFLOS on time covered in the dataset 
can be extracted.  For example, by averaging PCFLOS with respect to n over all orbits in 
December, January, and February, we can estimate the chance of cloud-free line of sight 
the observers might have in winter. 
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Appendix B 
Using Autocovariance to Measure  
the Spatial Correlation of Clouds 

Autocovariance and autocorrelation are linked concepts and are used interchangeably 
in some contexts.  The autocovariance can be calculated in a continuous form on any 
function or in a discrete form on an array of values.  Here, we will be using the discrete 
form of autocovariance, using the common definition of autocovariance as a truncated 
estimator: 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴Δ𝑖𝑖,Δ𝑖𝑖 = 1
(𝑁𝑁−Δ𝑖𝑖)(𝑀𝑀−Δ𝑗𝑗)

∑ ∑ �𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶𝑖𝑖+Δ𝑖𝑖,𝑗𝑗+Δ𝑗𝑗�𝑀𝑀−Δ𝑗𝑗
𝑗𝑗=1

𝑁𝑁−Δ𝑖𝑖
𝑖𝑖=1  (B-1) 

The autocovariance 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴Δ𝑖𝑖,Δ𝑖𝑖 is a matrix, defined with respect to non-negative change in 
index ∆i in the eastern direction, and non-negative change in index ∆j in the northern 
direction.  Since our matrix of clouds CF are defined on a regularly spaced grid, these 
changes in indices correspond to changes in distances.  Because of the edges of the domain, 
the autocovariance is defined from a distance of zero to the domain length.  The 
autocovariance is termed “truncated” since the indices only extend to the edge of the grid 
and do not wrap around to the other side as in a circular domain.  Thus, locations in the 
center of the Baltic region are going to more heavily influence the autocovariance 
calculation, since they will be compared with locations to their left and their right (or top 
and bottom), but locations at the edges will only be compared with those in the direction 
nearer to the center. 

To quickly calculate autocovariance, we used an equivalent definition to Eq. B-1, 
defined using discrete Fourier transforms.  This definition uses zero padding to temporarily 
increase the size of the domain [1].  Many common definitions for autocovariance 
normalize the target function or array by its mean.  We did not normalize for reasons that 
will be discussed in the following paragraphs. 

To help clarify the following discussion, we will use the subscript notation to identify 
the indices of a matrix and a superscript to describe the object.  For example, ACov∆i,∆j 
denotes the value of matrix 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 at indices ∆i, ∆j. 

Equation B-1 calculates the average of a product of two terms: the presence of clouds 
at one location versus the presence of clouds at a displaced location.  Four separate events 
could occur; index pair i, j and i + ∆i, j + ∆j could each be cloudy or clear.  For each pair 
of displacement lengths ∆i, ∆j, define the number of occurrences for each of the four cases 



 

B-4 

as KC,C, KC,O, KO,C, and KO,O, with C denoting clouds and O denoting clear sky.  In addition, 
associate each number of occurrence with an observed likelihood P, where, 

 P ≡ 𝐾𝐾
(𝑁𝑁 − Δ𝑖𝑖)(𝑀𝑀 − Δ𝑗𝑗)�  (B-2) 

(Note we have dropped the superscript denoting displacement length for brevity).  The 
above equation defines the probability of an event as the frequency of occurrences over the 
total number of occurrences.  One of these four results must occur for each pair calculated 
in Eq. B-1, and thus, 

 𝑃𝑃𝐶𝐶,𝐶𝐶 + 𝑃𝑃𝐶𝐶,𝑂𝑂 + 𝑃𝑃𝑂𝑂,𝐶𝐶 + 𝑃𝑃𝑂𝑂,𝑂𝑂 = 1 (B-3) 

Finding the probability P for each of the four cases is our goal in determining the 
local spatial correlation of clouds.  However, using an algorithm to go through the matrix, 
and count KC,C, KC,O, KO,C, and KO,O for each pair of displacement lengths would be tootime 
consuming, and a limiting factor for matrices of this size.  (Four indices must be iterated 
through to compare locations in a 2D matrix).  However, we can use the autocovariance, 
defined using Fourier transforms and calculated using the fast-Fourier transform algorithm, 
to vastly speed up the calculation. 

By defining our cloud fraction matrix CF to be equal to 1 given the presence of clouds 
and equal to 0 given the absence of clouds, the product of two locations will be zero if any 
of the two locations is clear, and one if they are both cloudy.  Thus only both clouds being 
present yield a value of 1 in the double sum of Eq. B-1, and 𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑃𝑃𝐶𝐶,𝐶𝐶.  Using Eq. B-3, 
we have 1 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑃𝑃𝐶𝐶,𝑂𝑂 + 𝑃𝑃𝑂𝑂,𝐶𝐶 + 𝑃𝑃𝑂𝑂,𝑂𝑂; we cannot distinguish the cases of no clouds being 
present from both cloudy and clear. 

To distinguish between those cases, define a new cloud fraction matrix CF* equal to 
1 when clouds are present and -1 instead of 0 when clouds are not present.  If only one of 
the locations is covered in clouds, the product will yield -1.  The autocovariance will be an 
average of the two cases.  It follows that 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴∗ = 2Psame − 1, and Pdiff  = (1 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴∗)/2, 
where Psame = PC,C + PO,O and Pdiff = PC,O + PO,C. 

Combining the equations from both cloud fraction matrices, we have, 

 𝑃𝑃𝐶𝐶,𝐶𝐶 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (B-4) 

 𝑃𝑃𝐶𝐶,𝑂𝑂 + 𝑃𝑃𝑂𝑂,𝐶𝐶 + 𝑃𝑃𝑂𝑂,𝑂𝑂 = 1 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (B-5) 

 2𝑃𝑃𝐶𝐶,𝐶𝐶 + 2𝑃𝑃𝑂𝑂,𝑂𝑂 = 1 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴∗ (B-6) 

 𝑃𝑃𝐶𝐶,𝑂𝑂 + 𝑃𝑃𝑂𝑂,𝐶𝐶 = (1 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴∗)
2�  (B-7) 

where 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴∗ are known.  Solving the system of equations yields, 

 𝑃𝑃𝑂𝑂,𝑂𝑂 = 1
2� − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴∗

2�  (B-8) 
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 𝑃𝑃𝐶𝐶,𝑂𝑂 + 𝑃𝑃𝑂𝑂,𝐶𝐶 = (1 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴∗)
2�  (B-9) 

Here, each equation holds for each pair of displacement lengths ∆i, ∆j.  Since multiplication 
is associative, we cannot distinguish PO,C from PC,O, and there is no motivation to do so in 
this study. 

To summarize, we can use the autocorrelation function to calculate the frequency of 
concurrent cloud coverage over the Baltic.  This frequency is calculated for a single cloud 
scene, and can be averaged over an ensemble of cloud scenes. 

Strictly speaking, cloud occurrence over the Baltic is not a second-order stationary 
process; the autocovariance might vary with respect to space and time.  If we were to 
separate the Baltic into four smaller regions, the resulting autocovariances would be 
different for each.  For this analysis, we average over the entire region and over time. 
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Appendix E 
Acronyms and Abbreviations 

Ac altocumulus 
As altostratus 
 
CALIOP cloud-aerosol lidar with orthogonal polarization 
CAPE Cost Assessment and Program Evaluation 
CF cloud fraction 
CFLOS cloud-free line-of-sight 
CPR Cloud Profiling Radar 
Cu cumulus 
 
EO electro-optical 
 
IDA Institute for Defense Analyses 
IR infrared 
ISEE IDA Sensing Effectiveness Evaluator 
 
lidar light detection and ranging 
 
MODIS Moderate Resolution Imaging Spectroradiometer 
 
NASA National Aeronautical and Space Administration 
Ns nimbostratus 
 
PCFLOS probability of cloud-free line of sight 
 
Sc stratocumulus 
St stratus 
 
WRF Weather Research and Forecasting 
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