
I N S T I T U T E F O R D E F E N S E A N A L Y S E S

Cybersecurity and DoD System
Development: A Survey of DoD Adoption

of Best DevSecOps Practice

Rachel Kuzio de Naray, Project Leader
George “Lee” Kennedy

Ryan Wagner
Steven Wartik

September 2021

IDA Document P-22749
Log: H 2021-000267

Distribution Statement A.
Approved for public

release; distribution is
unlimited.

INSTITUTE FOR DEFENSE ANALYSES
4850 Mark Center Drive

Alexandria, Virginia 22311-1882

22-S-0029

schwartzJ
Cleared

About This Publication

This work was conducted by the IDA Systems and Analyses Center under
contract HQ0034-19-D-0001, Project AX-1-3100, “Technical Analysis for the
Director, Developmental Test, Evaluation and Assessments (D(DTE&A))". The
views, opinions, and findings should not be construed as representing the official
position of either the Department of Defense or the sponsoring organization.

Acknowledgments

The authors are very grateful to the IDA committee, Dr. John S. Hong (chair), Dr.
Davy Y. Lo, Dr. Jessica G. Swallow, and Dr. Karen D. Gordon, for
providing technical review of this effort.

For More Information

John S. Hong, Project Leader
jhong@ida.org, 703-845-2564

Stephen M. Ouellette, Director, SED
souellet@ida.org, 703-845-2443

Copyright Notice

© 2021 Institute for Defense Analyses
4850 Mark Center Drive, Alexandria, Virginia 22311-1882 • (703) 845-2000.

This material may be reproduced by or for the U.S. Government pursuant to
the copyright license under the clause at DFARS 252.227-7013 (a)(16) [Jun 2013].

The Institute for Defense Analyses is a nonprofit corporation that operates three
Federally Funded Research and Development Centers. Its mission is to answer
the most challenging U.S. security and science policy questions with objective
analysis, leveraging extraordinary scientific, technical, and analytic expertise.

I N S T I T U T E F O R D E F E N S E A N A L Y S E S

IDA Document P-22749

Cybersecurity and DoD System
Development: A Survey of DoD Adoption of

DevSecOps Practice

Rachel Kuzio de Naray, Project Leader

George “Lee” Kennedy

Ryan Wagner

Steven Wartik

iii

Executive Summary

Introduction

Department of Defense (DoD) software-intensive systems have a long and

unfortunate history as expensive acquisitions. Delivered late, full of bugs, or with difficult

and clumsy interfaces—or a combination of all three—they satisfy neither their customers

nor operators. Attempts to fix DoD software acquisition have been an active topic of

research for over half a century.

In the 1970’s, DoD model of software acquisition was encapsulated by the Waterfall

Model. The thinking was that a customer would present a developer with a set of

requirements. The developer would eventually respond with working software to install

and use. This was similar to how bridges were built. Span this chasm, said the requirements.

Here’s your bridge, said the contractor. Unfortunately, process models that worked in

engineering physical systems didn’t work for software. Requirements were never right the

first time. Their implementations didn’t work well either. Even when software worked, the

Waterfall Model didn’t allow for improvement incorporating feedback and experience on

how using the software changed the workplace paradigm.

Alternate software development models emerged in the 1980’s. Many emphasized

automation: formally defined processes supported by tools, comprehensive documentation

including executable models, and extensive, complex planning tools that would allow

management to track progress.

The Agile Manifesto, introduced in 2001, was a response to this state of practice. The

Agile methodology emphasizes delivery in increments. Increments deliver bug fixes, but

also improvements based on customer feedback. The feedback is not from formally

delivered reports, but collaboration between customers and developers. Agile’s proponents

never claimed their methodology was a cure-all, only that it was better suited to meet the

needs and issues that arise in modern software-oriented projects. To judge from its

widespread adoption, much of the software development community agrees.

Some Agile critics say it emphasizes collaboration with the wrong community.

Customers are not necessarily users. This realization led to the DevOps methodology,1

which encourages collaboration not between developers and customers, but between

1
 DevOps is a portmanteau of “Development” and (Information Technology) “Operations.”

iv

developers and operators. With these collaborations, the thinking goes, increments will

better reflect real needs. DevOps has been called, “Agile done right.”

The danger of this collaboration is the potential for overlooking security. Everyone

acknowledges the need for security, but for most operators security is mostly an extra step.

Operators want new features, not the hassle of two-factor authentication. Furthermore, few

developers enjoy implementing security. In the pressure to deliver on time, security can get

shunted aside and promised in a future increment.

The DevSecOps methodology tries to balance quick delivery against the need for

security (the “Sec” addition to DevOps). DevSecOps adds a security team to development.

The security team is responsible for ensuring security is considered early and never

neglected. A security team functions efficiently when it collaborates with developers,

testers, and operators to establish an infrastructure that assists in incorporating security

without excessively hindering progress.

In 2020, Sarah Standard2 tasked The Institute for Defense Analyses (IDA) with

studying the adoption of DevSecOps in DoD. This report discusses uses of DevSecOps,

covers successes and problem areas, and makes recommendations for actions DoD can take

to improve its use of DevSecOps.

Approach

IDA sought to understand why projects are increasingly opting to use DevSecOps

when there is no DoD-wide mandate. The IDA team began by reviewing policies, practices,

technologies, and standards related to DevSecOps and security. It reviewed DoD materials,

paying close attention to other government standards, in particular those from the National

Institute of Standards and Technology (NIST), and took care to consider commercial best

practices, technologies, and standards as well. IDA identified several works considered

foundational to DevOps and DevSecOps as a body of practice. Of particular interest was

The DevOps Handbook [4], a handbook of DevOps principles and best practices.

Because this handbook is well known and widely read, the IDA team assumed

DevSecOps practitioners would follow its recommendations. The team prepared a survey

to discover how projects were using DevSecOps. How were interactions established

between teams? What automated security scans were being performed? Had their

experiences been positive or negative? What difficulties were experienced? What were the

lessons learned? The literature frequently states that adopting DevSecOps requires an

organization-wide mindset change. The team wanted to gauge the degree to which this

change occurred, and to understand what actions DoD could take to promote it in the future.

2
 Ms. Standard is the Cybersecurity/Interoperability Technical Director, Office of the Undersecretary of

Defense Research and Engineering, Director, Developmental Test, Evaluation and Assessments.

v

The project’s sponsor helped the IDA team identify and contact individuals within

DoD using DevSecOps or non-Waterfall software development approaches. The IDA team

sent out surveys, or conducted telephone interviews, during February and March 2021 and

analyzed the responses to identify commonalities and differences. The team also looked

for practices and technologies that worked or didn’t work, and areas for improvement.

Findings

The survey and interview results were useful for describing how select DoD projects

were using Agile, DevOps, or DevSecOps approaches. In lieu of conducting a

comprehensive, DoD-wide survey, the team broadened its perspective by searching

existing literature. A 2020 IDA report, DevSecOps: State of the Art and Relevance to the

Department of Defense [5], and several products from Gartner Group were enlightening.

The reports contained two important analyses that helped lend context to this report:

• Extensive Application Security Testing (AST) is necessary for successful

DevSecOps practice, and there are 14 important commercial players who develop

AST tools and the infrastructure to support them. Of these 14, five can be

considered industry leaders. The others are attempting to catch up, exploring

exciting, but unproven technologies or filling niches.

• The Gartner “hype cycle” illustrates a

common paradigm for technology

adoption: initial wild, unrealistic

promises give way to disillusionment,

which is followed by gradual

realization of a functionally viable

subset of the original technology and

its slow, but steady assimilation into

the workplace. Gartner’s 2021

forecast predicts DevSecOps maturity

between 2023 and 2026.

The IDA team found through surveys and interviews several technologically focused

commonalities that are characteristic of DevSecOps adoption. These include:

• Use of Static Application Security Testing (SAST) tools. Eight respondents

reported using Fortify or SonarQube (or both), two commercial industry-leading

SAST tools. Fortify was developed by Micro Focus, one of the companies Gartner

identified as an industry leader.

• Use of container technology. Containers, which provide the capability to run an

application (or a suite of applications) in an isolated environment, are increasingly

seen as a solution to many modern-day problems that were once the purview of

Gartner Group's Hype Cycle

vi

virtual machines (VMs). Compared with VMs, containers can be deployed quicker,

scaled more easily, and started, stopped, and restarted quicker. Containers are well-

suited to cloud-based deployment, where the cloud-based processor itself is a VM.

• Consistent use of different environments for development, testing, staging, and

deployment. The DevSecOps methodology advocates these different environments

as a means to isolate activities and avoid conflicts. Development will never interfere

with testing, and vice versa. More important is the ability to set up an automated

process whereby any artifact in development must pass through testing prior to

staging, and must pass through staging prior to deployment. Every change must be

tested in different environments before being placed into a production system.

• Consistent use of repositories. Developers and testers are storing their artifacts in

git repositories, meaning the artifacts are version-controlled, configuration-

managed, easily viewed, and automatically subjected to scans and tests.

Automated scans and tests are achieved by implementing pipelines. A pipeline is a

description of the process by which an artifact progresses from development through

testing, into staging, and on to deployment. To the extent possible, pipelines are automated.

Some environments automate pipelines so fully that any change submitted by a developer,

no matter how small, moves into production automatically and almost immediately. This

kind of pipeline is the epitome of Continuous Delivery (also known as Continuous

Deployment, both abbreviated “CD”), wherein increments have negligible overhead.

IDA’s results show DoD pipelines have yet to reach this level of efficiency.

Developing a pipeline so robust that most changes can be trusted is no simple undertaking.

DoD’s situation is complicated because development and testing often take place on

unclassified systems, whereas deployment is often on classified systems. These distinct

environments have different policies and run different software. Software cannot be

transferred from an unclassified to a classified system automatically, so fully automated

pipelines are impossible. Classified artifacts cannot ever be transferred from a classified to

an unclassified system, complicating debugging of problems found during operation.

The Survey and Interview Result Summary table below summarizes the IDA team’s

survey and interview results.3 Each row lists something recorded in more than one response

(the third column lists the number).

3
 IDA received 18 written or virtual interview responses to the survey. Eight were from the developmental

test community, four from the operational test community and six from the development community.

Organizational break out: six from the Air Force, and four more from Space Force, four from the Army,

and three from the Navy that also included input from the Marine Corps. DoD. DoD DSO COP input

was also included.

vii

Survey and Interview Result Summary

Conclusions and Recommendations

Every DevSecOps practitioner has learned that inculcating DevSecOps into one’s

organization takes time and commitment. It involves introducing new, previously

unconsidered or ill-defined roles and responsibilities into one’s organizational structure.

These actions require patience, training, and commitment. Respondents said DevSecOps

has higher start-up overhead than some traditional projects. An unwillingness to fully

invest is perhaps why some interviewees said they had to “fail back to Waterfall.”

Other organizations have studied switching to DevSecOps, and proposed maturity

models to measure commitment and progress. IDA found three:

Success Stories # of Responses

1 Enculturation of DevSecOps is foundational 8
2 Incorporate test processes and environments up front 6
3 Fully leverage automation for testing, pipeline, and builds 8
4 Results can be validated 4
5 DevSecOps can be adapted to physically isolated environments 2

Problem Areas # of Responses

1 The current DoD acquisition model does not lend itself to a DevSecOps
development methodology

3

2 The current DoD Authority To Operate (ATO) process is not fully
compatible with DevSecOps

4

3 Many DoD systems may be incompatible with the DevSecOps process 6
4 There is no adequate standard definition of DevSecOps 4
5 The role of Developmental Testing (DT) within a DevSecOps methodology

is unclear
6

6 Forming teams proved more challenging than expected 4
7 Organizations had trouble allocating resources 4
8 The difficulties of classified versus unclassified DevSecOps development

are unresolved
5

Lessons Learned # of Responses

1 Starting with DevSecOps is easier than switching to DevSecOps 6
2 DevSecOps is easier on small projects than big ones 5
3 DevSecOps must be adapted to the operational environment 6
4 Automation is key 8
5 Security requirements need to be more mission-focused 7
6 Leverage good architecture and design to support security 6

viii

• The Naval Information Warfare Center Atlantic has a nine-level maturity model

based on an organization’s practices.

• DoD has created a DevSecOps Maturity Review, a list of questions designed to

help understand an organization’s approach to DevSecOps and to propose

improvements.

• The Open Web Application Security Platform (OWASP) has proposed the

DevSecOps Maturity Model (DSOMM), a four-level security-focused model to

ascertain the degree to which security is built into an application.

These models lack the rigor of a Capability Maturity Model Integration (CMMI)-style

maturity model, but they still give a useful qualitative assessment of progress. The Chief

Science Officer of the United States Air Force (USAF) is encouraging CMMI-like maturity

assessments for DevSecOps. If he is successful, organizations will be able to judge their

progress quantitatively.

IDA makes 12 recommendations for DoD based on the results and analyses in this

report that, taken together, will ease DevSecOps adoption on DoD projects.

Recommendations to Ease DevSecOps Adoption by DoD

1 Define and propagate an adequate standard definition of DevSecOps, specifically of
integrating the traditional role of DT in DevSecOps methodology.

2 Create top down understanding, commitment, and application of DevSecOps concepts in the
development organization and culture.

3 Adopt a DevSecOps Maturity Model to measure and improve development program security
effectiveness.

4 Understand the cultural and resource challenges in converting Waterfall programs to
DevSecOps, scaling up from small projects, and cross domain development.

5 Identify mission focused security requirements and incorporate test processes and
environments up front.

6 Identify, continually evaluate, and manage to objective security metrics to ensure the
DevSecOps environment produces software that meets mission security requirements.

7 Commit sufficient operational and security staff in addition to developers to ensure teams
produce software that meets operational and security requirements.

8 Ensure the development methodology is appropriate for the program requirements and can be
adapted, especially for physically isolated or highly sensitive systems.

9 Incorporate good architecture and design in the development environment and pipeline to
support security.

10 Work to identify and integrate testing that cannot be automated in a disciplined repeatable
DevSecOps process.

11 Fully leverage automation including virtualization, containerization, and Infrastructure as Code
(IaC) for testing, pipeline and builds.

12 Use DoD enterprise code repositories whenever possible to reduce rework and minimize
supply chain threat.

ix

Contents

1. Introduction ... 1-1

A. Purpose .. 1-1

B. Scope ... 1-1

C. Outline ... 1-2

D. Intended Audience ... 1-2

2. Approach ... 2-1

A. Review Current Policies, Practices, Technologies, and Standards 2-1

B. Identify Best Policies, Practices, Technologies, and Standards 2-2

C. Develop Cybersecurity and Software Development Survey 2-3

D. Distribute Surveys and Conduct Interviews .. 2-4

E. Analyze and Document Results .. 2-4

F. Limitations ... 2-5

3. DevSecOps Overview and State of Practice ... 3-1

A. Overview ... 3-1

B. State of Practice ... 3-4

4. Findings ... 4-1

A. DevSecOps Pipeline Practices ... 4-2

B. DevTest and Secure Coding Practices ... 4-4

C. Reported Successes, Problem Areas, & Lessons Learned 4-6

1. Success Stories .. 4-7
2. Problem Areas ... 4-10

3. Lessons Learned .. 4-13

5. DevSecOps Maturity Models .. 5-1

6. Conclusion and Recommendations ... 6-1

A. Conclusions ... 6-1

B. Recommendations ... 6-2

Appendix A. Cybersecurity and Software Development Survey A-1

1. Development Processes .. A-1
2. Roles ... A-1
3. General Observations ... A-1
4. Development Practices ... A-1

5. Testing .. A-2

Appendix B. Policy and Guidance Referenced by RespondentsB-1

Appendix C. Application Security Hype Cycle, 2021 ...C-1

Appendix D. References ... D-1

Appendix E. Acronyms and Abbreviations ... E-1

x

(This page is intentionally blank.)

xi

Figures

Figure 3-1. The Waterfall Model of the Software Life cycle .. 3-2

Figure 3-2. Number of projects using depicted methods ... 3-5

Figure 3-3. Magic Quadrant ... 3-6

Figure 3-4. Hype Cycle .. 3-7

Figure 5-1. NIWC DevSecOps Maturity Model .. 5-2

Figure 6-1. Technical Security Practices ... 6-1

Tables

Table 4-1. Survey Results .. 4-7

Table 6-1. Recommended Actions to Promote DevSecOps .. 6-3

xii

(This page is intentionally blank.)

1-1

1. Introduction

A. Purpose

Department of Defense (DoD) organizations are attempting to balance the desire for

quick delivery with the need for security in software development by the rapid adoption of

DevSecOps. DevSecOps is a portmanteau combining development, security, and

operations. (The operations are usually information technology [IT] operations.)

DevSecOps evolves the Agile and DevOps methodologies by integrating security experts

into the development team in an attempt to shift security concerns “left,” earlier in the

software development process.4

The Cybersecurity/Interoperability Technical Director, Office of the Undersecretary

of Defense (OUSD) Research and Engineering (R&E), Director, Developmental Test,

Evaluation, and Assessments (D,DTE&A), tasked the Institute for Defense Analyses (IDA)

with studying the adoption of DevSecOps in DoD. As such, IDA reviewed current general

practices for employing and securing DevSecOps as a developmental methodology, with a

focus on current practices in DoD to identify ways to better integrate cybersecurity

(including Developmental Test, Evaluation, and Assessments [DTE&A] cybersecurity

requirements and guidance) with modern, secure software development practices (e.g.,

DevSecOps and other Agile-like practices) throughout the secure software development

life cycle. The goals were to identify representative processes, tools, and artifacts; evaluate

their sufficiency as part of the current body of practice; determine modifications that would

integrate cybersecurity more fully into the development process; and finally, provide

recommendations for implementing those modifications.

B. Scope

This study encompasses the DTE&A goals of examining the degree to which DoD

organizations employed both current and best policies, practices, technologies, and

standards. As such, IDA researched and analyzed the spectrum of current and planned

practices to apply and enhance cybersecurity in DoD software development, and compared

and contrasted those practices with the private sector. IDA performed a review of current

general practices for employing and securing DevSecOps as a developmental

methodology, with a focus on current practices in DoD, and identified areas where

improvements could be made.

4
 Process workflow models are usually drawn left to right, with early activities depicted on the left.

1-2

C. Outline

This report is organized into the following sections:

• Introduction (this section) describes the motivation for this report and

provides the reader with the general scope of the problem area.

• Approach describes the approach IDA used to address the problem.

• DevSecOps Overview and State of Practice presents a general overview of

DevSecOps and the state of practice in DoD.

• Findings presents the findings from the analyses performed in the course of

this task.

• DevSecOps Maturity Models introduces maturity models for assessing

DevSecOps organizational practices.

• Conclusion and Recommendations lists conclusions from the findings, and

gives recommendations for actions to be taken to improve cybersecurity in

DoD-developed or -funded systems.

D. Intended Audience

The target audience consists of individuals interested in improving DoD system

cybersecurity software development methodologies. The report includes recommendations

on policies, practices, standards, and technologies to institute, adopt, follow, and acquire.

These recommendations should be useful for the following concerns:

• DoD, Service, and Agency representatives looking to influence and

standardize software and system development approaches throughout their

organizations.

• Program managers wishing to assess the state of, and potentially mature their

programs; and program managers developing new programs.

• Individual architects, designers, coders, and testers seeking insight on recent

technological advances in achieving cybersecurity.

2-1

2. Approach

This chapter describes the research methodology IDA followed to derive its

conclusions and recommendations. The methodology attempted breadth insofar as time

and resources permitted. IDA wished to uncover the full spectrum of current and planned

practices as concerns cybersecurity in DoD software development, and to compare and

contrast those practices with the private sector. IDA also analyzed academic research to

uncover longer-term trends.

A. Review Current Policies, Practices, Technologies, and Standards

IDA performed a review of current general practices for employing and securing

DevSecOps as a developmental methodology, with a focus on current practices in DoD.

The DoD DevSecOps methodology currently resides in a phase of rapid adoption and

evolution. Of necessity, any review will be a snapshot of what is in place at a given point

in time. IDA team members used the monthly DoD DevSecOps Community of Practice

(COP) meetings as a jumping-off point to collect resources on current DoD DevSecOps5

implementations to include discussion of policies, practices, technologies, and standards.

These meetings, organized by the DoD Chief Information Officer (CIO), provided an

effective way to ensure DoD organizations can keep abreast of developments in the DoD

DevSecOps community, and specifically of efforts by the United States Air Force (USAF)

Chief Software Officer (CSO) who chairs the meetings and whose organization has been

designated as the executive agent for DoD enterprise DevSecOps efforts.

The USAF CSO, at the time of this writing Nicolas Chaillan, also hosts an extensive

repository of documents at the Air Force Software site.6 In addition to the numerous white

papers, briefings, minutes of working group meetings, architecture, service offering, and

process documents, there are training videos, reading lists of references, and links to

5
 The DevSecOps COP monthly meeting is currently conducted in the DoD Teams Collaboration Virtual

Resource (CVR) at this link https://teams.microsoft.com/l/meetup-

join/19%3a4d92705edf2e40e2a54a7163f0b24d05%40thread.skype/1588014888844?context=%7b%22

Tid%22%3a%2221acfbb3-32be-4715-9025-1e2f015cbbe9%22%2c%22Oid%22%3a%2244e424f7-

0bcc-4c72-97d7-22160ced090d%22%7d. The files section and the associated site hosted by the USAF

CSO at https://software.af.mil/ contain numerous briefings and background documents on all aspects of

DevSecOps adoption in DoD.

6
 Ibid.

https://teams.microsoft.com/l/meetup-join/19%3a4d92705edf2e40e2a54a7163f0b24d05%40thread.skype/1588014888844?context=%7b%22Tid%22%3a%2221acfbb3-32be-4715-9025-1e2f015cbbe9%22%2c%22Oid%22%3a%2244e424f7-0bcc-4c72-97d7-22160ced090d%22%7d
https://teams.microsoft.com/l/meetup-join/19%3a4d92705edf2e40e2a54a7163f0b24d05%40thread.skype/1588014888844?context=%7b%22Tid%22%3a%2221acfbb3-32be-4715-9025-1e2f015cbbe9%22%2c%22Oid%22%3a%2244e424f7-0bcc-4c72-97d7-22160ced090d%22%7d
https://teams.microsoft.com/l/meetup-join/19%3a4d92705edf2e40e2a54a7163f0b24d05%40thread.skype/1588014888844?context=%7b%22Tid%22%3a%2221acfbb3-32be-4715-9025-1e2f015cbbe9%22%2c%22Oid%22%3a%2244e424f7-0bcc-4c72-97d7-22160ced090d%22%7d
https://teams.microsoft.com/l/meetup-join/19%3a4d92705edf2e40e2a54a7163f0b24d05%40thread.skype/1588014888844?context=%7b%22Tid%22%3a%2221acfbb3-32be-4715-9025-1e2f015cbbe9%22%2c%22Oid%22%3a%2244e424f7-0bcc-4c72-97d7-22160ced090d%22%7d
https://software.af.mil/

2-2

external resources such as DoD secure software repositories for developers.7 This is a

living archive and material is added as new resources are developed, so the library grows

in a DevSecOps-like fashion, building from “minimum viable product” through continuous

improvement.

IDA also obtained documents from the Navy, Marine Corps, Army, and

Undersecretary of Defense (USD) (R&E). Of particular note is the Naval Information

Warfare Center (NIWC) Atlantic Marine Corps Business Operations Support Services

(MCBOSS) brief on DevSecOps Maturity and Business Value Driven Goals,8 with its

included discussion on maturity models, and the draft DevSecOps Test & Evaluation

Guidebook. [21]

Finally, IDA reviewed the DoD Enterprise DevSecOps Reference Design. [33] This

document is DoD’s evolving reference for “a logical description of the key design

components and processes to provide a repeatable reference design that can be used to

instantiate a DoD DevSecOps software factory.”

B. Identify Best Policies, Practices, Technologies, and Standards

The available DoD sources contained more documentation than could be reasonably

reviewed within the time allocated for the study, so the IDA team narrowed its focus to

most-cited references. At the core, four books were seen as foundational to Agile and

DevOps (and consequently to DevSecOps) as a body of practice.

1. A Seat at the Table [1], by Mark Schwartz, published in 2017, with a more

general focus on leadership’s place in Agility in software development;

2. The Phoenix Project [2], by Gene Kim, Kevin Behr, and George Spafford,

published in 2013;

3. The Unicorn Project [3], by Gene Kim, published by IT Revolution Press in

2019;

4. The DevOps Handbook [4], by Gene Kim, Jez Humble, Patrick Debois, and

John Willis, published in 2016 and undergoing update.

Several respondents emphasized the importance of these foundational texts, and were

consistent in the observation that a lack of understanding by leadership and developers of

the underlying Agile and DevSecOps principles and practices was a key factor in the failure

of Agile/DevSecOps projects, and specifically, the failure of legacy projects to transition

7
 https://software.af.mil/dsop/services/ available 07/16/2020.

8
 Naval Information Center Atlantic Brief: DevSecOps Maturity and Business Value. Derived from [4].

2-3

successfully from Waterfall methodology. This lack of proper grounding was also seen as

the source of unrealistic expectations for resourcing and results.

C. Develop Cybersecurity and Software Development Survey

IDA sought to understand the degree to which organizations employed both current

and best policies, practices, technologies, and standards. It’s not uncommon for

organizations to pick and choose aspects of the Agile model to implement rather than

implement all aspects of Agile, so IDA developed questions intended to help understand

exactly how DoD organizations implemented Agile approaches. IDA also wished to

explore what literature frequently states: the major impediment to adopting Agile and

DevSecOps is a change of mindset. Had developers adopted a new mindset, and to what

degree? Furthermore, many variations of the Agile methodology are practiced, and IDA

wanted to learn which ones DoD uses. IDA developed a survey, included in Appendix A,

which asks questions designed to uncover individuals’ perceptions of their organization’s

approach to software development. Its questions fall into five categories.

1. Context questions, which ask about the respondent’s organization, their role,

their projects, and their organization’s general involvement with DevSecOps.

2. Developmental Testing and Evaluation (DT&E) integration questions, asking

whether efforts to integrate DevSecOps into Developmental Testing (DT) have

succeeded: what’s worked, hasn’t worked, and lessons learned.

3. Team and Environment questions, covering the DevSecOps roles established

and the computing environments used to facilitate those roles.

4. Development Process questions, asking how new and changed artifacts are

propagated throughout an organization, and the actions, both automated and

manual, that are triggered as a consequence of propagation.

5. Test Process questions, asking about tests run and the motivation for running

those tests (usually described through references to standards), and also about

how test results are logged and the uses of those logs.

(The categories do not match exactly the five groupings in Appendix A. The team

found it convenient to deviate from the categories in order to maintain a natural flow of

conversation.)

IDA decided survey questions should be detailed to get a picture of how Agile and

DevSecOps were (or were not) being employed. IDA created questions targeted more to

performers than managers.

2-4

D. Distribute Surveys and Conduct Interviews

Beginning in January 2021, project sponsor Sarah Standard used email to reach out

to 10 individuals she knew to be involved in programs using Agile, DevOps, or DevSecOps

development. She asked for recommendations of people IDA could interview, as well as

people willing to complete the survey.

The 10 individuals responded throughout January with names and contact

information—usually others, occasionally themselves. IDA, as stated in Develop

Cybersecurity and Software Development Survey above, preferred performers, specifically

developers and testers, to managers, and tried to identify those among the respondents. The

surveys were ultimately sent to 45 individuals, sometimes directly from IDA, sometimes

through managers. IDA received 10 written survey responses, one of which had “N/A” for

every question and was discarded.

IDA preferred interviews to completed surveys, believing the ability to ask and probe

would yield higher quality information than simple written responses. When a respondent

indicated openness to supporting the task, IDA attempted to set up an interview. The

project took place during the COVID-19 pandemic, so interviews were conducted through

teleconference or videoconference software; no in-person meetings occurred, and IDA

researchers did not have the opportunity to visit developer or tester facilities. The

interviews, which occurred during February and March of 2021, usually lasted one hour.

IDA conducted 11.9 They were conducted by leading the subject through each of the survey

questions. IDA researchers listened to the responses, took notes, and asked follow-up

questions as they saw fit.

E. Analyze and Document Results

The analysis process began once IDA finished conducting the interviews and

collected the surveys. IDA compared and contrasted respondents’ results to all questions.

The objectives were

• To identify commonalities. IDA wished to uncover DevSecOps trends in

DoD software development, thereby indicating department-wide directions

(without necessarily passing judgement on those directions).

• To identify differences. If IDA identified a single project with unique

practices, IDA wanted to determine whether and how these practices were

contributing to its success or failure. Similarly, if practices could be grouped

into sets, it would be useful to study the compatibility of practices across

9
 Some respondents both returned a survey and participated in interviews. IDA contacted a total of 18

distinct individuals.

2-5

these sets. Such a study, conducted now, might forestall later gross

incompatibilities across communities within DoD.

• To leverage respondents’ knowledge of successes and shortfalls. Individual

perspectives on what has and has not worked can be invaluable in charting

directions and making recommendations.

• To identify areas for improvement. IDA wanted to understand how DoD

practices compared to an idealized set of capabilities. Any gaps in this

area—e.g., incomplete training, inadequate tooling, insufficient management

support—could be the basis for important recommendations on changes to

DoD DevSecOps policies and practices.

F. Limitations

Although the IDA researchers attempted to review the broadest possible range of

available material on current DoD DevSecOps practices, there were some strict limiting

factors on what they could cover. The available DoD sources contained more

documentation than the IDA team could reasonably review within the time allocated for

the study, so once the surveys began the team focused on references identified by the survey

responses. In addition to the relatively compressed span for the study, which reduced the

time available for a more extensive literature survey, there were limitations imposed by the

COVID-19 pandemic. Not only did this preclude in-person meetings (teleconferences or

videoconferences were substituted), but IDA researchers did not have the opportunity to

visit developer or tester facilities. Further, due to the demands of telework imposed by the

pandemic, respondents were limited in the time they could devote to the effort. The

interviews, which occurred during February and March of 2021, usually lasted one hour

with follow-up as available. IDA received a total of 18 written or virtual interview

responses to the survey, which could have been better balanced given greater time to

identify and access practitioners. Nonetheless, IDA was able to include responses from all

the Services, and from the operational and development test community, as well as

developers who were working in DevSecOps environments. DoD DevSecOps Community

of Practice input was also included to provide a broader perspective. While there was

sufficient diversity to provide significant insight into the current state of DevSecOps

practice in DOD, further study would allow for greater granularity in specific findings and

more prescriptive recommendations for improvement.

2-6

(This page is intentionally blank.)

3-1

3. DevSecOps Overview and State of Practice

A. Overview

Software development proved difficult to discipline almost from its beginning. One

of the first efforts to provide a framework for managing software development was the

Waterfall Model. Although it dates back to the 1950’s [16], the model is often associated

with a 1970 paper by Winston Royce, which contained a graphical representation (see

Figure 3-1) that became canonical [17]. In the Waterfall Model, software occurs in a linear

sequence of phases.

1. Software Requirements, in which the necessary capabilities of the system are

described.

2. Architectural Design, in which the major components of the system are

established.

3. Detailed Design, in which the components are refined and design decisions

regarding the implementation of components are established.

4. Coding, in which the detailed design is expressed in a formal, executable

language.

5. Testing, in which the behavior of the code is verified against the requirements.

Many variations of this model have been proposed, but these five phases establish the

basic sequence.

3-2

Software
Requirements

Architectural
Design

Detailed
Design

Coding

Testing

Figure 3-1. The Waterfall Model of the Software Life cycle

Royce, interestingly, didn’t like the waterfall model even as he popularized it. (His

paper contains a revealing quote: “I believe in this concept, but the implementation … is

risky and invites failure.”) He particularly criticized leaving testing until the end. No

engineer would behave this way;10 an engineer’s models were rigorous enough to admit to

formal evaluation as soon as they were developed. The first three Waterfall Model phases,

by contrast, simply yielded unstructured documents containing natural language or

pictures. Furthermore, development was never strictly linear. Architectural designers

noticed problems in the requirements. Detailed designers found problems in requirements

and architectural design. Coders found problems in work products from all three phases,

and testers in all four. Software development was invariably more cyclic than the Waterfall

Model implied. (Royce recognized this too, but the cycle-incorporating pictures he drew

were more complicated and didn’t catch on.)

This led to a rebellion in the 1980’s, with practitioners publishing papers with such

titles as “Stop the life-cycle, I want to get off,” [18] Boehm introducing the Spiral

Model, [19] and Parnas and Clements arguing that, however software development

proceeded, the real value of the Waterfall Model was as an after-the-fact description. [20]

The rebellion found a new expression in 2001 with the publication of the Agile Manifesto.11

This manifesto, signed by experienced software researchers and practitioners, stated that

their many years of experience had taught them to value:

1. Individuals and interactions over processes and tools

10
 Here, “engineer” is used in the traditional sense and refers to such disciplines as electrical and

mechanical engineering.

11
 See http://agilemanifesto.org/

http://agilemanifesto.org/

3-3

2. Working software over comprehensive documentation

3. Customer collaboration over contract negotiation

4. Responding to change over following a plan

The signatories were careful to state they did not consider processes, tools,

documentation, etc. unimportant, only less important. Well thought-out processes and good

tools were important in software development, but skilled and talented software developers

and frequent interactions among them were (and are) more important.

The third item was particularly significant. Rather than developing to a fixed set of

customer-provided requirements, it encouraged developers interacting with customers to

determine whether the requirements actually satisfied their needs. This could best be done

by developing incrementally, at first delivering small products that satisfied a small, but

crucial set of needs and expanding on those. This allowed developers time to listen to how

customers felt about the delivered products during the process and respond accordingly.

Most of the software development community agrees that, in the current milieu of

software development, Agile development is preferable to Waterfall. No one claims Agile

development is a cure-all, only that it is better suited to the needs and issues that arise in

modern software-oriented projects. That said, Agile development did not address one of

the Waterfall Model’s shortcomings. In both, the developing organization interacts with a

customer, and that customer is more likely to be a contracting representative than an end

user.12 The resulting system may satisfy customer needs without considering whether the

operator likes it: whether it is easy to use, has adequate help, provides necessary feedback,

etc.

Out of this gap arose DevOps. DevOps complements Agile by recognizing that many

systems—especially systems of interest to DoD—have an operations team. The operations

team will spend time in front of computers and have the most immediate interest in a well-

run, well-constructed, well-thought-out working system. The DevOps philosophy believes

the most important interactions are between the operations and development teams. Only

through these kinds of interactions will a system be built that satisfies its users. DevOps is

sometimes referenced as “Agile done right.”13

DevOps prioritizes delivery, perhaps even more than Agile. Operators are often the

ones who find bugs and suggest improvements. If these can be conveyed directly to

developers rather than going through customers (as in Agile), a step has been eliminated

and time (and probably money) has been saved.

12
 This statement applies to contractually developed software, which is characteristic of much government-

procured software. It is less true of commercial software.

13
 See https://www.slideshare.net/TomasRiha/devops-its-just-agile-done-right, for example.

https://www.slideshare.net/TomasRiha/devops-its-just-agile-done-right

3-4

One danger of such close interaction is the potential for not adequately considering

security. Operators acknowledge the need for security, but view it as a secondary concern

and, often, an inconvenience. Operators want to do their job as quickly as possible, and

they want tools to help them do their job as soon as possible. Neither of these desires

encourages security. An enlightened operator tolerates two-factor authentication because

they understand the risk of password-based authentication. Tolerance doesn’t make for a

happy user experience. In developers’ initial urge to create a friendly system, is it no

surprise that security concerns are shunted aside.

Some organizations try to balance the desire for quick delivery and the need for

security by using DevSecOps. DevSecOps adds a security team to the development

organization that is responsible for ensuring the codebase contains software that addresses

security issues. Security is “shifted left:” security concerns start early in the software

development process. This is in contrast to a surprisingly large portion of software

development where security is an afterthought. There can be too much security; however,

and the security team is responsible for finding the right balance.

B. State of Practice

Given the advocacy of DoD toward adopting DevSecOps, a quick look at the state of

the practice is warranted.14 This report is concerned specifically with DoD practices.

Gartner conducted relevant research in the area across the entire software development

industry.

In 2019, Gartner published a report with the following estimates: [22]

By 2021, DevSecOps practices will be embedded in 60% of rapid

development teams as opposed to 20% in 2019. By 2023, more than 70%

of enterprise DevSecOps initiatives will have incorporated automated

security vulnerability and configuration scanning for open-source

components and commercial packages, which is a significant increase from

fewer than 30% in 2019.

As will be discussed in detail in the next chapter, IDA’s interviews and surveys

suggest this may have been optimistic, at least within DoD. 50% of respondents reported

using either DevOps or DevSecOps; only 20% reported using DevSecOps specifically.

These numbers do not necessarily contradict Gartner’s estimates: IDA’s sample size was

small and should not be taken as indicative of overall DoD trends. However, the

participants were selected because they were involved in non-Waterfall projects. IDA

asked participants which methodologies they were using; Figure 3-2 shows, for each

methodology on the x-axis, the number of respondents who reported using that

14
 Much of the material in this section derives from [5].

3-5

methodology. 15 DoD may be moving away from the Waterfall model, but it is still far from

fully converting to DevSecOps.

Figure 3-2. Number of projects using depicted methods

Whatever the trends in DoD projects may be, many open source software providers

and commercial vendors have devoted considerable effort to developing tools able to

contribute to automating testing. Automated testing being fundamental to DevSecOps, this

can only be seen as a sign that the software development community is pushing the

technological innovations necessary to make DevSecOps practical. A Gartner report from

2021 identified several companies with Application Security Testing (AST) products in

varying stages of maturity. [23] This report, presented using Gartner’s Magic Quadrant

format,16 groups companies into four categories, shown in Figure 3-3. The results showed

five leaders, three challengers, three visionaries, and three niche players.

15
 The count of methodology uses exceeds the number of respondents because several respondents reported

using multiple methodologies.

16
 See https://www.gartner.com/en/research/methodologies/magic-quadrants-research

0

1

2

3

4

5

6

7

8

9

Agile DevSecOps DevOps No Response

https://www.gartner.com/en/research/methodologies/magic-quadrants-research

3-6

Figure 3-3. Magic Quadrant

The Gartner report did not cover every automated testing tool, nor did it intend to. It

had strict criteria for inclusion. Moreover, being something other than a leader is not

necessarily a flaw. Challengers may have a long-term strategy worth following; visionaries

may focus on a hitherto-unexplored area; niche players have a narrow focus that may be

totally appropriate for a given need. The conclusion was that in 2021 there were 14 AST

products well worth considering.

Gartner uses a “hype cycle” graph (Figure 3-4) to illustrate technology trends.17 It

shows some event that triggers initial excitement—too much, peaking in inflated

expectations. These expectations give way to disillusionment, followed by eventual

realization of what the technology is actually good for, as well as how and why the

17
 The image is from Wikipedia:

https://upload.wikimedia.org/wikipedia/commons/thumb/9/94/Gartner_Hype_Cycle.svg/1024px-

Gartner_Hype_Cycle.svg.png

https://upload.wikimedia.org/wikipedia/commons/thumb/9/94/Gartner_Hype_Cycle.svg/1024px-Gartner_Hype_Cycle.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/9/94/Gartner_Hype_Cycle.svg/1024px-Gartner_Hype_Cycle.svg.png

3-7

technology is good. These realizations culminate in a plateau of productive use, with

visibility below original expectations, but nevertheless significant.

Figure 3-4. Hype Cycle

Gartner produced a hype cycle graph for application security in 2021, shown in

Appendix C. [24] It shows DevSecOps midway up the slope of enlightenment and predicts

its maturity in two to five years. Interestingly, the graph shows some foundational

DevSecOps technologies further behind on the slope of enlightenment. Neither DevOps

Test Data Management nor API Security Testing has reached the Peak of Inflated

Expectations. Container Security is just beginning its rise up the slope of enlightenment.

Undoubtedly, some areas of DevSecOps need further research, development, and adoption

before the entire field can achieve maturity.

3-8

(This page is intentionally blank.)

4-1

4. Findings

As described in 2.C and Cybersecurity and Software Development Survey IDA

developed a set of interview/survey questions covering five categories: (1) context

questions, (2) DT&E integration questions, (3) team and environment questions, (4)

development process questions, and (5) test process questions. IDA received 18 written or

virtual interview responses to the survey. The number was constrained by challenges

imposed on the work environment due to COVID, which prevented any in-person contact.

Eight responses were from the developmental test (DT) community and four from the

operational test (OT) community. The remaining six responses were from the development

side of the house. (IDA promised non-attribution, so this report deliberately obscures the

organizations involved.) This skewed balance was not surprising due to the survey

emphasis on integration of developmental test into Continuous Integration/Continuous

Deployment (CI/CD) methodologies. Survey respondents were also weighted to the Air

Force with six from the Air Force proper, and four more from Space Force. We received

four responses from the Army, and three from the Navy that also included input from the

Marine Corps. Again, this proportion reflected the Air Force center of gravity as the DoD-

designated lead in bringing DevSecOps to the community. The survey responses were

further rounded out by documentation received from the DevSecOps Community of

Practice monthly meeting files,18 the Air Force CSO DevSecOps document repository, and

the Navy.19 The following section presents our findings in light of the state of DevSecOps

practice in DoD. We highlight success stories from the responses, identify problem areas,

and then close by discussing lessons learned.

18
 The DevSecOps COP monthly meeting is currently conducted in the DoD Teams Collaboration Virtual

Resource (CVR) at this link https://teams.microsoft.com/l/meetup-

join/19%3a4d92705edf2e40e2a54a7163f0b24d05%40thread.skype/1588014888844?context=%7b%22

Tid%22%3a%2221acfbb3-32be-4715-9025-1e2f015cbbe9%22%2c%22Oid%22%3a%2244e424f7-

0bcc-4c72-97d7-22160ced090d%22%7d. The files section and the associated site hosted by the USAF

CSO at https://software.af.mil/ contain numerous briefings and background documents on all aspects of

DevSecOps adoption in DoD.

19
 Navy Information Warfare Center Atlantic Brief: DevSecOps Maturity and Business Value.

https://teams.microsoft.com/l/meetup-join/19%3a4d92705edf2e40e2a54a7163f0b24d05%40thread.skype/1588014888844?context=%7b%22Tid%22%3a%2221acfbb3-32be-4715-9025-1e2f015cbbe9%22%2c%22Oid%22%3a%2244e424f7-0bcc-4c72-97d7-22160ced090d%22%7d
https://teams.microsoft.com/l/meetup-join/19%3a4d92705edf2e40e2a54a7163f0b24d05%40thread.skype/1588014888844?context=%7b%22Tid%22%3a%2221acfbb3-32be-4715-9025-1e2f015cbbe9%22%2c%22Oid%22%3a%2244e424f7-0bcc-4c72-97d7-22160ced090d%22%7d
https://teams.microsoft.com/l/meetup-join/19%3a4d92705edf2e40e2a54a7163f0b24d05%40thread.skype/1588014888844?context=%7b%22Tid%22%3a%2221acfbb3-32be-4715-9025-1e2f015cbbe9%22%2c%22Oid%22%3a%2244e424f7-0bcc-4c72-97d7-22160ced090d%22%7d
https://teams.microsoft.com/l/meetup-join/19%3a4d92705edf2e40e2a54a7163f0b24d05%40thread.skype/1588014888844?context=%7b%22Tid%22%3a%2221acfbb3-32be-4715-9025-1e2f015cbbe9%22%2c%22Oid%22%3a%2244e424f7-0bcc-4c72-97d7-22160ced090d%22%7d
https://software.af.mil/

4-2

A. DevSecOps Pipeline Practices

The traditional software development model involves delivering updates at fixed

intervals. For example, a company will schedule delivery once every quarter, and provide

whatever updates, enhancements, and bug fixes it has completed during that time.

As with DevOps, DevSecOps’ philosophy states a product will undergo CI/CD.

Changes are released into production as soon as they have been approved, no matter how

large or small. Instead of issuing a release once a quarter, DevSecOps projects commonly

release new versions many times each day.

This kind of schedule requires automating much of the development process. The

traditional model calls for manual reviews and often prescribes supporting documentation

(e.g., test results) to be presented at those reviews. It simply isn’t practical for an

organization to hold these reviews if it wants to release changes quickly. Too much

scheduling and coordination are required. The only alternative is to automate as much as

possible.

DevOps emerged from the realization that much of the testing, integration, and

deployment could be automated once the code completion was formulated. Developers

were asked to estimate completion, and reviews were scheduled accordingly. In DevOps,

the act of completion triggers the automated reviews, wasting no time.

DevSecOps adds to DevOps by incorporating security-related assessments and

incorporating them early. Whereas in DevOps security was (and is) relegated to the final

stages of the development pipeline, DevSecOps goes to great lengths to ensure security is

considered early. Some of this consideration necessarily involves human interaction, not

automation. In particular, during planning stages the development, security, and operations

teams interact to establish the nature and scope of security-related testing. With that

accomplished, the objective is to design a pipeline, or enhance an existing pipeline, to

evaluate security as early as possible, and as automatically as possible. This lowers the

likelihood of a common DevOps problem: discovering a security flaw during a late life

cycle activity such as penetration testing, thereby forcing developers to fix bugs that could

have been detected much earlier. (And bug fixes, depending on a bug’s nature, can require

reconsidering significant aspects of the entire software architecture.)

IDA’s interviews and surveys showed:

• Widespread use of Fortify20 and SonarQube,21 two security-focused

commercial Static Application Security Testing (SAST) tools. (SonarQube is

available in four configurations, one free and open source, the others

20
 https://www.microfocus.com/en-us/cyberres/application-security

21
 https://www.sonarqube.org/

https://www.microfocus.com/en-us/cyberres/application-security
https://www.sonarqube.org/

4-3

proprietary. IDA did not inquire which configurations were being used.)

Both tools can and were designed to be integrated into a pipeline. This

allows developers’ code to be scanned early in the software life cycle, prior

to testing or deployment into staging environments.

• There were no references to Dynamic Application Security Testing (DAST)

tools. DAST, unlike SAST, requires compiling, building, and running source

code, and is typically harder to specify, implement, and perform. No

respondents reported using DAST tools (e.g., fuzzers22), let alone integrating

DAST into pipelines.

• Some use of containers. Three subjects reported using Docker.23 Two

subjects reported using Kubernetes24 together with Tanzu25 to manage

multiple communicating containers.

• Consistent use of multiple environments (development, staging, release).

Multiple environments are fundamental to DevSecOps: They ensure each

developer, each tester, and each operator can work without concern that an

action by someone else will affect them. Development is typically done in

Impact Level 2 (IL2), production in IL4 or higher.26 In other words, systems

that are deployed in classified environments can be developed in unclassified

environments, giving developers and testers access to a broader range of

tools than are available in IL4.

• Consistent use of repositories, including GitHub, GitLab, Bitbucket,

IronBank, and Cloud One. That is to say, everyone uses repositories, but

different projects use different repositories. Some projects use multiple

repositories, others use a single repository. The projects that used multiple

repositories did so because they develop in unclassified environments, but

deploy to classified environments. In such cases, there are equivalent

repositories in each.

Interview and survey results indicate DoD projects are in the process of building

automated pipelines, but have more work to do. The following paraphrased example

22
 https://owasp.org/www-community/Fuzzing

23
 https://www.docker.com/

24
 https://kubernetes.io/

25
 https://tanzu.vmware.com/tanzu

26
 For a discussion of impact levels, see [25], a 2015 IDA report covering the topic.

https://kubernetes.io/
https://tanzu.vmware.com/tanzu

4-4

responses (these apply to individual projects, not all DoD programs surveyed) illustrate

this

• Although several responses indicated the use of SAST tools by name, some

respondents indicated they were not yet performing static testing with

automated tools.

• In another case, only the security pipeline, not the coding pipeline, had been

automated.

• Continuous penetration testing does not appear to have been performed.27

• The amount of non-functional testing and security performed depends on the

program.

• Most testing is performed at the unit level.

On a positive note, one respondent said they do “all the cool automated things” in

development and deployment pipelines. Clearly, that person believes their project is

practicing DevSecOps, although other answers cast some doubt.

B. DevTest and Secure Coding Practices

DevSecOps in DoD is tightly coupled with adoption of cloud development

environments. Many potential cloud technologies can be employed in development and

fielding of defense systems, including public, private, community, multi-cloud, and hybrid

tenancy solutions.28 Although strictly speaking these offerings fall outside the scope of this

discussion, cloud service offerings (CSOs) are part of the underlying development and

fielding environment, and require some level of cyber DT&E. Adding to the complexity of

the assessment problem is the use of different potential service level models, Infrastructure

as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS), and their

different permutations. With few exceptions, DoD mission systems will be developed and

fielded in environments certified to host sensitive or classified national security data due

to limitations imposed by Federal Risk and Authorization Management Program

(FedRAMP)29 and the Defense Information Systems Agency (DISA) Cloud Computing

Security Reference Guide (SRG) [30] under the Defense Acquisition Regulation

27
 Penetration testing requires specialized skills, which perhaps were not available.

28
 See https://www.abacusnext.com/blog/whats-difference-between-public-private-hybrid-and-community-

clouds/ for a discussion of different cloud types.

29
 FedRAMP was established by a December 8, 2011 memorandum, from the Federal Chief Information

Officer, titled Security Authorization of Information Systems in Cloud Computing Environments. See

https://www.fismacenter.com/fedrampmemo.pdf.

https://www.abacusnext.com/blog/whats-difference-between-public-private-hybrid-and-community-clouds/
https://www.abacusnext.com/blog/whats-difference-between-public-private-hybrid-and-community-clouds/
https://www.fismacenter.com/fedrampmemo.pdf

4-5

Supplement (DFARS)30,31 for hosting the specific data impact levels of DoD data.

Offerings by only a handful of cloud service providers have passed the review at this

level.32

The commercial cloud cyber assessment process required by FedRAMP and DISA

Provisional Authorization (PA) as dictated by the Cloud SRG is heavily Risk Management

Framework (RMF) [10] controls-focused and prohibits in-depth technical validation,

especially of the consumer configured portions of a service offering. Additionally, DT&E

requirements fall outside the provided guidance unless those requirements duplicate RMF

activities.33 The CSO used to host the DevSecOps environment provides the outer

boundary of the set of nested code-based objects. This includes the Infrastructure as Code

(IaC)-defined environment, pipeline, and virtualized elements such as containers that

define the final software product and provide inheritance for risk management. Each of

these must be assessed in turn to provide the foundational level of cyber assurance to

support the next layer up in the development and production chain. Conceptually, if

adequate processes and mechanisms are in place, such as guardrails, secure repositories,

and architectural hoisting [27] to provide appropriate testing and evaluation of each

inherited level, the DevSecOps development team can focus on applying secure coding and

testing practices to the incremental sprints in the DevSecOps cycle.

With a well-constructed foundational infrastructure, sufficient guardrails can

minimize the risks of vulnerabilities introduced during the development process.

Additional techniques can further reduce vulnerabilities during development.

Unfortunately, our interview respondents were primarily not developers, and the responses

failed to address these mitigations in detail. However, they are known within the computer

science community. Type safe programming languages can diagnose some vulnerabilities

during the compilation process.34 The use of memory-safe languages like Java, Rust, or

Python can avert vulnerabilities stemming from errors like buffer overflows.35 Within

30
 DFARS Clause 252.239-7010, The Contractor shall implement and maintain administrative, technical,

and physical safeguards and controls with the security level and services required in accordance with

the Cloud Computing Security Requirements Guide (SRG) – “most recent version.”

31
 DFARS SUBPART 239.7602-1, Cloud Computing, A Cloud Service Provider (CSP) must have a DoD

Provisional Authorization (PA) at the appropriate Information Impact Level (IIL) before contract

award.

32
 DISA Cloud Service Catalog, Available https://www.disa.mil/-/media/Files/DISA/Services/Cloud-

Broker/Authorized-DoD-Cloud-Services-Catalog-

SEPT2018.ashx?la=en&hash=4392BC616B34E381F52FC7E9CDB53231672E05A3 Accessed:

October 23, 2018.

33
 See [26] for more detailed discussion of testing in the cloud versus testing of the cloud.

34
 https://en.wikipedia.org/wiki/Type_safety

35
 https://owasp.org/www-community/vulnerabilities/Buffer_Overflow

https://www.disa.mil/-/media/Files/DISA/Services/Cloud-Broker/Authorized-DoD-Cloud-Services-Catalog-SEPT2018.ashx?la=en&hash=4392BC616B34E381F52FC7E9CDB53231672E05A3
https://www.disa.mil/-/media/Files/DISA/Services/Cloud-Broker/Authorized-DoD-Cloud-Services-Catalog-SEPT2018.ashx?la=en&hash=4392BC616B34E381F52FC7E9CDB53231672E05A3
https://www.disa.mil/-/media/Files/DISA/Services/Cloud-Broker/Authorized-DoD-Cloud-Services-Catalog-SEPT2018.ashx?la=en&hash=4392BC616B34E381F52FC7E9CDB53231672E05A3

4-6

specific languages, there are libraries and functions that can be used (or not) to avoid

common errors. For example, one can avoid the use of C’s malloc function, or use a

wrapper for that memory allocation command in which the wrapper ensures specific

guarantees of safety are met.36 In Java, a stored procedure can be used rather than a

traditional SQL (Structured Query Language) query, avoiding SQL injection errors.37

When all else fails, pair programming is used in some Agile settings: two developers

program together side by side, one coding while the other checks the code for

vulnerabilities.38 All of these can be used in conjunction with a DevSecOps approach.

Unfortunately, the survey responses do not instill confidence that the above

techniques will be selected as needed. A number of responses hinted that security

requirements generation—particularly at the big picture level—is lacking. A top-down,

risk-based approach is needed to architecting a secure development process. This is the

architecture for the architecture (and subsequent development). For example, a high-

performance system in a domain such as avionics may be unable to tolerate the overhead

of a memory-safe language like Java. However, a memory-safe subset of the C language

could be used in conjunction with pair programming to mitigate the likelihood of some

vulnerabilities. These trade-offs require competent program management that understands

the options available and can select the trade-offs that best meet the needs of the system to

be developed. Ideally, the rationales for key decisions such as security requirements

sources and secure development choices are clearly articulated, documented and traceable

to their origins. Documenting and maintaining this kind of information may seem against

the Agile principle of valuing working code over documentation. But Agile does not say

documentation is unimportant. An organization must make an up-front decision what

information it needs to ensure security and commit to that decision throughout

development.

Others have compiled sources of secure coding practices. A paper published by

National Institute of Standards and Technology (NIST) [28] is an excellent starting point.

C. Reported Successes, Problem Areas, & Lessons Learned

This section discusses the survey results, splitting them into success stories, problem

areas, and lessons learned. The survey asks respondents to state what is working well and

what is not working well, and to share why, so it was straightforward to separate successes

from problems, and to extract lessons learned. Table 4-1 summarizes the results.

36
 https://owasp.org/www-community/vulnerabilities/Memory_leak

37
 https://owasp.org/www-community/attacks/SQL_Injection.

38
 https://en.wikipedia.org/wiki/Pair_programming

https://owasp.org/www-community/attacks/SQL_Injection

4-7

Table 4-1. Survey Results

1. Success Stories

Respondents provided a variety of responses on what worked well, but they clustered

around a similar set of themes, which can be contrasted with the responses on what caused

pain points. Many of the advantages can be directly attributed to the maturity of the specific

DevSecOps environments, with better results for those organizations that invested in

developing the needed skills, experience, and acculturation.

1. Aggressively establishing and promoting a DevSecOps culture. This ensures

everyone understands the system from a user’s perspective, the importance of

Topic

number

Commonalities Reported by Respondents Number of

Responses

What is Working Well (Success Stories)

1 Enculturation of DevSecOps is foundational 8
2 Incorporate test processes and environments up front 6
3 Fully leverage automation for testing, pipeline, and builds 8
4 Results can be validated 4
5 DevSecOps can be adapted to physically isolated environments 2

What is Not Working Well (Problem Areas)

1 The current DoD acquisition model does not lend itself to a
DevSecOps development methodology

3

2 The current DoD Authority To Operate (ATO) process is partially
incompatible with DevSecOps

4

3 Many DoD systems may be incompatible with the DevSecOps
process

6

4 There is no adequate standard definition of DevSecOps 4
5 The role of DT within a DevSecOps methodology is unclear 6
6 Forming teams proved more challenging than expected 4
7 Organizations had trouble allocating resources 4
8 The difficulties of classified versus unclassified DevSecOps

development are unresolved
5

Lessons Learned

1 Starting with DevSecOps is easier than switching to DevSecOps 6
2 DevSecOps is easier on small projects than big ones 5
3 DevSecOps must be adapted to the operational environment 6
4 Automation is key 8
5 Security requirements need to be more mission-focused 7
6 Leverage good architecture and design to support security 6

4-8

implementing security early, and the tools and processes necessary to do so.

DevSecOps process training pays off for the entire team: leadership, PM, product

leads developers, testers, and operators. Leadership learns the culture and process

of DevSecOps, including the limitations and reasonable expectations. The same

is true of the rest of the team. Through constant interaction, all the team members

have the same understanding and expectations. All are involved in creating the

user stories. Developers understand and accept the importance of building in

feature security from the beginning. Testers embed with developers and are

continuously involved. Testers are aware of the environment and workflow and

able to successfully tailor, automate, and integrate tests into the pipeline.

Operators play an essential role as the final arbiters of the success of the features

added during a sprint.

2. Planning and incorporating testing processes and environments up front. If

testing is defined as part of the requirements process, instead of an afterthought

to development, the same incremental improvements may be leveraged as in the

coding pipeline process, speeding up the testing process when it occurs. Another

advantage is the target of opportunity provided for line testing. In traditional DT

body of practice, the resources for a dedicated developmental test event must be

made available. That includes mature code, a suitable test environment, and an

available properly skilled team. Conversely, DevSecOps requires DT shift as far

left as possible. Since the DevSecOps environment must be architected to allow

for continuous testing, waiting for availability of a separate dedicated test

environment is not an issue. Throughout the series of sprints, as the system is spun

into production, the automated tests are executed, and coding defects are

discovered as part of a continuously repeating process that provides real-time

reporting and feedback.

3. Fully leveraging automation for testing, pipeline, and builds. Increased

automated scanning helps reveal coding errors early and automated builds enable

remediation. Automated scanning and continuous authorization of containers via

proactive remediation of findings in the development pipeline reflect a

fundamental change in how applications are secured. Vulnerabilities are removed

from production applications faster, as much of the work to rebuild base

containers has been automated. Once secured, they remain secure as long as they

are monitored for drift and rebuilt frequently to return them to the secure baseline

state. Only one of the respondents referenced use of a DoD repository of

previously assessed and approved code objects (as opposed to widespread use of

repositories in general) such as Iron Bank. Iron Bank39 or formally, the DoD

39
 https://software.af.mil/dsop/services/ available 07/16/2020

https://software.af.mil/dsop/services/

4-9

Centralized Artifacts Repository (DCAR), is a DoD repository of digitally signed,

binary container images including both Free and Open-Source software (FOSS)

and Commercial off-the-shelf (COTS) sponsored by the Air Force. All artifacts

are hardened according to the DISA Container Hardening Guide, and containers

accredited in Iron Bank have DoD-wide reciprocity across classifications.

Although the benefits for speed, security, compliance, and cost seem self-evident,

the respondent’s organization did not use it in favor of its own repository. (The

respondent indicated that their organization preferred a repository they could

control themselves.) Nonetheless, even regarded purely as a remediation against

supply chain attacks for open source components, the development of these

repositories is a clear success story for DoD.

4. Objectively demonstrable results. Several respondents report these

improvements can be objectively verified through metrics. Although the

challenge of developing cybersecurity metrics was also identified by respondents,

the reduction of discreet common vulnerabilities and exposures (CVEs)40 in

production scanning was considered an indicator of the effectiveness of

DevSecOps in reducing vulnerabilities. This effectiveness is compared with a

legacy development and production environment, where the same CVEs may live

in production for several months until the next periodic scan results in a Plan of

Action and Milestones (POA&M) to remediate them. And that is only the lead

time to generate the POA&M; the actual fix will need to go through the next

production cycle. With DevSecOps, the cycle time needed to address the same

vulnerabilities is greatly decreased.

5. Adapting DevSecOps to physically isolated environments. Survey results

indicate Agile methodologies have also been effectively adapted to support code

development for air frames, classified systems, and other types of applications,

where the development and production environments are physically isolated from

each other. These environments present challenges for employing automation to

build, test, and promote across boundaries, but workable technical solutions exist

and have been successfully leveraged, according to respondents. These

observations were counterbalanced by examples from other respondents where

these problems had not been overcome. Mixed mode environments require a

greater degree of flexibility to succeed, but also a greater commitment to process

discipline.

40
 https://cve.mitre.org/ available 07/11/2021

https://cve.mitre.org/

4-10

2. Problem Areas

Interviewees had plenty to report on problems using DevSecOps. Indeed, measured

by the many responses, they had more to say about difficulties than successes. This should

not be taken as a failure on the part of DevSecOps. It is still relatively new and certainly

not as mature as some other, more familiar models. Every new employee requires more

than training, also inculcation into the DevSecOps mindset.

Nevertheless, the reported problem areas bear enumeration and examination. Some

have obvious, if not necessarily quick, fixes. We expect others will require more detailed

study, involving data gathering and analysis, to consider alternatives and provide empirical

evidence about what solutions are superior and the circumstances under which they can be

employed.

Each respondent had their own unique way of expressing problems using DevSecOps,

but an examination of the entire set revealed some common themes.

1. The current DoD acquisition model does not lend itself to a DevSecOps

development methodology. Instead, requirements and milestones are agreed

upon up front, and the development is more baked-in than would be optimal for

DevSecOps, in which the development process allows for more fluid sequencing

of backlog items.

2. The current DoD Authority to Operate (ATO) process is partially

incompatible with DevSecOps. Although the dream of Continuous ATO

(CATO) is alive and well, there is no consensus on the details. Roles and

responsibilities of personnel involved in the CATO process are unclear, even by

key personnel. There is legitimate skepticism by some of the respondents of the

security value of a CATO (other than as a compliance exercise) without grounding

in a broader, more in depth periodic assessment of the maturity and consistency

of the development environment and practices of each specific software factory,

comparable to the Capability Maturity Model Integration41 (CMMI) certification

program (CMMC)42 being fielded for assessing the Defense Industrial Base.

3. Many DoD systems may be incompatible with the DevSecOps process.

Systems are currently tested just prior to deployment into production

environments, and the concepts of A/B testing and continuous deployment—

particularly into classified or air gapped environments—are often contraindicated.

41
 https://acqnotes.com/acqnote/careerfields/capability-maturity-model-integration-cmmi

42
 https://acqnotes.com/wp-content/uploads/2014/09/CMMC-Securing-the-DoD-Supply-Chain-Overview-

Nov-2019.pdf

4-11

4. There is no adequate standard definition of DevSecOps. Existing guidance is

still high-level and not necessarily expressed in a form that can be tailored to meet

a particular project’s needs. One respondent noted that the Department of Defense

Instruction (DoDI) 8500 series of documents has not been amended to enable

DevSecOps and automated pipelines, leaving local organizations responsible for

tailoring and reinterpreting traditional compliance in environments that

implement DevSecOps. Then too, some respondents did not understand the

differences between DevSecOps, DevOps, and Agile. They used tools potentially

helpful for promoting CI/CD, but paid insufficient attention to DevSecOps’ tenet

of addressing security early. It remains unclear how thoroughly and accurately

system architectures are documented and maintained; similar concerns exist

regarding how carefully feature roadmaps are sequenced to avoid the

implementation cross-cutting changes in later stages of development.

This lack of a standard definition has kept training materials and documentation

project- or organization-specific, rather than widespread and available. Several

respondents pointed out the lack of training and consequent difficulty of bringing

members onto a team. Compounding the issue, implementation guidance is

lacking for DoD-specific use cases, in which, for example, workarounds would

be provided for inability to implement CI/CD. The fact that DevSecOps is not

fully part of the culture yet does not help. One respondent said his organization

has a playbook and checklists, but no procedural or technical way to ensure teams

are using either. Presumably he would not have made the same comment about

Waterfall-based development. His organization hasn’t figured out how to

implement analogous feedback and review mechanisms for DevSecOps.

5. The traditional role of DT within a DevSecOps methodology is unclear. As

stated earlier, it is unclear how DT fits within DevSecOps. In DT as currently

practiced, tests are performed at a later stage in development rather than at times

of code check-ins or during CI and CD. Tools used and artifacts generated during

DevSecOps testing may be incompatible with – or contractually unavailable to –

the DT team. It is possible to shoehorn in Developmental Testers during the

DevSecOps process to guide the testings’ compatibility with the final DT, but

there is still a “big bang” DT that is inconsistent with how the DevSecOps process

works.

6. Forming teams proved more challenging than expected. This was partially

due to COVID-19: developers suddenly started working at home, complicating

pairs programming and the developer-tester-user interactions that are so important

to DevSecOps. Organizations also encountered difficulty for other reasons. For

example, development and testing shops are often physically distinct

organizations. Having developers and testers work together means bringing one

4-12

or the other to a new site for several months, raising quality-of-life and manpower

issues. One operational testing organization had a contract with the USAF 47th

Cyberspace Test Squadron to do continuous testing, but for political reasons each

wanted its own red team.43 Bringing team members together was not the whole

problem. One respondent stated their test sites were in remote locations where

recruitment was difficult, and bemoaned the lack of talent. Conway’s Law states,

“Any organization that designs a system (defined broadly) will produce a design

whose structure is a copy of the organization's communication structure.”44 In this

case, the separation of testers into separate organizations can easily lead to

incompatibilities in testing approaches, separate tooling, mismatched timelines,

and unaligned goals. It is important to recognize that these problems will continue

when developers, testers, and users are part of different organizations—DoD,

contractors, and subcontractors, from the program level on down.

7. Organizations had trouble allocating resources. This may reflect unfamiliarity

with setting up DevSecOps, in which case the problem can be expected to go

away, or at least lessen, in the future. Nevertheless, it is worth noting the following

responses:

a. More up-front resources are required to implement DevSecOps. Developers,

designers, and security experts get involved earlier than in traditional projects,

and they quickly purchase and provision computing environments that

previously would have been unnecessary for months or even years. One

respondent particularly stressed the need to rely more on contractors and to

invest more in the DT team. Given the challenge of finding sufficient security

testers with the necessary skill sets for DT, the requirement to add dedicated

security experts to the development teams compounds the problem.

b. The community has not settled on approved tools for practicing DevSecOps.

Projects implement what their team members know, so the tools for issue

reporting, CI/CD, version control, containerization, etc. are still unsettled.

This decreases integrability, or at least increases the effort required to achieve

it.

c. One respondent, familiar with Agile, complained that Agile programs own

their code, but from lack of resources often struggle to keep it secure,

operationally suitable, and operationally effective.

8. The difficulties of classified versus unclassified development in DevSecOps

are unresolved. Several respondents spoke to how software developed in

43
 The reasons are not stated because they might reveal the respondent’s identity.

44
 https://www.melconway.com/Home/Conways_Law.html

4-13

unclassified environments was transferred to classified environments for

operation. This is a perennial problem, and certainly not specific to DevSecOps.

DevSecOps does introduce its own challenges. The infinity loop diagram showing

the process flow doesn’t work when some high-side information cannot, by law,

be transferred to a low-side environment. Automated cross domain transfer

between a low side development environment and a high side production

environment also presents a challenge. At best, the extra data flow is time-

consuming. At worst, classified tests and high-side simulations can’t exist on the

low side, and the DevSecOps paradigm requires significant alteration to develop

a workaround.

3. Lessons Learned

This section covers some lessons IDA gleaned from the surveys and interviews.45

Characterizing them was difficult. The surveys and interviews yielded diverse results, each

participant having their own story to tell. Our conclusion was that their experiences reflect

their environment, their projects, their resources, and their familiarity with DevSecOps and

its antecedents (Agile and DevOps). This is a lesson in and of itself: successful and

widespread use of DevSecOps will require more standardization, resources, and training.

There were also more specific lessons learned, and they are the focus of this section.

1. Starting with DevSecOps is Easier than Switching to DevSecOps. Some

respondents attempted to switch legacy projects from a Waterfall process to

DevOps or DevSecOps. Respondents agreed this was more difficult than if the

project had begun with DevSecOps. Of course, they had no choice, but their

consensus emphasizes the cultural changes that need to occur for DevSecOps to

succeed,46 and that change of culture was especially hard when introduced

midstream, when the usual pressures to deliver were already present. In the

Waterfall Model, teams often work in siloes; DevSecOps assumes close

collaboration. Geographically distant teams were suddenly required to be

together. The logistical challenges were obvious. So were the environmental

challenges, where everyone must adapt to a new approach to obtaining artifacts

and submitting changes. DevSecOps, or more precisely CI and CD, requires more

automation than a Waterfall-based process. Setting up the CI/CD pipeline takes

time and resources, as does learning to work with it.

45
 These lessons learned are not to be confused with survey question 7. They include answers to that

question and to others as well.

46
 Many have written that successful adoption of approaches like Agile, DevOps, and DevSecOps require

cultural change. See, for instance, https://www.agileconnection.com/article/7-ways-change-culture-

devops-success and https://www.bmc.com/blogs/devops-culture/

https://www.agileconnection.com/article/7-ways-change-culture-devops-success
https://www.agileconnection.com/article/7-ways-change-culture-devops-success
https://www.bmc.com/blogs/devops-culture/

4-14

2. DevSecOps is Easier on Small Projects than Big Ones. Respondents had

difficulty sticking to DevSecOps as project size grew. Bigger projects tended to

“fail back to Waterfall”—that is, large projects perceived that adhering to

DevSecOps principles risked failure and, although claiming to be practicing

DevSecOps, were mainly using Waterfall-based processes as far as the developers

and testers were concerned. IDA did not have the opportunity to explore the

reasons for reversion. It is easy to speculate. Larger projects require more training:

more individuals who must undergo a cultural shift. Larger projects are more

complex, and introducing DevSecOps only adds to that complexity until the

cultural shift is complete. Larger projects have more potential communication

channels; as DevSecOps assumes more communication than Waterfall, more of

these channels must be used, increasing the amount of information everyone has

to process. DevSecOps consumes more resources up front (several respondents

noted this). Furthermore, the security-related problems DevSecOps finds aren’t

traceable to functional requirements, and it can be difficult to convince cost-

conscious management (especially management that hasn’t made the cultural

shift) that the extra resources are justified.

These challenges are not endemic to DevSecOps. Netflix, certainly a company

that develops and deploys many large and complex systems, has long used

DevOps successfully.47 Then again, DoD’s contracting model, and the resulting

oversight and scrutiny, complicates any kind of change. IDA hopes the problems

DoD has encountered when using DevSecOps on larger systems will diminish

once DoD and its contractors gain experience. IDA recognizes that overcoming

some challenges may require modifying existing contracting law.

3. DevSecOps Must Be Adapted to the Operational Environment. Respondents

had projects in their portfolio that ranged from weapons systems to space C2

systems to IT systems. Operator interactions with each system category differ

greatly: in authentication and authorization, involvement (a spectrum from

reactive to proactive), and monitoring. Effective DevSecOps practice requires

collaboration between developers and operators, and consequently an

understanding by developers of their target operational environment. The

different environments preclude a one-size-fits-all approach to DevSecOps. The

easiest illustration of this is the difficulties of developing software systems in

unclassified environments (which most respondents preferred) that are operated

in classified environments. Staging and production environments, even if they are

containerized, must operate according to the different constraints imposed by

classified systems. There is also the matter of transferring products from

47
 See https://netflixtechblog.com/tagged/devops?gi=53aa556e6afa

https://netflixtechblog.com/tagged/devops?gi=53aa556e6afa

4-15

unclassified to classified systems, something that regulations make difficult to

automate fully.

4. Automation Is Key. Individuals and interactions are valued over processes and

tools, according to the Agile Manifesto values, but CI/CD does not happen

without automation. Much of CI/CD is rote compilation, assembly, and

distribution of artifacts. These actions need no human involvement, and indeed,

were humans to be involved, would likely be error-prone, humans being less adept

than computers at following directions exactly. IDA’s results show DevSecOps

practitioners recognize this, and strive to identify mechanical parts of their

processes that can be automated. Several respondents made extensive use of

automation in setting up and provisioning environments through containers and

virtual machines (VMs) (and collections of containers: Docker swarms,

Kubernetes pods). Respondents also performed code reviews automatically, using

such scanning tools as Fortify and SonarQube. As with the operational

environment (lesson learned #3), a project can expect to tailor its automation

based on the pipeline it implements. The set of tools will vary based on the

product, project, and environments used in DevSecOps.

5. Security Requirements Need to Be More Mission-Focused. Respondents,

when asked about how they obtained and tested to security requirements,

mentioned such standards as the RMF48 and Open Web Application Security

Platform (OWASP). Although these are excellent works, they are generic

guidance not tailored to the needs of individual projects. They do not focus on

Mission Assurance: the need to develop security requirements starting from

mission objectives. In effect, respondents indicated security requirements came

from working backward. They started with (say) RMF controls, identified those

relevant to their project, then determined how to fit each control into their

development and testing process. This approach assumes the standard(s) they

chose addressed every security-related aspect of their mission. It would be better

to start with mission requirements, derive an operational perspective, then analyze

that perspective to identify potential security flaws and lapses. This is not to say

that RMF should be ignored, but RMF as currently practiced in DoD must be

adapted to address the continuous nature of DevSecOps.49 Using an operational

perspective helps identify and eliminate operational flaws, but not necessarily

48
 RMF results from a NIST effort to provide a process for managing security risks. See

https://csrc.nist.gov/projects/risk-management/

49
 For example, Air Force use of a git repository for security package artifacts in support of automated

DevSecOps processes rather than Enterprise Mission Assurance Support Service (eMASS), the DoD

RMF workflow and knowledge system. Both the Air Force and the Navy have published their own

Continuous RMF Playbooks.

https://csrc.nist.gov/projects/risk-management/

4-16

implementation flaws. Both the mission and system implementation must be

analyzed.

6. Leverage Good Architecture and Design to Support Security. Following the

Agile Manifesto does not preclude architectural documentation. However,

advance planning is necessary to create sufficient architectural documentation

along with a plan for how to implement various aspects of the development

process in a secure manner. Interview results gave an impression that some

developers lacked a mission-based perspective of the systems they were

developing, leading to myopic and misdirected development efforts. And, as

mentioned previously, the security requirements were often untraceable to

mission-based risk assessments. It is possible to leverage Agile development with

DevSecOps in a manner that anticipates and mitigates risks, but it requires subtle

changes from current approaches. First, architecture is still important to develop

and document. However, comprehensive architectural documentation may be

overkill. Software development researcher George Fairbanks advocates for “just

enough software architecture.” [29] In the context of risk, he states:

…you should use risk to help you decide how much architecture planning to do.

Basically, do enough architecture until the risk of technical failure (eg [sic] from

not thinking through the problem well enough, from not coordinating teams on a

common engineering task) is lower than non-technical risks (eg [sic] time to

market, risk of building the wrong thing).

Said simply, it seems like common sense. In practice, teams tend to do WAY too

much up-front work (see 1980’s waterfall processes) or WAY too little (see 2010’s

agile processes). The risk-driven model gives more guidance than simply “Big

Design Up Front” or “You Ain’t Gonna Need It.”50

Architecture and design do not simply encompass what the fully-built system will

look like. Instead, when properly done, they provide temporal guidance on how

to sequence the development in smaller phases (e.g., through the development of

a “walking skeleton”51 to demonstrate limited end-to-end capabilities). A

carefully thought out sequencing of development can reduce the likelihood that

architecturally cross-cutting features (e.g., security) are not bolted on mid-way in

50
 https://www.georgefairbanks.com/software-architecture/risk-driven-model/

51
 A walking skeleton was described by Cockburn as “a tiny implementation of the system that performs a

small end-to-end function. It need not use the final architecture, but it should link together the main

architectural components. The architecture and the functionality can then evolve in parallel.” See

http://alistair.cockburn.us/Walking+skeleton.

http://alistair.cockburn.us/Walking+skeleton

4-17

development in a way that is disruptive to the development process and risks the

security of the system.

4-18

(This page is intentionally blank.)

5-1

5. DevSecOps Maturity Models

Interviews consistently reinforced the importance of the maturity level of the

individual DevSecOps program as a key indicator for both success of the project and the

ability to insert good security practices into the DevSecOps pipeline. Programs that failed

to achieve a level of maturity through education, discipline, and leadership commitment

struggled with similar issues and in some cases were characterized as having “failed back

to Waterfall.” Based on the scope of this study, the IDA team focused on how this lack of

maturity affected secure coding and test practices, but the issues were cross cutting and

particularly noted in delivery of software that did not meet the operational requirements.

Although the interviews were concerned with integration of Security into the DevSecOps

construct, lack of good integration of Operations into the CI/CD practice was also

identified as a key impediment to meeting the development goal of rapidly providing

operational capabilities to system users.

NIWC Atlantic52 puts forward a nine-level maturity model for DoD DevSecOps

efforts based on defining practices rather than metrics (see Figure 5-1). This model is useful

not only for assessing the maturity of a particular DevSecOps implementation, but for

assessing whether a legacy Waterfall-based development effort is a good candidate to

convert to DevSecOps.

52
 Naval Information Center Atlantic Brief: DevSecOps Maturity and Business Value. The model is

derived from these sources:

1. U.S. General Services Administration, DevSecOps Guide. See

https://tech.gsa.gov/guides/#API+Agile+Design+DevSecOps+Development+Team.

2. Puppet Labs, “Puppet State of DevOps Report 2018, Puppet Labs, 2018. Available for

download at https://puppet.com/resources/report/2018-state-devops-report/.

3. Reference [32].

https://tech.gsa.gov/guides/#API+Agile+Design+DevSecOps+Development+Team
https://puppet.com/resources/report/2018-state-devops-report/

5-2

Figure 5-1. NIWC DevSecOps Maturity Model

Two other relevant DevSecOps maturity assessments are also available.

1. The DoD Enterprise DevSecOps Maturity Review. [31]

2. The Open Web Application Security Project (OWASP) DevSecOps Maturity

Model (DSOMM)53

The DoD Enterprise DevSecOps Maturity Review, authored by the USAF CSO, is a

questionnaire that leads an organization through a review of its DevSecOps “software

factory.” It appears the review is designed for onboarding organizations into one of the

DoD Enterprise DevSecOps service offerings. The review doesn’t allow for any scoring or

53
 OWASP DevSecOps Maturity Model DSOMM, https://owasp.org/www-project-devsecops-maturity-

model/

https://owasp.org/www-project-devsecops-maturity-model/
https://owasp.org/www-project-devsecops-maturity-model/

5-3

self-assessment, with no criteria given for how responses align to greater or lesser maturity

levels. However, better responses are strongly implied, many of them dependent on using

the DoD enterprise services that the DoD DevSecOps COP champions.

The OWASP DSOMM has the advantage of being security focused. It is part of a

project by the OWASP based on international standards to help systematically mature

DevSecOps practices. The project is opensource with an accompanying git repository.

There are four maturity levels with varying depth defined across five dimensions for

characterizing an organization’s DevSecOps practices.54

• Build and deployment

• Culture and organization

• Implementation

• Information gathering

• Test and verification

These dimensions correspond directly to the areas consistently identified by

respondents to the IDA survey as integral for the success of programs employing

DevSecOps, and specifically for inculcating security into DevSecOps based programs.

Although only one of the respondents specifically called out use of the OWASP55 model

as an application security framework for development, many of the commonly used

automated security tools adhere to the OWASP framework. Use of a model like the

DSOMM builds on the security practices of the OWASP framework by providing a

methodology to measure the maturity of the end to end development processes and supports

leadership with evidence that the DevSecOps program can and does successfully deliver

fully functional secure software.

Most responses concurred with the position of the USAF CSO [31] and the NIWC56

on the need for adoption and application of a CMMC-like57 DevSecOps maturity

assessment, and with the need for ongoing effort to address where the current RMF practice

falls short58 in assessing and authorizing DevSecOps developed systems. Both of these

initiatives underscore a need to adapt and update DT policy and practice to provide

54
 https://dsomm.timo-pagel.de/index.php

55
 https://owasp.org/www-project-application-security-verification-standard/

56
 Naval Information Center Atlantic Brief: DevSecOps Maturity and Business Value. See footnote 52.

57
 https://acqnotes.com/wp-content/uploads/2014/09/CMMC-Securing-the-DoD-Supply-Chain-Overview-

Nov-2019.pdf

58
 https://media.dau.edu/media/Continuous+ATO/1_10jrntl6,and https://govtribe.com/file/government-

file/fa877020r0518-air-force-continuous-ato-playbook-dot-pdf. Both the Air Force and the Navy have

published their own CATO playbooks.

https://media.dau.edu/media/Continuous+ATO/1_10jrntl6
https://govtribe.com/file/government-file/fa877020r0518-air-force-continuous-ato-playbook-dot-pdf
https://govtribe.com/file/government-file/fa877020r0518-air-force-continuous-ato-playbook-dot-pdf

5-4

effective testing, evaluation, and assessment of software developed using a DevSecOps

methodology and the DevSecOps environment itself. When the automated build process

integrated in the pipeline is basically an extension of the software product, then testing

must encompass the development environment, the automated processes instantiated as

code, and the continuous development and delivery of the system software.

6-1

6. Conclusion and Recommendations

A. Conclusions

The highly technical, automated, and continuous cyclic nature of DevSecOps

processes require a commensurate degree of knowledge, discipline, commitment, and

oversight. If these elements are missing, the result is merely an ad hoc collection of

practices that apply DevSecOps methodologies in name only. Interviews reinforced this

observation with an acknowledgment that projects suffered where leadership and team

members were working from assumptions of what DevSecOps and Agile meant, rather

than knowledge achieved through actual training and experience.

Figure 6-1. Technical Security Practices59 illustrates the information security, change

management, and compliance practices required to support the goals of integrating

information security continuously into every part of the development process, and also

protect the development process itself. This duality of effort is particularly important in

DevSecOps environments where use of EaC, Everything as Code, effectively makes the

individual DevSecOps pipeline part of the final deployed software product.

Figure 6-1. Technical Security Practices

Each of these individual practices is reflected in technical implementation in some

part of the coding of either the development environment, the pipeline, or the product.

Since most coders are not necessarily well versed in even the information security practices

59
 Naval Information Center Atlantic Brief: DevSecOps Maturity and Business Value. Derived from [4].

6-2

that apply to writing secure code, as reflected in the ongoing need for cyber DT, the

necessity for development team members who are security practitioners is evident, in

particular members who are knowledgeable testers. But this need for knowledge works

both ways, the developmental security team members must be well versed in DevSecOps

processes, and how to incorporate and automate the appropriate testing and monitoring into

the pipeline and build processes to achieve an efficient consistent repeatable and secure

result.

The repeated observations that maturity of an organization’s implementation of

DevSecOps methodology is the best indicator of how well security practices, and broadly

any development practices, are being employed might seem self-evident. However, given

the unique purpose-built nature of each DevSecOps ecosystem and the factories and

pipelines within those ecosystems, metrics that provide consistent external measurement

of the quality of processes across different ecosystems are difficult to achieve. Even in

DoD where there are enterprise DevSecOps ecosystems available, much like in RMF, the

amount and relevance of inheritance of good coding and security practices depends entirely

on how much of what the enterprise ecosystem provides is actually used by the

development team. The relationship can be compared to a Russian nesting doll, where each

layer is dependent on the previous one that envelopes it. The development organization’s

direct responsibility begins with the layers it provides and controls. This reality is reflected

in the recommendations for improving DevSecOps practice provided below.

B. Recommendations

The IDA team synthesized the following set of recommendations through a crosswalk

between the DevSecOps success stories, problem areas, and lessons learned, captured in

the survey responses, interviews, and the DevSecOps documentation available to us. IDA

recommends DoD take the actions in Table 6-1 to promote widespread, consistent, and

effective use of DevSecOps throughout defense-related projects, programs, and offices.

Per the shading, there are three categories of recommendations: DoD-wide

recommendations, per-program managerial recommendations, and per-program technical

recommendations. Given the interdependencies of these efforts, the recommendations are

not ranked or prioritized.

6-3

Table 6-1. Recommended Actions to Promote DevSecOps

The IDA team also noted, in Problem Area #2, the lack of mature DoD guidance on

how to implement Continuous ATO under DevSecOps. The team makes no specific

recommendation on how to do so, believing the subject merits further study before

anything concrete can be formulated. Accordingly, the team recommends a separate study

on implementing Continuous ATO under DevSecOps. Another topic that, while seemingly

apparent, is beyond the scope of this paper is the comparative value of using enterprise

DevSecOps capabilities over “localized” implementations; the team recommends further

study of this topic as well. Specific improvements to the DoD Cyber T&E Guidebook [34]

based on these recommendations will need to be worked in conjunction with the

DevSecOps T&E Guidebook.60

60
 In review at the time of this report.

Recommendations

Define and propagate an adequate standard definition of DevSecOps, and specifically of

integrating the traditional role of DT in DevSecOps methodology

Create top down understanding, commitment, and application of DevSecOps concepts

in the development organization and culture

Adopt a DevSecOps Maturity Model to measure and improve development program

security effectiveness

Understand the cultural and resource challenges in converting Waterfall programs to

DevSecOps, scaling up from small projects, and cross domain development

Identify mission focused security requirements and incorporate test processes and

environments up front

Identify, continually evaluate, and manage development to objective security metrics to

ensure the DevSecOps environment produces software that meets mission security

requirements

Commit sufficient operational and security staff in addition to developers to ensure

teams produce software that meets operational and security requirements

Ensure the development methodology is appropriate for the program requirements and

can be adapted, especially for physically isolated or highly sensitive systems

Incorporate good architecture and design in the development environment and pipeline

to support security

Work to identify and integrate testing that cannot be automated in a disciplined

repeatable DevSecOps process

Fully leverage automation including virtualization, containerization, and IaC for testing,

pipeline, and builds

Use DoD enterprise code repositories whenever possible to reduce rework and minimize

supply chain threat

6-4

Indeed, all of the DoD-wide recommendations seem sufficiently complex to merit

future study. These studies would no doubt produce more focused granular

recommendations of their own.

A-1

Appendix A.

Cybersecurity and Software Development Survey

Survey / Interview Questions:

Please focus on questions that apply to your role. No single responder is expected to

know all the answers. Provide brief answers based on your immediate knowledge, not

extended discussions or research. Mark questions N/A if you don’t know the answer.

Survey results will be non-attributable. We greatly appreciate your insights.

1. Development Processes

1. What development processes do you use (e.g., Agile, DevOps, DevSecOps, etc.)?

2. If you use DevSecOps:

a. Who’s on the team? (e.g., operations, developers, red team, blue team, security)

b. What kinds of training (including certificates or certifications) do the team

members have or is required of them?

c. What are your organization’s primary Development (DevSecOps) initiatives?

2. Roles

3. What is your role (developer, operations, security, testing, pipeline developer) in

DevSecOps initiatives?

a. In your role, describe your interaction with other team members; their roles and

the nature and frequency of interaction (meetings, teleconferences, email, file

shares, etc.).

3. General Observations

4. How have you integrated developmental testing (DT) into your DevSecOps initiatives?

5. Regarding DevSecOps and its integration with DT, what is working well and why? If

possible, list things that have helped improve security in a DoD context.

a. Has this been objectively demonstrated?

6. Regarding DevSecOps and its integration with DT, what is not working well and why?

If possible, list things that are difficult or impossible in a DoD context.

a. Has this been objectively demonstrated?

7. Regarding DevSecOps and its integration with DT, do you have any lessons learned

that are worth sharing with the community? Do you measure software quality? How?

4. Development Practices

8. What environments do you have (dev, test, production, etc.)?

9. In each environment, what is instrumented (i.e., set up to log events) and how?

A-2

10. How do you arrive at the original specifications for the MVP and succeeding

backlogs/sprints?

11. Who develops the specifications or requirements—including security-related ones—and

how are they used?

a. Where are they stored and in what format?

b. When in the life cycle are the security requirements defined?

c. How are they communicated to developers? To testers? To operators?

12. Are security requirements traceable to their implementation? How?

13. Which software development and/or developmental test specific DoD or NIST

policies/guidance do you adhere to, and are these firm requirements or best practices for

you?

14. Is there a monolithic source code repository, or are there multiple ones?

a. Where are the repositories and who has access?

b. What types of access exist?

c. If there are multiple repositories, how are they interrelated?

d. What security validation and monitoring are done against the repositories?

15. What is the branch strategy? How is it enforced?

16. What happens before a change is checked in?

17. What happens after a change is checked in (include any tools)?

a. Does it trigger an automated build and test sequence?

b. Is this check-in sequence fully logged and visible to the entire team?

c. Does a failure at any state trigger a notification?

d. Does a warning at any state trigger a notification and is a warning considered a

failure?

18. How do changes transition from check-in to build to CI and unit testing, to functional and

integration testing, and to staging? (Include any tools)

19. And then finally to production? (Include any tools)

a. What is the deployment strategy (e.g., ring-based)?

b. How is the software monitored in production?

5. Testing

20. What tests are run, and how do the tests and tools change with the system under test?

(Include any tools)

a. When in the life cycle are the test cases (including security test cases) defined

and developed?

b. For each testing category, who is accountable for defining and developing the

tests (including security test cases)?

c. Who is accountable for running the tests and who is accountable for addressing

test results?

d. Where are the test results logged? (Include any tools) and in what format?

e. What is the source of the security tests?

i. OWASP Top 10 or OWASP Proactive Controls?

ii. Regression tests?

1. Are all unit and integration tests always run or just selected

ones?

2. Are they automated as part of the pipeline?

iii. Unit test sources?

A-3

iv. Integration test sources?

v. Static testing?

1. Automated tools and/or Code reviews?

vi. Dynamic testing?

1. Automated tools, Fuzzing, Penetration testing, Fire drills?

21. What other tools are used, and for what purposes? (E.g., orchestration of containers)

22. What manual checks or reviews are performed and when?

23. How is this used for security and compliance purposes?

24. What is your logging strategy?

a. Does your security testing include tracing through logs?

i. What automated methods are used (including tools)?

ii. What manual methods are used (including tools)?

A-4

(This page is intentionally blank.)

B-1

Appendix B.

Policy and Guidance Referenced by Respondents

The following is a list of policy and guidance documents respondents cited as guiding

their organizational DevSecOps practices. Respondents consistently noted that they were

forced to infer or seek additional definition for standards and guidance as the references

were incomplete, not specific, or had not been updated to remain relevant with DevSecOps

and other CI/CD development methodologies.

The IDA team tried to provide references to these documents, although sometimes a

respondent did not supply IDA enough information to identify a document. Some

respondents referred to a collection of documents. The list below notes the documents that

could be identified.

• NIST SP 800-53 Rev. 5, Security and Privacy Controls for Information Systems

and Organizations, December 10, 2020 [D-1].

• NIST SP 800-115, Technical Guide to Information Security Testing and

Assessment, September 2008 [6].

• DoDI 5000.87, Operation of the Software Acquisition Pathway, October 2, 2020

[7].

• DoDI 5000.89, Test and Evaluation, November 19, 2020 [8].

• DoD Directive 8140.01, Cyberspace Workforce Management October 5, 2020

[9].

• DoDI 8510.01, Risk Management Framework (RMF) for DOD Information

Technology (IT), May 24, 2016 [10].

• Director, Operational Test and Evaluation (DOT&E) Directive Memos. Not

further specified in the response.

• Directive-Type Memorandum (DTM) 17-001: Cybersecurity in the Defense

Acquisition System, January 11, 2017 [11].

• NAVAIRINST 3960.4B, Project Test Plan Policy and Guide for Testing Air

Vehicles, Air Vehicle Weapons, And Air Vehicle Installed Systems, June 7,

2005 [12]. (This directive has been superseded and canceled by NAVAIRINST

3960.4C.)

B-2

• Department of the Air Force (DAF) Manual 63-119 Mission-Oriented Test

Readiness Certification, April 15, 2021[13].

• Air Force Instruction (AFI) 99-103 Capabilities-Based Test and Evaluation,

November 18, 2019[14].

• Air Force Operational Test and Evaluation Center (AFOTEC) Instruction 99-

101 Conduct of Operational Test and Evaluation, May 1, 2007 [15].

• AO 177 IAS. Not further specified, and search results were inconclusive.

• System-Theoretic Process Analysis for Security (STPA-SEC).61

• Scaled Agile Framework (SAFe), version 5.0. See

https://www.scaledagileframework.com/.

• Center for Internet Security guidance. See https://www.cisecurity.org/.

• Cloud Security Alliance guidance. See https://cloudsecurityalliance.org/.

61
 See https://psas.scripts.mit.edu/home/wp-

content/uploads/2017/04/STAMP_2017_STPA_SEC_TUTORIAL_as-presented.pdf for a presentation

discussing the concept.

https://www.scaledagileframework.com/
https://www.cisecurity.org/
https://cloudsecurityalliance.org/
https://psas.scripts.mit.edu/home/wp-content/uploads/2017/04/STAMP_2017_STPA_SEC_TUTORIAL_as-presented.pdf
https://psas.scripts.mit.edu/home/wp-content/uploads/2017/04/STAMP_2017_STPA_SEC_TUTORIAL_as-presented.pdf

C-1

Appendix C. Application Security Hype Cycle,

2021

C-2

(This page is intentionally blank.)

D-1

Appendix D. References

[1] Schwartz, M. A seat at the table: IT leadership in the age of agility. IT Revolution

Press, Portland, OR (2017). ISBN 9781942788119.

[2] Kim, G., K. Behr, and G. Spafford. The phoenix project: A novel about IT, DevOps,

and helping your business win. IT Revolution Press, Portland, OR (2018). Third

edition. ISBN 9781942788294.

[3] Kim, G. The unicorn project: A novel about digital disruption, developers, and

overthrowing the ancient powerful order. IT Revolution Press, Portland, OR (2019).

ISBN 9781942788799.

[4] Kim, G., P. Debois, J. Willis, J. Humble, and J. Allspaw. The DevOps handbook:

How to create world-class agility, reliability, & security in technology

organizations. IT Revolution Press, Portland, OR (2016). ISBN 9781942788003.

[5] Agre, J. DevSecOps: State of the Art and Relevance to the Department of Defense. NS

D-13119, Institute for Defense Analyses, Alexandria, VA (June 2020).

[6] Security and Privacy Controls for Information Systems and Organizations, NIST

Special Publication 800-53, Revision 5. National Institute of Standards and

Technology, Gaithersburg, MD (December 10, 2020). Available online at

https://doi.org/10.6028/NIST.SP.800-53r5.

[6] Scarfone, K., M. Souppaya, A. Code, and A. Orebaugh. Technical Guide to

Information Security Testing and Assessment, NIST Special Publication 800-115.

National Institute of Standards and Technology, Gaithersburg, MD (September

2008). Available online at https://doi.org/10.6028/NIST.SP.800-115.

[7] DoD Instruction 5000.87, Operation of the Software Acquisition Pathway. October 2,

2020. Available online at

https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500087p.PDF.

[8] DoD Instruction 500.89, Test and Evaluation. November 19, 2020. Available online

at

https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500089p.PDF.

[9] DoD Directive (DoDD) 8140.01, Cyberspace Workforce Management. October 5,

2020. Available online at

https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodd/814001p.pdf.

[10] DoD Instruction 8510.01, Risk Management Framework (RMF)

for DOD Information Technology (IT), May 24, 2016. Available online at

https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/851001p.pdf.

https://doi.org/10.6028/NIST.SP.800-53r5
https://doi.org/10.6028/NIST.SP.800-115
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500087p.PDF
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500089p.PDF
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodd/814001p.pdf?ver=2019-06-06-120639-863
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/851001p.pdf

D-2

[11] Directive-Type Memorandum (DTM) 17-001: Cybersecurity in the Defense

Acquisition System. January 11, 2017. Available online at

https://www.hsdl.org/?view&did=797977.

[12] NAVAIRINST 3960.4B, Project Test Plan Policy and Guide for Testing Air

Vehicles, Air Vehicle Weapons, And Air Vehicle Installed Systems. June 7, 2005.

Available online at

http://everyspec.com/USN/NAVAIR/NAVAIRINST_3960x4B_18247/.

[13] Department of the Air Force Manual 63-119, Mission-Oriented Test Readiness

Certification. April 15, 2021. Available online at https://static.e-

publishing.af.mil/production/1/saf_aq/publication/dafman63-119/dafman63-

119.pdf.

[14] Air Force Instruction 99-103, Capabilities-Based Test and Evaluation. November

18, 2019. Available online at

https://standards.globalspec.com/std/14358164/AFI%2099-103.

[15] Air Force Operational Test and Evaluation Center Instruction 99-101, Conduct of

Operational Test and Evaluation. May 1, 2007. Available online at

https://myclass.dau.edu/bbcswebdav/institution/Courses/Deployed/TST/TST204%2

0and%20TST204V/Archives/March%2017%20Student%20Files/Student%20CD/1

%20References/04%20US%20Air%20Force%20Guidance/AFOTECI%2099-

101.pdf.

[16] Bennington, H. “Production of Large Computer Programs.” IEEE Annals of the

History of Computing 5:4, October 1983.

[17] Royce, W. “Managing the Development of Large Software Systems.” Proc. IEEE

WESCON 26, August 1970.

[18] Gladden, G. “Stop the Life-Cycle, I Want to Get Off.” Software Engineering Notes

7:2, April 1982.

[19] Boehm, B. “A spiral model of software development and enhancement.” IEEE

Computer 21:5, May 1988.

[20] Parnas, D. and P. Clements. “A Rational Design Process: How and Why to Fake it.”

IEEE Transactions on Software Engineering SE-12:2, January 1986.

[21] OUSD(R&E)/DOT&E, DEPARTMENT OF DEFENSE DevSecOps Test &

Evaluation Guidebook Version 1.0 Draft, 23 October 2020.

[22] MacDonald, N. and D. Gardner. 12 Things to Get Right for Successful DevSecOps.

G00450792, Gartner, December 19, 2019.

https://www.gartner.com/en/documents/3978490/12-things-to-get-right-for-

successful-devsecops.

[23] Gardner, D., M. Horvath, and D. Zumerle. Magic Quadrant for Application Security

Testing. G00733839, Gartner, May 27, 2021.

https://www.gartner.com/en/documents/4001946-magic-quadrant-for-application-

security-testing.

https://www.hsdl.org/?view&did=797977
http://everyspec.com/USN/NAVAIR/NAVAIRINST_3960x4B_18247/
https://static.e-publishing.af.mil/production/1/saf_aq/publication/dafman63-119/dafman63-119.pdf
https://static.e-publishing.af.mil/production/1/saf_aq/publication/dafman63-119/dafman63-119.pdf
https://static.e-publishing.af.mil/production/1/saf_aq/publication/dafman63-119/dafman63-119.pdf
https://standards.globalspec.com/std/14358164/AFI%2099-103
https://myclass.dau.edu/bbcswebdav/institution/Courses/Deployed/TST/TST204%20and%20TST204V/Archives/March%2017%20Student%20Files/Student%20CD/1%20References/04%20US%20Air%20Force%20Guidance/AFOTECI%2099-101.pdf
https://myclass.dau.edu/bbcswebdav/institution/Courses/Deployed/TST/TST204%20and%20TST204V/Archives/March%2017%20Student%20Files/Student%20CD/1%20References/04%20US%20Air%20Force%20Guidance/AFOTECI%2099-101.pdf
https://myclass.dau.edu/bbcswebdav/institution/Courses/Deployed/TST/TST204%20and%20TST204V/Archives/March%2017%20Student%20Files/Student%20CD/1%20References/04%20US%20Air%20Force%20Guidance/AFOTECI%2099-101.pdf
https://myclass.dau.edu/bbcswebdav/institution/Courses/Deployed/TST/TST204%20and%20TST204V/Archives/March%2017%20Student%20Files/Student%20CD/1%20References/04%20US%20Air%20Force%20Guidance/AFOTECI%2099-101.pdf
https://www.gartner.com/en/documents/3978490/12-things-to-get-right-for-successful-devsecops
https://www.gartner.com/en/documents/3978490/12-things-to-get-right-for-successful-devsecops
https://www.gartner.com/en/documents/4001946-magic-quadrant-for-application-security-testing
https://www.gartner.com/en/documents/4001946-magic-quadrant-for-application-security-testing

D-3

[24] Fritsch, J. Hype Cycle for Application Security, 2021. G00747408, Gartner, July 12,

2021. https://www.gartner.com/en/documents/4003469-hype-cycle-for-application-

security-2021.

[25] Odell, L., R. Wagner, and T. Weir. Department of Defense Use of Commercial

Cloud Computing Capabilities and Services, IDA P-5287, Institute for Defense

Analyses, Alexandria, Virginia, November 2015.

[26] Ambroso, M. and G. Kennedy. Ensuring Availability of Cybersecurity

Developmental Test and Evaluation Data for Cloud Systems, IDA P-10371, Institute

for Defense Analyses, Alexandria, Virginia, August 2019.

[27] Fairbanks, G. “Architectural Hoisting,” IEEE Software 31 (4), pp. 12–15, 2014, doi:

10.1109/MS.2014.82.

[28] Dodson, D., M. Souppaaya, and K. Scarfone. Mitigating the Risk of Software

Vulnerabilities by Adopting a Secure Software Development Framework (SSDF).

National Institute of Standards and Technology, Gaithersburg, Maryland, April 23,

2020. Available online at https://csrc.nist.gov/publications/detail/white-

paper/2020/04/23/mitigating-risk-of-software-vulnerabilities-with-ssdf/final.

[29] Fairbanks, G. Just Enough Software Architecture: A Risk-driven Approach. Marshall

& Brainerd, Boulder, Colorado, ISBN 978-0984618101, August 2010.

[30] Department of Defense Cloud Computing Security Requirements Guide, Version 1,

Release 3, March 6, 2017. Available online at https://rmf.org/wp-

content/uploads/2018/05/Cloud_Computing_SRG_v1r3.pdf.

[31] Chaillan, N. DoD Enterprise DevSecOps Maturity Review Version 1.6, December

2019. Available online at https://software.af.mil/wp-content/uploads/2019/12/DoD-

Enterprise-DevSecOps-Maturity-Review-v1.6.docx.

[32] Humble, J. and R. Russell. The Agile Maturity Model Applied to Building and

Releasing Software, ThoughtWorks® Studios, September 2009. Available online at

https://info.thoughtworks.com/rs/thoughtworks2/images/agile_maturity_model.pdf.

[33] Chaillan, N. DoD Enterprise DevSecOps Reference Design Version 1.0, Department

of Defense, August 12, 2019. Available online at

https://dodcio.defense.gov/Portals/0/Documents/DoD%20Enterprise%20DevSecOp

s%20Reference%20Design%20v1.0_Public%20Release.pdf.

[34] Cybersecurity Test and Evaluation Guidebook, Version 2.0, Change 1. Department

of Defense, February 10, 2020. Available online at

https://www.dau.edu/cop/test/DAU%20Sponsored%20Documents/Cybersecurity-

Test-and-Evaluation-Guidebook-Version2-change-1.pdf.

https://www.gartner.com/en/documents/4003469-hype-cycle-for-application-security-2021
https://www.gartner.com/en/documents/4003469-hype-cycle-for-application-security-2021
https://csrc.nist.gov/publications/detail/white-paper/2020/04/23/mitigating-risk-of-software-vulnerabilities-with-ssdf/final
https://csrc.nist.gov/publications/detail/white-paper/2020/04/23/mitigating-risk-of-software-vulnerabilities-with-ssdf/final
https://rmf.org/wp-content/uploads/2018/05/Cloud_Computing_SRG_v1r3.pdf
https://rmf.org/wp-content/uploads/2018/05/Cloud_Computing_SRG_v1r3.pdf
https://software.af.mil/wp-content/uploads/2019/12/DoD-Enterprise-DevSecOps-Maturity-Review-v1.6.docx
https://software.af.mil/wp-content/uploads/2019/12/DoD-Enterprise-DevSecOps-Maturity-Review-v1.6.docx
https://info.thoughtworks.com/rs/thoughtworks2/images/agile_maturity_model.pdf
https://dodcio.defense.gov/Portals/0/Documents/DoD%20Enterprise%20DevSecOps%20Reference%20Design%20v1.0_Public%20Release.pdf
https://dodcio.defense.gov/Portals/0/Documents/DoD%20Enterprise%20DevSecOps%20Reference%20Design%20v1.0_Public%20Release.pdf
https://www.dau.edu/cop/test/DAU%20Sponsored%20Documents/Cybersecurity-Test-and-Evaluation-Guidebook-Version2-change-1.pdf
https://www.dau.edu/cop/test/DAU%20Sponsored%20Documents/Cybersecurity-Test-and-Evaluation-Guidebook-Version2-change-1.pdf

D-4

(This page is intentionally blank.)

E-1

Appendix E. Acronyms and Abbreviations

AFI Air Force Instruction

AFOTEC Air Force Operational Test and Evaluation Center

AST Application Security Testing

ATO Authority to Operate

CATO Continuous Authority to Operate

CD Continuous Deployment (alternately, Continuous

 Delivery)

CI Continuous Integration

CI/CD Continuous Integration / Continuous Deployment

CIO Chief Information Officer

CMMC CMMI certification program

CMMI Capability Maturity Model Integration

COP Community of Practice

CSO Chief Software Officer

CVE Common Vulnerabilities and Exposures

DAF Department of the Air Force

DAST Dynamic Application Security Testing

DFARS Defense Acquisition Regulation Supplement

DISA Defense Information Systems Agency

DoD Department of Defense

DODD Department of Defense Directive

DODI Department of Defense Instruction

DOT&E Director, Operational Test and Evaluation

DSOMM DevSecOps Maturity Model

DT Developmental Testing

DT&E Developmental Testing and Evaluation

DTM Directive-Type Memorandum

EaC Everything as Code

FedRAMP Federal Risk and Authorization Management Program

IaC Infrastructure as Code

IDA Institute for Defense Analyses

IL Impact Level

MCBOSS Marine Corps Business Operations Support Services

NIWC Naval Information Warfare Center

NIST National Institute of Standards and Technology

OUSD Office of the Undersecretary of Defense

OWASP Open Web Application Security Project

POA&M Plan of Actions and Milestones

RMF Risk Management Framework

SAFe Scaled Agile Framework

E-2

SAST Static Application Security Testing

SRG (Cloud) Security Reference Guide

STPA-SEC System-Theoretic Process Analysis for Security

T&E Test and Evaluation

USAF United States Air Force

USD Undersecretary of Defense

USD (R&E) Undersecretary of Defense (Research and Engineering)

VM Virtual Machine

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

09-2021
2. REPORT TYPE

IDA Publication
3. DATES COVERED (From - To)

4. TITLE ANDSUBTITLE 5a. CONTRACT NUMBER

HQ0034-19-D-0001

Cybersecurity and DoD System Development: A Survey of DoD Adoption

of Best DevSecOps Practice

5b. GRANT NUMBER

____ ____ ____

5c. PROGRAM ELEMENT NUMBER

____ ____ ____

6. AUTHOR(S) 5d. PROJECT NUMBER

AX-1-3100

George L. Kennedy (ITSD); Steven P. Wartik (ITSD); Ryan R. Wagner

(ITSD)

5e. TASK NUMBER

____ ____ ____

5f. WORK UNIT NUMBER

____ ____ ____

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Defense Analyses

4850 Mark Center Drive

Alexandria, Virginia 22311-1882

8. PERFORMING ORGANIZATION REPORT NUMBER

22749

H 2021-000267

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Ms. Sarah Standard

Cybersecurity/Interoperability Technical Director
Director, Developmental Test, Evaluation, and Assessments
(D,DTE&A), OUSD R&E

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER

____ ____ ____

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

____ ____ ____

14. ABSTRACT

DoD is moving from the Waterfall Model of software development to modern methods such as Agile, DevOps, and especially DevSecOps, which

emphasizes considering cybersecurity early. In 2020, OUSD/R&E tasked the Institute for Defense Analyses to study DoD organizations practicing

DevSecOps and other non-Waterfall methodologies, to capture their successes and failures, to report actions organizations should take to adopt

DevSecOps, and recommend DoD-wide actions to promote DevSecOps practice. IDA developed and distributed a survey, received 18 responses,

and conducted follow-up telephone interviews. IDA heard many success stories, including increased up-front planning and incorporation of testing

processes, and implementation of pipelines that lowered the time from coding to deployment; furthermore, several respondents reported their

metrics objectively demonstrated improvement. At the same time, some respondents felt DoD’s current acquisition model and ATO processes are

not truly compatible with DevSecOps; that forming teams is difficult; and that the role of developmental testing is unclear within DevSecOps. Part

of the problem is that DevSecOps is still new and lacks standard concepts and terminology. IDA recommends DoD take eleven actions to promote

adoption of DevSecOps. These actions will clarify and help acculturate DevSecOps concepts throughout DoD. The actions will also simplify

creating and using pipelines, lessening the up-front costs of a DevSecOps-based project.

15. SUBJECT TERMS

Agile, CI/CD, Cybersecurity, Developmental testing, DevOps, DevSecOps, Pipeline, Soft Acquisition

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON

John Hong (SED)

a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
Unlimited 19b. TELEPHONE NUMBER (include area

code)

(703) 845-2564

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI std. Z39.18

