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Executive Summary 

This paper proposes a strategy for quantitatively identifying the most important 

open source software (OSS) projects among the millions managed by language-level 

package managers and, of those, identifying the ones most needing security-related 

investments. 

Our previous paper [Wheeler2015] quantitatively identified some important OSS 

projects in need of security-related investments, but it focused on only a select set of OSS 

managed by system-level package managers. Here, we instead focus on ensuring that we 

can cover the much larger set of OSS projects that are managed by language-level 

package managers. This larger scale required a different and more automated approach. 

We propose a strategy for estimating importance primarily through dependency 

analysis, that is, by identifying, for a project, what else depends on it (directly or 

indirectly). We propose estimating security risk by identifying a set of risk indicators, 

heuristically assigning a weight to each one, and then totaling those weights to determine 

their risk. We then propose to combine these scores by selecting the “top most important” 

projects, then sorting those most important projects by risk. 

To determine the feasibility of this approach, we developed a prototype that did 

some basic dependency analysis, computed a simple risk indicator, and then reported the 

combination. This paper briefly describes the prototype and lessons learned by applying 

it. The analysis execution time is highly dependent upon implementation; by changing 

our implementation strategy, we transitioned from days to less than an hour. While 

dependency analysis can work, we found that there are subtleties in versioning that must 

be carefully handled to produce accurate results. We also found other issues, e.g., 

challenges in vendoring and in handling Python dependencies that might need to be 

addressed. 

This paper then presents an updated approach to identify importance and security 

risk in a more rigorous quantitative way, based on the lessons learned from the prototype. 

We do not expect this approach to eliminate the need for human judgment, but rather it 

will provide rigorously supported data to help make good judgments. 

As part of our process and data collection, we computed a lower-bound estimate of 

the number of significant OSS projects, so we report that as well. As a lower bound, there 

are at least 3.26 million significant OSS projects. 
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We conclude that this strategy is feasible, and we recommend that the Linux 

Foundation (LF) Core Infrastructure Initiative (CII) implement this strategy to help it 

quantitatively determine the most important projects to assist. 
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1.  Introduction 

The Heartbleed vulnerability in the open source software (OSS)1 program OpenSSL 

was a serious vulnerability with widespread impact. Yet Heartbleed could have been 

detected in many ways before it was deployed [Wheeler2014h]. The Heartbleed 

vulnerability highlighted the fact that the vulnerabilities in some widely used and 

depended-upon OSS programs can have serious ramifications, and yet some OSS projects 

have not received the level of security analysis appropriate to their importance. Some 

OSS projects have many participants, perform in-depth security analyses, and produce 

software that is widely considered to be of high quality and to have strong security. 

However, other OSS projects do not. 

The Linux Foundation (LF) Core Infrastructure Initiative (CII) was established to 

“fund open source projects that are in the critical path for core computing functions [and] 

are experiencing under-investment.”2 The LF CII will make final decisions on what it 

will invest in, but it wants to base those decisions on quantitative data. The LF CII asked 

us to try to quantitatively determine what OSS projects are “most important,” and of 

those, which ones most need security-related investments. The LF CII can then choose 

what to invest in and how. For example, it might choose to fix, refurbish, or fund a 

replacement of that software. It might also fund related work such as process 

improvements, hardening efforts, or training (such as on testing or on developing secure 

software). In all these cases, however, the first step is to identify the projects that appear 

to most need investment. 

Our previous work, Open Source Software Projects Needing Security Investments 

[Wheeler2015], analyzed a set of OSS projects to help identify especially plausible 

candidates for investment to improve security. This work was well received, and it 

supported various initial CII investment decisions. However, like all work, it had 

limitations. That work considered only software packaged by system-level package 

managers3 and ignored language-level package managers. The previous work depended 

                                                 

1
  Open source software can be defined as “software for which the human-readable source code is available 

for use, study, reuse, modification, enhancement, and redistribution by the users of that software” 

[DoD2009].  For more information, see the Open Source Definition [OSI]. 

2
 Per the Core Infrastructure Initiative (CII) page at http://www.linuxfoundation.org/programs/core-

infrastructure-initiative 

3
  A package manager automates the process of installing and otherwise managing packages. A package is 

a unit of software that can be installed and managed by a package manager. There are different kinds of 

package managers. A system-level or operating-system-level package manager manages the packages 

http://www.linuxfoundation.org/programs/core-infrastructure-initiative
http://www.linuxfoundation.org/programs/core-infrastructure-initiative
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on humans to identify which packages might be important (and then ranked the subset). It 

also included human-level analysis (e.g., to report whether a package had external 

connections), which is helpful but is hard to scale up to a large number of projects. 

In this paper, we focus on quantitatively identifying the most important OSS 

projects, and of those, the ones most needing security-related investments. However, 

unlike [Wheeler2015], here we focus on including the set of OSS project results managed 

by language-level package managers. This is a much larger number of projects than we 

considered before. Since many of these projects are low-level “invisible” components, 

and there are many more of them, we believe humans are less likely to be able to 

determine a priori the most important projects. In addition, the sheer scale requires a 

more automated approach. Thus, we focused on developing entirely automated 

mechanisms to estimate importance and security risk. 

We propose a strategy for estimating importance primarily through dependency 

analysis, that is, by identifying, for a project, what else depends on it (directly or 

indirectly). We propose estimating security risk by identifying a set of risk indicators, 

heuristically assigning a weight to each one, and then totaling those weights. We then 

propose to combine these scores by selecting the “top most important” projects, then 

sorting those most important projects by their total risk indicator. However, there are 

legitimate questions about whether or not this strategy is feasible, so we implemented a 

prototype of part of the strategy. 

This paper first presents some background in Chapter 2, particularly for issues 

beyond those already covered in our previous paper. Chapter 3 describes the prototype 

we developed that did some basic dependency analysis, computed a simple risk indicator, 

and then reported the combination.  In Chapter 4 we describe the lessons learned through 

the prototype. Chapter 5 then describes an updated approach, building in part on the 

experience gained from the prototype. Chapter 6 presents a lower bound estimate of the 

number of significant OSS projects, since we had the data to compute this. This paper 

ends with our conclusions. 

 

                                                                                                                                                 

for an entire operating system instance; an example is Debian’s Advanced Package Tool (apt). A 

language-level or application-level package manager manages the packages for a specific programming 

language, programming environment, or application; an example is the JavaScript’s npm. 
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2.  Background 

Our first step was to review methods and approaches already available. Our 

previous work, Open Source Software Projects Needing Security Investments 

[Wheeler2015], provides a lengthy survey of approaches related to gathering quantitative 

data to estimate importance and security. Below are a few approaches that are worth 

restating or were not mentioned previously (e.g., because they did not exist then). These 

are grouped into the following categories: data sources (including metrics tools and 

general information on metrics), measuring importance, and measuring security risk. 

A. Data Sources 

The following are a few sources for data (including metrics tools and general 

information on metrics): 

 GrimoireLab <http://grimoirelab.github.io/>. This is a toolsuite for acquiring OSS 

project metrics. In particular, its Perceval component performs data gathering 

from OSS projects. Key parts of this are written in Python 3. This toolsuite is OSS 

and was developed by Bitergia (co-founded by Jesús M. González-Barahona). It 

stores information in ElasticSearch. 

 OpenHub <https://www.openhub.net/>. This was formerly named Ohloh and is 

managed by Black Duck. It provides a variety of metrics for OSS projects. 

 BigQuery <https://cloud.google.com/bigquery/>. This is a data warehouse for 

large-scale data analytics. A number of relevant databases are already available 

via BigQuery, so performing data queries against it is extremely convenient. 

BigQuery has a pay-as-you-go pricing model for queries. Relevant databases 

include: 

– GitHub archive <https://cloud.google.com/bigquery/public-data/github>. This 

provides GitHub-related data. 

– GHTorrent <http://ghtorrent.org/>. This stores GitHub events. 

 Community Health Analytics for OSS (CHAOSS) 

<https://wiki.linuxfoundation.org/chaoss/metrics>. This group is working to 

identify OSS-related metrics. 

 Grafeas. This is an open-source application program interface (API) to audit and 

govern a software supply chain [Elliott2017]. 

 Libraries.io <https://libraries.io/>. Libraries.io has parsed data from a wide variety 

of language-level package managers, and makes this freely available in a 

consistent format at <https://libraries.io/data>. 

http://grimoirelab.github.io/
http://ghtorrent.org/
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 Apache Kibble <https://kibble.apache.org/>.  Apache Kibble is a suite of tools 

for collecting, aggregating and visualizing activity in software projects. 

B. Importance 

Measuring the importance of software is not easy. In our previous work, humans 

identified the initial set of projects to consider, and this does not scale.  

The Battery Open-Source Software Index (BOSS Index) [Thakker2017] attempts to 

identify important projects using a set of four metrics. However, their index focuses on 

40 projects, which we believe is too small a starting point. 

GitHub has “stars,” which users can select to show appreciation. A project with 

stars is probably important to at least a few people. However, there is little evidence that 

the number of stars strongly correlates to real importance, and “stars” only apply to 

projects on GitHub (not all OSS projects are on GitHub). 

As we discuss in Chapter 3, we use dependency analysis to estimate importance. 

C. Security 

Measuring the security of software is a notoriously difficult and essentially unsolved 

problem. Automated analysis of code can sometimes detect vulnerabilities, but false 

positives and false negatives make interpreting their results difficult. Project activity is 

not necessarily an indicator of security; a relatively inactive project might be feature-

complete, while an inactive project might ignore security issues. If a project has several 

past vulnerabilities, it might indicate that the software has serious security problems, or it 

might indicate highly secure software with a large number of external reviewers. 

Learning algorithms require trustworthy training data sets, which are not available. A 

good way to analyze software security is to attempt to penetrate the software, but this 

approach is notoriously variable since it depends on the skills and approaches taken by 

the attackers; it is also extremely expensive and time-consuming. 

Our previous work, Open Source Software Projects Needing Security Investments 

[Wheeler2015], provides a lengthy survey of these issues, particularly of the various 

approaches for estimating the security of software. In our previous work, we developed a 

useful approach for estimating security risk by identifying a set of risk indicators, 

heuristically assigning a weight to each one, and then totaling those weights. This is a 

practical method of quickly identifying projects that appear to be especially risky. 

In this paper we build on the previous work, but discard measures that require 

human analysis (since they do not scale) or were difficult to acquire at scale. In Chapter 3 

we discuss in further detail the metrics we selected. 
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3.  Prototype Analysis Approach 

In this chapter we describe our prototype analysis approach, in particular, how we 

identified the importance and security risk of various OSS projects. 

A. Importance Analysis 

The first step in the analysis was to quantitatively identify the most important OSS 

projects. 

One approach to finding “important” components of a larger system is to identify 

the most important missions (fundamental purposes) of that system and then drill down 

into the system’s design to determine what components are required to meet those 

missions. One name for this kind of analysis is “criticality analysis.” This can work well 

when developing specific systems; however, it is harder to apply to larger systems (like 

nations or humanity). A nation could attempt to do this (e.g., the U.S. Government’s 

critical infrastructure sectors), but that would require significant resources and risks 

overlooking key components. In the future, it might be possible to merge the information 

based on missions, but this seems like a difficult place for us to start. 

One of the most obvious ways to quantify importance is to ask, “How many people 

use this?” If a lot of people use some particular software, then it is important. For 

example, if that software was compromised, a large number of people would have their 

systems compromised. Unfortunately, it is hard to tell exactly how many people use some 

particular software. One could look at the number of times some particular software was 

downloaded. However, using download counts has two problems: 

1. Download mirrors and OS-level package managers are prevalent, especially for 

OSS software, and these can produce severe undercounts. 

2. In continuous integration (CI) systems, software may be downloaded every time 

a test is executed, producing severe overcounts. 

In short, it is hard to get plausible counts for actual end-user downloads. However, 

we believe there is an effective way to estimate usage without depending primarily on 

download counts. 

First, we can focus on packaged software. By definition, OSS projects produce 

software. A project typically has a repository for storing and managing the history of the 

software it produces. In addition, this software may be packaged. Since software is easier 

to install and use if it is packaged, it is extremely likely that important software will be 
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packaged. Thus, we will focus on ranking the importance of packaged software, aka 

packages. Since our previous work focused on software packaged using system-level 

packagers, here we will focus instead on software packaged using language-level 

packagers (such as npm). This means that we must determine the relative importance of 

language-level packages. (We could later add packages managed by system-level 

package managers, as discussed in section 5.C.) 

Second, we can use dependency analysis to analyze packaged software. An easily 

quantifiable measure is to look at how many OSS repositories and other packages depend 

on a given OSS package. This is the approach chosen in this analysis. If a package is 

depended on by a large number of repositories and other packages, it is much more likely 

to have a higher number of end users ultimately dependent on it, thus the package is 

important. However, various details must be addressed, as discussed below, to make 

these counts reasonable to use. 

1. Obtaining a Package’s Dependencies 

a. Types of Dependencies 

Before we begin describing the data set we used, it is first useful to distinguish 

between direct dependencies and transitive dependencies. Direct dependencies are those 

which, as the name implies, a project relies on directly (“A depends on B” is a direct 

dependency). Transitive dependencies, on the other hand, include dependencies that a 

project indirectly depends on. For example, if “A depends on B” and “B depends on C” 

then C is a transitive dependency of A. 

We must trace the transitive dependencies everywhere we can in order to calculate 

the number of packages and repositories that depend on a given OSS package.   This 

approach can help reveal “hidden” dependencies that may not otherwise be obvious. 

Software can have different dependencies depending on its environment and kind of 

use. Dependencies required by end-users to run the software are called runtime 

dependencies. These can be the same or different from those required when testing, 

developing, or even compiling the software. 

Runtime dependencies are not the only kind of dependency that matters for security. 

A savvy attacker could compromise other kinds of dependencies, such as those for a test 

suite or set of development packages, in order to inject malicious code into other 

packages. However, the runtime dependencies are directly included when the software is 

run, so runtime dependencies are subject to attacks that other kinds of dependencies are 

not. Accordingly, in our importance analysis, we recommend looking at two cases, one 

for which we trace only runtime dependencies and one for which we trace dependencies 

regardless of the kind of dependency. 
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b. Libraries.io Data Set 

To calculate the number of packages that depend on a given OSS project, we use the 

publically available Libraries.io data set [Libraries.io]. This data set includes dependency 

information from two type of sources. First, it gives dependency information obtained 

from various language-level package managers (npm, Pypi, Maven, etc.). Second, it also 

includes dependency information obtained by crawling through source repositories on 

Github, GitLab, and Bitbucket. This data set is available under the Creative Commons 

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license. We gratefully 

acknowledge Libraries.io for providing this preprocessed data set, which we used as a 

starting point for our analysis. 

The data set is quite extensive, but unfortunately has a few shortcomings. The most 

significant issue is that only direct dependencies are given for the majority of packages. 

The Libraries.io data set does include some data on transitive dependencies. However, 

this data set includes only the transitive dependencies that are directly declared (e.g., in a 

Gemfile.lock file). Therefore, we could not simply use the raw dependency data as the 

full set of transitive dependencies, and instead had to calculate transitive dependencies. 

For this reason, we developed a set of Python scripts that would determine transitive 

dependencies of packages. Another program was then used to count the number of 

transitive dependencies for each OSS package available. 

Another thing we had to consider is that many of the packages that have dependency 

information coming from package managers also have dependency information coming 

from source repositories. To avoid double-counting dependencies, we prioritize 

dependency information coming from package managers. Fortunately this is easy with 

the Libraries.io data set since source repositories for the packaged software are 

documented. In our analysis, if a source repository has a corresponding package in a 

package manager where dependency information is given, we do not use any dependency 

information from the source repository. 

2. Filtering Out Insignificant Repositories 

One of the challenges of dealing with dependency information coming from source 

repositories such as GitHub is the presence of repositories that are insignificant. Some 

examples of insignificant projects are homework assignments, temporary experiments, or 

someone’s toy project that they quickly created and abandoned. Including these types of 

repositories in our importance analysis could skew results in favor of projects that might 

not actually be as widely used as the numbers would imply. 

To avoid including insignificant repositories in our analysis, we came up with 

indicators that could help determine whether a repository was insignificant. We created 

two sets of indicators: indicators of significance and indicators of insignificance. If a 
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repository satisfied any of the indicators of significance it was included in our analysis. 

We dropped projects with too many indicators of insignificance (in our case, more than 

three of six indicators). 

a. Indicators of Significance 

As the name implies, if a repository has any indicators of significance it is most 

likely a real, active project, and is automatically considered a significant project. Five 

indicators of significance were used: 

1. The repository has a “star” count > 50. 

2. The repository has a “watchers” count > 50. 

3. The repository has a fork count > 20. 

4. The repository has a contributor count > 10. 

5. The repository is the source repository for any project in one of the package 

managers analyzed. 

If a repository satisfies any of the indicators of significance, it is included in the 

dependency analysis as a significant project. 

b. Indicators of Insignificance 

It can be difficult to determine whether a repository is insignificant, so we took a 

measured approach. We used a total of six indicators of insignificance to help determine 

whether a source repository was insignificant. If any project satisfied more than three of 

these indicators of insignificance and did not satisfy any of the indicators of significance 

(above) it was considered insignificant, and thus not included in the dependency analysis. 

The indicators of insignificance are: 

1. The repository has 0 forks, less than 3 watchers, and less than 3 stars. 

2. The repository has less than 3 open issues. 

3. The repository’s homepage URL is empty. 

4. The repository is the fork of a significant repository (as described above). 

5. The repository has not been updated in at least a year and the time between its 

creation and last update is less than 6 months. (This is typically true for 

repositories representing homework projects.) 

6. The repository has no license and no license file. 
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B. Security Analysis 

As with [Wheeler2015], we estimated security risk by identifying a set of risk 

indicators, heuristically assigning a weight to each one, and then totaling those weights. 

The higher the risk value, the more risky the project appears to be. 

Here are the measures we used in our prototype: 

1. No project website. If there is no identified project website, 1 point of risk is 

assigned. This is given only 1 point because our data sources often fail to 

identify websites even when they exist. We also used this metric in 

[Wheeler2015]. Future versions could in addition check that the claimed website 

is still responding (if the website is no longer there, that is naturally a risk). 

2. Unchanged for a long time. This indicates a project that has not had a commit 

in a long time. If the last commit is >3 years ago, it receives 4 points; if >2 years 

ago, 2 points; if >1 year, 1 point, and >6 months or unknown, 1 point. A project 

might be unchanged if it is feature-complete. However, a project that has not 

been updated in a long time is likely to be moribund and its security is probably 

not being continuously reviewed. This was calculated using the 

“last_pushed_at” field from libraries.io.  Note that these times are in reference to 

the download date of the input data set, not the date the analysis was performed. 

3. Twelve-month contributor count. In [Wheeler2015] we counted risk based on 

the number of recent contributors (called twelve_month_contributor_count). 

Zero contributors, 5 points; one contributor, 4 points; two to three contributors, 

2 points, unknown (blank) number of contributors, 1 point. If there are multiple 

contributors, even if it’s minor, there is clearly some collaboration, and that can 

reduce risk. However, this is harder to measure than we had thought. BigQuery 

stores commits in an easily parsable way for repos that have been deemed “open 

source” according to their license. However, this is not very accurate. We used 

BigQuery’s githubarchive data set and obtained author and repo data for two 

types of events: “PushEvent” (this is a commit to the repository of any kind); 

and “PullRequestEvent” with a payload that includes “"action":"open"” (this is 

the opening of any pull request on the repo). We think that we can justify any 

pull request being opened counting as a contribution even if it is not accepted. 

Projects that do not have a github repository will have an unknown number of 

1-year contributors so they will automatically receive 1 point. 

4. No contributing instructions. If the field contributing_name is null, empty, the 

letter “f” (representing false), or has no known repository, there is 1 point of 

risk. This occurs if the project has no CONTRIBUTING file or similar; this file 

is a common way to indicate to new developers how to contribute to the project. 
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Failure to provide this information suggests that it may be more difficult to 

contribute to the project. 

5. No license file. If the “license” value is empty or null, it receives 1 point of risk. 

Legal issues can dissuade security review. We used the libraries.io license 

detector because it seemed to detect licenses in more circumstances. A project 

might have a valid OSS license without a license file, but lack of a clear file 

does suggest it may be harder to determine. 

6. Unmaintained. If “status” is “Unmaintained” it receives 3 points. This is 

determined by looking for the word “Unmaintained” in the project short 

description, which is a relatively common convention for unmaintained projects. 

Some projects include “Deprecated” but we decided to ignore this, since projects 

can be deprecated for a long time yet still be actively maintained. 

We did not use these measures from [Wheeler2015] and do not recommend using 

them in later versions either: 

1. Debian popularity count: In [Wheeler2015], if the “popularity” score per 

Debian is more than the tenth percentile of the packages being analyzed, it 

received 1 point. We could use a large number of stars or downloads to indicate 

somewhat similar information. However, in [Wheeler2015] this was really a 

way to identify importance, not security risk. Since we measure importance 

differently, it is no longer needed and doesn’t make sense to use. 

2. Exposure value. In [Wheeler2015], we used humans to determine the exposure 

of the software to attack. If the software was directly exposed to the network (as 

a server or client), 2 points; if it was often used to process data provided by a 

network, 1 point; and if it could be used for local privilege escalation, it also 

received 1 point.  This is human-provided, and had to be dropped to support the 

larger scale of this work. 

3. Application data only. In [Wheeler2015], if the Debian database reports that it 

is “Application Data” or “Standalone Data,” subtract 3 points. This was because 

this indicates that the package isn’t really code but is instead application data for 

code (e.g., “geoip-database”). There was no obvious corollary in this case. 

C. Combining Importance and Security 

We need to combine these measures of importance and security. Multiplying them 

together would be absurd, since the units would make no sense. Fundamentally, both the 

importance (as counts) and security risk (as a risk score) are relative measures. 
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Instead, we selected the “top 200” packages of each package manager (and for all 

OSS packages), then sorted them by risk to show the riskiest most important projects. 

This way of combining values avoids multiplication by unknown units. 
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4.  Lessons Learned Through Prototyping 

The purpose of the prototype was to quickly learn things so that we could more 

effectively implement the full analysis. Of course, our prototype did not include 

everything the full analysis would include. For example, it omitted a number of metrics, 

so that we could implement the prototype quickly. See Chapter 5 for details on 

enhancements we would like to make in the full analysis. 

In this chapter, we identify key lessons learned from the prototyping effort. These 

are how to efficiently implement dependency analysis, the importance of handling 

dependency analysis with versioning, the challenges of vendoring, and other 

miscellaneous issues. 

A. Efficiently Implementing Dependency Analysis 

We first needed to ensure that we could efficiently implement dependency analysis 

at scale. After determining that several alternatives were poor approaches, we quickly 

decided on a highly parallelized approach that produces results in a timely way. 

Some computer science textbooks discuss how to implement dependency tracing by 

storing the data as two-dimensional arrays of Boolean values and using matrix operations 

to determine dependencies. However, we immediately realized that this would be a 

terrible implementation approach given the size of our data set. In Chapter 6 we show 

that there are at least 3.26 million significant OSS projects; a single square two-

dimensional matrix of Boolean values would require 1.33 Terabytes (TB), which requires 

a lot of memory and parallelizes poorly. Using a two-dimensional matrix to represent this 

data is a poor fit anyway, because the dependencies are sparse on this scale. 

Our first version of the prototype cached dependency results as they were 

determined, which effectively implements a sparse matrix. Sometimes caching can help 

performance, and sometimes it doesn’t; since caching was easy to do, and we thought it 

might be beneficial, we decided to try it first. However, in this situation, caching created 

more problems than it solved. First, the cache had to be shared among multiple processes, 

and this led to extremely input/output (I/O) bound processes. Second, the process had to 

constantly check to prevent duplication, which was computationally expensive. 

The final version of the prototype simply loads all the direct dependencies as a 

constant graph. This is still a kind of sparse matrix, but instead, we do not store any 

interim results in memory at all. Instead, for each package and repository, we 
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independently recalculate all its transitive dependencies without caching. This does mean 

that some calculations are duplicated; however, it also makes the problem extremely 

parallelizable because the parallel processes don’t need to communicate often with each 

other and the results can go immediately to files (not memory). This approach does 

require a little more memory at the beginning compared to the previous approach, since 

each parallel process needs a complete copy of the direct dependency tree. Unlike the 

previous approach, however, memory use did not increase over time. It would have been 

possible to share this tree, reducing the initial memory requirements, but that would have 

required much more programming effort and turned out to be unnecessary. This 

alternative was unsurprising. In a parallel system it’s often (but not always) the case that 

recalculation of results, instead of caching them, produces faster results…but often the 

only way to determine the best approach is to prototype it. 

This final approach allows us to produce results in a timely way. The first prototype 

approach, which used caching, took 5 full days to traverse only two-thirds of the 

packages on 15 processors to compute the transitive dependencies. The final prototype 

version takes 39 minutes, 6 seconds to compute the transitive dependencies using 15 

processors. We could have made this slightly faster; the code was in Python, which we 

could have compiled using a different implementation (such as PyPy or Cython) or 

rewritten in a different language. However, the entire process is now I/O bound, so 

rewriting it would probably not significantly decrease the execution time, and in any case 

this execution time is acceptable. 

B. Versioning 

One of the assumptions we made when approaching the importance analysis is that 

packages would tend to keep the same dependencies over time and that any deviations 

from this would have a very small impact in our analysis. As such, when calculating a 

package’s transitive dependencies in our prototype analysis, we included all direct 

dependencies of a given package without controlling for version information. 

Unfortunately, the assumption that version information would have little effect was 

wrong. 

The shortcomings of not including version information in our transitive dependency 

analysis were particularly evident when looking at Rubygems packages. For example, 

half of the top 20 riskiest packages based on combining security metric scores and 

importance (see section 3.C) were only ranked highly because versioning was not 

accounted for. The gem “spruz” is a great example of this. In our importance analysis, 

spruz shows ~975,000 dependents. It is the 10th ranked package by our importance 

measure and has a high risk score of 9. The only reason spruz is ranked so highly is 

because previous versions of several very popular gems (json_pure for example) 

depended on it. Had we included version information in our tracing of transitive 
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dependencies, “spruz” would not have been ranked nearly as high for importance. A 

similar problem happens with “needle.” The very popular net-ssh package at one time 

depended on needle. The net-ssh package no longer depends on needle, but this isn't 

reflected in our current process because we intentionally ignored versioning in the 

dependencies. 

To better illustrate the problem that arises from not including version numbers, 

consider the simple set of dependency relations shown in Figure 1. The circles indicate 

specific versions of a package or repository; boxes are drawn around multiple versions of 

the same underlying package or repository. If we do not consider versions, then when we 

trace transitive dependencies, we would say that A transitively depends on C; this is 

clearly not the case. Q has the same problem as well – without considering versions, we 

would conclude that Q depends on F when it really does not. In reality, the dependency 

relations are much more complex, so inaccuracies from not including versioning get out 

of hand quite quickly. This is particularly important when considering security risk. As 

seen with Rubygems, many of the high-risk packages would no longer be considered 

important had we properly considered versions. 

 

 

Figure 1. Notional dependencies demonstrating versioning problem 

 

A potential solution is to change the algorithm as follows. First, for each component 

with dependencies, consider only the latest version. Second, trace through the 

dependencies, but consider the versions for each components being depended upon. 

Finally, for each package, count the number of dependents (packages or repositories) that 

depend on that package ignoring the version of the package that is depended upon. 

If we apply this modified algorithm to the notional dependencies shown above, the 

following packages would have these dependents (sorted by number of dependents): 

Q v2A v3

B v4B v3.5

D 
v0.01

D v0.2 C v0.3
F 

v0.12
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 D: B, Q, A; 

 C; B, Q; 

 B: Q, A; 

 F: A. 

Note that F is depended upon by A, because A depends on a version of B that in 

turn depends on F. By contrast, F is not depended upon by B or Q. Although a version of 

B does depend on F, the latest version of B does not depend on F, so B is not included in 

F’s dependents. Q does depend on a version of B, but the version of B that Q depends on 

does not depend on F. 

We believe this changed algorithm more accurately reflects dependencies. 

C. Vendoring 

Another issue that could cause potential miscounting of dependencies (and thus 

importance) is vendoring. Vendoring is the complete inclusion of a package by copying it 

inside another package. Rather than using a package manager to make sure dependencies 

are installed, some packages will just copy their dependencies in their codebases. While 

ignoring versioning can make some packages look more important than they are, not 

properly accounting for vendoring can make a package look less important since a 

vendored package won’t show up in the dependency tracing. 

A good example of vendoring causing issues in our prototype analysis was the 

vendoring of PyPI package chardet into the requests package. The requests package was 

very highly ranked in our importance calculations so one would expect chardet to, 

likewise, be highly ranked in importance. This was not the case since chardet was 

vendored into requests. While requests was ranked 3rd in importance for PyPI packages in 

our prototype run, chardet was ranked 266th. Note that this was true at the time the PyPI 

package manager data for the libraries.io data set was compiled. As of v2.16.0, requests 

no longer vendors its dependencies. 

A complication is that in some sense ignoring vendored packages is correct. If 

package 1 is vendored inside package 2, then even if package 1 is updated, there is no 

reason a priori that package 2 will be updated.4 Instead, when a package that is vendored 

is updated, the other copies are often not updated. However, the fact that the vendored 

software is not updated creates a heightened security risk. 

                                                 

4
  Vendoring is different from a “convenience copy.”  In a convenience copy, source code is copied into 

another package, but it is used only when the original package is unavailable. This situation was more 

common when Internet access was scarce, but is relatively rare today. The key is that users will typically 

use the updated software when there is merely a convenience copy, and that is simply not the case with a 

vendored package. 
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Several commercial organizations develop origin analysis tools (tools that identify 

software components in a larger system). We know that at least one of these tools 

(Synopsys’ Protecode) can identify vendored software, and we suspect some others can 

too. If vendored software is to be detected, then partnering with one of those 

organizations, using one of their tools, or both could help resolve this. 

D. Other issues 

1. Python Dependency Parsing  

During our prototype analysis, we also noticed a small bug in the Libraries.io 

dependency parser for PyPI. This parser, among other things, should look for files like: 

“req*.txt”, “req*.pip”, “requirements/*.txt” and “requirements/*.pip”. Unfortunately, 

bugs in the implementation of the identification of files matching that pattern caused 

many unwanted files to be thought to have dependency information. This led to many 

“junk” dependencies that didn’t really exist. Luckily, our importance and security 

analysis was unaffected because the names were inconsistently derived and thus were 

individually rare. 

Tracing down this issue was made easier by the fact that the Libraries.io source 

code is open source software. Had that not been the case it would have been much harder 

to track down what was causing identification of so many strange dependencies. We have 

reported this issue to the libraries.io team by submitting it on the librariesio/bibliothecary 

repository on GitHub.5 

2. Including Test and Build Dependencies 

During our prototype analysis, we looked at the impact of including development 

and test dependencies along with the runtime dependencies. As touched on previously, an 

attacker could modify an important test framework to subvert a large number of packages 

that use it. If we don’t include test and development dependencies in our dependency 

analysis, we will not be able to see packages that are important to testing and 

development, leaving us with a possible blind spot. 

Unfortunately, including development and test dependencies in a second run 

through of our importance analysis didn’t help identify important test and development 

packages. This was due to the cyclic dependencies that arise when including test and 

development dependencies. For example, once a test framework is included, there are 

typically a number of other packages that are depended upon to test the test framework 

                                                 

5
 See https://github.com/librariesio/bibliothecary/issues/404 

https://github.com/librariesio/bibliothecary/issues/404
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itself. So many packages end up cycling back to one another that our importance 

measures become almost meaningless. 

A better approach for identifying important test and build dependencies might be to 

include a project’s direct dependencies regardless of environment, but when tracing the 

transitive dependencies, traverse only subsequent runtime dependencies. We suspect that 

this would resolve these issues, if following test and build dependencies is considered 

important.
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5. Updated Analysis Strategy 

Based on past experience, here is our updated strategy for identifying important 

OSS with heightened security risks. The strategy is divided into three topics: importance 

analysis, security analysis, and other issues. 

A. Importance Analysis 

Experience with our prototype suggests that dependency analysis is a practical and 

defensible way to identify important OSS projects. The prototype also made it clear that 

it’s important to deal with versioning, as described in section 4.B. See that section for our 

proposed approach to addressing versioning. 

In our prototype we simply considered every OSS repository equally as our starting 

point for dependency analysis. Of course, not every OSS repository is equally valuable. 

That said, if their collective dependencies are representative of real use, this is still a 

reasonable approximation. If better data cannot be found, then we recommend starting 

there. 

Ideally we would not weight OSS repositories equally. Instead, ones that are more 

widely used, or in some other way are “more important,” should be weighted more 

heavily. As noted earlier, however, download counts and stars are not reliable measures. 

Download numbers are deflated because they are redistributed through caches and other 

systems, and they are inflated because they may be re-downloaded by continuous 

integration (CI) systems. 

We have begun trying to get additional data on which OSS is actively being used, 

and by how many products or people, through a variety of organizations. If we can get a 

representative set of this data, we could then use that data as a weighting factor. This 

could be combined with counting every OSS repository as having at least one use to help 

address cases in which the additional data missed something important. That said, the 

analysis could proceed even without this improved additional set. 

For a start we could continue to focus on “run-time” dependencies, since those are 

the components that execute at run-time.  That said, test and build tools are important, so 

it would be useful to run a separate analysis to include them as well. 
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B. Security Analysis 

As noted in [Wheeler2015], the current state of security metrics for software is quite 

limited. Instead of waiting for a perfect theoretical basis, we want to provide enough 

useful information to make reasonable decisions. 

As always, an underlying problem with our security measurement approach is that it 

is based on heuristics – the selection of metrics, and their weights, is by expert estimate –

instead of a more fundamental theoretical basis. This limitation is further discussed in 

[Wheeler2015]. Should better metrics be identified to us or become available, they could 

be used instead or in addition. For example, CHAOSS is working on improved metrics.  

The weights could be adjusted based on additional information and review.  In addition, 

the weights could be scaled across a range, instead of simply being integer values. 

Our current plan is to create an estimated “risk score” (where a higher value 

indicates higher risk), just as we did successfully in [Wheeler2015]. We would start with 

the risk metrics discussed in section 3.B (e.g., projects that are unchanged for a long time 

have a higher risk). Here are some additional risk measures we propose using: 

1. CVEs. In [Wheeler2015] we examined the Common Vulnerabilities and 

Exposures (CVE) catalog. If there were >=4 CVEs, 3 points; 2–3 CVEs, 2 

points; and 1 CVE, 1 point. As noted in [Wheeler2015], CVE counts are a 

double-edged sword. The number of reports may be low because there are few 

existing problems or because few reviewed it; the number may be high because 

there are many existing problems or because the software has undergone 

extensive review. In [Wheeler2015] we used CVEs primarily to help determine 

the exposure of the program to attack; if several CVEs exist, then it is clearly 

exposed to attack. 

However, it is a challenge to match CVEs to OSS projects. There are databases 

that simplify this for specific languages (e.g., Bundler-audit’s data set for Ruby).  

The National Vulnerability Database (NVD) includes Common Platform 

Enumeration (CPE) identifiers, but the CPE information doesn’t have enough 

information to reliably match the information to OSS projects (e.g., it lacks 

project URLs). Various organizations do work to develop this mapping, so we 

believe we can partner with one or more of them to get this data. In the longer 

term, it would be good to more clearly tie CVE data to OSS projects, e.g., by 

putting URLs in CPEs, so that organizations wouldn’t need to recreate this data. 

2. Weakness Density. We could use a static analysis tool, such as Synopsys 

Coverity, to measure the number of weaknesses, aka vulnerability findings or 

potential vulnerabilities. The weakness density can then be computed by taking 

the number of weaknesses and dividing that by the number of lines of code. If it 

is in the top 1% (for that package manager), 5 points; else if it is in the top 10% 



5-3 

(for that package manager), 3 points; else if it is in the top 50%, 1 point. While 

any particular weakness (finding) may not be a true vulnerability, if the density 

of weaknesses is unusually high for that language, that suggests that the 

developers were not actively taking steps to avoid risky constructs (from a 

security point of view). We expect software with an unusually large number of 

risky constructs to be more likely to have more vulnerabilities. 

3. Big. Larger software systems are more likely to have defects, and some of those 

defects may be security vulnerabilities. In addition, it’s difficult to understand 

larger programs. Thus, simply being larger increases the risk of security 

vulnerabilities. A trivial way to estimate this is to use the “size” parameter, 

which is the size of a repository in KB. If it is in the top 1% (for that package 

manager), 3 points; else if it is in the top 10% of size (for that package 

manager), 2 points; else if it is in the top 50%, 1 point. Directly using size has its 

problems because size includes test suites and documentation, and those are both 

indicators of reduced risk. A better way to measure size would be to measure 

non-test source lines of code (SLOC); we could use one of various SLOC 

counters to better estimate size. 

4. C/C++. In [Wheeler2015], if the main programming language used was C or 

C++, 2 points of risk were assigned. Secure programs can be written in these 

languages, but it is especially easy to make vulnerabilities in them. Libraries.io 

does provide a “lang” field that can provide this. However, if we focus on only 

language-level package managers, this is unlikely to matter, because C/C++ 

programs are often installed using system-level package managers instead. 

Therefore, this should be implemented only if system-level packages are 

included. 

5. Contributors. This considers the total number of contributors over all time. If 

there was only 1 contributor in the entire history of the project, 4 points; 2–3 

contributors, 3 points; 4–10 contributors, 2 points; and an unknown number of 

contributors gets 1 point. This means that if a project does not have a repository 

then it will automatically get 1 point. Unfortunately this field in the libraries.io 

data set is unreliable. There are projects that have many more contributors but 

they show up as 0 in the data set. Thus, we do not use this for now. 

6. Average number of commits per month. If there are a non-trivial number of 

commits per month, particularly in the last year, that suggests real activity. If the 

average number is in the lowest 10%, then assign 1 point of risk. Note that this 

measurement is correlated with some other measures, such as the number of 

contributors in the last 12 months. 
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7. Pull (merge) requests ignored. If more than 90% of all pull requests ever made 

are still open (neither closed nor merged), and there have been at least 10 pull 

requests, then assign 1 point of risk. The idea is that if pull (merge) requests are 

almost always ignored, that suggests that external suggestions or improvements 

are generally ignored. Note that a project may choose to reject many pull 

requests (perhaps they are poor quality); the issue here is ignoring them entirely. 

Note that GitHub calls these “pull requests” but other systems use other names 

such as “merge requests.” 

8. Issues (or similar) ignored. If issues are almost always ignored, that’s not a 

good sign. If more than 90% of all issues ever opened are still open, and there 

have been at least 10 issues filed, assign 1 point of risk. Unclosed issues are not 

always bad, of course. However, a very high ratio of open issues to closed issues 

is a very good indicator of projects with a high level of risk. Our thanks to Jesús 

M. González-Barahona for noting this. 

9. No issues opened in the last year. If no issues were opened in the last year, 

assign 1 point of risk. If nobody cares about opening tickets, either the project is 

really rock solid, or nobody cares. Our thanks to Jesús M. González-Barahona 

for noting this. 

10. Commercial support for development. If no developer in the past year has 

contributed to the project primarily within that developer’s business hours, 

assign 2 point. If most contributions in the past year are not within business 

hours, assign 1 point. Commercial support is hard to directly measure by 

automated means. However, if at least one developer who is a main contributor 

is routinely committing during business hours within their region6 in that 

developer’s time zone, that suggests direct funding of at least one developer. 

This is not perfect, since retirees and students might be included, but it’s 

probably still a useful indicator. 

11. CII Best Practices badge. A project that has earned at least the “passing” level 

best practices badge is actively performing a large number of activities that 

reduce risk, and should have 3 risk points removed. This can be easily 

determined using the badging project’s REST interface. 

12. Lack of testing. It should be possible in many cases to detect test code; if 

there’s no evidence, give it 2 risk points. This can often be done by detecting 

various configuration files for continuous integration platforms and common test 

                                                 

6
  In many time zones, this is typically something like Monday–Friday 0700–1800. This obviously varies 

between countries, e.g., in Saudi Arabia, business hours are more likely to be something like Saturday–

Wednesday 0800–1200 and 1500–1800 [ExpatFocus].  As part of this analysis, we would need to 

estimate business hours for each time zone. 
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framework indicators. A project that has a CII Best Practices badge (at least 

“passing”) also has a testing process. One challenge with this indicator is that 

some tests may not be detected (particularly in cases where the test framework is 

maintained as a separate project, instead of being part of the project itself). More 

risk points might be appropriate, but we hesitate to do that because of the 

challenge of detecting tests. 

Of course, some testing is better than others. It might be possible to measure the 

ratio of test code to regular code (a measure that Rails easily provides), or even 

test coverage (such as statement coverage or branch coverage). However, these 

test quality measures are more difficult to acquire, so they might be better saved 

for later refinements. 

C. Other Issues 

The approach for merging the importance and security data appears to work well. 

Again, we identify the “top” most important OSS (at least for each package manager), 

and then sort them by risk scores to find the “riskiest important software.” 

We have decided to focus on language-level package managers, since that was not 

covered in [Wheeler2015]. To cover all OSS packages, in the future we would also want 

to add system packages from some system package manager (such as Ubuntu, Debian, or 

Fedora). Loading dependency data from a system package manager is not difficult since 

that data is already available. The larger challenge is connecting all the dependency data 

because there often is no connection between the language-level package managers and 

the system-level package managers. We might be able to compensate for this by using 

data from sources such as Dockerfiles for a variety of widely used containers. That said, 

we think this would be a useful direction to build on. 

One particular kind of software is implicitly important but not always identified as 

such: package managers themselves. Anyone using a language-level package manager 

obviously depends on it, but this dependency is not always captured by the package 

managers themselves. Others have noted the need for security in package managers, e.g., 

[Arizona2014] (focusing on system-level package managers) and [Athalye2014]. 

Package managers are clearly key to installation and maintenance, but they do not always 

receive the security attention they should for such a prominent role. 

As noted in section 4.C, vendoring is challenging because it hides uses of software. 

Some tools are specifically designed to find these situations, and they might be useful in 

later versions to expand the accuracy of the analysis in the future. 
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6.  Number of OSS Projects 

We were able to quickly estimate the number of significant OSS projects, given the 

data sets we had already gathered to implement the prototype. In this chapter we present 

our results, and our justification for it. 

We have determined that there are at least 3.26 million significant OSS projects. 

We believe that there are more OSS projects; this is merely a lower bound. 

This estimate is a sum of two values: 

1. GitHub and GitLab projects with an automatically identified license file, 

removing insignificant projects (e.g., homework projects) as described above 

and projects licensed under CC-BY-NC-ND (which is not an OSS license). This 

is 2,759,655 projects. 

2. All projects packaged by language-level package managers that are not already 

covered by #1. This is 501,849 projects. If it’s packaged, it’s usually licensed as 

OSS and somebody cared enough to package it, so we didn’t filter that further. 

Of course, not all projects involve the same level of effort. The Linux kernel and the 

trivial JavaScript (npm) package left-pad both count as one project each. Nevertheless, 

this estimate is certainly adequate to show that there are a lot of OSS projects. 

This estimate doesn’t include many projects: 

1. Some OSS project licenses are not easily detected (e.g., the license information 

may be embedded in a README file), so this estimate does omit some OSS 

projects. However, we must have some way to deal with a common problem: 

many projects on GitHub have no license at all. Unlicensed projects are not OSS 

because under most copyright laws worldwide express permission must be 

granted to allow copying (including redistribution) and modification. We have 

intentionally chosen a conservative approach – if it’s not clear through our tools 

that the software is OSS, we presume it is not OSS. 

2. Many projects manage their own repositories, or use repository hosting services 

other than GitHub or GitLab (such as SourceForge, Bitbucket, and Savannah). 

That said, GitHub is the most commonly used repository hosting service, so its 

data is a good place to start. 
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This estimate does not include some system-level packages. However, as of October 

10, 2017, the number of system-level packages in Ubuntu’s “artful” is 72,721 (72727-6),7 

and some of those packages are included in the earlier estimate. Even if all of those 

system-level packages were added, it would not significantly change the result. 

 

                                                 

7
  This is from the list of Ubuntu packages, https://packages.ubuntu.com/artful/allpackages?format=txt.gz 
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7.  Conclusions 

This paper provides evidence that it is feasible to try to identify the “most 

important” OSS packages, and from them, identify packages that most need investment 

for security. Our prototype efforts did help identify some challenges, but lessons learned 

from the prototype suggest how those challenges can be overcome. 

Some OSS is very secure; some is not. The Heartbleed vulnerability in OpenSSL 

showed that even some widely used OSS needs more investment in its security. This kind 

of analysis can help to identify the most important OSS that most needs security-related 

investments. The LF CII could then choose what to invest in and how. The LF CII might 

choose to fix, refurbish, or fund a replacement; it might also fund work such as process 

improvements, training, and hardening efforts. But the first step is to do this wider 

analysis. Performing the full analysis, and investing in OSS projects identified using it, 

could prevent many serious security breaches that might otherwise occur. 
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Appendix A 

Package Managers 

Here is a list of package managers that manage the packages, the primary language 

or platform supported by each, and the number of packages managed by each package 

manager that something else depends on (per our data set). These are the package 

managers for which we have data from Libraries.io <https://libraries.io/data> and thus 

were analyzed by our prototype. 

 

Table 1. Package managers 

Package manager Primary language or platform # of used packages 

npm JavaScript 241,080 

Maven Java 41,722 

Packagist PHP 39,608 

Rubygems Ruby 32,402 

NuGet .NET (C#) 27,926 

Pypi Python 27,091 

Bower JavaScript (client side) 15,858 

Go Go 12,681 

CPAN Perl 10,599 

CocoaPods Objective-C, Swift 5,740 

Cargo Rust 3,239 

CRAN R 2,957 

Clojars Clojure 2,687 

Hex Erlang, Elixir 1,282 

Pub Dart 1,065 

SwiftPM Swift 637 

Julia Julia 538 

Elm Elm 353 

Dub D 323 

Haxelib Haxe 260 

Meteor JavaScript 149 

Atom Atom (editor) 76 

Shards Crystal 14 
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We omit Carthage because it is not really a platform (it’s a decentralized package 

manager for Cocoa). 

For more information on many different package managers, including the full count 

of packages they manage over time, see <http://www.modulecounts.com/>. 
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Acronyms and Glossary 

API: application program interface 

BOSS: Battery Open-Source Software 

CC-BY-SA-4.0: Creative Commons Attribution-ShareAlike 4.0 International; see 

https://creativecommons.org/licenses/by-sa/4.0/ 

CC-BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives; see 

https://creativecommons.org/licenses/by-nc-nd/4.0/ 

CHAOSS: Community Health Analytics for OSS 

CI: Continuous Integration 

CII: Core Infrastructure Initiative 

CVE: Common Vulnerabilities and Exposures, a catalog of known security threats. 

I/O: Input/Output 

LF: Linux Foundation 

npm: (Historically) Node.js Package Manager. Today it is simply used as the name. 

Open Source Software: “software for which the human-readable source code is 

available for use, study, reuse, modification, enhancement, and redistribution by the users 

of that software” [DoD2009]. For more information, see the Open Source Definition 

[OSI]. 

OSS: Open Source Software 

package: A unit of software that can be installed and managed by a package manager. 

package manager: Software that automates the process of installing and otherwise 

managing packages. 

repository: A location for storing and managing the history of information (such as 

software). 

REST: REpresentational State Transfer 

SLOC: Source Lines of Code 

TB: Terabyte (1012 bytes) 

vendoring: The complete inclusion of a package by copying it inside another package. 

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
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