

I N S T I T U T E F O R D E F E N S E A N A L Y S E S

Core Infrastructure Initiative (CII)

Best-Practices Badge Criteria

 David A. Wheeler

June 28, 2016

Approved for public
release; distribution is

unlimited.

IDA Non-Standard
NS D-8054

Log: H 2016-000794

Copy

INSTITUTE FOR DEFENSE
ANALYSES

4850 Mark Center Drive
Alexandria, Virginia 22311-1882

About This Publication

This work was conducted by the Institute for Defense Analyses (IDA) under
Task LX-5-3968, “Linux Foundation Core Infrastructure Initiative,” for The
Linux Foundation. The views, opinions, and findings should not be construed
as representing the official position of either the Department of Defense or the
sponsoring organization.

Acknowledgments

Margaret E. Myers

Copyright Notice

© 2016 Institute for Defense Analyses
4850 Mark Center Drive, Alexandria, Virginia 22311-1882 • (703) 845-2000.

This material may be reproduced by or for the U.S. Government pursuant to
the copyright license under the clause at DFARS 252.227-7013 (a)(16) [Jun
2013].

1

Core Infrastructure Initiative (CII)

Best-Practices Badge Criteria

David A. Wheeler

The Linux Foundation Core Infrastructure Initiative (CII) recently announced the

general availability of its best-practices badge project, which is meant to help projects

follow practices that will improve their security. I’m the technical lead of the project,

which is also known as the “badging project.” In this article I’ll focus on what the badge

criteria currently are, including how they were developed and some specific examples, as

well as talk about the project as a whole. But first, a little history.

In 2014, the Heartbleed vulnerability was found in the OpenSSL cryptographic

library. This vulnerability raised awareness that there are some vitally important free/libre

and open source software (FLOSS) projects that have serious problems. In response, the

Linux Foundation created the CII to fund and support critical elements of the global

information infrastructure. The CII has identified and funded specific important projects,

but it cannot fund all projects. So the CII is also funding some approaches to generally

improve the security of FLOSS.

The badge

The latest CII project, which focuses on improving security in general, is the “best-

practices badge” project. CII believes that FLOSS projects that follow best practices are

more likely to be healthy and to produce better software in many respects, including

having better security. Most project members want their projects to be healthy, and users

prefer to depend on healthy projects. Without a list of best practices, it’s easy to overlook

something important.

FLOSS projects that adequately follow the best practices can get a badge to

demonstrate that they do. It costs no money to get a badge, and filling in the form takes

less than an hour. Note that the CII best-practices badge is for a project, not for an

individual, since project members can change over time.

https://www.coreinfrastructure.org/
http://www.dwheeler.com/essays/heartbleed.html
https://www.coreinfrastructure.org/grants

2

There really is a problem today; some projects are not applying the hard-learned

lessons of other projects. Many projects are not released using a FLOSS license, yet their

developers often appear to (incorrectly) think they are FLOSS projects. Ben Balter’s

2015 presentation Open source licensing by the numbers suggested that on GitHub, 23%

of the projects with 1,000 or more stars had no license at all. Omitting a FLOSS license

tends to inhibit project use, co-development, and review (including security reviews).

Some projects (like american fuzzy lop) do not have a public version-controlled

repository, making it difficult for others to track changes or collaborate. Some projects

only provide unauthenticated downloads of their code using HTTP, making it possible for

attackers to subvert software downloads en route. Some projects don’t provide any

information on how to submit vulnerability reports (are you supposed to use the usual

bug tracker?); this can create unnecessary delays in vulnerability reporting and handling.

Many projects don’t use any static source code analysis tools, even though these tools can

find defects (including vulnerabilities).

OpenSSL before Heartbleed is an example. The OpenSSL project at the time of

Heartbleed had a legion of problems. For example, its code was hard to read (there was

no standard coding style and its code was notoriously complex), making it difficult to

review. Unsurprisingly, vulnerabilities (like Heartbleed) are more likely to slip in when

code is difficult to review. The best-practices criteria were not created with OpenSSL

specifically in mind, but one of its project members went back and found that the

OpenSSL project before Heartbleed failed to meet about one-third of the current best-

practices criteria.

Of course, there are a massive number of practices that could together be called

“best practices.” The term “best practices” is really just a commonly used term for some

set of recommended practices.

Let’s first admit the limitations on any set of practices. No set of practices can

guarantee that software will never have defects or vulnerabilities. Even formal methods

can fail if the specifications or assumptions are wrong. Nor is there any set of practices

that can guarantee that a project will sustain a healthy and well-functioning development

community.

However, following best practices can help improve the results of projects. For

example, some practices enable or encourage multi-person review, or can make review

more effective at finding defects (including defects that lead to vulnerabilities).

Perhaps the most important step toward developing the criteria (and the web

application that implements them) was the decision that the project would itself be

developed as a FLOSS project. The web application is under the MIT license; all text

(including the criteria) are dual-licensed under the MIT or CC-BY version 3.0 (or later)

https://speakerdeck.com/benbalter/open-source-licensing-by-the-numbers
http://lcamtuf.coredump.cx/afl/
https://bestpractices.coreinfrastructure.org/projects/87

3

licenses. The CII publicly set up the project on GitHub, created some early draft criteria,

and invited feedback.

Producing the criteria

The initial criteria were primarily based on reviewing a lot of existing documents

about what FLOSS projects should do, and those were in turn based on observing

existing successful projects. A good example, and probably the single most influential

source, is Karl Fogel’s book Producing Open Source Software. Many people provided

feedback or contributed to the badging project, including Dan Kohn, Emily Ratliff, Karl

Fogel, Greg Kroah-Hartman (the Linux kernel), Rich Salz (OpenSSL), Daniel Stenberg

(curl), Sam Khakimov, Doug Birdwell, Alton Blom, and Dale Visser.

A web application was developed for FLOSS project members to use to fill in

information; that web application project fulfilled the criteria, so it got its own badge.

This effort helped steer the project away from impractical criteria. The project also got

some early “alpha tester” projects to try out early drafts and provide feedback, in

particular to ensure that the criteria would apply to both big projects (like the Linux

kernel) and small projects (like curl). For example, there is no criterion requiring 100%

statement coverage for tests; that can be a useful goal, but on many projects that’s

impractical (especially if it requires unusual hardware) or not worth pursuing.

Getting a badge intentionally doesn’t require or forbid any particular services or

programming languages. A lot of people use GitHub, and in those cases the web

application automatically fills in some of the form based on data from GitHub, but

projects do not have to use GitHub.

Scale is also a key issue. An evaluation process that takes a year or more, or costs

hundreds of thousands of dollars, cannot be applied to all of the vast number of FLOSS

projects. In-depth evaluation is not bad, of course, but the project is trying to be useful for

a large set of FLOSS projects. Instead of requiring expensive third-party assessment, the

focus is on self-assessment combined with automation.

Self-assessment can have its problems, but it scales much better and there are

several approaches to help counter the problems of self-assessment, such as false claims.

First, all the results are made public, so anyone can check the claims. Second, the web

application also includes automation that checks entries before they are saved — and in

some cases it overrides user information if it’s false or inadequately justified. Finally, the

CII does review project entries (particularly if they claim to be passing) and can delete or

fix entries (e.g., if they are false or irrelevant). This emphasis on self-assessment does

mean that the badging project had to try to write criteria that could be clearly understood

directly by the projects.

http://producingoss.com/

4

Currently, the focus is on identifying best practices that well-run projects typically

already follow. The project leads decided that it was more important to come up with a

smaller set of widely applied best practices. That way, all projects can be helped to reach

some minimum bar that is widely accepted. The project was especially interested in

criteria that help enable multi-person review or tend to improve security. The criteria also

had to be relevant, attainable by typical FLOSS projects, and clear. It was also preferred

to add criteria if at least one project didn’t follow the practice. After all, if everyone does

it without exception, it would be a waste of time to add it as a criterion.

In the longer term, there are plans to add higher badge levels beyond the current

“passing” level, tentatively named the “gold” and “platinum” levels. Projects that are

widely depended on and are often attacked, such as the Linux kernel or any cryptographic

library, should, of course, be doing much more than a minimum set of widely applied best

practices. However, the project team decided to create the criteria in stages.

There is the expectation that once a number of projects get a passing badge (and

provide feedback), the badging project will be in a better position to determine the

criteria for higher levels. You can see a list of some of the proposed higher-level criteria

in the “other” criteria documentation. If you think of others, or think some are especially

important, please let the badging project know.

One intentional omission is anything actually requiring an active development

community, multi-person review, or multiple developers (e.g., a high “bus factor”).

Obviously, having more reviewers or developers within an active community is much

better for a project, and users should normally prefer such projects. However, in many

cases this is not directly under a project’s control. For example, some projects are so

specialized that they’re not likely to attract many reviewers or developers and new

projects often can’t meet such criteria. For the initial badge level, the focus is, instead, on

things that project members can directly control. Meeting the badge criteria should help

projects grow and sustain a healthy, well-functioning, and active development

community. Higher badge levels will almost certainly add criteria requiring a larger

active community and a minimum bus factor (at least more than one).

The criteria

Once the initial criteria were identified, they were grouped into the following

categories: basics, change control, reporting, quality, security, and analysis. Below, a few

of the 66 criteria (including their identifiers) are described, along with why they’re

important.

https://github.com/linuxfoundation/cii-best-practices-badge/blob/master/doc/other.md
https://en.wikipedia.org/wiki/Bus_factor

5

The “basics” group includes basic requirements for the project. This includes

requiring either a project or repository URL (the web application uses this to

automatically fill in some information). Examples include:

 Criterion floss_license states that “the software MUST be released as FLOSS” and

FLOSS is defined as software “released in a way that meets the Open Source

Definition or Free Software Definition.” These criteria were designed for FLOSS

projects and are meant to encourage collaborative development and review. That doesn’t

make sense when there’s no legal basis for the collaboration.

 Criterion sites_https says that “the project sites (web site, repository, and download

URLs) MUST support HTTPS using TLS” This is obviously a more security-oriented

requirement. It’s sparked some controversy, because GitHub pages do not fully

support HTTPS. Although users can retrieve *.github.io pages using HTTPS, these

pages are still vulnerable to interception and malicious modification because, at this time,

they are retrieved via CloudFlare, which retrieves these files without using HTTPS. In

addition, many projects have a custom domain (typically the project’s name) with a web

site served via GitHub pages and these cannot currently be protected by HTTPS at all.

One compromise being discussed is to only require that the repository and download

URLs use HTTPS, since that would at least protect the software while it’s downloaded.

The “change control” group focuses on managing change, including ways to report

problems, issue/bug trackers, and version-control software. Examples include:

 The repo_public criterion says that “the project MUST have a version-controlled source

repository that is publicly readable and has a URL.” Version control greatly reduces the

risks of changes being dropped or incorrectly applied and makes it much easier to apply

changes.

 Criterion vulnerability_report_process says: “The project MUST publish the process

for reporting vulnerabilities on the project site.” This makes it much easier for security

researchers to provide their reports—and thus makes it more likely that that will happen.

Many bug reporting systems are public, and it’s not obvious to outsiders if projects will

want security bug reports to be public or not. A surprising number of projects didn’t meet

this criterion, even though this can be as simple as putting one sentence on the project

web site.

The “quality” group focuses on general software quality, including a project’s build

process and automated test suite. Examples include:

 Criterion test: “The project MUST have at least one automated test suite that is publicly

released as FLOSS (this test suite may be maintained as a separate FLOSS project).” An

automated test suite makes it much easier to detect many mistakes before users have to

deal with them. Test suites can always be improved; the key is to have one that can be

improved.

 The warnings criterion says: “The project MUST enable one or more compiler warning

flags, a ‘safe’ language mode, or use a separate ‘linter’ tool to look for code quality errors

https://github.com/linuxfoundation/cii-best-practices-badge/blob/master/doc/criteria.md#basics
https://github.com/linuxfoundation/cii-best-practices-badge/blob/master/doc/criteria.md#floss_license
https://opensource.org/osd-annotated
https://opensource.org/osd-annotated
http://www.gnu.org/philosophy/free-sw.en.html
https://github.com/linuxfoundation/cii-best-practices-badge/blob/master/doc/criteria.md#sites_https
https://github.com/isaacs/github/issues/156
https://github.com/isaacs/github/issues/156
https://github.com/linuxfoundation/cii-best-practices-badge/blob/master/doc/criteria.md#change-control
https://github.com/linuxfoundation/cii-best-practices-badge/blob/master/doc/criteria.md#repo_public
https://github.com/linuxfoundation/cii-best-practices-badge/blob/master/doc/criteria.md#vulnerability_report_process
https://github.com/linuxfoundation/cii-best-practices-badge/blob/master/doc/criteria.md#quality
https://github.com/linuxfoundation/cii-best-practices-badge/blob/master/doc/criteria.md#test
https://github.com/linuxfoundation/cii-best-practices-badge/blob/master/doc/criteria.md#warnings

6

or common simple mistakes, if there is at least one FLOSS tool that can implement this

criterion in the selected language.” These flags and tools can detect some defects, some

of which may be security vulnerabilities. In addition, these mechanisms can warn about

awkward constructs that make code hard to read.

The “security” group lists criteria specific to improving software security. Examples

include:

 The know_secure_design criterion states: “The project MUST have at least one primary

developer who knows how to design secure software. This requires understanding the

following design principles, including the 8 principles from Saltzer and Schroeder....”

There are a number of well-known design principles for designing secure software, such

as using fail-safe defaults (access decisions should deny by default and installation should

be secure by default). Knowing these principles can reduce the likelihood or impact of

vulnerabilities.

 Criterion know_common_errors: “At least one of the primary developers MUST know

of common kinds of errors that lead to vulnerabilities in this kind of software, as well as

at least one method to counter or mitigate each of them.” Most vulnerabilities stem from

a small set of well-known kinds of errors, such as vulnerabilities from SQL injections and

buffer overflows. Knowing what they are (and how to counter or mitigate them) can

result in an order-of-magnitude reduction in the number of vulnerabilities. It woud be

best if all of the developers knew this; but if one does, that person can teach the others.

The biggest problem is when no developer knows this information.

 Criterion crypto_published states: “The project’s cryptographic software MUST use

only cryptographic protocols and algorithms that are publicly published and reviewed by

experts.” Home-grown cryptography is vulnerable cryptography. You need to have an

advanced degree in mathematics or a related field and have specialized for years in

cryptography, before you know enough to create new cryptographic protocols and

algorithms that can stand up to today’s aggressive adversaries.

The “analysis” group lists criteria specific to analyzing software. Examples include:

 Criterion static_analysis requires: “At least one static code analysis tool MUST be

applied to any proposed major production release of the software before its release, if

there is at least one FLOSS tool that implements this criterion in the selected language. A

static code analysis tool examines the software code (as source code, intermediate code,

or executable) without executing it with specific inputs. For purposes of this criterion,

compiler warnings and ‘safe’ language modes do not count as static code analysis tools

(these typically avoid deep analysis because speed is vital).” Static code-analysis tools

(designed for that purpose) can dig deep into code and find a variety of problems. It’s

true that these tools can’t find everything, but the idea is to try to find to fix the problems

that can be found this way.

 Criterion dynamic_analysis says: “It is SUGGESTED that at least one dynamic analysis

tool be applied to any proposed major production release of the software before its

release.” Dynamic-analysis tools can find vulnerabilities that static-analysis tools often

https://github.com/linuxfoundation/cii-best-practices-badge/blob/master/doc/criteria.md#security
https://github.com/linuxfoundation/cii-best-practices-badge/blob/master/doc/criteria.md#know_secure_design
http://web.mit.edu/Saltzer/www/publications/protection/
https://github.com/linuxfoundation/cii-best-practices-badge/blob/master/doc/criteria.md#know_common_errors
https://github.com/linuxfoundation/cii-best-practices-badge/blob/master/doc/criteria.md#crypto_published
https://github.com/linuxfoundation/cii-best-practices-badge/blob/master/doc/criteria.md#analysis
https://github.com/linuxfoundation/cii-best-practices-badge/blob/master/doc/criteria.md#static_analysis
https://github.com/linuxfoundation/cii-best-practices-badge/blob/master/doc/criteria.md#dynamic_analysis

7

miss (and vice versa), so it’s best to use both. It would be nice to use them on every

commit, but on some projects that’s impractical; typically, though, they can be applied to

every release.

The criteria will change slowly, probably annually, as the project gets more

feedback and the set of best practices in use changes. The current plan is to add proposed

criteria as “future” criteria, which are added to the web application but are initially

ignored. That will give projects time to meet the new criteria (and show that they do),

justify modifying the criteria, or justify removing it from the set of proposed criteria.

For example, the hardening criterion is currently a planned addition; it would

require that “hardening mechanisms be used so software defects are less likely to result in

security vulnerabilities.” The current plan is that this criterion would be added at the

“passing” level for all projects in 2017. Projects that don’t meet the updated criteria by

the update deadline would lose their “passing” status until they fix the problem. This

process is similar to a “recertification” process but is hopefully less burdensome.

FLOSS projects that have already achieved the badge include the Linux kernel, curl,

Node.js, GitLab, OpenBlox, OpenSSL, and Zephyr. I encourage all FLOSS project

members to go to the site and get their badges. If you have comments on the criteria

(including for higher levels to be developed), please submit comments using the GitHub

issue tracker or project mailing list.

https://github.com/linuxfoundation/cii-best-practices-badge/blob/master/doc/criteria.md#future
https://github.com/linuxfoundation/cii-best-practices-badge/blob/master/doc/criteria.md#hardening
https://bestpractices.coreinfrastructure.org/projects/34
https://bestpractices.coreinfrastructure.org/projects/63
https://bestpractices.coreinfrastructure.org/projects/29
https://bestpractices.coreinfrastructure.org/projects/42
https://bestpractices.coreinfrastructure.org/projects/80
https://bestpractices.coreinfrastructure.org/projects/54
https://bestpractices.coreinfrastructure.org/projects/74
https://bestpractices.coreinfrastructure.org/
https://github.com/linuxfoundation/cii-best-practices-badge/issues
https://github.com/linuxfoundation/cii-best-practices-badge/issues
https://lists.coreinfrastructure.org/mailman/listinfo/cii-badges

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std, Z39.18

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington
Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a
collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From – To)

2016-06-28 Non-Standard

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Core Infrastructure Initiative (CII) Best-Practices Badge Criteria N/A

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBERS

6. AUTHOR(S) 5d. PROJECT NUMBER

David A. Wheeler LX-5-3968

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES 8. PERFORMING ORGANIZATION REPORT
NUMBER

NS D-8054

H 2016-000794

Institute for Defense Analyses

4850 Mark Center Drive

Alexandria, VA 22311-1882

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR’S / MONITOR’S ACRONYM

Linux Marcus Streets

Core Infrastructure Initiative (CII) Programs Director

The Linux Foundation

1 Letterman Drive

Building D

Suite D4700

San Francisco CA 94129

11. SPONSOR’S / MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

Project Leader: David A. Wheeler

14. ABSTRACT

The Linux Foundation Core Infrastructure Initiative (CII) recently announced the general availability of its best-practices

badge project, which is meant to help projects follow practices that will improve their security. This article focuses on what

the badge criteria currently are, including how they were developed and some specific examples, and talks about the project

as a whole.

15. SUBJECT TERMS

open source software, free software, free/libre/open source software, FLOSS, best practices, Linux Foundation, LF, Core

Infrastructure Initiative, CII, badge, badging, badges, LWN.net

16. SECURITY CLASSIFICATION OF:
17. LIMITATION OF

ABSTRACT

Unlimited

18. NUMBER
OF PAGES

7

19a. NAME OF RESPONSIBLE PERSON

Marcus Streets

a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include Area
Code)

 +44 7411 711101 Unclassified Unclassified Unclassified

1

	Blank Page

