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AAS 14-052

CONVERGENCE BEHAVIOR OF SERIES SOLUTIONS

OF THE LAMBERT PROBLEM1

James D. Thorne2

ABSTRACT

Lambert�s problem, to �nd the unique conic trajectory that connects two
points in a spherical gravity �eld in a given time, is represented by a set of
transcendental equations due to Lagrange. The associated Lagrange equa-
tions for the orbital transfer time may be expressed as series expansions
for all cases. Power series solutions have been published that reverse the
functionality of the Lagrange equations to provide direct expressions for the
unknown semi-major axis as an explicit function of time. The convergence
behavior of the series solutions is examined over the range of possible trans-
fer angles and �ight times. The e¤ect of arbitrary precision calculations is
shown on the generation of the series coe¢ cients.

INTRODUCTION

Lambert�s problem, to �nd the arc of a unique conic trajectory that connects two points in a
spherical gravity �eld in a given time, is represented by a set of transcendental equations originally
derived by Lagrange. Many iterative algorithms have been developed to solve the Lagrange equa-
tions since they give the time of �ight on a trajectory as a function of the semi-major axis of a
conic section, while it is the semi-major axis that is normally desired as a function of the time of
�ight. Power series have been published that reverse the functionality of the Lagrange equations
to provide direct expressions for the unknown semi-major axis as an explicit function of the given
time of �ight. This paper examines the convergence behavior of the series solutions to the Lambert
problem over the range of possible transfer angles and �ight times that approach the full period
of the orbit. Also, the e¤ect of arbitrary precision calculations is shown on the generation of the
series coe¢ cients.

BACKGROUND - SERIES SOLUTIONS OF THE LAMBERT PROBLEM

For convenience, the series solutions of the Lambert problem2 are repeated here for the discussion
of convergence properties. Lambert�s theorem states that the orbital transfer time (t) between two
known positions in the 2-body orbital problem is dependent only on the semi-major axis (a) given
two �xed position vectors and a known gravitational constant. Lagrange proved this theorem and
derived elegant equations that show this functional dependence.1 Apart from the limiting cases of
straight-line and parabolic transfers, the possible orbital paths fall into three categories: hyperbolic
arcs (1H, 2H); elliptical arcs with transfer times that are either less than (1A, 2A) or greater (1B,
2B) than a minimum-energy transfer time. The basic problem geometry is shown in Figure 1
below.

1Prepared for technical papers that may later be published in the proceedings of the American Astronautical
Society.

2Research Sta¤ Member, System Evaluation Division, Institute for Defense Analyses, Alexandria, Virginia, 22311.
jthorne@ida.org. Member AAS.
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Figure 1: Problem Geometry

If the transfer angle is less or more than � radians, there is a corresponding sign change (�) in
the Lagrange equation, as shown below:

1H, 2H: t =

p
�a3
k

�
(sinh�0 � �0)�

�
sinh�0 � �0

�	
(1)

1A, 2A: t =

p
a3

k
f(�� sin�)� (� � sin�)g (2)

1B, 2B: t =

p
a3

k
f2� � (�� sin�)� (� � sin�)g (3)

Where

�0 = 2 sinh�1
r
�s
2a
; �0 = 2 sinh�1

r
c� s
2a

(4)

and

� = 2 sin�1
r
s

2a
; � = 2 sin�1

r
s� c
2a

(5)

In Eqs. (4) and (5), c is the chord which is a line segment connecting the two observed posi-
tion vectors, and s is one-half the sum of the lengths of the position vectors and the chord,
s = (r1 + r2 + c) = 2 as shown in Figure 1. The gravitational constant is k. These quantities
are known from the given observations and are not dependent on the transfer time, t.

Lagrange�s Eqs. (1) - (3) give a set of closed-form relationships between the observed transfer
time and the semi-major axis a of the conic arc. However, the functional dependence is the opposite
of what would be desired, since t is known from observations, but a is not. If values of a are plotted
as a function of t as shown in Figure 2, it is evident that semi-major axis is a single-valued function
of time-of-�ight. The plot may be divided into three regions, representing the hyperbolic (H),
elliptic short-way (A) and elliptic long-way (B) cases. The hyperbolic region is characterized by
negative values of semi-major axis. The parabolic transfer time tp forms the boundary between
the hyperbolic and short-way elliptic cases. The minimum energy transfer time tme forms the
boundary between the second and third regions, which correspond to the short-way and long-way
elliptic cases. The third region is the primary focus of this paper, where there are two separate
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Figure 2: General semi-major axis plot, canonical units

boundaries (Bme, Binf) to examine. The �rst boundary is the minimum-energy transfer time, and
the second boundary is region where the transfer time approaches in�nity.

Physically, as the semi-major axis of a long-way elliptic transfer becomes very large, the transfer
time will approach the value of the period of the complete closed orbit since the complementary
time on the short-way arc becomes very small. So, the plot of the semi-major axis in the third
region of Figure 2 will approach a function that is proportional to t2=3, as may be seen from solving
the orbital period for the semi-major axis a:

period =
2�

k
a3=2 ' t;=) a '

�
k

2�

�2=3
t2=3 (6)

Many excellent iterative techniques exist to solve the Lagrange equations.3 However, since a is
the unknown quantity to be found, it would be quite useful to �nd a direct solution to avoid the
need for any type of root-�nding technique.

Since the Lagrange equations are case dependent, they take di¤erent forms for hyperbolic short-
way, and long-way elliptical transfers as described above. The series solutions also take three
forms, but they do not correspond exactly to the cases of the Lagrange equations. In particular,
the hyperbolic and short-way elliptical cases are solved by the same power series because they both
result from an expansion about the parabolic case. As the �ight time increases for a given, �xed
geometry, there is another series solution where the �ight time is near to the minimum-energy
case. Finally, as the �ight times grow much larger than the minimum-energy case, there is a long-
way series solution which is another expansion about the limiting case where the time of �ight
approaches the period of the orbit.

Hyperbolic and Short-Way Elliptic Series Solution (H, A)

For reference, the three series solutions of the Lagrange equations are presented for the purpose
of examining the convergence properties. It has been shown previously2 that the series solution for
both the hyperbolic and short-way elliptic classes of transfer arcs is given by:
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a =
�s
2

� 1X
n=0

Bn
[H,A]

�
t

tp
� 1
�(n�1)

(7)

The Bn coe¢ cients in Eq. (7) may be determined through the construction of a matrix equation,
where the matrix Q transforms the original series coe¢ cients An from Eq. (??) to produce the
required simultaneous reversion and inversion. Once the Q matrix has been constructed, the new
series coe¢ cients are generated by a simple matrix multiplication:

~B = Q ~A (8)

where B1 = A1, ~A = [A2; A3; ::An] and ~B = [B2; B3; ::Bn] in Eq. (8).
The matrix Q is de�ned by:

Q =

266666666664

A�11 0 0 0 0 : : :
�A2

A3
1

A�21 0 0 0 : : :
2A2

2�A1A3

A5
1

� 2A2

A4
1

A�31 0 0 : : :
�5A3

2+5A1A2A3�A2
1A4

A7
1

5A2
2�2A1A3

A6
1

� 3A2

A5
1

A�41 0 : : :

...
...

...
...

. . . : : :
...

...
...

...
... A�i1

377777777775
(9)

Although the Q matrix was originally derived to accomplish the simultaneous reversion and
inversion of a general series, it is interesting to notice that the �rst column of Q is composed of the
expressions needed for a series reversion only. Thus, Q may also be used in the solution of Eq. (3)
as will be shown. The recursion relationships needed to produce the elements Qij of the Q matrix
have been derived previously,2 but they are presented again here for convenience:

Q(1;1) = A
�1
1 (10)

Q(i;j) =
i�1X
k=1

Q(i�k;j�1)Q(k;1); (i = 2; 3; 4; :::); 1 < j � i (11)

Q(i;1) =
i�1X
k=1

�
�1
A1

�
Q(i;k+1)A(k+1) (12)

Eq. (10) gives the upper left element of Q, and the following two series expressions complete
the Q matrix to the desired order. Finally, the series coe¢ cients to solve the hyperbolic (H) and
short-way elliptic (A) cases are given by Eq. (13).

Bn
[H;A]

=
n�1X
m=1

Q(n�1;m)A(m+1)
[H,A]

(13)

Although the recursive relationships needed to produce the series coe¢ cients in Eq. (13) are
quite simple algebraically, numerical problems can arise with the evaluation of them if one is using a
�xed-precision computer language. Based on numerical experience, as the index value gets near to
the number digits of machine precision, the calculations can lose signi�cance because the algorithm
produces small di¤erences between very large numbers when calculating Q(i;1) from Eq. (12). For
example, the coe¢ ecients given by Eq. (7) appear to diverge after an index value of about 20 terms
if the machine precision is about 17 decimal digits.

4



Long-Way Elliptic Series Solution near Minimum Energy (Bme)

To solve Eq. (3) in the neighborhood of the minimum-energy case, one may perform a straight-
forward series reversion to get the new series coe¢ cients using only the �rst column of elements
taken from the Q matrix in Eq. (10) once it has been formed. The series solution of Eq. (3) for
long-way transfers (B) near the minimum-energy time is given by:

a =
s

2
+ x2; x =

1X
n=1

Bn
[B-me]

(t� tme)n (14)

In this case, the series coe¢ cients tend to increase with the index, but if the argument is less
than unity the magnitude of the full term will decrease with the index. In canonical units, this
series should be used when the absolute value of the di¤erence between the given �ight time and
the minimum-energy �ight time is less than unity.

Long-Way Elliptic Series Solution (Binf)

As shown previously,2 this is the form of the solution for the elliptic case as the transfer time
approaches in�nity:

a =
1X
n=0

Bn
[B- inf]

t(
2�n
3 ) (15)

As with the previous case, the series coe¢ cients tend to increase with the index, but if the
argument is less than unity, the magnitude of the full term will decrease with the index. For this
series the argument is the �ight time, which tends to be large for long-way cases, so the series
convergence behavior improves with increasing �ight times for index values of n � 3 because the
exponents are all negative.
In summary, the complete set of series solutions to the Lagrange equations is given by Eqs. (7),

(14) and (15).

NUMERICAL RESULTS

Naturally, as one tries to use each of these three solutions for examples that depart from the
expansion points, the error can grow based on the limits of the radius of convergence of each series.
However, the series coe¢ cients are generated using a recursive algorithm, so there is no explicit
formula for each coe¢ cient as a function of the series index. For this reason, traditional means to
analyze convergence properties of the power series do not apply, so the behavior will be examined
numerically. Of the three cases, the hyperbolic and short-way elliptic solution, Eq. (7) has shown
the most problematic convergence behavior for high index values. The other two solutions, Eqs.
(14) and (15) have shown more consistent convergence behavior especially in the limiting cases near
the expansion points of minimum-energy �ight time and �ight times that approach in�nity. For
this reason, the hyperbolic and short-way elliptic solution, Eq. (7) will be examined for convergence
properties in this paper.

Reversion and inversion for the hyperbolic and short-way elliptic series

In the derivation of the series solution for the hyperbolic and short-way elliptic cases, series
reversion was combined with algebraic inversion to improve the convergence properties over the
reversion process only.3 Performing a reversion operation only of the series expansion of Lagrange
equations for hyperbolic and short-way elliptic cases leads to poor convergence behavior. However, if
the reversion process is combined with an algebraic inversion of the series, the radius of convergence
is signi�cantly improved. The di¤erence between reversion of the HA case and reversion followed
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Figure 3: Series reversion combined with algebraic inversion

by inversion may be seen in Figure 3. The dashed line shows the correct value of semi-major axis
for the minimum-energy case, which is only found using the combination of reversion and inversion.
The numerical values shown in Figure 3 were calculated using arbitrary precision arithmetic for
both approaches.

E¤ect of machine precision on the hyperbolic and short-way elliptic series

The series solution for the hyperbolic and short-way elliptic cases, Eq. (7), originally appeared
to be asymptotically convergent and thus would be a divergent series. However, based on recent
numerical experiments using arbitrary precision, the series appears to be convergent. This e¤ect of
arbitrary machine precision may be seen in Figure (4).

Figure 4: E¤ect of machine precision on convergence of short-way (HA) series
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In Figure 4, the magnitude of the series coe¢ cients is plotted against the index value. For
the case in consideration where the position vectors are unity, and the transfer angle is �, the
coe¢ cients appear to achieve a minimum at approximately 20 terms using a �xed precision of
about 17 decimal digits. However, by using arbitrary precision with a symbolic manipulation
program, the magnitude of the coe¢ cients continues to decrease uniformly out to 300 terms based
on numerical experiments. Although this does not constitute a mathematical proof, it strongly
suggests that the series is convergent. As mentioned previously, as the index value gets near to
the number digits of machine precision, the calculations can lose signi�cance because the algorithm
produces small di¤erences between very large numbers in Eq. (12). Arbitrary precision arithmetic
addresses this problem, so there is no loss in precision.

Error map of series solutions of the Lambert problem

Figure 5 shows an error map for all transfer angles within one revolution on the right axis, and
a range of �ight times from hyperbolic to well past the minimum energy case on the left axis. The
vertical dimension shows the error calculated by taking the di¤erence between the given time of
�ight and the time given by using the series�value of semi-major axis in the corresponding Lagrange
equation, divided by the given time of �ight.

Series S1, S2, & S3 error= (tof­tcheck)/tof
r1=r2=mu=1, 0 < t < 8, order = 23, 5, 9

Figure 5: Series error vs. time and transfer angle

One may see that the errors are largest at the boundaries near the minimum-energy case for
each transfer angle, which correspond to transitions between the various series solutions. Arbitrary
precision arithmetic was used to produce all results shown in Figure 5, and was most e¤ective for
the hyperbolic and short-way elliptic cases at the lower right side of the map. Given the behavior
at the series solution boundaries, it may be worthwhile to investigate more accurate modeling of
the minimum-energy case in particular, perhaps by including other terms beyond the quadratic in
Eq. (14).
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CONCLUSIONS

The series solutions for the Lambert problem show good convergence properties near their
expansion points, as would be expected. The �rst series solution to the Lagrange equations, Eq.
(7), uses an expansion about the region where the semi-major axis approaches in�nity on a parabolic
transfer, so the accuracy of the series solution is best near the parabolic time, as would be expected.
The second series solution to the Lagrange equations, Eq. (14), uses an expansion about the point
where the semi-major axis reaches its minimum positive value, which corresponds physically to a
minimum-energy transfer arc. This series solution provides a reasonably accurate solution for the
range from the minimum-energy transfer time up to a transfer time that is approximately 1.5 times
the minimum-energy transfer time, based on numerical investigation. The third series solution to
the Lagrange equations, Eq. (15), uses an expansion about the region where the semi-major axis
approaches in�nity as the transfer time also approaches in�nity. Physically, this means that the
transfer time approaches the period of the closed orbit.

For the series solution for the hyperbolic and short-way elliptic cases, Eq. (7), a combination of
series reversion and inversion results in better convergence properties than reversion alonge. How-
ever, this series will appear to be asymptotically convergent if the coe¢ cients are calculated using
�nite precision arithmetic. Based on numerical investigation, this divergent behavior completely
disappears out to 300 terms when using arbitrary precision calculations, which would suggest that
the series solution is actually convergent.

The error map of all three series solutions in Figure 5 shows very small error values for a broad
range of parameter values of transfer angle and time of �ight. A few boundary regions show
larger errors at the transitions between series solutions, so this would be a natural area to consider
for future research. The minimum-energy series solution in particular might be improved with
alternate functional forms. The signi�cance of this analysis is that arbitrary precision can be an
important tool for initial orbit determination processes.
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