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Comparison of Predicted and Measured Multipath
Impulse Responses

Kent Haspert, Member, IEEE, and Michael Tuley, Fellow, IEEE,

Abstract—The fundamental concepts used to evaluate multi-
path effects date back over 50 years. Today’s technology can
support wide-bandwidth communications and radar systems that
were not available or considered when these multipath concepts
were being formulated. This paper presents a slightly modified
version of the original analytical approaches for evaluating
multipath effects and compares the predicted multipath to data
collected from a wideband instrumentation radar. The multipath
model presented herein covers both the specular (coherent) and
diffuse (noncoherent) components of multipath. The test data
were collected for conditions strongly favoring diffuse multipath,
but the experimental technique supported detection of any
unanticipated specular contributions. Because the purpose of
this validation effort was to perform an in-depth examination of
multipath effects, the demanding test conditions revealed a couple
of real-world effects that had to be addressed. After incorporating
these effects into the analytical multipath formulations, we were
able to show very close agreement between the predicted and
observed multipath.

I. INTRODUCTION

Multipath can degrade radio frequency (RF) transmission
by adding unwanted reflected signals to the desired direct-
path signal. The unwanted signals are delayed and will con-
sequently have a different phase than the direct-path sig-
nal. Depending on the wavelength, geometry, and surface
conditions, the total multipath signal can have an amplitude
approaching that of the direct-path signal. Moreover, multipath
can appear to come from a specular reflection point, or from a
diffuse glistening surface, or partly from both. For a stationary
transmitter-receiver-reflecting surface geometry, the specular
reflection will have a constant phase difference with respect
to the direct-path signal. The diffuse reflection consists of a
collection of signals of varying amplitudes and phases. The
combined multipath returns can therefore add constructively or
destructively with the direct-path signal to produce a stronger
or weaker (or even vanishing) total received signal. When one
or both of the platforms moves, the received signal will fade
in and out. This fading can affect RF communications [1], [2],
[3] and radar target detection/tracking [4], [5], [6].

In 1953, Ament published a theory for predicting the relative
strength of specular reflections assuming a Gaussian random
surface [7]. In 1963 Beckmann and Spizzichino published
a theory, based in part on their earlier work, for predicting
diffuse reflections [8] that also assumed a Gaussian random
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surface.1 While considerable empirical evidence over the years
tends to support these theories, detailed measurements have
been hard to accomplish due to issues such as:

1) Where does one find a Gaussian surface?
2) How does one separately observe the multipath signal

in the presence of the direct-path signal?
3) How does one create a sufficiently controlled geometry

to support separate measurements of direct and multi-
path returns over a Gaussian surface?

4) How does one achieve sufficiently high signal-to-noise
ratios to directly observe the multipath effects?

This paper develops a model for multipath, based largely
on [7], [8], and the work of Barton [9] and then compares the
model’s predictions to precise multipath measurements. The
paper also describes the experimental conditions created to
deal with the four questions raised above. The work reported
herein concentrates on the diffuse component of the multipath
because the diffuse component often receives less attention
yet can dominate the multipath signal in many situations.
More recent work reported in [10], [11], and [12] addresses
multipath and serves as evidence of the ongoing interest
in understanding multipath. However, none of these papers
provides a direct comparison between their measured data and
multipath models such as the one presented herein.

II. MULTIPATH MODEL

For air-to-air communications, Figure 1 shows a direct
path between the transmitter and the receiver and several
other paths between the transmitter and the receiver that
involve scattering of RF signals off the earth’s surface.2 The
propagation paths involving scattering are longer than the
direct path. The path from the transmitter to the specular point
(point S in the figure) and then from the specular point to the
receiver defines the minimum multipath path length. However,
scattering can also occur from points on either side of the
specular point (i.e., those points labeled D in the figure), and
these multipath paths have a longer total path length.

1The assumption of a Gaussian random surface might seem simplistic and
unwarranted in many cases. However, it seems reasonable, useful, and appro-
priate in many real-world situations such as the following: RF propagation
to/from a moving platform when even a non-Gaussian surface would, upon
repeated sampling as the platform moves and the geometry changes, appear
to behave statistically like an approximately Gaussian surface (i.e., due to the
central limit theorem); RF propagation to/from a stationary platform above
the ocean surface, where wave motion randomizes the reflecting surface.

2Due to reciprocity, the locations of the transmitter and receiver can be
interchanged without affecting the theory.
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Fig. 1: Multipath paths

A. Specular and Diffuse Multipath

Smooth, mirror-like surfaces produce specular multipath.
Although the specular multipath appears to come from a
single point, it actually involves coherent integration over a
wide portion of the surface. Rough surfaces produce diffuse
multipath. In this case, the reflected RF signals over the surface
add noncoherently and typically appear weaker than specular
multipath. However, diffuse multipath appears to come from
a sizable region, known as a glistening surface [8], [9], and
it is spread in path delay. While the peak amplitude of the
diffuse multipath may sometimes be relatively weak, the total
strength of the diffuse multipath can become significant after
noncoherently combining the energy coming from a large
glistening surface.

Ament’s formula (1) predicts the specular reflection coef-
ficient (i.e., the voltage ratio of the scattered to incident RF,
assuming a perfectly reflecting surface) as a function of the
rms surface height variation (σh), the grazing angle (ψ), and
the wavelength (λ):

ρs = exp

[
−2
(

2πσh sin(ψ)
λ

)2
]

(1)

In subsequent work [13], Miller et al. developed the following
modification to Ament’s formula:

Ps = 2
(

2πσh sin(ψ)
λ

)2

(2)

ρs = exp [−Ps] I0 (Ps) (3)

where Ps from (2) is the parameter inside the bracket in (1)
and I0 represents the modified Bessel function of zero order.
In [14], Beard provides measured data that corroborates the
formulation in [13].

Figure 2 plots both Ament’s formula (1), shown as the
thinner lines, and the modified formula (3). It shows that the
two formulas begin to diverge when (ρs) falls below about 0.5.
The figure illustrates the variation in the specular reflection
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Fig. 2: Specular Reflection Coefficient

coefficient as a function of the grazing angle for several ratios
of rms surface height to wavelength. For a representative L-
band RF source (λ = 0.3 m) on a platform at 1500 m, a receiver
at 30 m, a ground range of 75 km, and for σh = 0.30 m, then
ρs = 0.97. See Case 1 on the graph. Case 2 assumes the same
geometry but an X-band RF source (λ = 0.03 m), and in this
case ρs = 0.23. Assuming that all the RF energy striking the
surface either goes into specular or diffuse multipath, then by
conservation of energy as suggested by [15], the corresponding
diffuse reflection coefficient can be inferred to be given by
ρd =

√
1− ρ2

s. For the two assumed cases, this results in ρd
= 0.25 and 0.97, respectively.

While the geometry discussed in subsequent sections of
this paper is not affected by a divergence factor, the specular
reflection coefficient just presented (3) should be multiplied
by a spherical-earth divergence factor (i.e., ρs’ = ρs D). From
[16], the following equation calculates the divergence factor:

2
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Fig. 3: Divergence Factor

D =
(

1 +
2G1G2

Re(G1 +G2) sinψ

)−1/2

(4)

where G1 and G2 represent the ground range from the specular
point to the transmitter and receiver, Re represents the effective
(e.g., 4/3) earth radius, and ψ represents the grazing angle.
Figure 3 shows the variation of the divergence factor as a
function of the grazing angle. As examples, grazing angles
of 10 and 0.50 give divergence factors of 0.98 and 0.92,
respectively.

B. Impulse-Response Curve for Specular Multipath

Because the specular return appears as if it comes from the
specular point, the multipath path delay is given by the path-
length difference between the direct path and the specular path.
However, the intensity of the specular return is a function of
the specular reflection coefficient, ρs, and three other factors:

1)
√
Gant, where Gant is the power ratio of the radar

antenna gain in the direction of the specular point to
the antenna gain along the direct path to the target.

2) Γv , the Fresnel reflection coefficient that considers the
surface conductivity and dielectric constant and deter-
mines how much of the incident radar signal is absorbed
by the surface, where the subscript denotes the radar’s
polarization (where v indicates vertical, which applies in
the case analyzed herein).

3) ρveg , a vegetation factor that determines how much the
vegetation on the surface attenuates the reflected signal.

Equation 5 expresses the strength of the specular return
relative to the strength of the direct-path return as a function
of these four factors:

Specular/Direct path voltage = ρs
√
Gant|Γν |ρveg. (5)

These factors combine to produce a simple specular impulse
response curve (IRC) of voltage impulses, as shown in Figure
4. In this figure, the specular impulse appears delayed with
respect to the direct-path impulse. The amount of range delay
is given by the following formula:
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Fig. 4: Specular impulse response curve

Specular range delay = R1 +R2 −R, (6)

where R1 is the distance from the transmitter to the specular
point, R2 is the distance from the specular point to the receiver,
and R is the direct-path distance between the transmitter and
the receiver.

C. Glistening Surface and Diffuse Multipath
A rough surface produces scattering, but the surface rough-

ness makes the phase relationships among the reflections
across the surface unpredictable (or at least infeasible to ad-
dress in anything other than a statistical sense). In [9], Barton
extended the rough surface formulation of Beckmann and
Spizzichino [8]. These sources provide the basis for formulat-
ing a single equation that describes the diffuse multipath return
from an arbitrary small patch of area dA lying somewhere on
the glistening surface. The last term in the following equation
differs from the one provided in [9] to incorporate what the
authors feel provides a more realistic representation of surface
shadowing that can occur at low grazing angles and thereby
reduce the effective area for accumulating multipath diffuse
energy, as described below.

Diffuse voltage from dA

Direct path voltage
=√

1
4π

(
R

R1R2

)2 1
β2

0

exp
(
−β

2

β2
0

)
dA

· |Γv| ·ρveg ·
√
Gant · ρroughness

√
Sf (7)

where:

1
4π

(
R

R1R2

)2

– the one-way spreading loss
1
β2
0

exp
(
−β

2

β2
0

)
– expected bistatic radar cross

section per unit area (σ0) of the diffuse patch
defined by dA, where β0 is the mean square value
of the surface slope over the region of interest [17]
and β is the angle between the bisector of the R1

and R2 rays and the local vertical.3

3As shown in [18], the “region of interest” is governed by the extent of the
first Fresnel zone. Over water this typically exceeds the surface correlation
distance, but over land this may not always be true.
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ρroughness – roughness factor (potential maximum
diffuse return multiplier)√
Sf - a shadowing factor (probability that dA

is actually seen by both the transmitter and receiver)

The Fresnel reflection coefficient in (7) incorporates the
surface dielectric constant, εr, the surface conductivity, σe,
the wavelength,λ, and the grazing angle at the specular point,
ψ. As shown in [9], the following equations yield the value
of Γv (or Γh):

εc = εr − j60λσe (8)

Γp =
εp̄c sinψ −

√
εc − cos2 ψ

εp̄c sinψ +
√
εc − cos2 ψ

(9)

where p = h, p = 0 for horizontal polarization, and p = v,
p = 1 for vertical polarization.

The antenna factor term in (7) is different from the specular
antenna factor in that it varies over the glistening surface, as
for that matter do most of the other terms in this equation.
The spreading-loss term contains the direct-path range to the
receiver (R), the range from the transmitter to the differential
patch (R1), and the range from the differential patch to the
receiver (R2). The above equation has an exponential term
where the argument of the exponent is the ratio of the squares
of β and β0, where β is the surface tilt required at the patch
to support a specular reflection of RF energy off the patch that
will strike the receiver. The exponential term has the form of a
Gaussian probability distribution. Near the specular point, the
required value of β is nearly zero, so the expected σ0 is largest
for patches near the specular point. For points further away
from the specular point, the required surface slope to support
multipath reflections becomes greater, so the expected value of
σ0 falls off for patches further from the specular point.4 The
practical extent of the glistening surface is typically treated
as the locus of points where β/β0 =

√
2 (i.e., the 2-sigma

boundary of a Gaussian having a similar exponential term) or
perhaps β/β0 =

√
4.5 (i.e., the 3-sigma boundary). Figure 5

depicts both the 2- and 3-sigma glistening surface boundaries
for an RF source at 1,000 m height and a receiver at 250
m height that is 10 km downrange, assuming β0 = 0.05
rad. The figure also assumes a flat earth and the appendix
gives the formulation used to generate these contours.5 At
longer ranges, one often assumes 4/3 earth curvature to allow
for refraction and maps the curved earth onto a flat plane
as described in [16]. The extent of the glistening surface
appears similar to an ellipse for this example, but the actual
shape is more complicated mathematically. In the analyses
reported herein, the dA term in the above formula consisted of
narrow cross-range strips. Multiple strips were used to cover
the entire downrange extent of the glistening surface. When

4The fact that the diffuse multipath tends to be strong in the same region
where the specular multipath occurs makes separately observing the specular
and diffuse components of multipath rather difficult. As will be shown shortly,
we chose to create test conditions where we expected minimal specular
multipath so as to allow direct observation of the diffuse multipath.

5The formula for the extent of the glistening surface in [8] represents an
approximation while the formulation in the appendix is exact, and we believe
not previously reported.
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considering moving platforms, however, one often would like
to obtain a two-dimensional range-Doppler IRC. In this case,
the individual dA cells need to be relatively small in both
the downrange and cross-range dimensions over the glistening
surface. Essentially all the diffuse multipath energy is found by
integrating (7) over the 2- or 3-sigma extent of the glistening
surface.

While the practical extent of the glistening surface considers
only the exponential term, the strength of the diffuse return
also varies considerably due to the effect of the spreading-loss
term. In fact, for points on the glistening surface closer to the
receiving point, the term R2 becomes small, and the overall
intensity of diffuse multipath from that differential patch be-
comes relatively large. The roughness factor in (7) represents
application of the specular reflection coefficient formula at the
location of the differential patch, as developed by Barton [9]
and given by ρroughness = 4

√
(1− ρs(ψ1)2) · (1− ρs(ψ2)2),

where ψ1 and ψ2 represent the incident and reflected grazing
angles associated with each dA patch. The shadowing factor
in (7) is calculated via the following equations:

Li =
β0 · exp

[
−
(

tanψi

β0

)2
]

√
π · tanψi

− erfc
(

tanψi
β0

)
(10)

Sfi
=
[
1− 1

2
erfc

(
tanψi
β0

)]/
(Li + 1) (11)

where erfc() is the error function complement. The value of Sf
is given by multiplying the values computed from the point of
view of the transmitter and the receiver, that is, Sf = Sf1 ·Sf2 .
These two equations represent an alternative, but equivalent,
statement of equations (21) and (24) in a paper provided by
Smith [19].

D. Impulse-Response Curve for Diffuse Multipath

The diffuse multipath model treats the phase relationships
among the returns over the glistening surface as unpredictable
random quantities and merely adds the powers of the re-
turns from the various differential patches (i.e., noncoherent
integration). The various differential patches have different

4
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path delays, however, and an RF source consisting of a
wide-band radar can typically resolve these delays over the
glistening surface. Figure 6 shows a one-way IRC for the
diffuse multipath. The first portion of the diffuse-return IRC
combines the energies associated with those portions of the
glistening surface that have a path delay within one radar
range-resolution bin of the specular path delay. Additional
portions of the glistening surface have longer path delays,
and they produce a one-way diffuse IRC that appears to form
a series of diminishing impulses. Although the strength of
the diffuse return from a patch increases as one nears the
target, the total number of patches falling within a given range
bin decreases rapidly, so the net effect produces diminishing
impulses for the regions of the glistening surface that have
greater range delays. The roughness in the curve is due to the
assumed bandwidth and the resulting pairing of dA strips with
the path-delay bins.

E. Total Multipath Impulse-Response Curve

The total IRC consists of noncoherent addition of the
specular and diffuse multipath contributions from curves such
as Figures 4 and 6. The direct-path return appears in both
Figures 4 and 6 to provide a timing/path delay reference for the
multipath returns. It should not be added twice when forming
the total multipath IRCs. For many geometries and surface
conditions, the diffuse multipath energy exceeds the specular
multipath energy. It also turns out that diffuse multipath
produces a more complicated effect than the specular mul-
tipath because of its range/time extent and the random phases
associated with each of the individual diffuse IRC impulses.
Further, for monostatic radar applications the effective IRC
essentially consists of a convolution of the one-way IRC with
itself.

III. VALIDATION TESTING

The foregoing specular and diffuse multipath formulations
support the generation of IRCs that characterize multipath

as a function of the encounter geometry and the observed
or estimated surface conditions. These equations provide a
tidy analytical formulation for predicting multipath effects and
characterizing these effects via IRCs. However, the original
multipath formulations of [8] and [9] that underlie the method-
ology did not explicitly consider their applicability to wide-
bandwidth systems. Therefore, the authors recognized the need
to validate the foregoing theoretical formulations in the context
of wide-band RF systems. The most direct way to do this
appeared to entail the use of a wide-band instrumentation radar
observing a point scatterer (e.g., a calibration sphere), with
a relatively rough surface between the radar and the point
scatterer, and then directly observing the diffuse multipath
IRC. However, our experimental configuration differed from
[11] in that it utilized a dual-antenna, wide-band radar to
obtain fine resolution in the downrange structure of the diffuse
multipath. The rough surface minimized the specular portion
of the multipath.

A. Atlantic Test Range Experimental Configuration

The Atlantic Test Range experiments used two nominally
identical high-gain X-band radar antennas sitting near the
coastline of the Chesapeake Bay and a tethered sphere a
few miles off shore. One of the antennas tracked a tethered
sphere and bounced RF energy off it. The other antenna
pointed downward and observed the glistening surface. The
downward-looking antenna only received radar signals but
had its local oscillator synchronized with the upward-looking
antenna. Figure 7 illustrates the test configuration. This exper-
imental configuration provided direct observation of the one-
way multipath path. Because the calibration sphere appears
as a point scatterer, the experiment directly measured the
one-way IRC. The relatively short ranges and low grazing
angles generate an IRC with relatively little range delay, which
necessitated the use of a wide-bandwidth radar to resolve the
structure of the IRC.

During the test, the winds varied between 20 and 30 kts
out of the north. This created approximately 3.5 ft waves with
a period of about 3 seconds. The high-gain, approximately
10 ft diameter radar antennas have a 3 dB beamwidth of
about 2/3 of a degree, as shown by the measured antenna
patterns in Figure 8. The upward-looking transmitting and
receiving antenna, designated X1, tracked the tethered sphere
as the winds blew it around. The sphere’s height varied from
about 310 to 475 ft and the range varied from about 13,900
to 14,200 ft. The downward-looking, receive-only antenna,
designated X2, stepped through 21 look-down angles between
4◦ and 0◦ to scan the glistening surface. The downward-
looking antenna recorded data for about 30 seconds at each
look-down step and ran through this range of look-down angles
twice. The test conditions produced σh of about 27 cm and
β0 of 0.055 radians [20], which yielded an expected ρs of
0.179 (or 0.005 if only applying Ament’s formula). The radar
transmitter employed 256 4-MHz steps to cover 9.5 to 10.52
GHz. This produced an inherent range resolution of 14.64
cm, but through 2:1 oversampling, the effective range-bin size
became 7.32 cm. The radar transmitted a 1.5 µs pulse every 40

5
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µs. Hence, an individual return was formed every 10.24 msec.
Upon completion of the test, both the X1 and X2 radars
tracked a free-flying calibration sphere to provide range and
amplitude calibrations for both radar channels.

B. Data-Analysis Procedures

The test conditions suggest that the diffuse multipath should
totally dominate the specular multipath.6 However, we wanted
to validate this theoretical prediction by analyzing the data in
such a way that any specular multipath significantly above
the predicted value would become readily apparent. Also,
the diffuse multipath model assumes a statistically random
Gaussian surface. During the course of any individual return
formed over a 10.24 ms interval, the sea surface would appear
essentially stationary and not necessarily Gaussian. Over the
course of the surface’s approximately 3-second wave period,
however, the diffuse glistening surface should appear random,
in accordance with the assumption inherent in the diffuse mul-
tipath formulation. The desire to see any significant specular
return (if it were to exist) and the desire to create a random
glistening surface matching the one assumed in the diffuse

6With ρs = 0.1787, the specular power is related to the square of this value,
or about 3% of the diffuse power.

return model both suggested the use of long (i.e., greater than
3 sec.7) coherent processing intervals (CPIs). If the specular
return were to be substantially stronger than predicted, then the
long CPIs would allow it to be readily observed after proper
motion compensation. The use of long CPIs also provided the
added benefit of enhancing the observed signal-to-noise ratio
(SNR).

To achieve these long CPIs, we needed highly accurate
motion compensation of the sphere’s position. William Leeper,
a system engineer associated with the Atlantic Test Range,
provided software to achieve the desired motion compensation.
The X1 (transmit/receive) antenna gave the apparent position
of the sphere within the limits of the radar’s range gate
as shown in the left-hand portion of Figure 9. The motion
compensation involved measurement of the phase of the direct-
path return associated with each of the individual frequency
steps. The individual phase measurements were converted
into actual range measurements and then fed into a second-
order motion model to generate finely resolved target positions
versus time. This refined target position history was then
converted into phase corrections for each frequency step. After
applying these phase corrections to the measured data, the
apparent target position appeared stationary within the radar’s
range gate, as shown in the right-hand portion of Figure 9 over
the entire approximately 30 sec. of an antenna look-down-
angle step.

The position compensation shown for the direct path should
also keep the specular path length focused, assuming the
relative multipath geometry remains essentially constant. If the
relative path-length difference varies by less than 0.075λ (or
2.25 mm at X-band), then the instantaneous specular returns
from each 10.24 ms return should add coherently within about
1 dB. Figure 10 shows the relative path-length difference
over an example X2 antenna look-down angle data-collection
period and shows those intervals greater than 3 seconds where
the path-length difference meets this ±2.25 mm criterion. We
then processed long CPIs for each of these “constant” path-
length-difference intervals.

7A 3-second CPI meant the coherent integration of at least 300 individual
10.24 ms measurements.

6



IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONICS SYSTEMS, VOL. X, NO. X, MONTH-2009 7

Downrange (m)

T
im

e 
(s

)

 

 

−5 0 5

0

5

10

15

20

25

30

35
−60

−50

−40

−30

−20

−10

(a) Direct path return before focusing

Downrange (m)

T
im

e 
(s

)

 

 

−5 0 5

0

5

10

15

20

25

30

35
−60

−50

−40

−30

−20

−10

(b) Direct path return after focusing

Fig. 9: Direct-path position compensation for sphere.
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Fig. 10: Relative path lengths for the sphere

C. Initial Comparison of Predicted and Measured Impulse-
Response Curves

We used the formulations for the specular and diffuse
multipath, along with the specific test conditions (e.g., σh, β0,
sphere range and altitude, and assessment of the X2 antenna
gain across the glistening surface for the look-down angle)
to generate a predicted IRC. Figure 11 shows the predicted
location and intensity of the total predicted multipath, the
specular-only portion of the multipath, and the anticipated
direct path entering into the side-lobe of the downward-looking
X2 antenna for the longest intervals identified in Figure 10.
The figure also shows an overlay of the measured return seen
in the X2 antenna for the same “constant” geometry evaluation
interval. In Figure 11, and all of the subsequent IRC plots,
the vertical axis shows the return seen by the X2 antenna,
but the IRC values are plotted in dB relative to the direct

path return power seen by the X1 (upward looking) antenna.
The horizontal axis shows the radar-perceived relative ranges
in meters (which correspond to one-half the one-way relative
path lengths).

At this point, the comparison between the predicted and
measured IRCs looks poor. At least the predicted peak value
for the multipath roughly agrees with the measured peak
value,8 but the measured return spreads across more range bins
and has a slower decaying tail than the predicted values. This
IRC-breadth discrepancy appeared in all cases we examined.
The measured return also shows energy arriving before the
direct-path return into the X2 antenna sidelobe. Even though
this early return is below –60 dB, it is above the approximately
–70 dB noise floor and consistently appeared in every case. We
will next provide further analyses of these two discrepancies.

D. Effect of the Radar’s System Response Function

The observed radar return from a sphere is a function
of the radar electronics (e.g., any band-pass filters), wave-
guide reflections, and any post processing of the measured I
and Q data associated with forming the radar’s return (e.g.,
weighting functions associated with the FFTs). During our
tests, the X1 transmit/receive antenna was directly observing
the sphere. Note that the measured/processed return from the
sphere spreads across several range-resolution bins, as shown
by the inset in the upper portion of Figure 12. Because the
X1 and X2 radars were essentially identical (and any post-
processing was clearly identical), we used the observed X1
sphere-response curve as a representation of the X2 system-
response function. After convolution of the predicted multipath
IRC with the observed X1 system-response curve, we obtained
a modified predicted IRC that agrees much better with the
majority of the measured IRC, as shown in the lower panel of

8The peak of the multipath portion of the IRC is about 10 dB less than that
shown in Fig. 6 as a consequence of the test geometry, the antenna patterns,
and the electrical properties of the surface.
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Fig. 11: Initial IRC comparison

Figure 12. However, the early portion of the measured return
remains and this required further investigation.

E. Explanation of the Early Portion of the Measured Return

The ATR’s Cassegrain antenna appears responsible for the
early return seen in the measured data. The left-hand panel in
Figure 13 illustrates a possible way that direct-path energy
could seem to arrive earlier than expected. Instead of all
the off-bore-sight direct-path return seen by the X2 antenna
bouncing off the main reflector, we believe that a portion of
the off-bore-sight direct-path return diffracted around the sub-
reflector and directly entered the antenna feed horn. Because
this path is shorter than the nominal path involving the main
reflector by about 1.7 m, any such diffracted response would
appear to arrive early by about 2.83 nsec (or about 0.85 m in
radar-perceived range).

This low-level, early arriving, diffraction-induced affect is
usually never seen, but in our case, we have a high-range-
resolution system that also produces peak SNR levels of
about 70 dB. A back-of-the envelope calculation showed that
the diffraction around the sub-reflector could be as large as
about 40 dB below the incident off-bore-sight signal, assuming
perfect knife-edge diffraction. Because the sub-reflector has a
rolled edge that would further reduce the diffraction, we chose
to set the diffraction level at 58 dB below the incident off-
bore-sight direct-path signal. The right-hand panel in Figure
13 shows a modified theoretical IRC (before convolution with
the system response curve) that includes an early impulse at a
negative range of 1.7/2 = 0.85 m to represent this hypothesized
diffraction affect.

F. Composite Comparison of Multiple Impulse Response
Curves

We calculated theoretical IRCs for each of the look-down
angles between 4 and 1 degrees for each of the “constant”
relative path-length geometries, convolved these geometries
with the observed X1 antenna system response curve, and
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Fig. 12: Revised IRC after convolution with observed X1
system response

compared these theoretical returns with the measured data.
Figure 14 shows these comparisons at sample look-down
angles of 3◦, 2◦, and 1◦.

The theoretical IRC represents an expected-value return, so
we wanted to combine all the measured data for the cases
analyzed to get as good an estimate of the mean measured
return as possible.9 Therefore, we noncoherently combined
the four cases shown above and all the other measured and
predicted returns with CPIs greater than 3 sec. to form a
summary plot of all of the data. The non-coherent summations
of these IRCs were weighted by the length of the CPI. Figure
15 shows a comparison between the combined theoretical and
measured IRCs. The curves agree within about 1.5 dB for the
positive-range portions of the IRCs. Although the theoretical

9Because the individual “constant” geometry look-down angle measurement
cases do not reveal any unanticipated levels of specular multipath (i.e., no
excessively strong return in the first range bin of the measured multipath),
we decided to noncoherently combine individual “constant” geometry returns
such as the four examples shown in Figure 15 to develop a better measurement
of the mean multipath return in each range bin.
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Fig. 13: Cassegrain antenna geometry and its effect on initial IRC prediction
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Fig. 14: Three example comparisons between the theoretical and measured IRCs

multipath formulation incorporates a number of parameters,
we achieved the high level of agreement shown in Figure 15
without adjusting any of the parameters in (7) to enhance
the level of agreement. Also, while Figure 15 shows some
discrepancy between the measured and predicted breadth of
the early arriving energy, we have only attempted to provide
a plausible explanation for the early arriving portion of the
measured return, which Figure 15 appears to give. Because
of some controversy regarding whether (1) or (3) is more
appropriate, we provide Figure 16, which shows that (3)
provides about a 1.5 dB improvement in the peak response.
Also, the difference between the measured and computed
curves in the region between 0 and 0.2 meters in Fig. 16
may well be due to an underestimate of the direct path return
entering the side lobe of the X2 antenna. Unfortunately, we
did not have the time or resources to calibrate the X2 antenna
pattern and used instead the X1 antenna pattern shown in Fig.
8. Moreover, the X1 antenna pattern was only measured out
to 2.5 degrees and for some X2 look-down angles the the
side-lobe angle for the direct path exceeded this value.

IV. SUMMARY AND CONCLUSIONS

The reported comparisons between the observed and mea-
sured IRCs appear to provide strong support for the validity of
the multipath formulations presented herein once one accounts
for the inherent system response. We were especially interested
in validating the diffuse multipath theory for wide-bandwidth
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Fig. 15: Combined theoretical and observed IRCs

applications, and the test conditions and results appear to
validate that portion of the multipath model. In these tests, we
unexpectedly observed an early arriving signal in the measured
data. Although we did not investigate the physics of the
early arriving signal in detail, we believe that the diffraction
argument presented herein provides a plausible explanation for
this effect. The results also indicate that the theoretical IRC
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Fig. 16: Effect of Alternative Specular Formulations

formulation should not be used without considering the overall
system response characteristics of the radar. The discrepancy
in the early portion of the multipath prediction is most likely
due to an imperfect representation of the X2 antenna side
lobes. During these tests, the sphere moved relatively slowly
so we did not look at any Doppler spreading of the returns.
However, additional tests from a moving impulse-generating
repeater would represent one way to validate any Doppler
spreading that the theoretical multipath model might predict.

APPENDIX
CALCULATION OF EXTENT OF GLISTENING SURFACE

The extent of the glistening surface is defined as the location
on the surface where the local slope is some multiple of
the RMS slope, β0. Figure A-1 shows the geometry as-
sumed throughout this Appendix. Because the equation for
the strength of the diffuse multipath contains the exponential
exp(−β2/β2

0), which has the form of the exponential in a
Gaussian distribution if one lets β2

0 = 2σ2, then the two- and
three-sigma edges are defined by β = 2σ (hence β =

√
2β0)

and by β = 3σ (hence β =
√

4.5β0). Therefore, in general
the limiting value of β (i.e., βlim) at the edge of the glistening
surface is given by

βlim = kβ0/
√

2, (A-1)

where k is number of standard deviations.
We will calculate the glistening surface assuming a flat earth

and begin by defining unit vectors U1 and U2 as follows:

U1 = (−xi +Hrj− zk) /R1 (A-2)

where R1 =
√
x2 +H2

r + z2 and

U2 = ((G− x)i +Htj− zk) /R2 (A-3)

where R2 =
√

(G− x)2 +H2
t + z2

A unit vector that bisects U1 and U2 is UB = (U1 +
U2)/|U1 +U2| and the local slope that allows rays to bounce
between the radar and the target is β = cos−1 (UB • j), hence
upon setting β = βlim at the boundary of the glistening surface
we obtain the following:

CB = cos (β lim) = cos
(
kβ0√

2

)
=

Hr/R1 +Ht/R2√(
−x
R1

+ G−x
R2

)2

+
(
Hr

R1
+ Ht

R2

)2

+
(
−z
R1

+ −z
R2

)2

(A-4)

We will first solve (A-4) for the limiting values of x by
setting z = 0. Once we have the limiting values for x, we will
then develop an equation that gives the cross-range values at
specified values of x between these limits. Upon setting z = 0
and rearranging terms, we obtain

CB =

{ G
R2
− x

(
1
R1

+ 1
R2

)
Hr

R1
+ Ht

R2

2

+ 1

}−1/2

, or

[
R1G− x(R1 +R2)
R2Hr +R1Ht

]2

=
1
C2
B

− 1 = K2

(A-5)

Upon taking the square root and again rearranging terms,
we obtain

R1 (G− x∓KHt) = R2 (±KHr + x) (A-6)

We will have to solve (A-6) using both the positive and
negative values of K to obtain both the upper and lower limits
of x. Now substituting for R1 and R2 in (A-6) because x
appears in these factors, squaring both sides of (A-6) and
letting α = G∓KHt and η = ±KHs,

(
x2 +H2

r

) (
α2 − 2αx+ x2

)
=(

G2 − 2Gx+ x2 +H2
t

) (
η2 + 2ηx+ x2

)
(A-7)

Upon multiplying the terms in (A-7) and making the fol-
lowing substitutions:

c3 = 2η − 2G+ 2α

c2 = η2 − 4ηG+G2 +H2
t − α2 −H2

r

c1 = 2η
(
G2 +H2

t

)
− 2Gη2 + 2αH2

r

c0 = η2
(
G2 +H2

t

)
− α2H2

r

We can now obtain the following cubic equation for x:

c3x
3 + c2x

2 + c1x+ c0 = 0 (A-8)

Although [21] provides a general method for solv-
ing a cubic equation, we have found that in the cur-
rent case all the roots are real. Therefore, we have cho-
sen to employ a method documented on the Web site

10
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Fig. A-1: Assumed Geometry

http://mathworld.wolfram.com/CubicFormula.html. To imple-
ment this process, make the following substitutions:

a =
c2
c3
,

b =
c1
c3
,

c =
c0
c3
,

Q =
b

3
− a2

9
,

R =
ab

6
− c

2
− a3

27
, and

Θ = cos−1
(
R/
√
−Q3

)
The following formulas then calculate the three solutions to

the cubic equation:

x1 = 2
√
−Q cos (Θ/3)− a/3

x2 = 2
√
−Q cos (Θ/3 + 2π/3)− a/3

x2 = 2
√
−Q cos (Θ/3 + 4π/3)− a/3

(A-9)

Equations (A-9) provide one reasonable solution that lies
between the radar and the target and two unrealistic solutions
that are not between the radar and the target. Equations (A-9)
must be calculated twice, once for the positive value of K,
and once for the negative value of K, to obtain both the upper
and lower limits on the glistening surface that lies between
the radar and the target.

A. Calculation of the cross-range extent of the glistening
surface

To calculate the cross-range extent of the glistening surface
for specified values of x that lie between the x limits just
calculated, return to (A-4) and generate a modified version
of (A-5) that includes the factor z. This yields the following
equation:

[
R1G− x(R2 +R1)
R2Hr +R1Ht

]2

+
[
z(R1 +R2)
R2Hr +R1Ht

]2

=
1
C2
B

− 1 = K2 (A-10)

After substituting for R1 and R2 and doing some tedious
algebra, (A-10) becomes

(z2 + k1)(z2 + k2) + (z2 + k3)(z2 + k4)+√
k1 + z2

√
k3 + z2(2z2 + k5) = 0,

(A-11)

where the various ki terms incorporate the specified value of
x (between the limits found in A-9) and are given by

k1 = x2 +H2
r

k2 = G2 −K2H2
t − 2Gx+ x2

k3 = (G− x)2 +H2
t

k4 = x2 −K2H2
r

k5 = −2Gx+ 2x2 − 2HtHrK
2

Upon rearranging (A-11) and some more tedious algebra,
we obtain

k8z
6 +

(
4k1k3 + k2

5 + 4(k1 + k3)k5 − 4k7 − k2
6

)
z4

+
(
4k1k3k5 + (k1 + k3)k2

5 − 2k6k7

)
z2

+
(
k1k3k

2
5 − k2

7

)
= 0 (A-12)

where

k6 = k1 + k2 + k3 + k4,

k7 = k1k2 + k3k4, and
k8 = 4 (k1 + k3 + k5 − k6)

Equation (A-12) can then be rewritten in the following form

w3 + aw2 + bw + c = 0 (A-13)

where w = z2and after letting

a =
(
4k1k3 + k2

5 + 4(k1 + k3)k5 − 4k7 − k2
6

) /
k8

b =
(
4k1k3k5 + (k1 + k3)k2

5 − 2k6k7

) /
k8

c =
(
k1k3k

2
5 − k2

7

) /
k8

Proceeding as before, define the intermediate variables
Q,R, and θ as

Q =
b

3
− a2

9
, (A-14)

R =
ab

6
− c

2
− a3

27
, and (A-15)

Θ = cos−1
(
R/
√
−Q3

)
. (A-16)

Then the cubic solution for (A-14) yields

w1 = 2
√
−Q cos (Θ/3)− a/3 (A-17)

w2 = 2
√
−Q cos (Θ/3 + 2π/3)− a/3 (A-18)

w3 = 2
√
−Q cos (Θ/3 + 4π/3)− a/3 (A-19)

Upon letting z =
√
w,

11
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z1 = ±
√

2
√
−Q cos (Θ/3)− a/3, (A-20)

z1 = ±
√

2
√
−Q cos (Θ/3 + 2π/3)− a/3, and (A-21)

z1 = ±
√

2
√
−Q cos (Θ/3 + 4π/3)− a/3. (A-22)

Because the ki terms contain only K2, the sign chosen for
K does not matter when computing z. In the numerical test
cases considered so far, w1 > 0, w2 < 0 and w3 < 0, so the
only real solutions for z come from the equation for z1.
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