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Executive Summary 

In an era of reduced budgets and limited testing, verifying 
that requirements have been met in a single test period can be 
challenging, particularly using traditional analysis methods that 
ignore all available information.  The Bayesian paradigm is 
tailor made for these situations, allowing for the combination 
of multiple sources of data and resulting in more robust 
inference and uncertainty quantification.  This tutorial is meant 
to introduce the basic concepts of Bayesian analysis. Further 
illustration of the flexibility and applicability of these methods 
is shown with examples from the T&E community, including 
implementation details.  The course consists of four sections: 

 Fundamentals of Bayesian Analysis: This section 
provides the basic concepts common to all Bayesian 
analyses, including the specifications of prior 
distributions, likelihood functions, and posterior 
distributions. A simple example is used for 
demonstrative purposes, including a short sensitivity 
study.  

 Case study: Littoral Combat Ship (LCS). This section 
extends the simple component/subsystem level 
analysis shown in the first section and extends it to a 

system reliability calculation.  Here, LCS has a 
functional area reliability requirement, but data were 
collected on various subsystems of different data 
types. Implementation details are given in code 
snippets. 

 Case Study: Bio-chemical Detection System (BDS). 
This example takes the simple modeling case from 
the introduction and introduces factors of interest.  A 
logistic regression model is fit to determine the 
probability of detection across different concentration 
levels of various chemical or biological agent/matrix 
concentrations.  Implementation details are provided, 
along with a list of R packages that can aid in the 
fitting of these types of models. 
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Outline

• Fundamentals of Bayesian Analysis

• Case study: Littoral Combat Ship (LCS)

• Case Study: Bio-chemical Detection System (BDS)

• STAN Examples
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Acceptance of Bayesian Techniques

Bayesian methods are commonly used and becoming more widely 
accepted

• Applications
– FAA/USAF in estimating probability of success of launch vehicles
– Delphi Automotive for new fuel injection systems
– Science-based Stockpile Stewardship program at LANL for 

nuclear warheads
– Army for estimating reliability of new aircraft systems
– FDA for approving new medical devices

• Recent High Profile Successes:
– During the search for Air France 447 (2009-2011), black box 

location
– The Coast Guard in 2013 found the missing fisherman, John 

Aldridge
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Classical versus Bayesian Statistics

• Experiment 1: 
– A fine musician, specializing 

in classical works, tells us 
that he is able to distinguish 
if Haydn or Mozart 
composed some classical 
song. Small excerpts of the 
compositions of both authors 
are selected at random and 
the experiment consists of 
playing them for 
identification by the 
musician. The musician 
makes 10 correct guesses in 
10 trials.

• Experiment 2: 
– The guy next to you at the bar 

says he can correctly guess 
in a coin toss what face of the 
coin will fall down. Again, after 
10 trials the man correctly 
guesses the outcomes of the 
10 throws.
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Classical versus Bayesian Statistics

• Classical Statistics Analysis
– You have the same 

confidence in the musician’s 
ability to identify composers 
as in the bar guy’s ability to 
predict coin tosses. In both 
cases, there were 10 
successes in 10 trials.

• Bayesian Statistics Analysis 
– Presumably, you are 

inclined to have more 
confidence in the musician’s 
claim than the guy at the bar’s 
claim. Post analysis, 
the credibility of both claims 
will have increased, though the 
musician will continue to have 
more credibility than bar guy. 



8/1/2016-6

Bayesian Statistics 101

Simple Example

• We have a system comprised of 2 components: Component 1 and 
Component 2.

• For each of the two components, 10 pass/fail tests are administered 
and results are recorded. Component 1 fails twice and Component 2
fails zero times.

– We can calculate the reliability of each component, 𝑅𝑅1 and 𝑅𝑅2.
– We also want an assessment of the system reliability, assuming the 

components work in series.

𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑅𝑅1 ∗ 𝑅𝑅2 = 1 −
2

10 ∗ 1 −
0

10 = 0.8 ∗ 1 = 0.8

** For the purposes of the next few slides, focus on Component 1.
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Bayesian Statistics Basics

1. Construct prior from prior information, 𝑓𝑓(𝜃𝜃)

2. Construct likelihood from test data,

𝐿𝐿 𝒙𝒙 𝜃𝜃 = �
𝑖𝑖=1

𝑛𝑛

𝑓𝑓(𝑥𝑥𝑖𝑖 ∣ 𝜃𝜃)

3. Estimate posterior distribution using Bayes Theorem

Each of these steps requires careful consideration of both the system 
and the statistics!

𝑓𝑓 𝜃𝜃 𝑥𝑥 =
𝐿𝐿 𝑥𝑥 𝜃𝜃 𝑓𝑓 𝜃𝜃
∫ 𝐿𝐿 𝑥𝑥 𝜃𝜃 𝑓𝑓 𝜃𝜃

∝ 𝐿𝐿(𝑥𝑥 ∣ 𝜃𝜃)𝑓𝑓(𝜃𝜃)
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Priors

• The prior distribution of the reliability, fprior(R), is constructed from 
previous data or expert knowledge. This is your first assessment 
of the system.

• Say Component 1 was previously tested and failed 3 out of 40 
tests: use Beta distribution.

𝑓𝑓𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝(𝑅𝑅1) ∝ 𝑅𝑅1
𝒏𝒏𝒑𝒑𝑝𝑝(1 − 𝑅𝑅1)𝒏𝒏𝒑𝒑 1−𝑝𝑝

• 𝒑𝒑 is the reliability estimate and 𝒏𝒏𝒑𝒑 ≥ 𝟎𝟎 weights the relevance of 
the prior test data.

Careful thought should always be put into the prior 
distribution!
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Likelihood

• Tests are performed and the resulting test data is used in the 
likelihood function, L(x|R).                         

• The binary test data of Component 1 follows a Binomial 
distribution with probability of a pass of 𝐑𝐑𝟏𝟏

𝐿𝐿 𝑥𝑥 𝑅𝑅1 ∝ 𝑅𝑅1𝑠𝑠1(1 − 𝑅𝑅1)𝑓𝑓1

𝑠𝑠1 is the number of successes and 𝑓𝑓1is the number of failures from 
Component 1.
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Posterior Distribution

• Bayes’ theorem is used to find the posterior reliability 
distribution, fposterior(R|data). 

• The posterior distribution is proportional to the product of 
the prior distribution and the likelihood function.

• For our example, choosing the Beta distribution as a prior is 
ideal for a few reasons: it ensures that 𝑹𝑹 is between (0, 1) and 
it is the “conjugate” prior for the Binomial distribution.

𝒇𝒇𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝑹𝑹𝟏𝟏 ∝ 𝑹𝑹𝟏𝟏𝒑𝒑𝟏𝟏(𝟏𝟏 − 𝑹𝑹𝟏𝟏)𝒇𝒇𝟏𝟏𝑹𝑹𝟏𝟏𝒏𝒏𝒑𝒑𝒑𝒑(𝟏𝟏 − 𝑹𝑹𝟏𝟏)𝒏𝒏𝒑𝒑 𝟏𝟏−𝒑𝒑

∝ 𝑹𝑹𝟏𝟏
𝒑𝒑𝟏𝟏+𝒏𝒏𝒑𝒑𝒑𝒑(𝟏𝟏 − 𝑹𝑹𝟏𝟏)𝒇𝒇𝟏𝟏+𝒏𝒏𝒑𝒑(𝟏𝟏−𝒑𝒑)

Also a Beta distribution with updated parameters:
𝑠𝑠1 + 𝑛𝑛𝑝𝑝𝑝𝑝 + 1 and 𝑓𝑓1 + 𝑛𝑛𝑝𝑝 1 − 𝑝𝑝 + 1.
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Visualizing Bayesian Statistics

0.86  (0.76, 0.95) 0.75  (0.58, 0.89) 0.70  (0.54, 0.85)

Classical Estimate: 0.8 (0.55, 0.95)
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When Should We Think About Using 
Bayesian Techniques

• To obtain interval estimates (credible intervals) when there are zero 
failures

– Mean time between failure for short tests or for highly reliable 
systems

– Interval estimates in kill-chain analysis where zero failures occur at 
any point along the kill-chain

• If you are assessing a complex system mission reliability
– LCS Example - Confidence intervals are not straightforward to obtain 

using frequentist methods, impossible with zero failures in any sub-
system

• If there is relevant prior information to be incorporated in your 
analysis – this may include previous developmental (or operational) 
test data, engineering analyses, or information from modeling and 
simulation.

– BDS Example
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Case Study: LCS

• The Capability Development Document for LCS provides a reliability 
threshold for Core Mission functional area.

• The target reliability for Core Mission is 0.80 in 720 hours.

 Assume the functional area is a series system: system is up if all 
subsystems are up.

Critical Subsystem Total System Operating Time Operational Mission 
Failures

Total Ship Computing 
Environment (full-time) 4500 hours 1

Sea Sensors and Controls 
(underway) 2000 hours 3

Communications (full-time) 4500 hours 0

Sea Engagement Weapons 
(on-demand)

11 missions 2

Data are notional, based on preliminary results.  
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Prior Assumptions: LCS

• On-demand system
– Assume no belief in the relevance of prior knowledge, 𝑛𝑛𝑝𝑝 = 0

• Continuous systems
– The Gamma prior parameter a is set to 1, giving large variance. To 

ensure the 50th percentile is set at λ50=1/MTBFguess ,
choose b=log(2)×MTBFguess

– MTBFguess chosen by solving the reliability function at the requirement

Guiding Principles in Prior Selection:

• Start with the properties of the parameter of interest
• Decide on what prior information to use
• Allow for the analysis to change freely based on the data observed
• Priors specified at the system level, as opposed to mission level –

check impact on system prior
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Prior Specification: On Demand System
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Visualizing the Prior Specification: LCS

Possible Prior 1: Too much information, if the 
prior probability of a value is 0, no amount of 
data can move the posterior MTBF there!

Possible Prior 2: Too little information, for 
continuous measures, flat priors can be 
problematic when there are few or zero failures.
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Visualizing the Prior Specification: LCS

Possible Prior 3: Bounding the prior in case there are few failures, 
but ensuring enough flexibility for the data to speak for itself.
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Core Mission Reliability Prior

Note the core 
mission prior is 

somewhat 
informative – We will 

want to check the 
impact of this in the 

analysis
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R Code for implementation
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Comparison of Results

Classical
MTBOMF

Classical
Reliability at 

720hrs

Bayesian
MTBOMF

Bayesian
Reliability at 

720hrs
TSCE 4500 hrs

(1156 hrs, 42710 hrs)
0.85

(0.54,0.98)
3630 hrs

(1179 hrs, 6753 hrs)
0.73 

(0.54,0.90)

SSC 667 hrs
(299 hrs, 1814 hrs)

0.33
(0.09,0.67)

697 hrs
(332 hrs, 1172 hrs)

0.31 
(0.11,0.54)

Comm > 2796 hrs > 0.77* 10320 hrs
(1721 hrs, 18210 hrs)

0.83 
(0.66,0.96)

SEW 0.82
(0.58,0.95)

0.77
(0.62,0.91)

Core
Mission ????? 0.15 

(0.05, 0.27)

*Zero failures occurred in the notional on-demand system data

Note the impact of the 
prior is greater in the 
one failure system

Full Mission mean 
is comparable with 

the simple point 
estimate

TSCE: Total Ship Computing Environment
SSC: Sea Sensors and Controls
Comm: Communications
SEW: Sea Engagement Weapons

Many ways to think 
about calculating 

this, none of which 
are particularly 

satisfactory
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Core Mission Reliability Over Time

Posterior reliability as a 
function of time for TSCE 
(red), SSC (blue), and 
Communications (green)
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Reporting of Results

Posterior mean and 80% 
intervals for each subsystem and 
the total system reliability over  
15 days (light blue) and 30 days 
(dark blue) for the notional 
example.
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Value of Bayesian Statistics for LCS

• Avoids unrealistic reliability estimates when there are no 
observed failures. 

• In our notional example (zero failures for the 
Communications system), the Bayesian approach helped us 
solve an otherwise intractable problem.

• Obtaining interval estimates is straightforward for system 
reliability

– Frequentist methods would have to employ the Delta method, 
Normal approximations, or bootstrapping.

• Flexibility in developing system models
– We used a series system for the core mission reliability
– Many other system models are possible and we can still get 

full system reliability estimates with intervals.
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Case Study: Biochem Detection System

- Bio-chemical Detection System analyzes environmental 
samples and identifies chemical, biological, radiological 
agents. Each subsystem is comprised of a collection of 
components of various sensitivity.

• KPP performance requirement for each subsystem: detect 
85-90% of samples that come into the lab. 

• Multiple Tiers of testing
– Tier 2: component level testing with agent in pristine matrix to 

each device (vendor testing)
» 5 components: total of almost 2000 runs

– Tier 3: component level testing with agent in various matrices, 
such as soil, food, or swab (vendor testing)

» 8 components: total of about 3600 runs
– DT/OT: subsystem level test with agent in matrices, triage 

procedures (government testing)
» 80-90 samples tested on multiple components, final call made by 

operator based on component output
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• DT/OT: set concentration levels, comparatively small sample size 

• Standard logistic regression on the Tier 3 data could be problematic
• All detections or non-detections

• Bayesian approach with a dispersed prior:

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃𝐷𝐷 = 𝛽𝛽1 ∗ 𝑐𝑐𝑙𝑙𝑛𝑛𝑐𝑐 + 𝛽𝛽2𝑠𝑠𝑚𝑚𝑠𝑠𝑝𝑝𝑖𝑖𝑚𝑚 + 𝛽𝛽3
𝑚𝑚𝑎𝑎𝑠𝑠𝑛𝑛𝑠𝑠

𝛽𝛽1,𝜷𝜷𝟐𝟐,𝜷𝜷𝟑𝟑 ~ 𝑀𝑀𝑀𝑀𝑙𝑙𝑙𝑙𝑙𝑙𝑀𝑀𝑀𝑀𝑀𝑀𝑙𝑙𝑀𝑀𝑙𝑙𝑀𝑀 𝑁𝑁𝑙𝑙𝑀𝑀𝑁𝑁𝑀𝑀𝑙𝑙(𝟎𝟎,𝑾𝑾)

• Explicitly forcing a dependence on concentration.

• Leverage all device runs to learn about each agent/matrix combination 
performance curve.

Case Study: Biochem Detection System
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R code implementation
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R code implementation
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R code implementation
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Component: Chemical 
Detector 1
Agent:  Chemical A
Matrix: Soil, Swab

Chemical A (mg)

Case Study: Biochem Detection System
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Chemical Detector 2 Biological Detector 1

Chemical B (mg) Biological A (pfu, cfu, ng/ml)

Case Study: Biochem Detection System
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Chemical Detector 3 Chemical Detector 4
Chemical C (mg)

Chemical A (ug)
Chemical B (ug)
Chemical C (ug)
Chemical C (ug)
Chemical D (ug)
Chemical E (ug)
Chemical F (ug)

Case Study: Biochem Detection System
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Value of Bayesian Statistics 
for Biochem Detection System

• Tier 2 and Tier 3 produced a lot of data which we can 
leverage to make informed decisions.

• By knowing the concentrations of agents within 
various matrices that each component can detect, we 
can determine concentrations that the system of 
devices might be easy or difficult for the operators to 
identify in DT/OT.

• This analysis can serve as the basis for the analysis of 
the DT/OT data.
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Discussion: When Is it Worth the Effort?

• Inclusion of prior information from prior testing, 
modeling and simulation, or engineering analyses only 
when it is relevant to the current test. We do not want 
to bias the OT results.

• Even when including prior information, the prior must 
have enough variability to allow the estimates to move 
away from what was previously seen if the data 
support such values.

• We can use very flexible models for many types of test 
data (e.g. kill chains, complex system structures, 
linking EFFs to SA) and obtain estimates more readily 
than with the frequentist paradigm. The model and 
assumptions have to make sense for the test at hand.
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Discussion: Other Resources

• For other R packages that provide easy to implement tools and 
short but informative how to guides with examples, see 

https://cran.r-project.org/web/views/Bayesian.html

 arm, bayesm, and bayesSurv are good places to start

As with any new statistical method, it is important to have an 
expert review your work the first few times you apply these 

techniques. 
There are many ways to accidentally do bad statistics!

https://cran.r-project.org/web/views/Bayesian.html
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Backup Slides
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Common Conjugate Models

Likelihood Parameter Prior Posterior

Binomial(s+f, R) 0 ≤ R ≤ 1 Beta(a,b)
a > 0, b > 0

Beta(a’,b’)
a’= a + s
b’= b + f

Poisson(λ) λ > 0 Gamma(a,b)
a > 0, b > 0

Gamma(a’,b’) 
a’ = a + n

b’ = b + Σ t

Exponential(λ) λ > 0 Gamma(a,b)
a > 0, b > 0

Gamma(a’,b’) 
a’ = a + n

b’ = b + Σ t

** For more examples, see Conjugate Priors Wikipedia page or 
“Bayesian Reliability” pg 48
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